数学:9.2单项式乘多项式同步练习2(苏科版七年级下)
苏科版数学七年级下册_2021最新同步训练:单项式乘多项式
初中数学苏科版七年级下册9.2 单项式乘多项式同步训练一、单选题(本大题共10题,每题3分,共30分)1.下列说法正确的是()A. 多项式乘以单项式,积可以是多项式也可以是单项式B. 多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C. 多项式乘以单项式,积的系数是多项式系数与单项式系数的和D. 多项式乘以单项式,积的项数与多项式的项数相等2.下列运算正确的是()A. B.C. D.3.现有下列算式:(1)2a-a=2;(2)2a·3a=5a²;(3)ax(-1-a²-x)=ax-a³x-ax²;(4) ·x²=x³其中错误的有( )A. 1个B. 2个C. 3个D. 4个4.下列计算正确的是()A. (﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB. (2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C. (abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D. (ab)2•(3ab2﹣c)=3a3b4﹣a2b2c5.一个长方体的长、宽、高分别为x,2x,3x﹣4,则它的体积等于()A. 3x3﹣8x2B. 6x3_4C. ﹣2x3﹣8x2D. 6x3﹣8x26.若整式A与单项式﹣a2b的乘积为a(ab3﹣a3b),则整式A为()A. a2﹣b2B. b2﹣a2C. a2+b2D. ﹣a2﹣b27.今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题;﹣3xy•(4y﹣2x﹣1)=﹣12xy2+6x2y+__________,空格的地方被钢笔水弄污了,你认为横线上应填写()A. 3xyB. ﹣3xyC. ﹣1D. 18.已知:(x4﹣n+y m+3)•x n=x4+x2y7,则m+n的值是()A. 3B. 4C. 5D. 69.要使(x3+ax2﹣x)•(﹣8x4)的运算结果中不含x6的项,则a的值应为()A. 8B. ﹣8C. 18D. 010.如图,边长为(m + 3)的正方形纸片剪去一个边长为m 的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是( )A. 2m + 6B. 4m + 6C. 4m + 12D. 2m + 12二、填空题(本大题共8题,每题2分,共16分)11.计算:(﹣3xy2)2(2x﹣y2)=________.12.当a=﹣2时,求a2(2a+1)=________.13.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=________,n=________.14.A、B为单项式,且5x(A﹣2y)=30x2y3+B,则A=________,B=________.15.如果B是一个单项式,且B(2x2y+3xy2)=﹣6x3y2﹣9x2y3,则B为________.16.有一块三角形的铁板,其中一边的长为2(a+b),这边上的高为a,那么此三角形板的面积是________.17.对于任意的x、y,若存在a、b使得8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,则a+b=________.18.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:________ .三、解答题(本大题共7题,共84分)19.①3a(2a﹣1)②(x2﹣2y)(xy2)3③(a2b2)(a2+ab﹣0.6b2)④12ab[2a+ (a﹣b)+ b]⑤(﹣a)3•(﹣2ab2)3﹣4ab2(7a5b4+ ab3﹣5)20.已知有理数a、b、c满足|a﹣b﹣3|+(b+1)2+|c﹣1|=0,求(﹣3ab)•(a2c﹣6b2c)的值.21.某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a﹣24)m,试用a表示地基的面积,并计算当a=25时地基的面积.22.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米23.如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.24.一块长方形硬纸片,长为(5a2+4b2)m,宽为6a4m,在它的四个角上分别剪去一个边长为m的小正方形,然后折成一个无盖的盒子,请你求这个无盖盒子的表面积.25.王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?答案解析部分一、单选题1.【答案】A【考点】单项式乘多项式解:A、多项式乘以单项式,单项式不为0,积一定是多项式,单项式为0,积是单项式,故本选项正确;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、由选项A知错误.故选A.【分析】根据单项式乘以多项式的有关知识作答.2.【答案】B【考点】单项式乘多项式解:A、,故A选项错误;B、,故B选项正确;C、,故C选项错误;D、,故D选项错误.故答案为:B.【分析】利用单项式与多项式的乘法及去括号法则逐项计算,所得结果与题目中选项对比即可得到正确的一项.3.【答案】D【考点】单项式乘单项式,单项式乘多项式,合并同类项法则及应用解:(1)应为2a-a=a,故原计算不符合题意;(2)应为2a·3a=6a²,故原计算不符合题意;(3)应为ax(-1-a²-x)=-ax-a³x-ax²故原计算不符合题意;(4)应为(x4-x3) ·x2=x6-x5,故原计算不符合题意. 所以错误的有4个.故答案为:D【分析】根据合并同类项、单项式乘以单项式、单项式乘以多项式法则计算进行选择.4.【答案】D【考点】单项式乘多项式解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误,不符合题意;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误,不符合题意;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误,不符合题意;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确,符合题意.故答案为:D.【分析】单项式乘多项式是依据分配律将单项式与多项式相乘,在计算时需特别注意先确定每一项的符号.5.【答案】D【考点】单项式乘多项式解:根据题意得:长方体的体积为2x•x(3x﹣4)=6x3﹣8x2,故答案为:D【分析】长方体的体积为长乘宽再乘高,然后对列出的式子利用单项式乘多项式的法则进行求解.6.【答案】A【考点】单项式乘多项式解:A=a(ab3﹣a3b)÷(﹣a2b)=﹣a2b(b2﹣a2)÷(a2b)=a2﹣b2,故选A.【分析】根据A=积÷单项式﹣a2b,列式后进行计算,把积式进行分解因式后,再约分即可.7.【答案】A【考点】单项式乘多项式解:﹣3xy•(4y﹣2x﹣1)=﹣3xy•4y+(﹣3xy)•(﹣2x)+(﹣3xy)•(﹣1)=﹣12xy2+6x2y+3xy.所以应填写:3xy.故答案为:A.【分析】利用单项式乘多项式的法则求得结果与所给结果即可求得结果所缺失的部分.8.【答案】D【考点】单项式乘多项式解:(x4﹣n+y m+3)•x n=x4+x n y m+3=x4+x2y7,∴n=2,m+3=7,即m=4,n=2,则m+n=4+2=6.故选D【分析】已知等式左边利用单项式乘以多项式法则计算,利用多项式相等的条件求出m与n 的值,即可确定出m+n的值.9.【答案】D【考点】单项式乘多项式解:(x3+ax2﹣x)•(﹣8x4)=﹣8x7﹣8ax6+8x5,∵运算结果中不含x6的项,∴﹣8a=0,解得:a=0.故选D.【分析】原式利用单项式乘多项式法则计算,根据结果中不含x6的项,即可求出a的值.10.【答案】C【考点】单项式乘多项式解:根据题意得:2(2m+3+3)=4m+12.故答案为:C.【分析】长方形的周长=2(长+宽)分析得,长:m+3+m=2m+3宽:3带入到周长公式,化简即得二、填空题11.【答案】【考点】单项式乘多项式解:原式=(9x2y4)(2x﹣y2)=18x3y4﹣9x2y6.故答案为:18x3y4﹣9x2y6.【分析】先算乘方,然后利用单项式乘多项式将括号去掉即可.12.【答案】﹣12【考点】代数式求值,单项式乘多项式解:∵a2(2a+1)=2a3+a2,∴当a=﹣2时,原式=2×(﹣2)3+(﹣2)2=﹣16+4=﹣12.故答案为:﹣12.【分析】直接利用单项式乘以多项式运算法则计算,进而把a的值代入即可.13.【答案】3;4【考点】单项式乘多项式解:原式=2x m+2y2﹣6x3y4=2x5y2﹣6x3y n,∴m+2=5,n=4,∴m=3,n=4,故答案为:3,4.【分析】按照多项式乘以单项式的法则展开后即可求得m、n的值.14.【答案】6xy3;﹣10xy【考点】单项式乘多项式解:∵5x(A﹣2y)=5Ax﹣10xy=30x2y3+B,∴A=6xy3;B=﹣10xy.故答案为:6xy3;﹣10xy.【分析】已知等式左边利用单项式乘以多项式法则计算,利用多项式相等的条件即可求出A 与B的值.15.【答案】﹣3xy【考点】单项式乘多项式解:∵B(2x2y+3xy2)=﹣6x3y2﹣9x2y3,∴B= =﹣3xy;故答案为:﹣3xy.【分析】根据单项式乘多项式的运算法则,先把﹣6x3y2﹣9x2y3与2x2y+3xy2分别提取公因式,再进行约分即可求出答案.16.【答案】a2+ab【考点】单项式乘多项式解:根据三角形的面积公式得:×2(a+b)•a=a2+ab;故答案为:a2+ab.【分析】根据三角形的面积公式底×高,列出算式,再根据单项式乘多项式的运算法则进行计算即可.17.【答案】12【考点】单项式乘多项式解:∵8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,∴8x+y(a﹣2b)=(a﹣2b)x+4by,∴,解得,a+b=12+2=14.故答案为:14.【分析】将已知等式右边变形,再比较等式左右两边对应项系数即可.18.【答案】2a(a+b)=2a2+2ab【考点】单项式乘多项式【解析】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab【分析】由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.三、解答题19.【答案】解:①原式=6a2﹣3a;②原式=(x2﹣2y)(x3y6)=x5y6﹣2x3y7;③原式=2a4b2+ a3b3﹣a2b4;④原式=12ab(﹣b)=33a2b﹣ab2;⑤原式=8a6b6﹣28a6b6﹣2a2b5+20ab2=﹣20a6b6﹣2a2b5+20ab2【考点】单项式乘多项式【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.20.【答案】解;由|a﹣b﹣3|+(b+1)2+|c﹣1|=0,得.解得.(﹣3ab)•(a2c﹣6b2c)=﹣3a3bc+18ab3c,当时,原式=﹣3×23×(﹣1)×1+18×2×(﹣1)3×1=24﹣36=﹣12【考点】单项式乘多项式【分析】根据非负数的和等于零,可得方程组,根据解方程组,可得a、b、c的值,根据单项式乘多项式,可得整式,根据代数式求值.21.【答案】解:根据题意得:地基的面积是:2a•(2a﹣24)=(4a2﹣48a)m2;当a=25时,4a2﹣48a=4×252﹣48×25=1300m2【考点】单项式乘多项式【分析】根据地基的面积=长乘以宽列出算式,再根据单项式与多项式相乘的法则进行计算,然后把a=25代入即可求出答案.22.【答案】(1)解:防洪堤坝的横断面积为:[a+(a+2b)]·a= a(2a+2b)= a2+ ab(平方米)(2)解:堤坝的体积为:( a2+ ab)×600=300a2+300ab(立方米)【考点】单项式乘多项式,整式的混合运算【分析】根据梯形的面积公式计算防洪堤坝的横断面积;再根据根据单项式乘以多项式,就是用单项式乘以多项式的每一项,再把它们的积相加;把防洪堤坝长的值乘以横断面积,得到堤坝的体积.23.【答案】解:长方形地块的长为:(3a+2b)+(2a-b),宽为4a,这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.【考点】单项式乘多项式【分析】根据图形得到长方形地块的长和宽,由长方形的面积公式得到单项式乘以多项式;化简整式.24.【答案】解:纸片的面积是:(5a2+4b2)•6a4=30a6+24a4b2;小正方形的面积是:(a3)2= a6,则无盖盒子的表面积是:30a6+24a4b2﹣4×a6=21a6+24a4b2【考点】单项式乘多项式【分析】利用纸片的面积减去剪去的4个小正方形的面积就是盒子的表面积.25.【答案】(1)解:卧室的面积是2b(4a-2a)=4ab(m2).厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(m2),即木地板需要4ab m2,地砖需要11ab m2.(2)解:11ab·x+4ab·3x=11abx+12abx=23abx(元).即王老师需要花23abx元【考点】单项式乘单项式,单项式乘多项式【分析】(1)根据题意以及图形利用面积公式即可得出答案.(2)利用(1)中木地板和地砖的面积乘以每平方米的价格即可得出答案.。
苏教版七年级下期末复习三因式分解
苏教版数学七年级下期中复习三---整式乘法与因式分解一、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。
m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(a+b)(c+d)=ac+ad+bc+bd4、乘法公式:a)完全平方公式:(a+b)2=a2+2ab+b2;(a -b)2=a2-2ab+b2b)平方差公式:(a+b)(a-b)=a2-b25、因式分解:i.把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
ii.多项式的乘法与多项式因式分解的区别简单地说:乘法是积.化和.,因式分解是和.化积.。
(3)因式分解的方法:①提公因式法;②运用公式法。
6、因式分解的应用:(1)提公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提出来。
把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
(2)公因式:多项式ab+ac+ad的各项ab、ac、ad都含有相同的因式a,a称为多项式各项的公因式。
(3)用提公因式法时的注意点:①公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。
如:4a2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);②当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使括号内的第一项的系数为正。
如:-2m3+8m2-12m= -2.m(m2-4m+6);③提公因式后,另一个多项式的求法是用原多项式除以公因式。
(4)运用公式法的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(5)因式分解的步骤和要求:把一个多项式分解因式时,应先提公因式...,注意公因式要提尽..,然后再应用公式,如果是二项式考虑用平方差公式,如果是三项式考虑用完全平方公式,直到把每一个因式都分解到不能再分解为止。
苏科版数学七年级下册9.1《单项式乘单项式》教学设计
苏科版数学七年级下册9.1《单项式乘单项式》教学设计一. 教材分析《单项式乘单项式》是苏科版数学七年级下册第9.1节的内容,本节课的主要内容是让学生掌握单项式乘单项式的运算法则。
在此之前,学生已经学习了有理数的乘法、整式的加减等知识,为本节课的学习打下了基础。
本节课的内容对于学生来说较为抽象,需要通过实例讲解和练习来帮助学生理解和掌握。
二. 学情分析七年级的学生在学习过程中,对于数学知识的接受程度和理解能力各有不同。
有的学生可能对整式的乘法有一定的理解,但大部分学生可能还较为陌生。
因此,在教学过程中,需要关注学生的个体差异,针对不同的学生进行有针对性的讲解和指导。
三. 教学目标1.理解单项式乘单项式的运算法则。
2.能够熟练地进行单项式乘单项式的计算。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.单项式乘单项式的运算法则。
2.如何将实际问题转化为单项式乘单项式的形式。
五. 教学方法1.实例讲解:通过具体的例子,让学生理解单项式乘单项式的运算法则。
2.小组讨论:让学生分组讨论,共同解决问题,培养学生的合作能力。
3.练习巩固:通过大量的练习题,让学生巩固所学知识。
4.问题引导:教师提出问题,引导学生思考,培养学生的数学思维能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题。
2.练习题:准备一定数量的练习题,用于课堂练习和巩固。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出单项式乘单项式的概念。
例如:已知苹果的价格为每千克3元,香蕉的价格为每千克2元,求购买2千克苹果和3千克香蕉需要多少钱?2.呈现(10分钟)讲解单项式乘单项式的运算法则,并通过PPT展示相关的实例。
让学生跟随老师的讲解,一起动手计算,加深对运算法则的理解。
3.操练(10分钟)让学生进行单项式乘单项式的计算练习。
教师巡回指导,针对学生的错误进行讲解和纠正。
2021年苏科新版七年级数学下册《9.2单项式乘多项式》自主学习同步训练题(附答案)
2021年苏科新版七年级数学下册《9.2单项式乘多项式》自主学习同步训练题(附答案)1.计算x(1+x)﹣x(1﹣x)等于()A.2x B.2x2C.0D.﹣2x+2x22.一个长方体的长、宽、高分别是3m﹣4,2m和m,则它的体积是()A.3m3﹣4m2B.3m2﹣4m3C.6m3﹣8m2D.6m2﹣8m33.已知,a+b=2,b﹣c=﹣3,则代数式ac+b(c﹣a﹣b)的值是()A.5B.﹣5C.6D.﹣64.要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1B.2C.3D.45.要使(﹣6x3)(x2+ax﹣3)的展开式中不含x4项,则a=()A.1B.0C.﹣1D.6.已知x2﹣4x﹣1=0,则代数式x(x﹣4)+1的值为()A.2B.1C.0D.﹣17.若﹣x2y=2,则﹣xy(x5y2﹣x3y+2x)的值为()A.16B.12C.8D.08.化简5a•(2a2﹣ab),结果正确的是()A.﹣10a3﹣5ab B.10a3﹣5a2b C.﹣10a2+5a2b D.﹣10a3+5a2b 9.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.110.下列运算中,正确的是()A.﹣2x(3x2y﹣2xy)=﹣6x3y﹣4x2yB.2xy2(﹣x2+2y2+1)=﹣4x3y4C.(3ab2﹣2ab)•abc=3a2b3﹣2a2b2D.(ab)2(2ab2﹣c)=2a3b4﹣a2b2c11.计算:(x﹣2y)(﹣5x)=.12.计算a(a﹣b)+b(a﹣b)的结果是.13.计算()•()=.14.计算:﹣3x•(2x2y﹣xy)=.15.一个长方形的长、宽分别是3x﹣4和x,它的面积等于.16.已知a﹣2b=﹣2,则代数式a(b﹣2)﹣b(a﹣4)的值为.17.﹣2xy(x2y﹣3xy2)=.18.一个长方体的长、宽、高分别是3x﹣4、2x、x,它的体积等于.19.计算:•ab=.20.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写.21.计算:(x﹣2y)(﹣xy2).22.计算:(﹣2a)2•(3a2﹣a﹣1).23.计算:(3x2﹣y+)•6xy.24.[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2.25.计算:2x(x﹣1)﹣3x(x﹣)26.计算:.27.计算:(1)5a2•(﹣3a3)2 (2)3a•(a2+2a)﹣2a2(a﹣3)28.计算:a•a2+(﹣2a2b)2+2a2(a﹣a2b2)29.计算:6m•(3m2﹣m﹣1)30.解方程:2x(x﹣1)﹣x(2x+3)=15.参考答案1.解:原式=x+x2﹣x+x2=2x2.故选:B.2.解:根据长方体体积的计算公式得,(3m﹣4)•2m•m=6m3﹣8m2,故选:C.3.解:ac+b(c﹣a﹣b)=ac+bc﹣ab﹣b2=c(a+b)﹣b(a+b)=(a+b)(c﹣b),把a+b=2,b﹣c=﹣3代入(a+b)(c﹣b)=2×3=6,故选:C.4.解:原式=﹣x5﹣ax4﹣x3+2x4=﹣x5+(2﹣a)x4﹣x3∵﹣x3(x2+ax+1)+2x4中不含有x的四次项,∴2﹣a=0,解得,a=2.故选:B.5.解:原式=﹣6x5﹣6ax4+18x3,由展开式不含x4项,得到a=0,故选:B.6.解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,x(x﹣4)+1=x2﹣4x+1=1+1=2,故选:A.7.解:原式=﹣x6y3+x4y2﹣2x2y,当﹣x2y=2时,原式=﹣(﹣2)3+(﹣2)2﹣2×(﹣2)=16,故选:A.8.解:5a•(2a2﹣ab)=10a3﹣5a2b,故选:B.9.解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.10.解:A、﹣2x(3x2y﹣2xy)=﹣6x3y+4x2y,故本选项错误;B、2xy2(﹣x2+2y2+1)=﹣4x3y2+4xy4+2xy2,故本选项错误;C、(3ab2﹣2ab)•abc=3a2b3c﹣2a2b2c,故本选项错误;D、(ab)2•(2ab2﹣c)=a2b2•(2ab2﹣c)=2a3b4﹣a2b2c,故本选项正确;故选:D.11.解:(x﹣2y)(﹣5x)=﹣5x2+10xy.故答案为:﹣5x2+10xy.12.解:a(a﹣b)+b(a﹣b)=a2﹣ab+ab﹣b2=a2﹣b2.故答案为:a2﹣b2.13.解:()•()=x2y•()﹣6xy•(﹣xy2)=﹣x3y3+3x2y3.故答案为:﹣x3y3+3x2y3.14.解:﹣3x•(2x2y﹣xy)=﹣6x3y+3x2y.故答案为:﹣6x3y+3x2y.15.解:长方形的面积是(3x﹣4)•x=3x2﹣4x,故答案为:3x2﹣4x.16.解:a(b﹣2)﹣b(a﹣4)=ab﹣2a﹣ab+4b=﹣2a+4b=﹣2(a﹣2b),∵a﹣2b=﹣2,∴原式=﹣2×(﹣2)=4.故答案为:4.17.解:﹣2xy(x2y﹣3xy2)=﹣2xy•x2y+2xy•3xy2=﹣2x3y2+6x2y3.故答案为:﹣2x3y2+6x2y3.18.解:由题意可得,(3x﹣4)×2x×x=(3x﹣4)×2x2=6x3﹣8x2.故答案为:6x3﹣8x2.19.解:•ab=ab2•ab﹣2ab•ab=a2b3﹣a2b2.故答案为:a2b3﹣a2b2.20.解:根据题意得:﹣3xy(4y﹣2x﹣1)+12xy2﹣6x2y=﹣12xy2+6x2y+3xy+12xy2﹣6x2y=3xy.故答案为:3xy.21.解:原式=﹣x2y2+xy3.22.解:原式=4a2•(3a2﹣a﹣1)=12a4﹣4a3﹣4a2.23.解:原式=(3x2)•6xy+(﹣y)•6xy+•6xy=18x3y﹣8xy2+3xy.24.解:[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2=(x3y﹣x2y2﹣x3y+x2y2)•3xy2=0.28.解:原式=x2﹣2x﹣x2+5x=3x.26.解:原式=9x2y2﹣6xy3﹣9x2y2=﹣6xy3.27.解:(1)原式=5a2•9a6=45a8;(2)原式=3a3+6a2﹣2a3+6a2=a3+12a2.28.解:原式=a3+4a4b2+2a3﹣2a4b2=3a3+2a4b229.解:6m•(3m2﹣m﹣1)=18m3﹣4m2﹣6m.30.解:2x(x﹣1)﹣x(2x+3)=152x2﹣2x﹣2x2﹣3x=15,整理得:﹣5x=15,解得:x=﹣3.。
9.2_单项式乘多项式
乘法分配 律
=(-3a) ·(-2a2)+(-3a) ·(-3a)+(-3a) ·(-2) =6a3+9a2+6a 单项式乘单项式运算法则
建湖县实验初中
计算:
⑴ a (2a-3)
⑵ a2 (1-3a)
⑶ 3x(x2-2x-1) ⑷-2x2y(3x2-2x-3) (5) (2x2-3xy+4y2)(-2xy) 1 2 2 3 (6) 2a (a a a 1) 2
3
2x
2x
2
3
2
2
3x
3x
30x
3
建湖县实验初中
计算:
2 2 (1)0.5ab ( ab 2ab ); 3
(2) x( x xy y ) y( x xy y );
2 2 2 2
(3)4ab[2a b (ab ab ) 3b].
2 2
建湖县实验初中
小结与回顾
初中数学八年级下册 (苏科版)
单项式乘多项式
建湖县实验初中
b
c
d
a
如果把它看成一个大长方形,那么它的长 为__________,面积可表示为_________. a(b+c+d) b+c+d
建湖县实验初中
b
c
d
a
a
a
如果把它看成三个小长方形,那么它们的 面积可分别表示为_____、_____、_____. ab ac ad
3a
人民广场
1.课本第75页练一练
2.计算:
⑴ 3x(x2-2x-1)-2x2(x-3) ⑵ -6xy(x2-2xy-y2)+3xy(2x2-4xy+y]
初中数学七年级下册苏科版9.3多项式乘多项式教学设计
为了巩固学生对多项式乘法知识的掌握,培养他们独立解决问题的能力,特此布置以下作业:
1.基础巩固题:完成课本第9.3节后的习题1、2、3,这些题目旨在帮助学生熟悉多项式乘法的基本步骤,加强他们对分配律运用的熟练度。
2.应用提升题:从生活中选取两个实际情境,要求学生将问题转化为多项式乘法运算,并求解答案。这样的题目可以帮助学生将理论知识与生活实际相结合,提高数学应用能力。
2.情境导入:向学生展示一个与生活相关的情境,如计算一个长方形花园的面积(长和宽分别为多项式表达式),引导学生思考如何解决这类问题,为新课的学习提供实际背景。
3.问题导入:提出一个具有挑战性的问题,如“如何计算两个多项式的乘积?”,激发学生的好奇心,引导学生进入新课的学习。
(二)讲授新知
1.演示与讲解:利用多媒体课件或黑板,直观地展示多项式乘以多项式的运算过程。详细讲解分配律在多项式乘法中的应用,解释每一步的运算规则。
3.思考探究题:针对本节课学习的多项式乘法,提出一个具有挑战性的问题,要求学生在课后进行思考和探究。例如:“如何将一个三项式与一个四项式相乘?请尝试给出一个通用的解题步骤。”
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在课后分组讨论,共同解决。这样的题目有助于培养学生的团队合作意识和交流表达能力。
4.能够在解决混合运算题目时,识别并优先执行多项式乘法步骤,理清运算顺序。
(二)过程与方法
1.探究与发现:鼓励学生通过小组合作,自主探究多项式乘多项式的运算规律,培养学生的观察能力和归纳总结能力。
2.理解与运用:通过例题讲解和课堂练习,让学生理解和掌握多项式乘法的具体步骤,提高学生的逻辑思维能力和问题解决能力。
7.评价与反馈阶段:通过课堂提问、作业批改、小测验等形式,全面评估学生的学习效果。针对学生的个体差异,给予有针对性的指导和建议,促进学生的全面发展。
苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)
9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。
苏科版七年级数学下册9.2 单项式乘多项式同步练习(包含答案解析)
9.2单项式乘多项式一、选择题1.化简,结果正确的是()A. B. C. D.2.计算:的结果是()A. B.C. D.3.化简的结果为()A. B. C. 9 D.4.计算的结果是()A. B. C. D.5.要使的展开式中不含项,则k的值为()A. B. 0 C. 2 D. 36.一个多项式除以,其商为,则该多项式为()A. B.C. D.7.下列计算中:;;;,错误的个数有()A. 1个B. 2个C. 3个D. 4个8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有();;;.A. B. C. D.9.若,则的值为()A. 216B. 246C.D. 17410.若与的值永远相等,则m、n、k分别为()A. 6,3,1B. 3,6,1C. 2,1,3D. 2,3,1二、填空题11.计算:_______________.12.已知,那么______.13.若多项式与单项式的积是,则该多项式为______.14.一个长方体的长、宽、高分别是、、x,则它的表面积为______.15.已知,则的值为______.16.若,则__________,__________.17.一个矩形的面积为,一边长为2ab cm,则它的周长为________cm.18.要使成立,则a和b的值分别为.三、计算题19.计算:;.四、解答题20.先化简,再求值:,其中.21.阅读:已知,求的值.解:.你能用上述方法解决以下问题吗试一试已知,求的值.22.某同学在计算一个多项式乘以时,因抄错运算符号,算成了加上,得到的结果是,那么正确的计算结果是多少?答案和解析1.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:故选B.2.【答案】A【解析】【分析】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:.故选:A.3.【答案】C【解析】解:原式.故选:C.直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案.此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】解:原式,故选C.【分析】原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则求出答案.【解答】解:的展开式中不含项,中不含项,,解得:.故选C.6.【答案】D【解析】【分析】本题考查了多项式除以单项式,弄清被除式、除式、商三者之间的关系是求解的关键.根据被除式商除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式.故选D.7.【答案】C【解析】【分析】此题考查了单项式乘多项式和完全平方公式,熟练掌握公式及运算法则是解本题的关键.各项计算得到结果,即可作出判断.【解答】解:,故错误;,故错误;,故错误;,故正确,错误的有3个.故选C.8.【答案】D【解析】解:表示该长方形面积的多项式正确;正确;正确;正确.故选:D.根据图中长方形的面积可表示为总长总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.9.【答案】B【解析】解:原式,当时,原式,故选:B.将原式变形为,再将代入计算可得.本题主要考查单项式乘多项式,解题的关键是熟练掌握单项式乘多项式的运算法则.10.【答案】A【解析】【分析】本题考查的是单项式乘以多项式有关知识,首先对该式进行相乘,然后再利用等式两边的式子相等进行解答即可.【解答】解:,,,,解得:,,.故选A.11.【答案】【解析】解:故答案为:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.此题考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:单项式与多项式相乘实质上是转化为单项式乘以单项式;用单项式去乘多项式中的每一项时,不能漏乘;注意确定积的符号.12.【答案】【解析】解:,,解得.故答案为:.根据单项式与多项式相乘的运算法则进行计算,使结果对应相等,得到关于x的方程,解方程得到答案.本题考查的是单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】【解析】解:多项式与单项式的积是,该多项式为:.故答案为:.直接利用整式的除法运算法则计算得出答案.此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.14.【答案】【解析】解:表面积是,故答案为:.先根据题意列出算式,再求出即可.本题考查了整式的混合运算,能根据题意列出算式是解此题的关键.15.【答案】16【解析】解:,,即,则,故答案为:16.将已知等式去括号、合并可得,整体代入到原式可得答案.本题主要考查代数式的求值,解题的关键是掌握去括号、合并同类项的法则及因式分解的应用、整体代入思想的运用.16.【答案】;.【解析】【分析】这是一道考查单项式乘以多项式的题目,解题关键在于掌握法则,根据对应相等,即可求出M和N.【解答】解:,,,即,,故答案为;.17.【答案】【解析】【分析】此题考查了多项式除以单项式、单项式乘多项式在实际中的应用.求出矩形的另一边长是解题的关键.先根据矩形的面积公式求出另一边的长,再根据矩形的周长长宽列式,通过计算即可得出结果.解:,.故答案为.18.【答案】2,【解析】【分析】【分析】先将等式左边去括号合并同类项,再根据多项式相等的条件即可求出a与b的值.此题考查了整式的混合运算,涉及的知识有:去括号法则,合并同类项法则,以及多项式相等的条件,熟练掌握法则是解本题的关键.【解答】解:因为,所以,,解得,.19.【答案】解:原式;原式.【解析】本题考查了单项式乘以多项式,按照单项式乘以多项式法则进行计算即可;本题考查了幂的乘方与积的乘方、单项式乘以多项式,先算幂的乘方与积的乘方再算单项式乘以多项式即可求得答案.20.【答案】解:原式,,当时,原式.【解析】本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.21.【答案】解:,,,,,.【解析】本题考查了单项式乘多项式,整体代入是解题关键.根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.22.【答案】解:这个多项式是,正确的计算结果是:.【解析】用错误结果减去已知多项式,得出原式,再乘以得出正确结果.。
最新苏科版七年级数学下册全册完整课件
第7章 平面图 探索直线平行的条件
最新苏科版七年级数学下册全册完 整课件
7.2 探索平行线的性质
最新苏科版七年级数学下册全册完 整课件
7.3 图形的平移
最新苏科版七年级数学下册全册 完整课件目录
0002页 0052页 0076页 0118页 0148页 0184页 0214页 0249页 0273页 0295页 0330页 0360页 0395页 0431页 0454页 0481页 0504页
第7章 平面图形的认识(二) 7.2 探索平行线的性质 7.4 认识三角形 第8章 幂的运算 8.2 幂的乘方与积的乘方 第9章 从面积到乘法公式 9.2 单项式乘多项式 9.4 乘法公式 第10章 二元一次方程组 10.2 二元一次方程组 10.4 三元一次方程组 第11章 一元一次不等式 11.2 不等式的解集 11.4 解一元一次不等式 11.6 一元一次不等式组 12.1 定义与命题 12.3 互逆命题
七年级数学下册 第9章 9.2 单项式乘多项式同步练习(含解析)苏科版(2021年整理)
七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册第9章9.2 单项式乘多项式同步练习(含解析)(新版)苏科版的全部内容。
第9章 9.2单项式乘多项式一、单选题(共9题;共18分)1、一个长方体的长,宽,高分别是5x﹣2,3x,2x,则它的体积是( )A、30x3﹣12x2B、25x3﹣10x2C、18x2D、10x﹣22、m(a2﹣b2+c)等于()A、ma2﹣mb2+mB、ma2+mb2+mcC、ma2﹣mb2+mcD、ma2﹣b2+c3、下列计算中正确的是( )A、(﹣3x3)2=9x5B、x(3x﹣2)=3x2﹣2xC、x2(3x3﹣2)=3x6﹣2x2D、x(x3﹣x2+1)=x4﹣x34、计算a(1+a)﹣a(1﹣a)的结果为()A、2aB、2a2C、0D、﹣2a+2a5、化简﹣3a•(2a2﹣a+1)正确的是( )A、﹣6a3+3a2﹣3aB、﹣6a3+3a2+3aC、﹣6a3﹣3a2﹣3aD、6a3﹣3a2﹣3a6、一个三角形的底为2m,高为m+2n,它的面积是()A、2m2+4mnB、m2+2mnC、m2+4mnD、2m2+2mn7、已知:(x4﹣n+y m+3)•x n=x4+x2y7 , 则m+n的值是()A、3B、4C、5D、68、要使(x3+ax2﹣x)•(﹣8x4)的运算结果中不含x6的项,则a的值应为()A、8B、﹣8C、D、09、下列说法正确的是( )A、多项式乘以单项式,积可以是多项式也可以是单项式B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C、多项式乘以单项式,积的系数是多项式系数与单项式系数的和D、多项式乘以单项式,积的项数与多项式的项数相等二、解答题(共1题;共5分)10、先化简,再求值:。
91-93-江苏省无锡市前洲中学苏科版七年级数学下册课件(共13张PPT)
A.p=q B.p=±q C.p=-q D.无法确定
4. 方程(x+4)(x-5)=x2-20 的解是 ( )
A.x=0
B.x=-4
C.x=5 D.x=40
二.填空题ห้องสมุดไป่ตู้
5. (3x-1)(4x+5)=_________
_;.
6. (x+3)(x+4)-(x-1)(x-2)=__________;
7.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4 的系数是__________.
(x+a)(x+b)=x2+( a+b )x+( ab )
2、试说明代数式(2x+3)(3x+2)-6x(x+3)+5x+16的 值与x的取值无关.
解:原式=6x2+4x+9x+6-6x2-18x+5x+16 =(6-6)x2+(4+9+5-18)x+6+16
=22 ∴代数式的值与x的取值无关
变式:如果(x2+bx+8)(x2 – 3x+c)的乘积中
(3) x 3 x 5 ___________________
(4) m 2m 8 ___________________ (5) x 72 _________________________
(6) m 3nm 3n _________________
2、给出下列 4 个算式,其中计算正确的是( )
不含x2和x3的项,求b、c的值。
解:原式= x4 – 3x3 + c x2 +bx3 – 3bx2 +bcx+8 x2– 24x+8c
苏科版数学七年级下册9.2《单项式乘多项式》教学设计
苏科版数学七年级下册9.2《单项式乘多项式》教学设计一. 教材分析苏科版数学七年级下册9.2《单项式乘多项式》是学生在学习了单项式和多项式的基本概念之后,进一步研究单项式与多项式之间的运算。
这一节内容通过实例引入单项式乘多项式的运算方法,让学生体会数学与实际生活的联系,培养学生的数学应用能力。
教材通过例题和练习题的安排,使学生掌握单项式乘多项式的运算规则,提高学生的数学运算技巧。
二. 学情分析学生在学习本节内容前,已经掌握了单项式和多项式的基本概念,对基本的代数运算有了一定的了解。
但是,对于单项式乘多项式的运算规则,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要通过具体的实例,引导学生理解并掌握单项式乘多项式的运算方法。
三. 教学目标1.知识与技能:使学生掌握单项式乘多项式的运算方法,能熟练地进行运算。
2.过程与方法:通过实例分析,让学生理解单项式乘多项式的运算规则,培养学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:单项式乘多项式的运算方法。
2.难点:理解并掌握单项式乘多项式的运算规则。
五. 教学方法采用启发式教学法、实例教学法和小组合作学习法。
通过启发式教学法,引导学生主动思考,发现单项式乘多项式的运算规则;通过实例教学法,使学生直观地理解单项式乘多项式的运算方法;通过小组合作学习法,让学生在合作中交流,共同提高。
六. 教学准备1.准备相关的实例,用于引导学生理解和掌握单项式乘多项式的运算方法。
2.准备练习题,用于巩固学生对单项式乘多项式的运算方法的掌握。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,如:“小明买了3个苹果和2个香蕉,苹果每个2元,香蕉每个3元,请问小明一共花了多少钱?”让学生思考并解答。
2.呈现(10分钟)教师通过课件呈现单项式乘多项式的运算规则,并用实例进行讲解。
七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七
第9章多项式乘多项式一、单选题(共5题;共10分)1、(x﹣1)(2x+3)的计算结果是()A、2x2+x﹣3B、2x2﹣x﹣3C、2x2﹣x+3D、x2﹣2x﹣32、若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A、﹣13B、13C、2D、﹣153、李老师做了个长方形教具,其中一边长为2a+b,另一边长为a﹣b,则该长方形的面积为()A、6a+bB、2a2﹣ab﹣b2C、3aD、10a﹣b4、已知则的值为()A、2B、-2C、0D、35、如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A、﹣3B、3C、0D、1二、填空题(共9题;共10分)6、如果要使(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=________.7、计算:(a﹣2)(a+3)﹣a•a=________.8、若(x+2)(x﹣n)=x2+mx+8,则mn=________.9、a+b=5,ab=2,则(a﹣2)(3b﹣6)=________.10、已知x+y=5,xy=2,则(x+2)(y+2)=________.11、若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=________.12、计算:(x﹣1)(x+3)=________.13、如果(x+1)(x+m)的积中不含x的一次项,则m的值为________.14、我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+________a2b2+4ab2+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过天是星期________.三、计算题(共7题;共55分)15、解方程:(2x+5)(x﹣1)=2(x+4)(x﹣3)16、计算:(1)(2x﹣7y)(3x+4y﹣1);(2)(x﹣y)(x2+xy+y2).17、计算:①(x+2)(x﹣4)②(x+2)(x﹣2)18、计算:(1)(a2+3)(a﹣2)﹣a(a2﹣2a﹣2);(2)(2m+n)(2m﹣n)+(m+n)2﹣2(2m2﹣mn).19、已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.20、计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.21、已知(x+my)(x+ny)=x2+2xy﹣8y2,求m2n+mn2的值.四、解答题(共1题;共10分)22、对于任意有理数,我们规定符号= ,例如:== .(1)求的值;(2)求的值,其中=0.答案解析部分一、单选题=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.2、【答案】A 【考点】多项式乘多项式【解析】【解答】解:∵(x﹣3)(x+5) =x2+5x ﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.3、【答案】B 【考点】多项式乘多项式【解析】【解答】解:根据题意得:(2a+b)(a﹣b)=2a2﹣2ab+ab﹣b2=2a2﹣ab﹣b2.故选B.【分析】两边长相乘,利用多项式乘以多项式法则计算,合并即可得到长方形面积.4、【答案】B 【考点】多项式乘多项式【解析】【解答】 ( 2 −m ) ( 2 −n )=4-2(m+n)+mn=4-2×2-2=-2.故选B.【分析】计算 ( 2 − m ) ( 2 − n ),再将m + n = 2 , m n = − 2 代入求值.5、【答案】A 【考点】多项式乘多项式【解析】【解答】(x+m)(x+3)=x2+(3+m)x+3m,因为乘积不含x项,则3+m=0,则m=-3.故选A.【分析】求出它们的乘积,使含x项的系数为0,即可求出m的值.二、填空题6、【答案】【考点】多项式乘多项式【解析】【解答】解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2=x3+(1﹣2a)x2+a2x+a2,∵乘积中不含x2项,∴1﹣2a=0,解得:a= ,故答案为:.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.7、【答案】a﹣6 【考点】同底数幂的乘法,多项式乘多项式【解析】【解答】解:(a﹣2)(a+3)﹣a•a =a2+3a﹣2a﹣6﹣a2=a﹣6.故答案为:a﹣6.【分析】根据多项式乘以多项式,即可解答.8、【答案】-24 【考点】多项式乘多项式【解析】【解答】解:∵(x+2)(x﹣n)=x2+mx+8,∴x2﹣nx+2x﹣2n=x2+mx+8,x2+(2﹣n)x﹣2n=x2+mx+8则,解得:故mn=﹣24.故答案为:﹣24.【分析】直接利用多项式乘以多项式运算法则去括号,进而得出关于m,n的等式,即可求出答案.∴(a﹣2)(3b﹣6)=3ab﹣6a﹣6b+12=3ab﹣6(a+b)+12=3×2﹣6×5+12=﹣12.故答案为:﹣12.【分析】直接利用多项式乘以多项式运算法则去括号,进而将已知代入求出答案.10、【答案】16 【考点】多项式乘多项式【解析】【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.11、【答案】﹣【考点】多项式乘多项式【解析】【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.12、【答案】x2+2x﹣3 【考点】多项式乘多项式【解析】【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.13、【答案】-1 【考点】多项式乘多项式【解析】【解答】解:原式=x2+(1+m)x+m,由于式子中不含x的一次项,则x的一次项系数为零,则:1+m=0解得:m=-1【分析】先将括号去掉,然后将含x的项进行合并.14、【答案】(1)6(2)四【考点】多项式乘多项式【解析】【解答】(1)(a+b)4的系数在第5层,第3个系数刚好是上面相邻两个数的和是3+3=6;故答案为6.(2)∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∴814除以7的余数为1,∴假如今天是星期三,那么再过814天是星期四,故答案为:四.【分析】(1)根据杨辉三角,下一行的系数是上一行相邻两系数的和,然后写出各项的系数即可;(2)运用前面的规律,将814化为(7+1)14.三、计算题15、【答案】解:∵(2x+5)(x﹣1)=2(x+4)(x﹣3),∴2x2+3x﹣5=2x2+2x﹣24,移项合并,得x=﹣19.【考点】多项式乘多项式【解析】【分析】根据多项式乘多项式的法则计算后,可得到一元一次方程,解方程即可求得.16、【答案】(1)解:原式=6x2+8xy﹣2x﹣21xy﹣28y2+7y =6x2﹣2x﹣13xy﹣28y2+7y(2)解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘多项式法则计算,合并即可得到结果;(2)原式利用多项式乘多项式法则计算,合并即可得到结果.17、【答案】解:①(x+2)(x﹣4)=x2﹣2x﹣8;②(x+2)(x﹣2)=x2﹣4.故答案为:①x2﹣2x﹣8;②x2﹣4 【考点】多项式乘多项式【解析】【分析】①原式利用多项式乘以多项式法则计算,合并即可得到结果;②原式利用平方差公式化简即可得到结果.18、【答案】(1)解:原式=a3﹣2a2+3a﹣6﹣a3+2a2+2a =5a﹣6(2)解:原式=4m2﹣n2+m2+2mn+n2﹣4m2+2mn =m2+4mn 【考点】多项式乘多项式【解析】【分析】(1)原式第一项利用多项式乘多项式法则计算,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.19、【答案】(1)解:原式=x5﹣3x4+(m+1)x3+(n﹣3m)x2+(m﹣3n)x+n,由展开式不含x3和x2项,得到m+1=0,n﹣3m=0,解得:m=﹣1,n=﹣3;(2)解:当m=﹣1,n=﹣3时,原式=m3﹣m2n+mn2+m2n﹣mn2+n3=m3+n3=﹣1﹣27=﹣28.【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘以多项式法则计算,根据结果中不含x3和x2项,求出m与n的值即可;(2)原式利用多项式乘以多项式法则计算,将m与n的值代入计算即可求出值.20、【答案】(1)解:原式=(a﹣2b)2﹣2×(a﹣2b)×3c+9c2=a2+4b2﹣4ab﹣6ac+12bc+9c2=a2+4b2+9c2﹣4ab﹣6ac+12bc(2)解:原式=[(x﹣z)+2y][(x﹣z)﹣2y]﹣[(x﹣z)+y]2=(x﹣z)2﹣4y2﹣(x﹣z)2﹣2(x﹣z)y﹣y2=﹣5y2﹣2xy+2yz 【考点】多项式乘多项式,完全平方公式【解析】【分析】(1)将a﹣2b看做一个整体=[(a﹣2b)﹣3c]2,运用完全平方差公式,逐步展开去括号计算.(2)首先将(x+2y﹣z)(x﹣2y﹣z)看做[(x﹣z)+2y][(x﹣z)﹣2y]运用平方差公式,再运用完全平方式,对(x+y﹣z)2看做[(x﹣z)+y]2运用完全平方式,两式相减利用有理式的混合运算.21、【答案】解:∵(x+my)(x+ny)=x2+2xy﹣8y2,∴x2+nxy+mxy+mny2=x2+(m+n)xy+mny2=x2+2xy﹣8y2,∴m+n=2,mn=﹣8,∴m2n+mn2=mn(m+n)=﹣8×2=﹣16 【考点】多项式乘多项式【解析】【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再把m2n+mn2因式分解,即可得出答案.四、解答题22、【答案】(1)解:( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4=-10-12=-22.(2)解:(3 a+ 1 ,a- 2 )⊗( a+ 2 , a- 3 ) =(3a+1)(a-3)-(a-2)(a+2)=3a2-8a-3-a2+4=2a2-8a+1,因为a2- 4 a+ 1 =0,所以a2-4a=-1,则原式=2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 【考点】多项式乘多项式【解析】【分析】(1)根据题中的新定义,得( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4;(2)根据新定义化简(3 a+ 1 , a- 2 )⊗( a+ 2 , a- 3 ),根据a2 - 4 a+ 1 =0,得a2-4a=-1,。
7年级数学苏科版下册课件第9单元 《9.3多项式乘多项式》
表示为_____、_____、_____、_____.面积可表示为
______________________.
a
a
b
c
c
d
d
b
如果把它们看成四个小长方形,那么它们的面积可分别
bc
bd
ac
ad
+ + +
表示为_____、_____、_____、_____.面积可表示为
______________________.
b
=
=
a b c d
a c d b c d
c a b d a b
= ac ad bc bd
①
②
③
④
根据单项式乘多项式法则
(a+b)(c+d)
c(a+b) + d(a+b)
ac + bc + ad + bd
(2) (3x+1)(x-2)
解:= 3 ⋅ + 3 ⋅ −2 + + −2
= 3 2 − 5 − 2
注意:多项式与多项式相乘的结果中,要合并同类项.
例2:计算:
(1)(a+4)(a+3)
(2)(x+2)(x-3)
(3)(x-2)(x-3)
例2:计算:
(1)(a+4)(a+3)
(2)(x+2)(x-3)
a
b
c
b
c
d
a c d b c d
c a b d a b
a
b
c
9.2单项式乘多项式
宽为4a,这块地的面积为:
4a·【(3a+2b)+(2a-b)】
= 4a·(5a+b)
= 4a·5a+4a·b
= 20a +4ab.
答:这块地的面积为20a +4ab.
3.巩固练习
根据乘法分配律,请同学们计算
(-2a)·(2a2-3a+1)
解:(-2a)·(2a2-3a+1)
(3)(-3x2)·(4x2- x+1);(4)(-2ab2)2(3a2b-2ab-4b3)
B组:
(1)3x2·(-3xy)2-x2(x2y2-2x);
(2)2a·(a2+3a-2)-3(a3+2a2-a+1)
课本72页第1,2题
三、小结与作业
小结:这节课你有何收获?
学生回答
由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.
如果把上图看成是由3个小长方形组成的,那么它的面积为ab+ac+ad.
由此得到:a(b+c+d)= ab+ac+ad.
好,我们再一起来看这个等式,等式的左边是一个单项式乘多项式,右边是若干个单项式的和组成的。同学们是不是觉得它很眼熟呀?
其实呀,对于任意的a、b、c、d,由乘法分配律同样可以得到a(b+c+d)= ab+ac+ad.
=(-2a)·2a2+(-2a)·(-3a)+(-2a)·1 (乘法分配律)
=-4a3+6a2-2a (单项式与多项式相乘)
(1)(-4x)·(2x2+3x-1);(2)( ab2-2ab)· ab
计算-2a2·( ab+b2)-5a(a2b-ab2)
苏科版七年级数学下册电子课本课件【全册】
0002页 0029页 0067页 0069页 0084页 0110页 0145页 0164页 0197页 0216页 0254页 0285页 0365页 0391页 0405页 0430页 0454页
第7章 平面图形的认识(二) 7.2 探索平行线的性质 7.4 认识三角形 第8章 幂的运算 8.2 幂的乘方与积的乘方 第9章 从面积到乘法公式 9.2 单项式乘多项式 9.4 乘法公式 第10章 二元一次方程组 10.2 二元一次方程组 10.4 三元一次方程组 第11章 一元一次不等式 11.2 不等式的解集 11.4 解一元一次不等式 11.6 一元一次不等式组 12.1 定义与命题 12.3 互逆命题
第7章 平面图形的认识(二)
苏科版七年级数学下册电子课本课 件【全册】
7.1 探索直线平行的条件
苏科版七年级数学下
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:9.2单项式乘多项式同步练习(苏科版七年级下)
【基础演练】
一、填空题
1.计算:_____________)(32=+y x xy x .
2. ·c b a c ab 532243—=.
3.计算:)164(4)164(24242++-++a a a a a =________.
4.计算)2()(22y x x xy +-=____ ____.
5.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.
二、选择题
6. 化简)1()1(a a a a --+的结果是( )
A .2a ;
B . 22a ;
C .0 ;
D .a a 222-.
7. 适合12)52()1(2=---x x x x 的x 的值是( )
A .2 ;
B . 1;
C .0 ;
D .4.
8.下列计算中正确的是 ( )
A.()a a a a +=+236222 ;
B.()x x y x xy +=+23222;
C.a a a +=10919 ;
D.()a a =336.
9. 一个长方体的长、宽、高分别是x x -342、
和x ,它的体积等于 ( ) A.x x -3234; B.x 2 ; C.x x -3268; D.x x -268.
10. 计算:ab b a ab 3)46(2
2∙-的结果是( )
A.23321218b a b a -;
B.2331218b a ab -;
C.22321218b a b a -;
D.23221218b a b a -.
三、解答题
11.计算: (1) )2(222ab b a ab -∙; (2))12()3
161(23xy y x x -∙-;
(3))13()4(32-+∙-b a ab a ; (4) )84)(2
1(323xy y y x +-;
(5))()(a b b b a a ---; (6) )1(2)12(322--+-x x x x x .
12.先化简,再求值:)2
2(32)231(2x x x x ---
-,其中2=x
13.解方程: )153(18)7(3--=-y y y y .
【能力提升】
14.某同学在计算一个多项式乘以-3x 2时,因抄错符号,算成了加上-3x 2
,得到的答案是x 2-0.5x+1,那么正确的计算结果是多少?
15.已知:(),,A ab B ab a b C a b ab =-=+=-22
2323,且a b 、 异号,a 是绝对值最小的负整数,b =12,求3A ·B-2
1A ·C 的值.
参考答案
1.y x y x 3233+;
2. 328b a -;
3. 646
-a ; 4. 34232y x y x +; 5.-4.
6.B ;
7.D ;
8.B ;
9.C ;10.A.
11.(1) 322342b a b a -; (2)23442y x y x +-; (3)a b a b a 4124422+--; (4) 543342y x y x --; (5)22b a -; (6) x x x 3423+-.
12.x x 3
8232+-,314. 13.3.
14. 23431512x x x -+-.
15.解:由题意得11,2a b =-=,原式=32231621a b a b --,当11,2a b =-=时,原式=118
.。