第五讲 建筑围护结构节能(2)
建筑围护结构节能技术及应用
建筑围护结构节能技术及应用随着社会经济的发展和人们环保意识的不断增强,建筑节能已成为当今建筑领域的重要议题。
而围护结构是建筑节能的关键,因为它是建筑内部和外部环境的分界线。
本文主要介绍建筑围护结构节能技术及应用。
1.外墙保温技术外墙保温是围护结构最基本的节能技术之一,它可以减少建筑内部能耗和冷凝风险。
外墙保温主要分为内外保温和冷结构保温两种方式。
其中,内外保温的效果最佳,可以有效地防止冷热桥效应,提高整体隔热性能。
2.玻璃幕墙节能技术玻璃幕墙是现代建筑中常见的围护结构,但它的隔热性能较差,容易造成夏季过热、冬季过冷,从而增加了空调能耗。
为此,可以采用钢化玻璃和中空玻璃等新型材料,同时结合适当的隔热层和降低日照系数的措施,来提高玻璃幕墙的隔热性能。
3.屋面绿化技术屋面绿化是一种新兴的围护结构节能技术,它可以实现建筑内部与外部的绿色连接,有效地减少建筑热量吸收和放射。
屋面绿化不仅可以降低建筑的能耗,还能净化空气、吸收雨水、美化环境等多重效益。
4.遮阳技术遮阳技术是一种传统的围护结构节能技术,它可以在夏季降低室内温度,同时在冬季提高日照量,为建筑提供更好的采光条件。
遮阳技术主要有外部遮阳和内部遮阳两种方式,可以根据建筑形式和特性选择不同的遮阳形式。
5.节能门窗技术节能门窗是围护结构节能的关键环节之一,它们的隔热性能直接影响建筑整体的节能效果。
在门窗的制造过程中,应采用节能材料、考虑隔音效果、提高密封性等措施,从而提高门窗的抗风压能力和隔热性能。
总之,建筑围护结构节能技术及应用在建筑节能中占据着举足轻重的地位。
建筑师应根据建筑形式和特性选择适当的围护结构节能措施,从而使建筑具备更好的节能效果和环保效益。
试析建筑围护结构节能技术
试析建筑围护结构节能技术摘要:我国的住宅建筑与国外同类型的建筑相比,存在建筑能耗过高问题。
针对这一问题,本文从建筑围护结构方面对建筑节能技术进行了阐述。
关键词:建筑围护;结构;节能技术1 建筑外围护结构技能技术建筑节能技术的推广,主要是增强建筑围护结构的保温隔热能力。
建筑外围护结构通常指的是外墙、窗户、阳台门、外门、屋面以及不需要采暖楼梯间的隔断和室内门等。
建筑物的总损失热包括围护结构的传热耗热量以及渗透通过门和窗的空气间隙的耗热量。
若总得热和总失热相等时时,建筑物室内温度将不会变化。
因此,建筑节能的主要途径是:要减少建筑物外表面积和加强围护结构保温隔热能力,以减少传热量,以及是增强门窗的气密性,减少夏季空气渗透得热量和冬季空气渗透耗热量。
1.1 墙体节能在建筑外围护结构中,采暖能耗在墙体上的占有最大的比例,占能源消费总量的32.1%~36.2%。
因此,如何提高墙的保温性能已成为当务之急。
目前,外墙节能住宅分为外墙外保温,外墙内保温,单一材料墙体保温四种,夹心复合墙体保温。
在一般情况下,工程建设推广的主要形式是外墙外保温,是最直接的保温方式,效果是最好的,也是我们的国家是目前使用最广泛的一种建筑保温技术。
1.2 屋面节能屋面节能的原理和外墙节能原理一样,改进屋面层的隔热保温性能,阻止热量在屋面层的传递。
屋顶节能措施要点:首先,屋面保温保温层应该选用密度较小,导热性能很低的保温绝缘材料。
其次屋面保温材料还应选择吸水率较高的材料,以防止屋面潮湿工作,降低绝缘效果。
屋顶保温隔热常见的有以下几种做法:(1)导热系数高、密度较大的材料不易做屋面保温层的材料,另外,要求材料具有较小的吸水率,因为如果保温层含水量较高,保温效果就会降低。
若保温材料吸水率高,则应在屋面设排气孔,把保温层内的水汽排出,保持干燥。
(2)在屋面上铺绝热材料,形成节能复合型屋面。
具体可以选择岩棉板聚苯板为材料,而且要通过热工计算得出材料的厚度,另外还要注意防水。
围护结构节能技术
围护结构节能技术围护结构的节能技术在当代建筑领域中扮演着重要的角色。
随着能源资源稀缺和环境污染问题的日益突出,人们越来越关注如何减少建筑能耗,提高节能效果。
围护结构作为建筑的外部支撑体系,直接影响建筑的热阻性能,因此,在围护结构设计和施工中采用节能技术是非常关键的。
首先,围护结构的节能技术之一是采用高性能隔热材料。
隔热材料的作用是降低建筑物与外界环境之间的传热量,在冬季保持建筑物内部温暖,在夏季避免外界高温对室内的影响。
常见的隔热材料包括岩棉、玻璃棉、聚苯板等,这些材料具有良好的隔热性能,可以有效地降低建筑物的能耗,提高节能效果。
其次,围护结构的节能技术还包括采用保温材料。
保温材料的作用是减少建筑物内外温度差异,保持建筑物内部的稳定温度。
常见的保温材料有挤塑聚苯乙烯、聚氨酯泡沫、发泡水泥等。
这些材料具有良好的保温性能和隔热性能,可以有效地减少建筑物的能耗,提高能源利用效率。
另外,围护结构的节能技术还包括采用透明隔热材料。
透明隔热材料是一种具有隔热性能的透明材料,可以将太阳辐射转换为热能,防止热能的传递。
常见的透明隔热材料有太阳能玻璃、低辐射玻璃等。
这些材料具有良好的隔热性能和透光性能,可以有效地控制室内温度,降低建筑物的能耗。
总之,围护结构的节能技术对于减少建筑物的能耗、提高节能效果具有重要意义。
采用高性能隔热材料、保温材料和透明隔热材料,可以有效地降低建筑物的热传递,提高能源利用效率。
因此,在围护结构的设计和施工过程中,应该充分考虑节能技术的应用,为建筑能耗的减少和环境保护做出积极的贡献。
最后,围护结构的节能技术不仅可以减少建筑物的能耗,还能提高建筑物的舒适性。
通过采用高性能隔热材料、保温材料和透明隔热材料,可以有效地控制室内温度,提供一个舒适的室内环境。
这对于人们的生活质量和健康非常重要。
因此,在未来的建筑设计中,应该更加注重围护结构的节能技术应用,为人们创造更加舒适和环保的居住环境。
浅谈建筑围护结构的节能技术
浅谈建筑围护结构的节能技术摘要:本文介绍了建筑围护结构中的建筑节能技术,对节能方法进行了利与弊的分析,供大家参考。
关键词:建筑节能;围护结构;节能技术节能建筑是指遵循气候设计和节能的基本方法,对建筑规划分区、群体和单体、建筑朝向、间距、太阳辐射、风向以及外部空间环境进行研究后,设计出的低能耗建筑。
据粗略估计,建筑能耗占我国总能耗的27%。
截至2009年底,全国累计建成节能建筑面积40.8亿平方米,占城镇建筑面积的21.7%,比例逐年提高。
进一步推进建筑节能,是发展低碳经济的重要举措之一。
1、外墙节能技术就墙体节能而言,传统的用重质单一材料增加墙体厚度来达到保温的作法已不能适应节能和环保的要求,而复合墙体越来越成为墙体的主流。
外墙保温技术分为外墙内保温技术和外墙外保温技术。
外墙外保温体系是将憎水性、低收缩率的保温材料通过粘结或锚固牢固地置于建筑物墙体外侧,并在其外侧施工装饰层的方法。
1.1聚苯板与墙体一次浇注成型技术该技术是在混凝土框—剪体系中将聚苯板内置于建筑模板内,在即将浇注的墙体外侧,然后浇注混凝土,混凝土与聚苯板一次浇注成型为复合墙体。
该技术解决了外挂式外保温的主要问题,其优势是很明显的。
由于外墙主体与保温层一次成活,工效提高,工期大大缩短,且施工人员的安全性得到了保证。
而且在冬季施工时,聚苯板起保温的作用,可减少外围围护保温措施。
1.2聚苯颗粒保温料浆外墙保温技术该技术包含保温层、抗裂防护层和抗渗保护面层(或是面层防渗抗裂二合一砂浆层)。
其中ZL胶粉聚苯颗粒保温材料及技术在1998年就被建设部列为国家级工法。
这种工法是目前被广泛认可的外墙保温技术。
该施工技术简便,可以减少劳动强度,提高工作效率;不受结构质量差异的影响,对有缺陷的墙体施工时墙面不需修补找平,直接用保温料浆找补即可,避免了别的保温施工技术因找平抹灰过厚而脱落的现象。
2、门窗节能技术门窗节能是建筑节能的关键,门窗既是能源得失的敏感部位,又关系到采光、通风、隔声、立面造型,这就对门窗的节能提出了更高的要求,其节能处理主要是改善材料的保温隔热性能和提高门窗的密闭性能。
建筑围护结构节能浅述
建筑围护结构节能浅述建筑节能技术的推广,主要是增强建筑围护结构的保温隔热能力。
建筑外围护结构通常指的是外墙、窗户、阳台门、外门、屋面以及不需要采暖楼梯间的隔断和室内门等。
建筑物的总损失热包括围护结构的传热耗热量(约70%到80%)以及渗透通过门和窗的空气间隙的耗热量(约20%至30%)。
若总得热和总失热相等时时,建筑物室内温度将不会变化。
因此,建筑节能的主要途径是:要减少建筑物外表面积和加强围护结构保温隔热能力,以减少传热量,以及是增强门窗的气密性,减少夏季空气渗透得热量和冬季空气渗透耗热量。
1.建筑结构墙体节能墙体在建筑外围护结构中是很重要的构成,因而必须要做好墙体的节能设计工作,这会对建筑节能效果产生直接影响。
当前,实现墙体的节能可从以下方面进行操作处理。
1.1 墙体节能1.1.1 外保温墙体外保温主要是绝热材料复合在建筑物外墙外侧的隔热保温技术。
通常选择的导热系数都是地狱0.05W/(m·K)的高效保温隔热材料。
墙体外保温技术自身的特征包括:(1)能有效防止冷热桥现象的发生;(2)外保温层技术使用过后受保温层破坏的程度较轻;(3)可控制墙体本身温度造成的影响,环境温度改变不会给建筑温度造成太大的损坏;(4)外保温技术在技术难度上要大于内保温技术,但主要优势在于墙体内表面不用加强防水层,结构形式监督,对于建筑物是效果很好的一种建筑保温方式。
1.1.2 内保温内保温技术是绝热材料复合在建筑物外墙内侧,这种技术适合运用于高效的保温隔热材料表面上,例:石膏板等相似的保护层覆面。
墙体内保温技术自身的特征包括:(1)操作过程简单,可实现持续作业,室外气候不会给质量造成太大的影响,施工效率较高,而对室内结构吊挂的安全要求更严格;(2)室内供热情况理想,能防止热量冷量被外墙吸收,而降低外墙冷热积蓄可造成室内温度随冷热量改变而出现很大的变化;(3)外墙自身温度改变不稳定,使得传热系数扩大,且经常出现冷桥热桥而造成结露;(4)会在室内占据部分空间,在建筑节能改造施工过程会影响到建筑物使用性能发挥。
建筑围护结构节能
建筑围护结构节能建筑围护结构在建筑工程中扮演着至关重要的角色,不仅可以保护建筑内部免受外部环境的影响,还能够对建筑实现节能的效果。
如何通过设计和选择合适的建筑围护结构来实现节能的目标,成为了建筑设计与施工中的一项重要课题。
1. 节能建筑围护结构的意义建筑围护结构是建筑物外部的墙体、窗户、屋顶等构件的总称,通过优化这些构件的设计和选材,可以有效降低建筑的能耗,实现节能环保的目标。
同时,节能的建筑围护结构还可以提高建筑的舒适性和可持续性。
2. 节能建筑围护结构的设计原则2.1 密封性建筑围护结构的密封性是实现节能的关键。
有效的隔热、隔音和防水设计可以减少建筑内外热量交换,提高建筑的保温性能,降低能耗。
2.2 透光性合理设计建筑围护结构的透光性可以有效利用自然光,减少对人工照明系统的依赖,降低用电量,实现节能目标。
2.3 保温性建筑围护结构的保温性能直接影响建筑的能耗。
选择具有良好保温性能的材料,合理设计结构和厚度,可以有效减少建筑的供暖和制冷需求。
3. 节能建筑围护结构的材料选择3.1 隔热材料例如保温层、外墙材料等,选择导热系数低、保温性能好的材料,能有效减少能耗。
3.2 透光材料优选具有良好透光性能的材料,如高性能玻璃、透明隔热材料等,实现自然采光,减少照明的能耗。
4. 节能建筑围护结构的施工技术4.1 施工工艺采用高效、低耗的施工工艺,保障建筑围护结构的质量,避免能源在施工过程中的浪费。
4.2 保护措施加强建筑围护结构的防水、防潮工作,防止结构受潮、漏水,保证建筑的节能效果。
5. 结语建筑围护结构作为建筑的外壳,对于建筑的节能效果至关重要。
通过优化设计、材料选择和施工技术,可以最大限度减少建筑的能耗,实现节能环保的目标。
希望未来在建筑设计与施工中,能更加重视建筑围护结构的节能性能,为建筑行业的可持续发展贡献力量。
围护结构节能技术
围护结构节能技术围护结构节能技术是建筑节能中的重要组成部分,主要用于减少建筑的能耗和二氧化碳排放量。
围护结构节能技术可以有效提高建筑的能源效率,降低建筑的运行成本,同时也可以减少建筑对环境的影响。
一、围护结构节能技术的概念围护结构节能技术是指通过建筑外围的墙体、屋顶、地面等建筑外部结构来减少建筑内部能量消耗的一种技术。
围护结构节能技术主要包括建筑保温、隔热、风防、水防、气密等技术。
其中,建筑保温和隔热是最为重要的技术,可以有效减少建筑的热传输损失,提高建筑的能源效率。
二、围护结构节能技术的优势1. 降低建筑运行成本围护结构节能技术可以减少建筑的能耗,从而降低建筑的运行成本。
由于建筑保温和隔热性能的提高,可以降低建筑的采暖和制冷负荷,从而减少了能源的消耗。
在保证建筑舒适度的前提下,可以有效降低建筑的能源消耗和运行成本。
2. 减少建筑对环境的影响围护结构节能技术可以减少建筑的二氧化碳排放量,降低建筑对环境的影响。
由于减少了能源消耗,建筑的二氧化碳排放量也会随之减少。
围护结构节能技术还可以提高建筑的空气质量,减少建筑内部污染物的排放。
3. 提高建筑的质量和舒适度围护结构节能技术可以提高建筑的保温性能和隔热性能,提高建筑的质量和舒适度。
在冬季,建筑保温技术可以有效减少热量的散失,保持室内舒适温度;在夏季,建筑隔热技术可以有效减少热量的进入,降低室内温度。
三、围护结构节能技术的应用围护结构节能技术已经广泛应用于建筑工程中。
在建筑的设计过程中,应该优先考虑围护结构节能技术的应用,建筑保温和隔热性能的设计应该基于当地气候条件和建筑本身结构特点进行选择。
同时,建筑隔热设计应该考虑到建筑外墙、屋顶、地面等部位的耐久性和防水性能。
四、围护结构节能技术的未来发展随着能源消耗问题的日益突出,围护结构节能技术的发展受到越来越多的关注。
未来,围护结构节能技术将会更加智能化和高效化,智能化的保温材料和隔热材料将会越来越受到重视。
建筑围护结构节能技术概述
建筑围护结构节能技术概述引言:建筑从最初开始,就体现隔热保温的功能。
这一功能不断发展。
现代化的建筑,其围护结构在更好地完成室内外热冷流交换控制功能同时,需要最大限度减少其巨大的能源消耗量。
围护结构节能技术已经取得了较大的发展,也清晰地显示建筑围护结构对建筑节能的巨大功能。
1 建筑围护结构概述1.1 建筑围护结构简介围护结构分透明和不透明两部分:不透明围护结构有墙、屋顶和楼板等;透明围护结构有窗户、天窗和阳台门等。
《建筑工程建筑面积计算规范》GB / T 50353-2005中规定:围护结构是指围合建筑空间四周的墙体、门、窗等。
构成建筑空间,抵御环境不利影响的构件(也包括某些配件)。
根据在建筑物中的位置,围护结构分为外围护结构和内围护结构。
外围护结构包括外墙、屋顶、侧窗、外门等,用以抵御风雨、温度变化、太阳辐射等,应具有保温、隔热、隔声、防水、防潮、耐火、耐久等性能。
内围护结构如隔墙、楼板和内门窗等,起分隔室内空间作用,应具有隔声、隔视线以及某些特殊要求的性能。
围护结构通常是指外墙和屋顶等外围护结构。
1.2建筑围护结构分类按是否同室外空气接触,又可分为外围护结构和内围护结构。
外围护结构是指同室外空气直接接触的维护结构,如外墙、屋顶、外门和外窗等;内围护结构是指不同室外空气直接接触的围护结构,如隔墙、楼板、内门和内窗等。
1.3建筑围护结构性能(1)保温在寒冷地区,保温对房屋的使用质量和能源消耗关系密切。
围护结构在冬季应具有保持室内热量,减少热损失的能力。
其保温性能用热阻和热稳定性来衡量。
保温措施有:增加墙厚;利用保温性能好的材料;设置封闭的空气间层等。
(2)隔热围护结构在夏季应具有抵抗室外热作用的能力。
在太阳辐射热和室外高温作用下,围护结构内表面如能保持适应生活需要的温度,则表明隔热性能良好;反之,则表明隔热性能不良。
提高围护结构隔热性能的措施有:设隔热层,加大热阻;采用通风间层构造;外表面采用对太阳辐射热反射率高的材料等。
建筑围护结构节能技术
建筑围护结构节能技术建筑围护结构节能技术是指对建筑体外围结构进行优化设计和改造,以降低建筑能耗的消耗。
这些技术包括建筑外保温、隔热、隔音、透气、防水、防火等方面的处理,可以大大提高建筑的能效,并为环保和可持续性发展作出贡献。
本文将重点探讨建筑围护结构节能技术的原理、实现方法以及其在现代建筑中的应用。
一、建筑围护结构节能技术的原理建筑围护结构节能技术的主要原理是在保护建筑物结构安全的前提下,尽可能地减少建筑能耗的损耗。
基本的思路是使用高效的隔热、隔音、防水等材料和技术,在围护结构中增加屏障,将室内与室外环境隔离,发挥最大限度的节能效益。
二、建筑围护结构节能技术的实现方法1. 建筑外保温建筑外保温是指在建筑外侧增加保温材料的一种方法。
常见的保温材料有挤塑板、聚苯乙烯板、岩棉、玻璃纤维等。
这些保温材料在保证建筑物结构的强度和稳定性的同时,减少了建筑物能耗。
此外,使用保温材料还可以减少建筑物与室外环境的温度和湿度差异,延长建筑寿命。
2. 建筑隔热建筑隔热是指减少建筑物内外热量交换的一种方法。
隔热材料常见的有薄膜隔热、泡沫隔热、纤维隔热、空气隔热等。
这些材料可以在建筑物外墙、屋顶、地板等位置使用,降低建筑物热能损失,从而达到节能减排的目的。
3. 建筑防水建筑防水是指抗雨水渗透、水蒸气透过能力的一种做法。
常见的防水材料有聚氨酯和防水沥青等。
需要注意的是在施工过程中要确保防水材料的完整性和密封性,防止渗漏和漏电。
4. 建筑防火建筑防火是指在建筑围护结构中使用防火材料,增加建筑物消防安全的一种方法。
防火材料常见的有岩棉、玻璃棉、硅酸钙板等。
通过使用这些材料可以减少火灾蔓延的速度,提高建筑物的抗火性能。
5. 建筑透气建筑透气是指让建筑物与外界环境保持良好的气体交换关系,提高空气质量的一种方法。
常见的透气材料有麻布、藤篮、壁纸、竹帘等。
这些材料可以有效激活空气,提高建筑物内部通风效果,减少细菌和有害气体的滋生,对身体健康有很大帮助。
《围护结构节能》课件
围护结构节能的意义与前景
围护结构节能具有重要意义,可以降低建筑的能耗、减少温室气体排放、改善室内环境质量,为可持续 发展和环境保护做出贡献。
围护结构节能的挑战与解决方案
Cost
Implementing energy-saving technologies and materials can be initially costly, but long-term energy savings outweigh the investment.
Efficient HVAC Systems
Installing energy-efficient heating, ventilation, and air conditioning (HVAC) systems can help optimize energy usage and maintain comfortable indoor environments.
2
空气流失
不完善的围护结构会导致空气在室内和室外之间流失,增加室内能耗。
3
隔热性能
围护结构的隔热性能直接影响建筑内部的温度调控和能耗。
围护结构节能技术
优化绝缘材料
选择高效保温材料,如聚苯乙 烯泡沫板,提高围护结构的隔 热性能。
采用节能窗户
利用太阳能
选择双层或多层中空玻璃,提 高窗户的隔热性能,减少能耗。
Existing Buildings
Upgrading the energy efficiency of existing buildings can be challenging, but retrofitting and renovation projects can make a significant impact.
围护结构节能
d、采暖区在向南扩展、居民家用电器的品种和数量在增加、建筑照明条 件在改善、农村的用能资源在发生变化等。
因此,推进建筑节能工作意义重大。
二、加强政策、法规和标准体系建设,强制推行建筑节能
1、《国务院办公厅关于进一步推进墙体材料革新和推广节能建筑的通知》 国发办(2005)33号文规定:
2011年安徽建筑业增加值1246.8亿元,比上年增长9.3%。资质内
建筑企业利税总额245亿元,增长16.6%。房屋建筑施工面积28278.9
万平方米,增加4983.2万平方米;房屋竣工面积10773.6万平方米,增
加261.3万平方米。
全国2011年各类保障性住房和棚户区改造住房开工1000万套。
随着经济的持续发展、人民生活水平的不断提高,在今后相当长的一 段时间内,我国仍将保持相当大的建设规模。
而居住和公共建筑在几十年甚至近百年的使用期间,在采暖、空调、 通风、炊事、照明、热水供应等方面要不断消耗大量能源,国内有关专家 表明:
我国非节能建筑的建筑能耗惊人,有关报道称:建造和使用建筑直接 和间接消耗的能源已占到全社会总能耗的46.7%;
(3)、《节约能源法》进一步明确建筑节能要求:
对于未明示节能信息的房地产开发企业,规定建设主管部门责
令限期整改,逾期不改将处3~5万元罚款;对节能信息作虚假宣传的,建
设主管部门责令改正,处5~20万元罚款;
对不符合建筑节能标准的建筑工程,建设主管部门不得批准开
工,已开工的应责令停工限期改正,已建成的,不得销售或使用。
物业管理单位等应严格执行建筑节能作出规定。并对违背者作出处罚的
规定。
4、《中华人民共和国节约能源法》2008年4月1日实行。
建筑围护结构节能技术及应用
建筑围护结构节能技术及应用建筑围护结构是建筑物中与外界环境相接触的部分,包括建筑外墙、屋顶、地面等。
建筑围护结构的节能技术是现代建筑设计的重要组成部分,它可以有效地降低建筑物的能耗,减少碳排放,改善室内舒适度,提高居住质量。
1. 节能技术1.1 散热系数低的材料建筑外墙和屋顶采用散热系数低的材料,可以大大降低建筑物的能耗。
常用的材料包括岩棉板、聚苯乙烯泡沫板、玻璃棉板等。
这些材料能够有效地防止冷热气流的产生,保持室内温度的稳定性。
1.2 隔热材料隔热材料可以使建筑围护结构表面减少热量的损失,达到节能的效果。
在建筑外墙和屋顶的结构中应用隔热材料,能够减少室内空调或供暖设备的使用,降低空调和供暖费用。
常用的隔热材料有聚氨酯泡沫板、挤塑聚苯乙烯泡沫板、多孔砖等。
1.3 自然通风和遮阳在建筑外墙和屋顶的结构中应用自然通风和遮阳技术,可以使室内温度自然调节,减少空调设备的使用,达到节能的效果。
自然通风和遮阳可以通过开发面积较大的窗户、利用建筑朝向等方式实现。
1.4 太阳能利用在建筑外墙和屋顶的结构中应用太阳能利用技术,可以减少室内电力的使用,达到节能的效果。
常用的太阳能利用技术有太阳能板、太阳能采光板、太阳能集热系统等。
2. 应用2.1 商业建筑商业建筑包括商场、酒店、写字楼等,是城市中能源消耗较大的建筑类型之一。
商业建筑在使用建筑围护结构时,应用上述的节能技术可以大大降低能耗、成本和碳排放,提高经济效益。
住宅建筑是人们生活中最重要的建筑类型之一。
在住宅建筑的设计中,应用节能技术可以提高室内舒适度、降低能耗和成本等多方面的效益。
公共建筑包括学校、医院、体育场馆等建筑类型。
公共建筑作为城市的重要基础设施,能够应用节能技术,减少能源的消耗,降低成本和碳排放,为城市的可持续发展做出贡献。
总之,在建筑围护结构的节能技术和应用方面,我们需要不断地探索和创新,尽可能地降低能耗和碳排放,为建筑行业的可持续发展做出自己的贡献。
建筑围护结构节能技术及应用
建筑围护结构节能技术及应用建筑围护结构是指建筑物外部的立面、墙体、屋面、窗户、门等建筑构件的总称。
围护结构的节能是当前建筑节能的重点之一,其节能技术主要涉及建筑围护的保温、隔热、通风、采光、防水等方面的技术。
一、保温隔热技术保温隔热是保证建筑物内部温度稳定的关键技术之一。
采用保温隔热技术,可使建筑物在冬季保持室内温暖,在夏季保持室内凉爽。
保温材料的选择及其施工方式直接影响到建筑的节能效果。
目前,广泛使用的保温材料有聚苯板、聚氨酯、岩棉、玻璃棉等。
二、通风技术通风是建筑节能的重要手段之一。
通过建筑通风系统的控制,可使建筑物内外温度保持平衡,节约能源。
同时,通风还有利于室内空气的流通,提高室内空气质量。
通风系统的设计要充分考虑建筑的朝向、面积及公共空间位置等因素。
三、采光技术采光是建筑节能的重要方面之一,能够使室内得到充足的自然光线,减少人工照明的用电量。
采光技术的关键在于选择合适的窗户材料和关口设计。
不同建筑的采光方案也不同,需要根据建筑物面积和使用性质来确定。
四、防水技术防水是建筑节能的重要技术之一。
建筑材料、墙体设计和施工方式都会影响建筑的防水性能。
建筑物在遭受水浸后,建筑物内外保温材料的性能会发生改变,从而影响建筑的保温性能。
采用防水技术,可有效提高建筑物的防水性能,保证建筑物内外保温材料的稳定性能。
总之,建筑围护结构的节能技术是建筑节能的重点之一,其在建筑设计、施工、使用等过程中都需要充分考虑。
采用科学、合理的节能技术,可以有效提高建筑物的节能性能,为环保和可持续发展做出积极的贡献。
围护结构节能技术(2篇)
围护结构节能技术是指通过改善建筑外墙和屋顶的保温、隔热、密封等性能,减少建筑物与外界能量交换,从而达到节能环保的目的。
这一技术在建筑领域中起着重要的作用,既能提高建筑物的节能性能,又能改善室内环境,并减少对自然资源的消耗。
围护结构节能技术主要包括保温隔热材料的应用、建筑外墙的隔热、保温层的施工、外墙保温及隔热的工艺等方面。
首先,保温隔热材料的应用是围护结构节能技术的核心。
传统的保温隔热材料主要有矿物棉、聚苯乙烯泡沫板、挤塑聚苯板等,这些材料具有较好的隔热性能和耐久性,但也存在一定的环境问题。
近年来,新型环保保温隔热材料如生态保温板、岩棉板等逐渐应用于围护结构,具有更好的隔热效果和环保性能。
其次,建筑外墙的隔热是实现围护结构节能的重要手段。
建筑外墙通常采用双层墙体结构,通过在外墙体中构建保温层,形成空气隔离层,降低墙体与外界的热交换,达到隔热的效果。
隔热层的作用是减少墙体传导热量,保证建筑物内部温度的稳定,减少冷热桥的形成。
此外,围护结构节能还包括建筑外墙保温及隔热的工艺。
传统的外墙保温工艺主要包括抹面砂浆加强层、保温层、抹面砂浆面层等,这些工艺存在粘结强度低、开裂等问题。
现代的外墙保温工艺采用抹面砂浆加网格布、保温板粘贴、抹面砂浆饰面等工艺,具有粘结强度高、抗开裂性强等优点,达到更好的隔热效果。
围护结构节能技术的应用具有重要的意义。
一方面,它能显著提高建筑物的节能性能,减少热能和冷能的损失,减少对空调和供暖系统的依赖,降低能源消耗。
根据统计数据,围护结构节能技术应用后,可节约能源约30%以上。
另一方面,围护结构节能技术还能改善室内环境,提高住宅和办公楼的舒适度。
围护结构节能技术能有效隔绝外界噪音,减少室内噪音污染,提高人们的居住和工作质量。
然而,围护结构节能技术的实施也面临一些挑战。
首先,材料选择的问题。
围护结构节能需要选用优质的保温隔热材料,而现在市场上选择的保温隔热材料种类繁多,品质良莠不齐。
建筑围护结构节能技术及应用
建筑围护结构节能技术及应用随着全球能源紧缺问题的日益突出,建筑节能已成为当前世界各国共同关注的焦点。
作为建筑能耗的主要构成部分,建筑围护结构的节能技术和应用显得尤为重要。
建筑围护结构节能技术的应用不仅可以降低建筑能耗,促进节能减排,还能提高建筑使用效率,改善室内环境,保护生态环境。
本文将从建筑围护结构的节能技术原理、节能技术分类以及应用实例等方面进行探讨。
一、建筑围护结构节能技术原理1.采光节能原理采光是建筑围护结构非常重要的一个功能。
充分利用自然光可以降低建筑内照明的能耗。
采光节能的原理主要有两个方面:一是通过优化建筑的整体布局和立面设计,合理配置建筑开窗、玻璃幕墙等部件,使得采光均匀且适度,减少电灯的使用时间;二是选择适宜的材料和技术,如选择透光性好的玻璃,采用光导纤维等新型采光技术,以提升自然光的利用效率。
2.隔热节能原理建筑围护结构的隔热性能对建筑节能影响至关重要。
隔热节能原理主要是通过合理选择隔热材料和技术,减少建筑围护结构与外界环境之间的热传递,降低建筑供暖和制冷的能耗。
隔热节能技术主要包括保温材料的选择和应用、外墙保温系统的设计和施工、建筑外表面材料的热传导系数等方面的优化。
3.通风节能原理良好的通风系统可以有效降低建筑内部空气的温度、湿度,提高室内舒适度。
通风节能的原理是通过科学合理的通风系统设计和优化,实现建筑室内外空气的有效对流,减少室内暖气和空调的使用,从而降低建筑的能耗。
4.遮阳节能原理在夏季高温高热的环境下,建筑的遮阳性能对节能效果影响尤为重要。
合理设置遮阳装置、采用适宜的遮阳材料和结构设计,可以有效减少建筑内部的热量积累,减轻制冷系统负荷,达到节能的目的。
1.建筑外墙节能技术建筑外墙是建筑围护结构的重要组成部分,其隔热保温、采光通风、遮阳遮荫等功能对建筑节能效果起着至关重要的作用。
建筑外墙节能技术主要包括外墙隔热保温系统、外墙通风系统、外墙遮阳系统等方面的技术研究和应用。
建筑围护结构的节能措施
建筑围护结构的节能措施摘要:外围护结构直接与大气环境接触,通过外围护结构的热损失约占建筑物总耗量的70%-80%,因此建筑节能的重点是外围护结构。
关键词:围护结构节能措施有效控制承德地区属于热工设计分区为寒冷地区,围护结构应设置保温结构或采取相应的保温措施。
在施工过程中,由于经济及技术条件的限制,围护结构通常采用传统的做法,致使建筑结构耗能大,不利于节能。
对此,本文对其外围结构进行节能研究分析。
一、门窗节能措施(一)铝合金型材1应选用隔热型材。
2铝合金型材应符合《铝合金建筑型材》(GB 5237)的规定,有装配关系的型材尺寸偏差不应低于《铝合金建筑型材第1部分:基材》(GB 5237.1)规定的高精级要求。
3隔热型材的传热系数应满足门窗设计要求,并符合《铝合金建筑型材第6部分:隔热型材》(GB 5237.6)中的相关规定,还应符合下列规定:(1) 穿条式隔热型材的隔热条截面高度不应小于14.8mm;(2) 浇注式隔热型材的隔热槽开口宽度不应小于5.18mm。
4隔热铝合金门窗框、扇、拼樘框等主要受力杆件所用主型材壁厚应经设计计算或试验确定。
主型材截面主要受力部位基材最小实测壁厚,门不应低于2.0mm、窗不应低于1.4mm。
(二)塑料(PVC-U)门窗型材1塑料门窗采用的型材应符合国家现行标准《门、窗用未增塑聚氯乙烯(PVC-U)型材》(GB/T8814)的有关规定,型材人工老化时间应满足6000h要求,不宜使用通体着色型材。
2型材壁厚应符合国家现行标准《未增塑聚氯乙烯(PVC-U)塑料门》(JG/T 180)、《未增塑聚氯乙烯(PVC-U)塑料窗》(JG/T140)的有关规定。
3塑料(PVC-U)门窗的框、扇、拼樘框等主要受力杆件所用主型材壁厚应经设计计算或试验确定。
4窗用主型材可视面最小实测壁厚不应低于2.5mm,非可视面最小实测壁厚不应低于2.0mm;门用主型材可视面最小实测壁厚不应低于 2.8mm,非可视面最小实测壁厚不应低于2.5mm。
围护结构节能措施
围护结构节能措施1. 引言在建筑领域,围护结构是指建筑物的外墙、屋顶和地板,起到保温和隔热的作用。
随着能源资源的紧缺和环境保护意识的增强,节能已经成为了建筑设计的重要目标。
围护结构的节能措施能够有效地减少建筑物能耗,降低能源消耗,同时提高室内舒适度。
本文将介绍几个常见的围护结构节能措施,包括隔热材料的选择、保温层的设计、窗户的优化等。
2. 隔热材料的选择隔热材料的选择是优化围护结构的第一步。
常见的隔热材料包括岩棉、聚苯板、聚氨酯泡沫板等。
这些材料具有良好的隔热性能和保温效果。
在选择隔热材料时,需要考虑材料的导热系数、耐久性、环保性以及成本等因素。
同时,还需要根据建筑物的具体情况选择不同的隔热材料,例如,在寒冷地区可以选择导热系数较低的隔热材料,以提高保温效果。
3. 保温层的设计保温层的设计是围护结构中另一个关键的节能环节。
保温层的设置可以防止室内热量向外传递,降低能耗。
在保温层的设计中,需要考虑保温材料的厚度、密度以及保温层的结构等因素。
常见的保温材料包括聚苯颗粒、聚氨酯泡沫等,其优势在于具有良好的保温性能和隔热性能。
此外,还可以采用多层保温结构的设计,通过增加空气层来进一步提高保温效果。
4. 窗户的优化窗户在建筑中起到供氧、采光和视野等作用,但也是能源的泄漏点。
因此,在围护结构的节能措施中,窗户的优化是必不可少的一环。
采用双层或者三层玻璃窗户可以有效地隔离室内和室外的温差,减少能源的损耗。
此外,还可以安装窗户封条,增加窗户的密封性,减少能源的泄漏。
同时,在窗户材料的选择中,可以考虑采用低辐射玻璃、镀膜玻璃等材料,以提高窗户的隔热性能。
5. 采用太阳能系统太阳能系统是一种能源利用的智能化解决方案,可以有效地降低围护结构的能耗。
太阳能系统主要包括太阳能热水器和太阳能光伏系统。
太阳能热水器可以利用太阳能将太阳能转化为热能,提供热水供应。
太阳能光伏系统则可以将太阳能转化为电能,为建筑物供电。
采用太阳能系统不仅可以降低能源消耗,还可以减少对传统能源的依赖,实现可持续发展。
围护结构节能技术范本(二篇)
围护结构节能技术范本围护结构是建筑物的外部空间,包括墙体、窗户、门、屋顶等部分。
围护结构在建筑中起到保温、隔热、防火和隔音等作用,对建筑能效和舒适性有重要影响。
为了提高建筑的能源利用效率,节能技术在围护结构中的应用越来越重要。
节能技术是指在满足建筑结构功能的前提下,尽可能减少能源消耗的技术。
下面将介绍几种常见的围护结构节能技术。
1. 保温层:在墙体和屋顶等围护结构上添加保温材料,以减少能量传输的损失。
常见的保温材料有聚苯板、岩棉板、聚氨酯板等。
保温层的施工要求严格,需要确保无缝、结实,并与其他结构紧密连接。
2. 隔热层:隔热层可以阻挡热量的传输,减少建筑物受到的外部温度影响。
常见的隔热材料有铝箔、泡沫玻璃等。
隔热层的施工要求平整、无缝隙,并与保温层紧密结合。
3. 双层立面:双层立面是指在建筑物的外立面上设置两层玻璃,中间形成气层,达到隔热效果。
这种设计可减少能量的传递,提高建筑物的能效。
4. 高效窗户:窗户是建筑物中能量流入和流出的主要通道,而高效窗户可以减少能量的损失。
高效窗户采用隔热玻璃、真空玻璃等材料,具有较低的导热系数和较高的光透过率,能够有效减少建筑物的能耗。
5. 智能控制系统:智能控制系统可以根据室内外温度、湿度和光照等参数,自动调节空调、照明和通风系统的运行,实现节能效果。
智能控制系统可以实时监测和调整建筑物的能耗,提高能源利用效率。
6. 绿色屋顶:绿色屋顶是指在建筑物的屋顶上设置植被,能够吸收太阳能和细颗粒物,减少空调的使用,提高空气质量。
绿色屋顶还可以增加建筑物的隔热效果,减少能量的损失。
7. 太阳能利用:太阳能是一种可再生能源,可用于供暖、照明和热水等方面。
在围护结构中加入太阳能板、太阳能热水器等设备,可以利用太阳能资源,减少建筑物的能耗。
8. 空气密封性:建筑物的空气密封性对于能源利用效率至关重要。
通过使用密封材料、减少通风孔和隔热层等手段,可以减少空气的渗透,降低能量的损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 动态节能
张 舸
2. 屋面节能 3. 地下节能 4. 门窗节能
1.2 墙体动态传热
稳态——冬季,室内外传热方向单向,可简化
1.2 墙体动态传热
外扰-室内外空气温差变化,太阳能辐射 变化 内扰-室内人员进出、灯光、设备等不连 续运行,造成传热温差变化 R R 室外
电阻性介质:波形不变 容抗性介质:波形有延迟和衰减
建筑节能综合关键技术-第四讲 建筑节能综合关键技术-第四讲
19 19
建筑节能综合关键技术-第四讲
20
3.1被动换热
3.1被动换热 Lib in Delft Tech University
窑洞-西方住宅
3. 地 下 节 能
3. 地 下 节 能
建筑节能综合关键技术- 第五讲
21
建筑节能综合关键技术- 第五讲
气象与室温决定部分
室内长波辐射造成的增量
1. 墙 体 节 能
第三类边界条件和初始条件: t w [t w t (0, )] | x 0 x t w [t ( , ) t n ] | x x
t ( x ,0) f ( x )
建筑节能综合关键技术- 第五讲
cp(J/(kg· ℃))
1. 墙 体 节 能
0
Tm-
Tm+
T (℃)
相变材料比热与温度的一般关系
cp,l cp,s 0
ΔT TmTm+ T (℃)
相变材料比热与 相变材料比热与温度的简化关系
建筑节能综合关键技术- 第五讲 7 建筑节能综合关键技术- 第五讲 8
布置方法——应放置于室内侧
采暖用-太阳能或电热
11
建筑节能综合关键技术- 第五讲
1.2 墙体动态传热
太阳直 射辐射
1.2 墙体动态传热
对流 换热
综合外温
大气长 波辐射
太阳辐射当量温度
太空散 射辐射
1. 墙 体 节 能
t z t air
aI
环境长波辐射
壁体得热
out
QL
地面长 波辐射 地面反射辐射
天空及周围物体表面长波辐射
aI
1. 墙 体 节 能
②
主动改善途径
墙体蓄热特性 导热特性
下面内容
改善墙体蓄热性能的主要途径
6
建筑节能综合关键技术- 第五讲
5
建筑节能综合关键技术- 第五讲
Double Skin Facade
1. 墙 体 节 能
物性出现强烈的非线性
cp,m cp,s cp,l
cp(J/(kg·℃)) cp,m
建筑节能综合关键技术- 第五讲
26
3.2主动换热
3.2主动换热
3. 地 下 节 能
长度:150‾250m 一共10根 管径 1.2m
总风量 24.4万m3/h
总风量 34.4万m3/h
送风管 静压箱1 静压箱2 表冷器 送风管
3. 地 下 节 能
地道 地道 地道 接冷水机组
送风管
200kW
4 4 QL w [( xsky x g g )Tw xskyTsky x g gTg4 ]
简化结果
第三类边界 [t ( ) t (0, )] ( x ) t | out z x x 0
13 建筑节能综合关键技术- 第五讲 14
建筑节能综合关键技术- 第五讲
T<28℃(夏季) T>18℃(冬季)
甲方要求:夏季不用空调 气温年平均 5.8℃ 土壤恒温层温度7.99℃ 夏季室外设计参数 T=30.5℃
25
一台风冷冷水机组用作特殊工况下的备用设 备
气象参数及节能原理
采暖
区域供热系统+散热器 采用地道预热室外新风
建筑节能综合关键技术- 第五讲
1. 墙 体 节 能
围护结构蓄热特性对衰减延迟的影响
1. 导热方程 墙 体 边界条件 节 能
初始条件
in [t ( , ) t in ( )] Ql Qsh ( x )
t | x x
t x, 0 f x
12
如何简化边 界条件?
建筑节能综合关键技术- 第五讲
3. 地 下 节 能
地源热泵系统
地源热泵系统
建筑节能综合关键技术-第五讲 29 建筑节能综合关键技术-第五讲 30
3.2主动换热
局部降温和集中降温是深井采矿的前提条件 井深(m) 100 温度(℃) 湿度(%) 20 90 通风 通风 通风 2000 60 通风 3000 80 100
建筑节能综合关键技术-第五讲 31 建筑节能综合关键技术- 第五讲 32
1.2 墙体动态传热
1.2 墙体动态传热
线性叠加原理
将气象与室内气温的影响与其它部分分离 通过围护结构的得热及长波辐射辐射部分 ->第三类边界条件
非均匀板壁的不稳定传热
t 2t a( x) t a( x) x x x2
太难求解了!
1. 墙 体 节 能
t t1 t2
22
3.2主动换热
主要设备:泵/风机+换热器 示意图: 3. 地 下 节 能 3. 地 下 节 能
3.2主动换热
布置方式:竖井布置/水平布置 考虑因素:可用地表面积,当地土 壤类型以及钻孔费用。 受可利用土地面积的限制,实际工 程多采用竖井布置。 连接方式:串联/并联,同程/异程 考虑因素:管道阻力,施工费用。
1. 墙 体 节 能
离散系统扰量和响应的离散化处理 拉氏变换
1972,z传递函数法 1975, Rudoy & Duran,冷负荷系数简化算法 1997,Spliter,辐射时间序列RTS方法 1981,江亿,状态空间法
建筑节能综合关键技术- 第五讲 17
1. 墙 体 节 能
现在
建筑节能综合关键技术- 第五讲
18
1.
2. 屋 面 节 能
外保温屋面 保温置于屋面外侧 其外侧
防水层 保护层
4.
种植屋面
植被茎叶遮阳作用 植物光合作用消耗 太阳能 植被基层土壤或水 体蒸发
2.
倒置式屋面
3.
防水层在保温层与 屋面之间 通风屋面
2. 屋 面 节 能
1.2 墙体动态传热 准确分析预测
空调系统负荷计算-设计、配置,运行管理 墙体非稳态传热分析
得热与负荷
得热—围护结构得热 负荷—除得热外还包括新风、室内人员设备负荷。
①
1. 墙 体 节 能
负荷与能耗的关系
能效比COP:制冷或热泵系统所能实现的制冷 量(制热量)和输入功率的比值。 能效比EER:在额定(名义)工况下,空调、采 暖设备提供的冷量或热量与设备本身所消耗的 能量之比。
建筑节能综合关键技术- 第五讲 33
3. 地 下 节 能
抽水井 回灌井
风机盘管
3 1 4
5
8
分户水源 热泵主机 可放室内
建筑节能综合关键技术- 第五讲
34
3.2主动换热
1. 墙体节能
3. 地 下 节 能 1.2 动态节能—C为主要考虑因素
2. 屋面节能:屋面节能做法 3. 地下节能:直接利用,热泵/制冷机组 利用 下一讲:4. 门窗节能
建筑节能综合关键技术- 第五讲 35
18℃
28.6℃ 夏季 t 26℃
冬季: 平均温差=18-(-9)=27℃ 相对波动=4/27=15%; 夏季: 平均温差=28.6-26=2.6℃ 相对波动=4/2.6=154%。
1. 墙 体 节 能
C
衰减
22
24
室内
建筑节能综合关键技术- 第五讲
3
建筑节能综合关键技术-第五讲 4
1.2 墙体动态传热
t z t air
out
1. 墙 体 节 能
同时受室温、室内辐 射热源和其它表面温 度影响 内表面辐射对传热量 的影响复杂
in [t ( , ) t in ( )] Ql Qsh ( x )
t | x x
角系数和各表面温度
out
15
建筑节能综合关键技术- 第五讲
16
1.2 墙体动态传热
1.2 墙体动态传热 60年代末
计算机技术和控制论
积分变换求解微分方程 1967, Stephenson & Mitalas,反应系数法
Carrier,美国,当量温度,稳态计算 美国:DOE-2、BLAST、EnergyPlus、NBSLD 英国:ESP 日本:HASP 中国:DeST 瑞典:COMSOL
建筑节能综合关键技术- 第五讲
23
建筑节能综合关键技术- 第五讲
24
3.2主动换热 实例:
3.2主动换热 环境控制策略
3. 地 下 节 能
东北某大学内的自然博物馆
3. 地 下 节 能
规模:地上4层,地下1层 用途:多功能展览 室内环境要求
供冷
地道风供冷 机械通风,风机双速调节
直接到室外
新风管
总风量10万m3/h
28
建筑节能综合关键技术- 第五讲