彩色图像处理数字图像处理共50页
《数字图象处理》第09章彩色图像处理
图 9-6
HSI 调色板
第9章
彩色图像处理
HSI 模型与 RGB 模型之间可按下述方法相互转换。 (1) RGB 转换到 HSI 。首先,对取值范围为 [ 0 , 255 ]的 R 、 G 、 B 值按式 (9-5) 进行归一化处理, 得到 3 个[ 0 , 1 ]范围内的 r 、 g 、 b 值: R G r g R G B R G B
第9章
彩色图像处理
100Y L 25 Y 0 16
1 3
1 1 3 3 X Y a 500 X 0 Y0
(9-4)
1 1 3 3 Y Z b 500 Y0 Z 0
S s 100 I i 255
式中: X0 、 Y0 、 Z0 为标准白色对应的 X 、 Y 、 Z 值。
第9章
彩色图像处理
4. HSI 颜色模型 HSI 模型是美国色彩学家孟塞尔 (H.A.Munseu) 于 1915 年提出的,它反映了人的视觉系统感知彩色的方式,以色调 、饱和度和强度三种基本特征量来感知颜色。 色调 H(Hue) : 与光波的波长有关,它表示人的感官 对不同颜色的感受,如红色、绿色、蓝色等,它也可表示一 定范围的颜色,如暖色、冷色等。 饱和度 S(Saturation) : 表示颜色的纯度,纯光谱色是 完全饱和的,加入白光会稀释饱和度。饱和度越大,颜色看 起来就会越鲜艳,反之亦然。
第9章 9.1.2
彩色图像处理 颜色模型
为了科学地定量描述和使用颜色,人们提出了各种颜色 模型。目前常用的颜色模型按用途可分为三类: 计算颜色 模型、视觉颜色模型和工业颜色模型。 计算颜色模型用于进行有关颜色的理论研究。常见的 RGB 模型、 CIE XYZ 模型、 Lab 模型等均属于此类型。
数字图像处理_实验报告书(八)彩色图像处理
rgb=cat(3,rgb_R,rgb_G,rgb_B);figure,imshow(rgb),title('RGB彩色图像');截图:(2)编写MATLAB程序,将一彩色图像从RGB空间转换为HIS空间,并观察其效果。
如例9.2所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);I=(r+g+b)/3figure,imshow(I);tmp1=min(min(r,g),b);tmp2=r+g+b;tmp2(tmp2==0)=eps;S=1-3.*tmp1./tmp2;figure,imshow(S);tmp1=0.5*((r-g)+(r-b));tmp2=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(tmp1./(tmp2+eps));H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);H(S==0)=0;figure,imshow(H);截图:(3)编写MATLAB程序,将一彩色图像在RGB空间进行彩色分割,并观察其效果。
如例9.11所示。
程序:rgb=imread('LenaRGB.bmp');figure,imshow(rgb);rgb1=im2double(rgb);r=rgb1(:,:,1);figure,imshow(r);g=rgb1(:,:,2);figure,imshow(g);b=rgb1(:,:,3);figure,imshow(b);r1=r;r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1= sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;figure,imshow(r2);截图:(4)编写MATLAB程序,将一彩色图像在向量空间进行边缘检测,并观察其效果。
数字图像处理05_彩色图像处理
数字图像处理Ch05. 彩色图像处理Outline•概述•颜色理论–彩色视觉•颜色模型–工业模型–色度学模型–视觉模型•彩色图像处理–伪彩色图像处理–真彩色图像处理•为了简单起见,数字图像处理中的很多方法主要在灰度图像上做示例和推演。
•但是,在实际应用中,我们遇到更多的是彩色图像•彩色图像比灰度图像包含了更多的信息•对色彩进行感知也是人类视觉系统的一项固有的本领。
•随着电子技术、计算机技术的发展,彩色图像的记录设备和输出设备技术都非常成熟•彩色图像在印刷、多媒体、互联网等方面都已经称为主流。
•支持彩色图像处理的物质条件已经成熟,彩色图像处理技术的需求日益高涨。
•和灰度图像相比,彩色图像处理的首要问题是如何表达描述图像的颜色,即建立彩色模型。
•彩色图像处理技术:–伪彩色图像处理:•人对灰度辨别只有几十个级,却可辨别上千种色彩;•将灰度图转化为彩色图像可以提高人们对图像内容的观察效率–真彩色图像处理:•待处理的图像本身是用全彩传感器获得的•彩色图像对场景的描述能力更强,更复杂•彩色图像处理覆盖数字图像处理的各个方面:增强、滤波、分割、识别、压缩、水印。
颜色理论基础•光线没有颜色,只是某种功率频谱分布最早发现光的颜色秘密的是牛顿。
通过棱镜分光实验,牛顿发现白光是由不同颜色的光混合而成颜色理论•视觉的本领:将不同频率的电磁波感知为不同的颜色;•人的眼睛可以分辨几十种亮度,却可以分辨上千种颜色•除了光的颜色,人眼对物体的颜色的感知取决于物体反射光的特性。
如果物体对某些光谱反射比较多,则物体就呈现对应的颜色。
如果物体反射各种光的能力比较均衡,则物体呈白色颜色理论基础•彩色视觉:–物理成像过程–复杂的生理过程•人眼结构:–晶状体:强大的自动调焦能力–视网膜:人眼感知图像信号的窗口,分布着无数的感光细胞,其中可分为柱状细胞和锥状细胞•锥细胞:约6~7百万个–对颜色敏感,适应于强照度–又分为三种,分别对蓝色、红色、绿色敏感–细节分辨能力强,亮视觉•柱细胞:约7千万~1.5亿个–对颜色不敏感,适应于低照度–不能分辨色彩,只能分辨形状–响应快,角度宽–暗视觉•人眼有着非常大的亮度适应范围(10-19~110 lx):–仅仅靠瞳孔调节是远远不够的(瞳孔调节可以使光通量改变约20倍)–还需要靠两类细胞的转换来实现,大约需要30分钟完全适应。
数字图像处理课件ppt
06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换
八、彩色图像处理PPT课件
色彩空间转换
将图像从一种色彩空间转换到 另一种色彩空间,以便更好地
进行色彩调整和编辑。
色彩调整
通过调整图像的色相、饱和度 和亮度来改变图像的颜色。
去噪和锐化
通过滤波器和技术来去除图像 中的噪声并增强边缘和细节。
03
彩色图像的分割与识别
彩色图像的分割算法
K均值聚类算法
基于边缘检测的分割算法
将图像划分为多个颜色相似的区域, 通过迭代计算每个像素点所属的类别, 实现图像分割。
电影和电视制作
医学影像分析
在电影和电视制作过程中,彩色图像处理 技术用于调整色彩、增强画面效果,提高 观众的观影体验。
在医学领域,彩色图像处理技术用于对医 学影像进行数字化处理和分析,辅助医生 进行疾病诊断和治疗。
彩色图像处理的基本流程
特征提取
从预处理后的图像中提取出感 兴趣的特征,如颜色、形状、 纹理等。
未来,彩色图像处理技术将更加注重跨学科融合,如计算机视觉、机器 学习、多媒体处理等领域,通过多学科交叉融合推动技术不断创新和发
展。
此外,随着5G、物联网等新技术的普及和应用,彩色图像处理技术将在 智能交通、智能安防、智能家居等领域发挥更加重要的作用,为人们的 生活带来更多便利和安全保障。
06
彩色图像处理的应用案例
图像变换与编码
对图像进行变换和压缩编码, 以减小存储空间和提高传输效 率。
预处理
对原始彩色图像进行去噪、平 滑、对比度增强等操作,以提 高图像质量。
图像分割
将图像分割成不同的区域或对 象,以便于进行后续的处理和 分析。
结果输出
将处理后的彩色图像以适当的 形式输出,如显示、打印或保 存为文件。
02
第6章彩色图像处理资料
补充 YUV彩色空间
YUV是被欧洲电视系统所采用的一种颜色编 码方法(属于PAL) 。
Y为颜色的亮度 U 为色差信号,为红色的浓度偏移量成份 V 为色差信号,为蓝色的浓度偏移量成份 YUV格式有:4∶4∶4 ;4∶2∶2 ;
4∶1∶1 ;4∶2∶0
YUV与RGB间的转换
6.1 彩色基础 p252
将红、绿、蓝的量称为三色值,表示为X,Y,Z, 则一种颜色由三色值系数定义为:
x X X Y Z
y Y X Y Z
z Z X Y Z
x y z 1
CIE色度图
纯色在色度图边 界上,任何不在 边界上而在色度 图内的点都表示 谱色的混合色;
越靠近等能量点 饱和度越低,等 能量点的饱和度 为0;
Y 0.299 0.587 0.114R
U
0.147
0.289
0.436 G
V 0.615 0.515 0.1 B
R 1 0
1.1398 Y
G 1
0.3946
Hale Waihona Puke 0.5805UB 1 2.032 0.0005V
6.3 伪彩色图像处理
伪彩色(又称假彩色)图像处理是根据特定的 准则对灰度值赋以彩色的处理,即将灰度 图转换为彩色图。
6.2.2 CMY和CMYK模型
CMY模型和RGB模型间的关系:
C 1 R
M
1
G
Y 1 B
RGB三个值已归一化为[0,1]
等量的青色、品红和黄色应该产生黑色。但实 际产生的黑色不够纯正,另外加上价格因素, 引入黑色(打印的主色),构成CMYK模型。
6.2.2 CMY和CMYK模型
《数字图像处理》彩色图像处理
数字图像处理----彩色图像处理杨淑莹教授天津理工大学计算机与通信工程学院彩色图像处理彩色图像的灰度化处理 彩色图像马赛克处理 彩色图像的浮雕处理彩色图像的灰度化处理1. 理论分析(1) BMP位图文件类型(2) 24位真彩色图像文件结构(3) 彩色图像的灰度化处理方法2. 理论验证(1)UltraEdit软件对真彩色文件数据剖析(2) 教学软件验证3. 实现步骤4. 编程代码(1) CDib类库的建立(2) CDib派生类的建立----彩色图像处理(3) 灰度化处理代码1.24位真彩色图像(1)每一像素由RGB三个分量组成。
(2)每个分量各占8位,取值范围为0~255,每个像素24位。
(207,137,130) (220,179,163) (215,169,161) (210,179,172) (210,179,172) (207,154,146) (217,124,121) (215,169,161) (216,179,170) (216,179,170) (207,137,120) (159, 51, 71) (213,142,135) (216,179,170) (221,184,170) (190, 89, 89) (204,109,113) (204,115,118) (216,179,170) (220,188,176) (190, 77, 84) (206, 95, 97) (217,113,113) (189, 85, 97) (222,192,179) (150, 54, 71) (177, 65, 73) (145, 39, 65) (150, 47, 67) (112, 20, 56)(136, 38, 65) (112, 20, 56) (112, 20, 56) (109, 30, 65) (112, 20, 56) ( 95, 19, 64)(136, 38, 65) ( 91, 11, 56) (113, 25, 60) (103, 19, 59) ( 81, 12, 59) (126, 62, 94)(138, 46, 71) (103, 19, 59) (158, 65, 83) (124, 40, 70) (145, 62, 79) (130, 46, 73)2.理论分析--24位真彩色图像文件结构位图像素数据位图信息头结构BITMAPINFOHEADER 位图文件头结构BITMAPFILEHEADER 位图像素数据颜色表位图信息头结构BITMAPINFOHEADER位图文件头结构BITMAPFILEHEADER8位位图文件结构24位位图文件结构1)BMP文件头结构typedef struct tagBITMAPFILEHEADER{WORD bfType; // BM,2byteDWORD bfSize;// 文件大小,4byteWORD bfReserved1;// 0WORD bfReserved2;// 0DWORD bfOffBits; // 位图数据的起始位置,}TMAPFILEHEADER;//(14byte)2)位图信息头结构typedef struct tagBITMAPINFOHEADER{DWORD biSize; // biSize=40byteLONG biWidth;LONG biHeight;WORD biPlanes; // 1WORD biBitCount;// 每个像素所需的位数,24 DWORD biCompression; // 位图压缩类型,0DWORD biSizeImage; // 位图的大小,LONG biXPelsPerMeter; // 0LONG biYPelsPerMeter; // 0DWORD biClrUsed; // 颜色数0DWORD biClrImportant; // 重要的颜色数0} BITMAPINFOHEADER;3)位图像素数据(207,137,130) (220,179,163) (215,169,161) (210,179,172) (210,179,172) (207,154,146) (217,124,121) (215,169,161) (216,179,170) (216,179,170) (207,137,120) (159, 51, 71) (213,142,135) (216,179,170) (221,184,170) (190, 89, 89) (204,109,113) (204,115,118) (216,179,170) (220,188,176) (190, 77, 84) (206, 95, 97) (217,113,113) (189, 85, 97) (222,192,179) (150, 54, 71) (177, 65, 73) (145, 39, 65) (150, 47, 67) (112, 20, 56) (136, 38, 65) (112, 20, 56) (112, 20, 56) (109, 30, 65) (112, 20, 56) ( 95, 19, 64) (136, 38, 65) ( 91, 11, 56) (113, 25, 60) (103, 19, 59) ( 81, 12, 59) (126, 62, 94) (138, 46, 71) (103, 19, 59) (158, 65, 83) (124, 40, 70) (145, 62, 79) (130, 46, 73)1.理论分析--彩色图像的灰度化处理使颜色的R、G、B分量值相等。
数字图像处理第六章色彩模型与彩色处理课件
Chapter 6 Color Image Processing
6.1 彩色基础
在颜料或着色剂中 ,原色的定义是这样 的:
白:减去一种原色 , 反射或传输另两种 原色。故其原色是: 深红、青、黄。而二 次色是R、G、B。如 图6.4所示。
Chapter 6 Color Image Processing
Chapter 6 Color Image Processing
6.2 彩色模型
6.2.1 RGB彩色模型
下面介绍所谓 全RGB彩色子集。
Chapter 6
Color Image Processing
6.2 彩色模型
Chapter 6 Color Image Processing
6.2 彩色模型
6.3 伪彩色处理
6.3 伪彩色处理 给特定的灰度值赋以彩色。伪彩色的 目的是为了人眼观察和解释图像中的目标。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.1 强度分层
参见图6.18,图像被看成三维函数。
Chapter 6 Color Image Processing
6.3.2 灰度级到 彩色转换
例6.5是一突出 装在行李内的爆炸物 的伪彩色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.2 灰度级到彩 色转换
例6.5是一突出装 在行李内的爆炸物的伪彩 色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
Chapter 6 Color Image Processing
6.3 伪彩色处理
数字图像处理ppt课件
04
CATALOGUE
特征提取
颜色特征提取
颜色直方图
通过统计图像中不同颜色像素的数量 ,形成颜色直方图作为图像的颜色特 征。该方法简单、有效,适用于不同 光照和视角变化的场景。
颜色矩
利用图像颜色的分布信息,通过计算 一阶矩(均值)、二阶矩(方差)和 三阶矩(偏度)来表示颜色特征。该 方法对颜色突变和噪声不敏感。
数字图像处理 ppt课件
contents
目录
• 数字图像处理简介 • 图像增强 • 图像分割 • 特征提取 • 图像识别 • 数字图像处理的发展趋势与挑战
01
CATALOGUE
数字图像处理简介
数字图像处理定义
01
02
03
数字图像处理
使用计算机对图像进行加 工和分析,以满足各种应 用需求的技术。
纹理特征提取
灰度共生矩阵
通过分析图像中像素灰度值的空间依赖关系,形成共生矩阵,并从中提取出统 计特征,如对比度、能量和相关性等。该方法适用于描述图像的粗糙程度和方 向性。
小波变换
将图像分解成不同频率和方向的小波分量,通过分析小波系数的统计特性来提 取纹理特征。该方法能够有效地表示图像的细节信息和全局结构。
02
CATALOGUE
图像增强
对比度增强
提高图像的明暗对比度,使图像细 节更加清晰可见。
通过调整像素的亮度或对比度,使图 像的明暗区域更加明显,增强图像的 视觉效果。常用的方法包括直方图均 衡化、对比度拉伸等。
锐化处理
突出图像中的边缘和细节,增强图像的清晰度。
通过增强图像中的高频分量,突出显示图像中的边缘和细节,使图像看起来更加 清晰。常用的方法包括拉普拉斯算子、梯度算子等。
《彩色图像处理》课件
人脸识别
02
利用彩色图像处理技术,对人脸图像进行特征提取、比对和分
析,实现人脸识别和身份验证。
指纹识别
03
通过对指纹图像进行彩色图像处理,提取指纹特征,实现指纹
识别和身份验证。
彩色图像处理在广告设计领域的应用
色彩校正
通过对图像进行色彩校正,调整颜色、亮度和对 比度,以达到更好的视觉效果和品牌形象。
数字摄影和艺术创作
利用彩色图像处理技术对数字 摄影作品和艺术作品进行后期 处理和创作。
安全和监控
利用彩色图像处理技术对监控 视频进行分析,如人脸识别、
行为分析等。
彩色图像处理的基本流程
特征提取
从彩色图像中提取出感兴趣的 特征,如边缘、角点等。
增强和变换
对彩色图像的色彩、对比度等 进行增强和变换,以突出某些 特征或改善视觉效果。
图片美化
利用彩色图像处理技术,对图片进行美化处理, 如磨皮、美白、瘦脸等,提高图片质量和观感。
创意设计
通过彩色图像处理技术,实现创意设计和艺术效 果,如动态海报、数字绘画等。
THANKS
谢谢
视频捕捉
将纸质图像扫描成数字格式,转换为彩色图 像。
网络下载
从互联网上下载彩色图像资源。
彩色图像的预处理技术
01
02
03
04
灰度转换
将彩色图像转换为灰度图像, 减少颜色信息,突出图像的明
暗对比。
噪声消除
去除图像中的噪声和干扰,提 高图像的清晰度和质量。
尺寸调整
去雾处理
去除图像中的雾气和阴影,提高图像 的可见度和清晰度。
03
CHAPTER
彩色图像的分割与识别
彩色图像的分割算法
[课件]冈萨雷斯数字图像处理第五章彩色图像处理PPT
X11 X12 X X22 21 X Xm1 Xm2
X1n X2n Xmnmn
r1 r 2 map ri rL
g1 g2 gi gL
b1 b2 bi bL L3
256×256×256=16 777 216≈1670万种颜色。 这足以表示自然界的任一颜色,故又称其为 24位真彩色。
第五章 彩色图象处理
• 一幅图像中的每一个像素点均被赋予不同的RGB值,
便可以形成真彩色图像,如红色(255,0,0)、绿色(0, 255,0)、蓝色(0,0,255)、青色(0,255,255)、品红 (255,0,255)、黄色(255,255,0)、白色(255,255, 255)、黑色(0,0,0)等,等比例混合三基色产生的是 灰色。 RGB颜色模型可用一个三维空间中的单位立方体 来表示,如图所示。
第五章 彩色图象处理
索引图像X与对应示意图
r1 r2 . . rk . . rL X
g1 b1 g2 b2 . . . . gk bk . . . . gL bL map
圆圈圈过的元素之值=k-1(X为uint8 uint16)
第五章 彩色图象处理 索引图像文件的读取 – [X, map] = imread(filename, fmt) – [X, map] = imread( filename, fmt ) reads the indexed image in filename into X and its associated colormap into map. The colormap values are rescaled to the range [0,1]. 索引图像的显示 – imshow(X, map) 或 – image(X) – colormap(map)