课时跟踪检测(五十六)曲线与方程
课时跟踪检测(五十三) 曲线与方程(普通高中)
课时跟踪检测(五十三) 曲线与方程(一)普通高中适用作业A 级——基础小题练熟练快1.已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( ) A .双曲线 B .双曲线左支 C .一条射线D .双曲线右支解析:选C 根据双曲线的定义知动点P 的轨迹类似双曲线,但不满足2c >2a >0的条件,故动点P 的轨迹是一条射线.2.(2018·湖南雅礼中学月考)已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交线段BF 于点P ,则动点P 的轨迹方程为( )A.x 212+y 211=1 B.x 236-y 235=1C.x 23-y 22=1 D.x 23+y 22=1解析:选D 圆F 的标准方程为(x -1)2+y 2=12,则圆心F (1,0),半径r =2 3.由已知可得|FB |=|PF |+|PB |=|PF |+|PA |=23>2=|AF |⇒动点P 的轨迹是以A ,F 为焦点的椭圆⇒a =3,c =1⇒b 2=a 2-c 2=2,所以动点P 的轨迹方程是x 23+y 22=1.3.已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线解析:选B 设椭圆的右焦点是F 2,由椭圆定义可得|MF 1|+|MF 2|=2a >2c ,所以|PF 1|+|PO |=12(|MF 1|+|MF 2|)=a >c ,所以点P 的轨迹是以F 1和O 为焦点的椭圆.4.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA ―→=AP ―→,则点P 的轨迹方程为( )A .y =-2xB .y =2xC .y =2x -8D .y =2x +4解析:选B 设P (x ,y ),R (x 1,y 1), 由RA ―→=AP ―→知,点A 是线段RP 的中点,∴⎩⎪⎨⎪⎧x +x 12=1,y +y 12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R 是直线l 上的点, ∴-y =2(2-x )-4. 即y =2x .5.(2018·安徽六安一中月考)如图,已知F 1,F 2是椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 是椭圆Γ上任意一点,过F 2作∠F 1PF 2的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .直线B .圆C .椭圆D .双曲线解析:选B 延长F 2Q ,与F 1P 的延长线交于点M ,连接OQ .因为PQ 是∠F 1PF 2的外角的角平分线,且PQ ⊥F 2M ,所以在△PF 2M 中,|PF 2|=|PM |,且Q 为线段F 2M 的中点.又O 为线段F 1F 2的中点,由三角形的中位线定理,得|OQ |=12|F 1M |=12(|PF 1|+|PF 2|).根据椭圆的定义,得|PF 1|+|PF 2|=2a ,所以|OQ |=a ,所以点Q 的轨迹为以原点为圆心,半径为a 的圆,故选B.6.已知正方形的四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),点D ,E 分别在线段OC ,AB 上运动,且|OD |=|BE |,设AD 与OE 交于点G ,则点G 的轨迹方程是( )A .y =x (1-x )(0≤x ≤1)B .x =y (1-y )(0≤y ≤1)C .y =x 2(0≤x ≤1)D .y =1-x 2(0≤x ≤1)解析:选A 设D (0,λ),E (1,1-λ),0≤λ≤1,所以线段AD 的方程为x +yλ=1(0≤x ≤1),线段OE 的方程为y =(1-λ)x (0≤x ≤1),联立方程⎩⎪⎨⎪⎧x +y λ=1,0≤x ≤1,y =(1-λ)x ,0≤x ≤1(λ为参数),消去参数λ得点G 的轨迹方程为y =x (1-x )(0≤x ≤1).7.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,动点P (x ,y )满足OA ―→+OB ―→=2OP ―→,则点P 的轨迹方程为________.解析:设B (x 0,y 0),由⎩⎪⎨⎪⎧ 4+x 0=2x ,y 0=2y ,得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y ,代入圆方程得(2x -4)2+4y 2=4, 即(x -2)2+y 2=1. 答案:(x -2)2+y 2=18.已知动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4,则动圆圆心Q 的轨迹方程为____________.解析:设Q (x ,y ).因为动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4, 所以⎝⎛⎭⎫MN 22+|x |2=|AQ |2, 所以|x |2+22=(x -2)2+y 2,整理得y 2=4x . 所以动圆圆心Q 的轨迹方程是y 2=4x . 答案:y 2=4x9.(2018·河北衡水一模)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OP ―→=12(OF 1―→+OQ ―→)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹方程为_________________.解析:因为点P 满足OP ―→=12(OF 1―→+OQ ―→),所以点P 是线段QF 1的中点.设P (x ,y ),由F 1为椭圆C :x 216+y 210=1的左焦点,得F 1(-6,0),故Q (2x +6,2y ),又点Q 在椭圆C :x 216+y 210=1上,则点P 的轨迹方程为(2x +6)216+(2y )210=1,即⎝⎛⎭⎫x +6224+2y 25=1.答案:⎝⎛⎭⎫x +6224+2y 25=110.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,所以|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0). 答案:x 24+y 23=1(y ≠0)B 级——中档题目练通抓牢1.已知F 1,F 2分别为椭圆C :x 24+y 23=1的左,右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0)C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0)解析:选C 依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎪⎨⎪⎧x =x 0-1+13,y =y 03.即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y .代入x 204+y 203=1得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0).2.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y 225=1 B.4x 221+4y 225=1C.4x 225-4y 221=1 D.4x 225+4y 221=1解析:选D 因为M 为AQ 垂直平分线上一点, 则|AM |=|MQ |,所以|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为以点C ,A 为焦点的椭圆,所以a =52,c =1,则b 2=a 2-c 2=214, 所以椭圆的方程为4x 225+4y 221=1.3.(2018·广州模拟)动点P 为椭圆x 2a 2+y 2b2=1(a >b >0)上异于椭圆顶点A (a,0),B (-a,0)的一点,F 1,F 2为椭圆的两个焦点,动圆M 与线段F 1P ,F 1F 2的延长线及线段PF 2相切,则圆心M 的轨迹为除去坐标轴上的点的( )A .抛物线B .椭圆C .双曲线的右支D .一条直线解析:选D 如图,设切点分别为E ,D ,G ,由切线长相等可得|F 1E |=|F 1G |,|F 2D |=|F 2G |,|PD |=|PE |.由椭圆的定义可得|F 1P |+|PF 2|=|F 1P |+|PD |+|DF 2|=|F 1E |+|DF 2|=2a ,即|F 1E |+|GF 2|=2a ,也即|F 1G |+|GF 2|=2a ,故点G 与点A 重合,所以点M 的横坐标是x =a ,即点M 的轨迹是一条直线(除去A 点),故选D.4.(2018·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -25.在△ABC 中,A 为动点,B ,C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________.解析:由正弦定理得|AB |2R -|AC |2R =12×|BC |2R ,即|AB |-|AC |=12|BC |,故动点A 是以B ,C 为焦点,a2为实轴长的双曲线右支.即动点A 的轨迹方程为16x 2a 2-16y 23a 2=1⎝⎛⎭⎫x >a 4.答案:16x 2a 2-16y 23a2=1⎝⎛⎭⎫x >a 46.如图,P 是圆x 2+y 2=4上的动点,P 点在x 轴上的射影是D ,点M 满足DM ―→=12DP ―→.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.解:(1)设M (x ,y ),则D (x,0), 由DM ―→=12DP ―→,知P (x,2y ),∵点P 在圆x 2+y 2=4上,∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 是以(-3,0),(3,0)为焦点,长轴长为4的椭圆.(2)设E (x ,y ),由题意知l 的斜率存在, 设l :y =k (x -3),代入x 24+y 2=1,得(1+4k 2)x 2-24k 2x +36k 2-4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2,∴y 1+y 2=k (x 1-3)+k (x 2-3) =k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k1+4k 2. ∵四边形OAEB 为平行四边形,∴OE ―→=OA ―→+OB ―→=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2, 又OE ―→=(x ,y ),∴⎩⎨⎧x =24k 21+4k 2,y =-6k 1+4k 2,消去k 得,x 2+4y 2-6x =0,由Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0, 得k 2<15,∴0<x <83.∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝⎛⎭⎫0<x <83. 7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)依题意得,c =5,e =c a =53,因此a =3,b 2=a 2-c 2=4, 故椭圆C 的标准方程是x 29+y 24=1.(2)若两切线的斜率均存在,设过点P (x 0,y 0)的切线方程是y =k (x -x 0)+y 0,则由⎝ ⎛y =k (x -x 0)+y 0,x 29+y 24=1得x 29+[k (x -x 0)+y 0]24=1, 即(9k 2+4)x 2+18k (y 0-kx 0)x +9[(y 0-kx 0)2-4]=0,Δ=[18k (y 0-kx 0)]2-36(9k 2+4)[(y 0-kx 0)2-4]=0,整理得(x 20-9)k 2-2x 0y 0k +y 20-4=0.又所引的两条切线相互垂直,设两切线的斜率分别为k 1,k 2,于是有k 1k 2=-1,即y 20-4x 20-9=-1,即x 20+y 20=13(x 0≠±3). 若两切线中有一条斜率不存在,则易得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧ x 0=-3,y 0=2或⎩⎪⎨⎪⎧ x 0=3,y 0=-2或⎩⎪⎨⎪⎧x 0=-3,y 0=-2,经检验知均满足x 20+y 20=13.因此,动点P (x 0,y 0)的轨迹方程是x 2+y 2=13.C 级——重难题目自主选做1.(2018·合肥模拟)如图,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.解:(1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x ,设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,y 1≠0,y 2≠0. 设切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212, 代入y 2=2x 得ky 2-2y +2y 1-ky 21=0, 由Δ=0解得k =1y 1,∴l 1的方程为y =1y 1x +y 12,同理,l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎪⎨⎪⎧x =y 1y 22,y =y 1+y22.①∵直线CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎨⎧y 1+y 2=-2y 0x 0,y 1y 2=-16x. ②由①②可得⎩⎨⎧x =-8x 0,y =-y0x 0,则⎩⎨⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,得x 28-y 2=1.考虑到x 0∈[2,22],则x ∈[-4,-22],∴动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].2.(2018·泉州模拟)在△ABC 中,O 是BC 的中点,|BC |=32,△ABC 的周长为6+3 2.若点T 在线段AO 上,且|AT |=2|TO |.(1)建立适当的平面直角坐标系,求点T 的轨迹E 的方程;(2)若M ,N 是射线OC 上不同的两点,|OM |·|ON |=1,过点M 的直线与E 交于点P ,Q ,直线QN 与E 交于另一点R .证明:△MPR 是等腰三角形.解:(1)如图,以O 为坐标原点,以BC ―→的方向为x 轴的正方向,建立平面直角坐标系xOy .依题意得B ⎝⎛⎭⎫-322,0,C ⎝⎛⎭⎫322,0.由|AB |+|AC |+|BC |=6+32, 得|AB |+|AC |=6.因为|AB |+|AC |=6>|BC |,所以点A 的轨迹是以B ,C 为焦点,6为长轴长的椭圆(除去长轴端点),所以点A 的轨迹方程为x 29+2y 29=1(x ≠±3).设A (x 0,y 0),T (x ,y ),依题意知OT ―→=13OA ―→,所以(x ,y )=13(x 0,y 0),即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y .又x 209+2y 209=1,所以(3x )29+2(3y )29=1,即x 2+2y 2=1, 所以点T 的轨迹E 的方程为x 2+2y 2=1(x ≠±1).(2)证明:设M (m,0)(m ≠1),N ⎝⎛⎭⎫1m ,0,Q (x 1,y 1),P (x 2,y 2),R (x 3,y 3). 由题意得直线QM 不与坐标轴平行, 因为k QM =y 1x 1-m ,所以直线QM 的方程为y =y 1x 1-m (x -m ),与x 2+2y 2=1联立并整理可得, (m 2+1-2mx 1)x 2-2m (1-x 21)x +(2mx 1-x 21-m 2x 21)=0,由根与系数的关系得x 1x 2=2mx 1-x 21-m 2x 21m 2+1-2mx 1,同理,x 1x 3=2⎝⎛⎭⎫1m x 1-x 21-⎝⎛⎭⎫1m 2x 21⎝⎛⎭⎫1m 2+1-2⎝⎛⎭⎫1m x 1=2mx 1-m 2x 21-x 211+m 2-2mx 1=x 1x 2,所以x 2=x 3或x 1=0,当x 2=x 3时,PR ⊥x 轴; 当x 1=0时,由x 1+x 2=2m (1-x 21)m 2+1-2mx 1,得x 2=2mm 2+1, 同理,x 3=2⎝⎛⎭⎫1m ⎝⎛⎭⎫1m 2+1=2mm 2+1=x 2, ∴PR ⊥x 轴.因此|MP |=|MR |,故△MPR 是等腰三角形.。
课时跟踪检测(五十六)曲线与方程
课时跟踪检测(五十六) 曲线与方程1.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC =λ1OA +λ2OB (O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线2.(2012·焦作模拟)设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=23.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆4.若点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y5.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点的椭圆经过A ,B 两点,则椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1(y ≥1) C .x 2-y 248=1(x ≤-1) D .x 2-y 248=1(x ≥1) 6.(2012·杭州模拟)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA =AP,则点P的轨迹方程为()A.y=-2x B.y=2xC.y=2x-8 D.y=2x+47.点P是圆C:(x+2)2+y2=4上的动点,定点F(2,0),线段PF的垂直平分线与直线CP的交点为Q,则点Q的轨迹方程是________.8.直线xa+y2-a=1与x、y轴交点的中点的轨迹方程是________.9.已知向量a=(x,3y),b=(1,0),且(a+3b)⊥(a-3b).则点M(x,y)的轨迹C 的方程为______________.10.(2012·四川高考改编)如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C,试求轨迹C的方程.11.(2012·苏州模拟)已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆的圆心为点C.(1)求动点C的轨迹方程;(2)过点F的直线l2交动点C的轨迹于P,Q两点,交直线l1于点R,求RP,·RQ,的最小值.12.(2012·山西模拟)已知椭圆的中心是坐标原点O,焦点F1,F2在y轴上,它的一个顶点为A(2,0),且中心O到直线AF1的距离为焦距的14,过点M(2,0)的直线l与椭圆交于不同的两点P,Q,点N在线段PQ上.(1)求椭圆的标准方程;(2)设|PM|·|NQ|=|PN|·|MQ|,求动点N的轨迹方程.1.设过点P (x ,y )的直线分别与x 轴正半轴和y 轴正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP ,=2PA ,,OQ ,·AB ,=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)2.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 3.(2012·辽宁高考)如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积;(2)求直线AA 1与直线A 2B 的交点M 的轨迹方程.答 案课时跟踪检测(五十六)A 级1.选A 设C (x ,y ),则OC =(x ,y ),OA =(3,1),OB =(-1,3),∵OC =λ1OA +λ2OB ,∴⎩⎪⎨⎪⎧x =3λ1-λ2y =λ1+3λ2,又λ1+λ2=1, ∴x +2y -5=0,表示一条直线.2.选D 如图,设P (x ,y ),圆心为M (1,0).连接MA ,则MA ⊥P A ,且|MA |=1,∴|PM |=|MA |2+|P A |2= 2.即|PM |2=2,即P 的轨迹方程为 (x -1)2+y 2=2.3.选B 设N (a ,b ),M (x ,y ),则a =x -22,b =y2,代入圆O 的方程得点M 的轨迹方程是(x -2)2+y 2=22,此时|PF 1|-|PF 2|=|PF 1|-(|PF 1|±2)=±2,即||PF 1|-|PF 2||=2,2<|F 1F 2|故所求的轨迹是双曲线.4.选C 点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,说明点P (x ,y )到点F (0,2)和到直线y +2=0的距离相等,所以P 点的轨迹为抛物线,设抛物线方程为x 2=2py ,其中p =4,故所求的轨迹方程为x 2=8y .5.选A 由题意知|AC |=13,|BC |=15,|AB |=14,又∵|AF |+|AC |=|BF |+|BC |, ∴|AF |-|BF |=|BC |-|AC |=2,故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.又c =7,a =1,b 2=48,∴点F 的轨迹方程为y 2-x 248=1(y ≤-1). 6.选B ∵RA =AP ,∴R ,A ,P 三点共线,且A 为RP 的中点,设P (x ,y ),R (x 1,y 1),则由RA =AP ,得(1-x 1,-y 1)=(x -1,y ),则⎩⎪⎨⎪⎧1-x 1=x -1,-y 1=y ,即x 1=2-x ,y 1=-y ,将其代入直线y =2x -4中,得y =2x .7.解析:依题意有|QP |=|QF |, 则||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1. 答案:x 2-y 23=1 8.解析:设直线x a +y2-a =1与x 、y 轴交点为A (a,0),B (0,2-a ),A 、B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1,∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案:x +y =1(x ≠0,x ≠1) 9.解析:∵(a +3b )⊥(a -3b ), ∴(a +3b )·(a -3b )=0,∴a 2-3b 2=0,∴x 2+3y 2-3=0,即点M (x ,y )的轨迹C 的方程为x 23+y 2=1.答案:x 23+y 2=110.解:设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;当x =1时,直线MB 的斜率不存在.于是x ≠1且x ≠-1,此时,MA 的斜率为y x +1,MB 的斜率为yx -1.由题意,有y x +1·yx -1=4,化简可得4x 2-y 2-4=0.故动点M 的轨迹C 的方程是4x 2-y 2-4=0(x ≠1且x ≠-1). 11.解:(1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴动点C 的轨迹方程为x 2=4y .(2)由题意知,直线l 2方程可设为y =kx +1(k ≠0), 与抛物线方程联立消去y ,得x 2-4kx -4=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为⎝⎛⎭⎫-2k ,-1, ∴RP ·RQ =⎝⎛⎭⎫x 1+2k ,y 1+1·⎝⎛⎭⎫x 2+2k ,y 2+1 =⎝⎛⎭⎫x 1+2k ⎝⎛⎭⎫x 2+2k +(kx 1+2)·(kx 2+2) =(1+k 2)x 1x 2+⎝⎛⎭⎫2k +2k (x 1+x 2)+4k 2+4 =-4(1+k 2)+4k ⎝⎛⎭⎫2k +2k +4k 2+4 =4⎝⎛⎭⎫k 2+1k 2+8. ∵k 2+1k2≥2,当且仅当k 2=1时取等号,∴RP RQ ≥4×2+8=16,即RP ·RQ 的最小值为16. 12.解:(1)设椭圆的标准方程是y 2a 2+x 2b 2=1(a >b >0).由于椭圆的一个顶点是A (2,0), 故b 2=2.根据题意得∠AF 1O =π6,sin ∠AF 1O =ba ,即a =2b ,a 2=8,所以椭圆的标准方程是y 28+x 22=1.(2)设P (x 1,y 1),Q (x 2,y 2),N (x ,y ),由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x -2).直线l 的方程与椭圆方程联立消去y 得 (k 2+4)x 2-4k 2x +4k 2-8=0. 由Δ=16k 4-4(k 2+4)(4k 2-8)>0, 得-2<k <2.根据根与系数的关系得x 1+x 2=4k 24+k 2,x 1x 2=4k 2-84+k 2.又|PM |·|NQ |=|PN |·|MQ |, 即(2-x 1)(x 2-x )=(x -x 1)(2-x 2).解得x =1,代入直线l 的方程得y =-k ,y ∈(-2,2). 所以动点N 的轨迹方程为x =1,y ∈(-2,2).B 级1.选A 设A (a,0),B (0,b )(a ,b >0).可得BP =(x ,y -b ),PA ,=(a -x ,-y ),OQ=(-x ,y ),AB =(-a ,b ).由BP =2PA ,得⎩⎪⎨⎪⎧x =2a -2x ,y -b =-2y ,即⎩⎪⎨⎪⎧a =32x ,b =3y .由OQ ·AB =1得ax +by =1.所以32x 2+3y 2=1(x >0,y >0).2.选A 设另两个切点为E 、F ,如图所示, 则|PE |=|PF |,|ME |=|MB |, |NF |=|NB |,从而|PM |-|PN |=|ME |-|NF |= |MB |-|NB |=4-2=2<|MN |,所以P 的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支.a =1,c =3,则b 2=8.故方程为x 2-y 28=1(x >1). 3.解:(1)设A (x 0,y 0),则矩形ABCD 的面积S =4|x 0||y 0|.由x 209+y 20=1得y 20=1-x 209,从而 x 20y 20=x 20⎝⎛⎭⎫1-x 209=-19⎝⎛⎭⎫x 20-922+94. 当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6. (2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).。
《三维设计》2015届高考数学(人教,理科)大一轮配套课时训练:(五十六) 双曲线
课时跟踪检测(五十六) 双曲线第Ⅰ组:全员必做题1.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左,右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .92.(2013·四川高考)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32 C .1D. 33.(2013·深圳调研) 双曲线x 2-my 2=1的实轴长是虚轴长的2倍,则m =( )A.14B.12 C .2D .44. (2013·郑州模拟)如图所示,F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支的两个交点分别为A ,B ,且△F 2AB 是等边三角形,则双曲线的离心率为( )A.2+1B.3+1C.2+12D.3+125.(2013·武汉模拟)已知P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且1PF ·2PF =0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .86. (2013·惠州模拟)已知双曲线x2a2-y2b2=1(a>0,b>0)的一个焦点与抛物线y2=410x的焦点重合,且双曲线的离心率等于103,则该双曲线的方程为________.7.(2013·陕西高考) 双曲线x216-y2m=1的离心率为54,则m等于________.8. (2013·石家庄模拟)F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若△ABF2是等边三角形,则该双曲线的离心率为________.9.设A,B分别为双曲线x2a2-y2b2=1(a>0,b>0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y=33x-2与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使OM+ON=t OD,求t的值及点D的坐标.10. P(x0,y0)(x0≠±a)是双曲线E:x2a2-y2b2=1(a>0,b>0)上一点,M、N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为1 5.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足OC=λOA+OB,求λ的值.第Ⅱ组:重点选做题1.(2013·河北省重点中学联考) 设F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线的离心率为()A.52 B.102C.53 D.1032.(2014·武汉模拟) 已知F1,F2分别是双曲线x2a2-y2b2=1(a>b,b>0)的左、右焦点,P为双曲线右支上的任意一点.若|PF1|2|PF2|=8a,则双曲线的离心率的取值范围是________.答案第Ⅰ组:全员必做题1.选C由渐近线方程3x-2y=0,知ba=32.又b2=9,所以a=2,从而|PF2|=7.2.选B因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y=±3x,所以所求距离为32,故选B.3.选D双曲线方程可化为x2-y21m=1,∴实轴长为2,虚轴长为2 1m ,∴2=2⎝⎛⎭⎪⎫21m ,解得m =4. 4.选B 连接AF 1,依题意得AF 1⊥AF 2,∠AF 2F 1=30°,|AF 1|=c ,|AF 2|=3c ,因此该双曲线的离心率e =|F 1F 2||AF 2|-|AF 1|=2c3c -c=3+1,选B.5.选C 设c =a 2+b 2,则c a =54, ∴a =45c ,∴b =c 2-a 2=35c .∵1PF ·2PF =0(即PF 1⊥PF 2), S △PF 1F 2=9,∴|PF 1|·|PF 2|=18. ∵⎩⎨⎧||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=|F 1F 2|2,∴⎩⎨⎧|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,|PF 1|2+|PF 2|2=4c 2,两式相减得,2|PF 1|·|PF 2|=4b 2,∴b 2=9,∴b =3,∴c =5,a =4,∴a +b =7.6.解析:由已知可得抛物线y 2=410x 的焦点坐标为(10,0),a 2+b 2=10.又双曲线的离心率e =10a =103,∴a =3,b =1,∴双曲线的方程为x 29-y 2=1. 答案:x 29-y 2=17.解析:⎩⎪⎨⎪⎧a 2=16,b 2=m ,e 2=2516⇒2516=16+m16⇒m =9.答案:98.解析:如图,由双曲线定义得,|BF 1|-|BF 2|=|AF 2|-|AF 1|=2a ,因为△ABF 2是正三角形,所以|BF 2|=|AF 2|=|AB |,因此|AF 1|=2a ,|AF 2|=4a ,且∠F 1AF 2=120°,在△F 1AF 2中,4c 2=4a 2+16a 2+2×2a ×4a ×12=28a 2,所以e =7.答案:79.解:(1)由题意知a =23, ∴一条渐近线为y =b 23x .即bx -23y =0.∴|bc |b 2+12= 3. ∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0. 将直线方程代入双曲线方程得 x 2-163x +84=0, 则x 1+x 2=163,y 1+y 2=12. ∴⎩⎪⎨⎪⎧x 0y 0=433,x 2012-y 203=1.∴⎩⎨⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3). 10.解:(1)由点P (x 0,y 0)(x ≠±a )在双曲线 x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1. 由题意又有y 0x 0-a ·y 0x 0+a=15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2, 则e =c a =305.(2)联立⎩⎨⎧x 2-5y 2=5b2y =x -c ,得4x 2-10cx +35b 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=5c2,x 1x 2=35b 24.①设OC =(x 3,y 3),OC =λOA +OB ,即⎩⎨⎧x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2.化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2.由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )·(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2,得:λ2+4λ=0,解得λ=0,或λ=-4.第Ⅱ组:重点选做题1.选B 由题可知点A 在双曲线的右支上,则|AF 1|-|AF 2|=2|AF 2|=2a ,则|AF 2|=a ,得|AF 1|=3a ,由∠F 1AF 2=90°,得(3a )2+a 2=(2c )2,则e =c a =102.2.解析:设|PF 2|=y ,则(y +2a )2=8ay ⇒(y -2a )2=0⇒y =2a ≥c -a ⇒e =ca ≤3. 答案:(1,3]。
2019年高中数学课时跟踪检测四曲线与方程求曲线的方程新人教A版选修2_1
课时跟踪检测(四)曲线与方程求曲线的方程层级一学业水平达标1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)( )A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上解析:选B 将点M(2,1)的坐标代入方程知M∈l,M∈C.2.方程xy2-x2y=2x所表示的曲线( )B.关于y轴对称A.关于x轴对称D.关于x-y=0对称C.关于原点对称解析:选C 同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.3.方程x+|y-1|=0表示的曲线是( )解析:选B 方程x+|y-1|=0可化为|y-1|=-x≥0,则x≤0,因此选B.4.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足||·||+·=0,则动点P(x,y)的轨迹方程为( )B.y2=-8xA.y2=8xD.y2=-4xC.y2=4x解析:选B 设点P的坐标为(x,y),则=(4,0),=(x+2,y),=(x-2,y),∴||=4,||=++y2,·=4(x-2).根据已知条件得4 ++y2=4(2-x).整理得y2=-8x.∴点P的轨迹方程为y2=-8x.5.已知A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是( )A .4x -3y -16=0或4x -3y +16=0B .4x -3y -16=0或4x -3y +24=0C .4x -3y +16=0或4x -3y +24=0D .4x -3y +16=0或4x -3y -24=0解析:选B 由两点式,得直线AB 的方程是y -04-0=x +12+1,即4x -3y +4=0,线段AB 的长度|AB |=++42=5.设C 的坐标为(x ,y ),则12×5×|4x -3y +4|5=10,即4x -3y -16=0或4x -3y +24=0.6.方程x 2+2y 2-4x +8y +12=0表示的图形为________.解析:对方程左边配方得(x -2)2+2(y +2)2=0.∵(x -2)2≥0,2(y +2)2≥0,∴⎩⎪⎨⎪⎧-=0,+=0,解得⎩⎪⎨⎪⎧x =2,y =-2. 从而方程表示的图形是一个点(2,-2).答案:一个点(2,-2)7.已知两点M (-2,0),N (2,0),点P 满足·=12,则点P 的轨迹方程为________________.解析:设P (x ,y ),则=(-2-x ,-y ),=(2-x ,-y ).于是·=(-2-x )(2-x )+y 2=12,化简得x 2+y 2=16,此即为所求点P 的轨迹方程.答案:x 2+y 2=168.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________________.解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 20+1.又M 为AB 的中点,所以⎩⎪⎨⎪⎧x =0+x02,y =y0-12,即⎩⎪⎨⎪⎧x0=2x ,y0=2y +1,将其代入y 0=2x 20+1得,2y +1=2×(2x )2+1,即y =4x 2.答案:y =4x2。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版
2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
课时跟踪检测(五十六) 曲线与方程
课时跟踪检测(五十六)曲线与方程1.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足OC=λ1OA+λ2OB(O 为原点),其中λ1,λ2∈R,且λ1+λ2=1,则点C的轨迹是()A.直线B.椭圆C.圆D.双曲线2.(2012·焦作模拟)设点A为圆(x-1)2+y2=1上的动点,P A是圆的切线,且|P A|=1,则P点的轨迹方程为()A.y2=2x B.(x-1)2+y2=4C.y2=-2x D.(x-1)2+y2=23.已知定点F1(-2,0),F2(2,0),N是圆O:x2+y2=1上任意一点,点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆4.若点P(x,y)到点F(0,2)的距离比它到直线y+4=0的距离小2,则点P(x,y)的轨迹方程为()A.y2=8x B.y2=-8xC.x2=8y D.x2=-8y5.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点的椭圆经过A,B两点,则椭圆的另一个焦点F的轨迹方程是()A.y2-错误!=1(y≤-1) B.y2-错误!=1(y≥1)C.x2-错误!=1(x≤-1) D.x2-错误!=1(x≥1)6.(2012·杭州模拟)已知点A(1,0),直线l:y=2x-4,点R是直线l上的一点,若RA =AP,则点P的轨迹方程为()A.y=-2x B.y=2xC.y=2x-8 D.y=2x+47.点P是圆C:(x+2)2+y2=4上的动点,定点F(2,0),线段PF的垂直平分线与直线CP的交点为Q,则点Q的轨迹方程是________.8.直线错误!+错误!=1与x、y轴交点的中点的轨迹方程是________.9.已知向量a=(x,3y),b=(1,0),且(a+错误!b)⊥(a-错误!b).则点M(x,y)的轨迹C的方程为______________.10.(2012·四川高考改编)如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C,试求轨迹C的方程.11.(2012·苏州模拟)已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆的圆心为点C.(1)求动点C的轨迹方程;(2)过点F的直线l2交动点C的轨迹于P,Q两点,交直线l1于点R,求RP,·RQ,的最小值.12.(2012·山西模拟)已知椭圆的中心是坐标原点O,焦点F1,F2在y轴上,它的一个顶点为A(错误!,0),且中心O到直线AF1的距离为焦距的错误!,过点M(2,0)的直线l与椭圆交于不同的两点P,Q,点N在线段PQ上.(1)求椭圆的标准方程;(2)设|PM |·|NQ |=|PN |·|MQ |,求动点N 的轨迹方程.1.设过点P (x ,y )的直线分别与x 轴正半轴和y 轴正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP ,=2PA ,,OQ ,·AB ,=1,则点P 的轨迹方程是( )A 。
【原创】高考理科数学复习课时跟踪检测(五十) 曲线与方程
课时跟踪检测(五十) 曲线与方程一抓基础,多练小题做到眼疾手快1.方程(x +y -1)x -1=0表示的曲线是______________.解析:由(x +y -1)x -1=0,得⎩⎪⎨⎪⎧x +y -1=0,x -1≥0或x -1=0,即x +y -1=0(x ≥1)或x =1.所以方程表示的曲线是射线x +y -1=0(x ≥1)和直线x =1.答案:射线x +y -1=0(x ≥1)和直线x =12.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB ―→⊥BC ―→,则动点C 的轨迹方程为________.解析:由题意得AB ―→=⎝⎛⎭⎫2,-y 2,BC ―→=⎝⎛⎭⎫x ,y 2,由AB ―→⊥BC ―→,得AB ―→·BC ―→=0,即2x +⎝⎛⎭⎫-y 2·y2=0,所以动点C 的轨迹方程为y 2=8x . 答案:y 2=8x3.(2018·江苏太湖高级中学检测)若动点P (x ,y )满足条件|(x +4)2+y 2-(x -4)2+y 2|=6,则点P 的轨迹是________.解析:|(x +4)2+y 2-(x -4)2+y 2|=6表示点P 到(4,0),(-4,0)两点的距离的差的绝对值为6,根据定义得点P 轨迹是双曲线.答案:双曲线4.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且PA =1,则P 点的轨迹方程为________.解析:如图,设P (x ,y ),圆心为M (1,0).连结MA ,PM ,则MA ⊥PA ,且MA =1,又因为PA =1,所以PM =MA 2+PA 2=2, 即PM 2=2,所以(x -1)2+y 2=2. 答案:(x -1)2+y 2=25.已知点A (-2,0),B (3,0),动点P (x ,y ),满足PA ―→·PB ―→=x 2-6,则动点P 的轨迹方程是________.解析:因为动点P (x ,y )满足PA ―→·PB ―→=x 2-6, 所以(-2-x ,-y )·(3-x ,-y )=x 2-6,即y 2=x , 所以动点P 的轨迹方程是y 2=x . 答案:y 2=x6.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,动点P (x ,y )满足OA ―→+OB ―→=2OP ―→,则点P 的轨迹方程为________.解析:设B (x 0,y 0),由⎩⎪⎨⎪⎧ 4+x 0=2x ,y 0=2y ,得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y ,代入圆方程得(2x -4)2+4y 2=4, 即(x -2)2+y 2=1. 答案:(x -2)2+y 2=1二保高考,全练题型做到高考达标1.(2019·盐城一模)设点Q (2,0),圆C :x 2+y 2=1,若动点M 到圆C 的切线长与M Q 长的比等于2,则动点M 的轨迹方程是________.解析:如图,设MN 切圆于N ,则动点M 满足MN =2M Q ,∵圆的半径ON =1,∴MN 2=MO 2-ON 2=MO 2-1. 设点M 的坐标为(x ,y ),则x 2+y 2-1=2(x -2)2+y 2,化简得3x 2+3y 2-16x +17=0.答案:3x 2+3y 2-16x +17=02.长为3的线段AB 的端点A ,B 分别在x 轴,y 轴上移动,AC ―→=2CB ―→,则点C 的轨迹方程为________________.解析:设C (x ,y ),A (a,0),B (0,b ),则a 2+b 2=9, ① 又AC ―→=2CB ―→,所以(x -a ,y )=2(-x ,b -y ), 即⎩⎪⎨⎪⎧a =3x ,b =32y ,②代入①式整理可得x 2+y 24=1.答案:x 2+y 24=13.已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若MN ―→2=λAN ―→·NB ―→,当λ<0时,动点M 的轨迹为________.解析:设M (x ,y ),则N (x,0),所以MN ―→2=y 2,λAN ―→·NB ―→=λ(x +1,0)·(1-x,0)=λ(1-x 2),所以y 2=λ(1-x 2),即λx 2+y 2=λ,变形为x 2+y 2λ=1.又因为λ<0,所以动点M 的轨迹为双曲线.答案:双曲线4.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段A Q 的垂直平分线与C Q 的连线交于点M ,则M 的轨迹方程为________.解析:因为M 为A Q 垂直平分线上一点, 则AM =M Q ,所以MC +MA =MC +M Q =C Q =5,故M 的轨迹为以点C ,A 为焦点的椭圆,所以a =52,c =1,则b 2=a 2-c 2=214, 所以椭圆的方程为4x 225+4y 221=1.答案:4x 225+4y 221=15.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2PA ―→,且O Q ―→·AB ―→=1,则点P 的轨迹方程是________.解析:设A (a,0),B (0,b ),a >0,b >0. 由BP ―→=2PA ―→,得(x ,y -b )=2(a -x ,-y ), 即a =32x >0,b =3y >0.即AB ―→=⎝⎛⎭⎫-32x ,3y , 点Q (-x ,y ),故由O Q ―→·AB ―→=1,得(-x ,y )·⎝⎛⎭⎫-32x ,3y =1, 即32x 2+3y 2=1. 故所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).答案:32x 2+3y 2=1(x >0,y >0)6.(2019·扬州一模)如图,已知椭圆x 24+y 2=1的焦点为F 1,F 2,点P 为椭圆上任意一点,过F 2作∠F 1PF 2的外角平分线的垂线,垂足为点Q ,过点Q 作y 轴的垂线,垂足为N ,线段Q N 的中点为M ,则点M 的轨迹方程为________.解析:因为点F 2关于∠F 1PF 2的外角平分线P Q 的对称点Q ′在直线F 1P 的延长线上, 故F 1Q ′=PF 1+PF 2=2a =4,又O Q 是△F 2F 1Q ′的中位线,所以O Q =12F 1Q ′=2,设M (x ,y ),则Q (2x ,y ), 所以有4x 2+y 2=4.故点M 的轨迹方程为y 24+x 2=1.答案:y 24+x 2=17.在平面直角坐标系xOy 中,动点P 和点M (-2,0),N (2,0)满足|MN ―→|·|MP ―→|+MN ―→·NP ―→=0,则动点P (x ,y )的轨迹方程为________.解析:因为|MN ―→|·|MP ―→|+MN ―→·NP ―→=0, 所以4(x +2)2+y 2+4(x -2)=0, 化简变形,得y 2=-8x . 答案:y 2=-8x8.(2019·通州一模)已知⊙C :(x +1)2+y 2=36及点A (1,0),点P 为圆上任意一点,AP 的垂直平分线交CP 于点M ,则点M 的轨迹方程为________.解析:由圆的方程可知,圆心C (-1,0),半径等于6,设点M 的坐标为(x ,y ), ∵AP 的垂直平分线交CP 于M ,∴MA =MP ,又MP +MC =6,∴MC +MA =6>AC =2,∴点M 满足椭圆的定义,且2a =6,2c =2,∴a =3,c =1,∴b 2=a 2-c 2=8,∴点M 的轨迹方程为x 29+y 28=1.答案:x 29+y 28=19.已知长为1+2的线段AB 的两个端点A ,B 分别在x 轴,y 轴上滑动,P 是AB 上一点,且AP ―→=22PB ―→,求点P 的轨迹方程.解:设A (x 0,0),B (0,y 0),P (x ,y ),由已知知AP ―→=22PB ―→,又AP ―→=(x -x 0,y ),PB ―→=(-x ,y 0-y ), 所以x -x 0=-22x ,y =22(y 0-y ), 得x 0=⎝⎛⎭⎫1+22x ,y 0=(1+2)y . 因为AB =1+2,即x 20+y 20=(1+2)2,所以⎣⎡⎦⎤⎝⎛⎭⎫1+22x 2+[(1+2)y ]2=(1+2)2,化简得x 22+y 2=1.即点P 的轨迹方程为x 22+y 2=1.10.已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PB Q 的角平分线,证明:直线l 过定点.解:(1)如图,设动圆圆心为O 1(x ,y ),由题意O 1A =O 1M ,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H , 则H 是MN 的中点. 所以O 1M =x 2+42, 又O 1A =(x -4)2+y 2,所以(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0).当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x , 所以动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x ,得k 2x 2+(2kb -8)x +b 2=0. 则Δ=-32kb +64>0. 且x 1+x 2=8-2kbk 2, ① x 1x 2=b 2k2,②因为x 轴是∠PB Q 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①②代入③得2kb 2+(k +b )(8-2kb )+2k 2b =0,所以k =-b ,此时Δ>0,所以直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 三上台阶,自主选做志在冲刺名校在平面直角坐标系xOy 中,已知两点M (1,-3),N (5,1),若点C 的坐标满足OC ―→=tOM ―→+(1-t )ON ―→(t ∈R ),且点C 的轨迹与抛物线y 2=4x 交于A ,B 两点.(1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P (m,0),使得过点P 任作一条抛物线的弦,并以该弦为直径的圆都过原点.若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.解:(1)证明:由OC ―→=tOM ―→+(1-t )ON ―→(t ∈R ),可知点C 的轨迹是M ,N 两点所在的直线,所以点C 的轨迹方程为y +3=1-(-3)5-1(x -1),即y =x -4.联立⎩⎪⎨⎪⎧y =x -4,y 2=4x ,化简得x 2-12x +16=0,设C 的轨迹方程与抛物线y 2=4x 的交点坐标为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12,x 1x 2=16,y 1y 2=(x 1-4)(x 2-4)=x 1x 2-4(x 1+x 2)+16=-16, 因为OA ―→·OB ―→=x 1x 2+y 1y 2=16-16=0, 所以OA ⊥OB .(2)假设存在这样的P 点,并设AB 是过抛物线的弦,且A (x 1,y 1),B (x 2,y 2),其方程为x =ny +m ,代入y 2=4x 得y 2-4ny -4m =0, 此时y 1+y 2=4n ,y 1y 2=-4m ,所以k OA k OB =y 1x 1·y 2x 2=y 1y 214·y 2y 224=16y 1y 2=-4m =-1,所以m =4(定值),故存在这样的点P (4,0)满足题意. 设AB 的中点为T (x ,y ),则y =12(y 1+y 2)=2n ,x =12(x 1+x 2)=12(ny 1+4+ny 2+4)=n 2(y 1+y 2)+4=2n 2+4,消去n得y 2=2x -8.。
2019版数学一轮高中全程复习方略课时作业55曲线与方程+Word版含解析.docx
课时作业55曲线与方程[授课提示:对应学生用书第258页]一、选择题1.方程(x2+y2—4)yjx+y+1 =0的曲线形状是( )[x2+^2—4=0, 解析:由题意可得x+y+l= 0或,1兀十1刁0,它表示直线x+尹+1 = 0和圆x2-\~y2—4 = 0在直线x~\~y-\-1=0右上方的部分.答案:C2.设点/为圆(x-l)2+^2=l ±的动点,刃是圆的切线,且冋|=1,则P 点的轨迹方程为()A・y2 = 2x B. (x~l)2+y2=4C・y2=—2x D. (x—1 )2 +y2— 2解析:如图,设P(x, y),圆心为M(l,0)・连接MA,则胚4丄刊,且|胚4| =1.又・・・|冲|= _____・・・ | W =yf\MAf+\R4^=边,即|PA/|2=2, A(X-1)2+/=2.答案:D3.(2018-珠海模拟)己知点/(1,0),直线人y=2x~4,点7?是直线/上的一—►—►点,若RA=AP,则点P的轨迹方程为( )A. y= _2xB. y=2xC ・y=2x—8D ・y=2x+4―►—►解析:设P(x, y), R(X\, /),由RA=AP知,点A是线段RP的中点,"x+xi2 =1,[X!=2-X,・・・], 即Z±2L_n31 = —)人I 2 _山・・•点门)在直线y=2x~4上,••吵i=2x]—4, /. 一尹=2(2—x)一4,即y=2x.答案:B4.已知点弔,0),直线/:x=—点B是/上的动点.若过点B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A.双曲线B.椭圆C.圆D.抛物线解析:由已知^\MF\ = \MB\,根据抛物线的定义知,点M的轨迹是以点F 为焦点,直线Z为准线的抛物线.答案:D5・(2018-河北衡水六调,8)已知/(—1,0), B 是圆F:x2-2x+y2~\\=0(F 为圆心)上一动点,线段M的垂育平分线交貯于P,则动点P的轨迹方程为() 2 2 2 2A — 1 R U 1A.]?十][一1 匕6 35_,2 2 2 2C旨-牙=1 D. f+f = 1解析:由题意^\PA\=\PB\. :.\PA\+\PI^=\PB\+\PF]=r=2yl3>\AF]=29 :. 点P 的轨迹是以A. F为焦点的椭圆,且a=百,c=l, ・・・b=吊,・•・动点P的 2 7轨迹方程为〒+牙=1,故选D.答案:D―►6・已知/(一1,0), 5(1,0)两点,过动点M作x轴的垂线,垂足为N,若Ml/—► —►=MN・NB,当久V0时,动点M的轨迹为( )A.圆B.椭圆C.双曲线D.抛物线—►—► —►解析:设M(JC, y),则N(x,0),所以MN2=y2,1,0)・(1 —x,0)2=久(1 —工),所以y2—A(1 —x2),即变形为X24~1.又因为久<0,所以动点M的轨迹为双曲线.答案:C二、填空题(ci}苗,0)(Q>0),且7・在厶/BC屮,力为动点,B, C为定点,㊁,满足条件sinC—sin5=|sirk4,则动点A的轨迹方程是 ___________解析:由正弦定理得噗1—劈二养1!肆,即\AB\~\AC\=^BC\,故动点/是以B, C为焦点,号为实轴长的双曲线右支.即动点A的轨迹方程为爭一豊_=l(x>0且尹工0)・答案:今4—豊■=l (x>0且尹工0)8. (2018-河南开封模拟)如图,已知圆E : (%+^3)2+/=16,点、F (书,0), P 是圆E 上任意一点.线段PF 的垂宜平分线和半径PE 相交于0.则动点Q 的轨 迹厂的方程为 ___________________ .解析:连接0F,因为0在线段PF 的垂直平分线上,所^\QP\ = \QF\,得|0E| + \QF\ = \QE\ + \QP\ = \PE\=4.又|釦=2^3<4,得0的轨迹是以E, F 为焦点,长轴长为4的椭圆为亍+r 2答案:j+r=i9. (2018-中原名校联考,16)已知双曲线牙一長=1的左、右顶点分别为力2,点P (xi ,刃),0(兀1,—yi )是双曲线上不同于Ml 、力2的两个不同的动点,则 直线AiP 与A 2Q 交点的轨迹方程为 _____ ・解析:由题设知kd>V2, AK —迄,0),缶(迈,0),则有直线A X P 的方程为尸点尹+Q'①・・.兀工0,且\x\<^2,因为点P (%i ,yi )在双曲线y —/=1 ±,所以号—卅=1・2将③代入上式,整理得所求轨迹的方程为牙+#=1(详0,且详皿)・ 答案:牙+尸=1(兀工0,且 三、解答题10. 在平面直角坐标系兀0尹中,点B 与点/(—1,1)关于原点O 对称,P 是动 点,且直线AP 与BP 的斜率之积等于一*・求动点P 的轨迹方程.解析:因为点B 与点昇(一1,1)关于原点O 对称. 所以点B 的坐标为(1, 一1)・设点P 的坐标为(x,力,由题设知直线/卩与的斜率存在且均不为零,则尹一ly+1 _1 x+1 x— 1 3’联立①②,解得化简得/+3J?=4(X H±1).故动点P的轨迹方程为x2+3y=4(x^±l)・11.如下图所示,从双曲线%2—y2=l ±一点0引直线x+y=2的垂线,垂足为N.求线段0N的中点P的轨迹方程.解析:设动点P的坐标为(兀,尹),点0的坐标为(X[, 口), 则N(2x—x\2y—yi)代入x+y=2,得2x—xi+2y—y\ =2@又P0垂直于直线x+y=2,故=即x—y+y\ —X] =0.②3 1由①②解方程组得X!拐x+匆一1 ,代入双曲线方程即可得尸点的轨迹方程是2x2-2y2—2x~l-2y— 1 =0.[能力挑战]12.(2017-新课标全国卷III)在直角坐标系xOy屮,曲线y=x2+mx—2与x 轴交于力,B两点,点C的坐标为(0,1).当加变化时,解答下列问题:(1)能否出现/C丄BC的情况?说明理由;(2)证明过力,B, C三点的圆在尹轴上截得的弦长为定值. 解析:⑴不能出现/C丄BC的情况.理由如下:设^(%1 0), 5(X2 0)»则兀1,兀2 满足x2 + wx —2 = 0, 所以X|X2=—2・又点C的坐标为(0,1),—1 — 1 1 故AC的斜率与BC的斜率之积为丁•二一=—刁X\ X2Z所以不能出现MC丄3C的情况.由(1)可得xi+^2 —~m,所以的中垂线方程为x=-岁.,可得BC的中垂线方程为y-|=X2又X22+mxi—2 = 0, 可得]1/=_2-/=*x+|y_l所以过力,B, C三点的圆的圆心坐标为故圆在歹轴上截得的弦长为2 yp~^=3, 即过B, C三点的圆在y轴上截得的弦长为定值.。
届高考数学一轮总复习课时跟踪检测(五十七)曲线与方程理新人教版【含答案】
课时跟踪检测(五十七) 曲线与方程一抓基础,多练小题做到眼疾手快1.方程(a -1)x -y +2a +1=0(a ∈R)所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:选A 把点(-2,3)和点(2,3)的坐标代入方程(a -1)x -y +2a +1=0.验证知(-2,3)适合方程,而(2,3)不一定适合方程.2.在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )解析:选D 由a >b >0得1b 2>1a 2>0,方程a 2x 2+b 2y 2=1,即x 21a 2+y 21b 2=1表示的是焦点在y 轴上的椭圆;方程ax +by 2=0,即y 2=-abx 表示的是焦点在x 轴的负半轴上的抛物线上,结合各选项知,选D.3.已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若2MN =λAN ·NB ,当λ<0时,动点M 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:选C 设M (x ,y ),则N (x,0),所以2MN =y 2,λAN ·NB =λ(x +1,0)·(1-x,0)=λ(1-x 2),所以y 2=λ(1-x 2),即λx 2+y 2=λ,变形为x 2+y 2λ=1.又因为λ<0,所以动点M 的轨迹为双曲线.4.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是________.解析:因为抛物线x 2=4y 的焦点F (0,1),设线段PF 的中点坐标是(x ,y ),则P (2x,2y -1)在抛物线x 2=4y 上,所以(2x )2=4(2y -1),化简得x 2=2y -1.答案:x 2=2y -15.在平面直角坐标系中,动点P 和点M (-2,0),N (2,0)满足|MN |·|MP |+MN ·NP =0,则动点P (x ,y )的轨迹方程为________.解析:把已知等式|MN |·|MP |+MN ·NP =0用坐标表示出来,得4x +2+y 2+4(x -2)=0,化简变形,得y 2=-8x .答案:y 2=-8x二保高考,全练题型做到高考达标1.(2015·呼和浩特调研)已知椭圆x 2a 2+y 2b2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线解析:选B 设椭圆的右焦点是F 2,由椭圆定义可得|MF 1|+|MF 2|=2a >2c ,所以|PF 1|+|PO |=12(|MF 1|+|MF 2|)=a >c ,所以点P 的轨迹是以F 1和O 为焦点的椭圆.2.(2016·银川模拟)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0解析:选D 设Q (x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0得Q 点的轨迹方程为2x -y +5=0.3.已知正方形的四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),点D ,E 分别在线段OC ,AB 上运动,且OD =BE ,设AD 与OE 交于点G ,则点G 的轨迹方程是( )A .y =x (1-x )(0≤x ≤1)B .x =y (1-y )(0≤y ≤1)C .y =x 2(0≤x ≤1) D .y =1-x 2(0≤x ≤1)解析:选A 设D (0,λ),E (1,1-λ),0≤λ≤1,所以线段AD 的方程为x +yλ=1(0≤x ≤1),线段OE 的方程为y =(1-λ)x (0≤x ≤1),联立方程组⎩⎪⎨⎪⎧x +y λ=1,0≤x ≤1,y =-λx ,0≤x ≤1(λ为参数),消去参数λ得点G 的轨迹方程为y =x (1-x )(0≤x ≤1).4.(2016·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A .4x 221-4y225=1B .4x 221+4y225=1C .4x 225-4y221=1D .4x 225+4y221=1解析:选D ∵M 为AQ 的垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹是以定点C ,A 为焦点的椭圆.∴a =52,c =1,则b 2=a 2-c 2=214,∴M 的轨迹方程为4x 225+4y221=1.5.(2016·洛阳模拟)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP =2PA ,且OQ ·AB =1,则点P 的轨迹方程是( )A .32x 2+3y 2=1(x >0,y >0) B .32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0. 由BP =2PA ,得(x ,y -b )=2(a -x ,-y ), 即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ ·AB =1,得(-x ,y )·(-a ,b )=1, 即ax +by =1.将a ,b 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).6.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________________.解析:如图,|AD |=|AE |=8, |BF |=|BE |=2, |CD |=|CF |,所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支, 故方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)7.(2016·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC =OA +t (OB -OA ),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC =(x ,y ),OA +t (OB -OA )=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -28.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,动点P (x ,y )满足OA +OB =2OP ,则点P 的轨迹方程为________.解析:设B (x 0,y 0),由⎩⎪⎨⎪⎧4+x 0=2x ,y 0=2y ,得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y ,代入圆方程得(2x -4)2+4y 2=4, 即(x -2)2+y 2=1. 答案:(x -2)2+y 2=19.已知长为1+2的线段AB 的两个端点A ,B 分别在x 轴,y 轴上滑动,P 是AB 上一点,且AP =22PB ,求点P 的轨迹方程. 解:设A (x 0,0),B (0,y 0),P (x ,y ),由已知知AP =22PB , 又AP =(x -x 0,y ),PB =(-x ,y 0-y ),所以x -x 0=-22x ,y =22(y 0-y ), 得x 0=⎝ ⎛⎭⎪⎫1+22x ,y 0=(1+2)y . 因为|AB |=1+2, 即x 20+y 20=(1+2)2, 所以⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+22x 2+[(1+2)y ]2=(1+2)2, 化简得x 22+y 2=1.即点P 的轨迹方程为x 22+y 2=1.10.已知平面上的动点P (x ,y )及两个定点A (-2,0),B (2,0),直线PA ,PB 的斜率分别为k 1,k 2且k 1k 2=-14.(1)求动点P 的轨迹C 的方程;(2)设直线l :y =kx +m 与曲线C 交于不同两点M ,N ,当OM ⊥ON 时,求O 点到直线l 的距离(O 为坐标原点).解:(1)由已知,得yx +2·y x -2=-14. 整理得x 2+4y 2=4,即x 24+y 2=1(x ≠±2). 所以动点P 的轨迹C 的方程为x 24+y 2=1(x ≠±2).(2)设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由Δ=(8km )2-4(4k 2+1)(4m 2-4)>0, 得4k 2+1-m 2>0.x 1+x 2=-8km 4k 2+1,x 1·x 2=4m 2-44k 2+1.∵OM ⊥ON ,∴x 1x 2+y 1y 2=0.即x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0.∴(1+k 2)·4m 2-44k 2+1+km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+m 2=0.∴m 2=45(k 2+1),满足4k 2+1-m 2>0.∴O 点到l 的距离为d =|m |1+k2,即d 2=m 21+k 2=45. ∴d =255.即点O 到直线l 的距离为255.三上台阶,自主选做志在冲刺名校1.(2016·辽宁葫芦岛调研)在△ABC 中,已知A (2,0),B (-2,0),G ,M 为平面上的两点且满足GA +GB +GC =0,|MA |=|MB |=|MC |,GM ∥AB ,则顶点C 的轨迹为( )A .焦点在x 轴上的椭圆(长轴端点除外)B .焦点在y 轴上的椭圆(短轴端点除外)C .焦点在x 轴上的双曲线(实轴端点除外)D .焦点在x 轴上的抛物线(顶点除外)解析:选B 设C (x ,y )(y ≠0),则由GA +GB +GC =0,即G 为△ABC 的重心,得G ⎝ ⎛⎭⎪⎫x 3,y3.又|MA |=|MB |=|MC |, 即M 为△ABC 的外心, 所以点M 在y 轴上,又GM ∥AB ,则有M ⎝ ⎛⎭⎪⎫0,y 3.所以x 2+⎝ ⎛⎭⎪⎫y -y 32=4+y 29,化简得x 24+y 212=1,y ≠0.所以顶点C 的轨迹为焦点在y 轴上的椭圆(除去短轴端点).2.在平面直角坐标系xOy 中,动点P (x ,y )到F (0,1)的距离比到直线y =-2 的距离小1.(1)求动点P 的轨迹W 的方程;(2)过点E (0,-4)的直线与轨迹W 交于两点A ,B ,点D 是点E 关于x 轴的对称点,点A 关于y 轴的对称点为A 1,证明:A 1,D ,B 三点共线.解:(1)由题意可得动点P (x ,y )到定点F (0,1)的距离和到定直线y =-1的距离相等,所以动点P 的轨迹是以F (0,1)为焦点,以y =-1为准线的抛物线.所以动点P 的轨迹W 的方程为x 2=4y .(2)证明:设直线l 的方程为y =kx -4,A (x 1,y 1),B (x 2,y 2),则A 1(-x 1,y 1). 由⎩⎪⎨⎪⎧y =kx -4,x 2=4y消去y ,整理得x 2-4kx +16=0.则Δ=16k 2-64>0,即|k |>2.x 1+x 2=4k ,x 1x 2=16.直线A 1B :y -y 2=y 2-y 1x 2+x 1(x -x 2), 所以y =y 2-y 1x 2+x 1(x -x 2)+y 2, 即y =x 22-x 21x 1+x 2(x -x 2)+14x 22,整理得y =x 2-x 14x -x 22-x 1x 24+14x 22,即y =x 2-x 14x +x 1x 24.直线A 1B 的方程为y =x 2-x 14x +4,显然直线A 1B 过点D (0,4).所以A 1,D ,B 三点共线.。
2015届高考数学一轮复习 课时跟踪检测56 古典概型 文 湘教版
课时跟踪检测(五十六) 古 典 概 型(分Ⅰ、Ⅱ卷,共2页) 第Ⅰ卷:夯基保分卷1.(2013·惠州模拟)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45 B.35 C.25D.152.高三(4)班有4个学习小组,从中抽出2个小组进行作业检查.在这个试验中,基本事件的个数为( )A .2B .4C .6D .83.文科班某同学参加省学业水平测试,物理、化学、生物获得等级A 和获得等级不是A 的机会相等,物理、化学、生物获得等级A 的事件分别记为W 1,W 2,W 3,物理、化学、生物获得等级不是A 的事件分别记为W 1,W 2,W 3.则该同学参加这次学业水平测试获得两个A 的概率为( )A.38B.18C.35D.454.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( )A.112B.110C.325D.11255.(2014·浙江联考)一个袋子中装有六个大小形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3.现从中任取一球,记下编号后放回,再任取一球,则两次取出的球的编号之和等于4的概率是________.6.(2014·宣武模拟)曲线C 的方程为x 2m 2+y 2n 2=1,其中m ,n 是将一枚骰子先后投掷两次所得点数,事件A =“方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆”,那么P (A )=________.7.某种零件按质量标准分为1,2,3,4,5五个等级.现从一批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:(1)在抽取的20(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.8.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”.设复数为z=a+b i.(1)若集合A={z|z为纯虚数},用列举法表示集合A;(2)求事件“复数在复平面内对应的点(a,b)满足a2+(b-6)2≤9”的概率.第Ⅱ卷:提能增分卷1.(2013·陕西高考)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表:(2) 在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.2.已知集合P={x|x(x2+10x+24)=0},Q={y|y=2n-1,1≤n≤2,n∈N*},M=P∪Q.在平面直角坐标系中,点A的坐标为(x′,y′),且x′∈M,y′∈M,试计算:(1)点A正好在第三象限的概率;(2)点A不在y轴上的概率;(3)点A正好落在区域x2+y2≤10上的概率.3.(2014·莱芜模拟)中国共产党第十八次全国代表大会期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(x,y)表示事件“抽到的两名记者的编号分别为x,y,且x<y”.(1)共有多少个基本事件?并列举出来;(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率.答案第Ⅰ卷:夯基保分卷1.选D从{1,2,3,4,5}中选取一个数a有5种取法,从{1,2,3}中选取一个数b有3种取法.所以选取两个数a,b共有5×3=15个基本事件.满足b>a的基本事件共有3个.因此b>a的概率P=315=1 5.2.选C设这4个学习小组为A,B,C,D,“从中任抽取两个小组”的基本事件有AB,AC,AD,BC,BD,CD,共6个.3.选A 该同学这次学业水平测试中物理、化学、生物成绩所有可能的结果有8种,分别为(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3).有两个A 的情况为(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),共3种,从而其概率为P =38.4.选D 小正方体三面涂有油漆的有8种情况,故所求其概率为81 000=1125.5.解析:列举可知,共有36种情况,和为4的情况有10种,所以所求概率P =1036=518.答案:5186.解析:试验中所含基本事件个数为36;若想表示椭圆,则先后两次的骰子点数不能相同,则去掉6种可能,既然椭圆焦点在x 轴上,则m >n ,又只剩下一半情况,即有15种,因此P (A )=1536=512.答案:5127.解:(1)由频率分布表得0.05+m +0.15+0.35+n =1, 即m +n =0.45.由抽取的20个零件中,等级为5的恰有2个, 得n =220=0.1,所以m =0.45-0.1=0.35.(2)由(1)得,等级为3的零件有3个,记作x 1,x 2,x 3;等级为5的零件有2个,记作y 1,y 2.从x 1,x 2,x 3,y 1,y 2中任意抽取2个零件,所有可能的结果为(x 1,x 2),(x 1,x 3),(x 1,y 1),(x 1,y 2),(x 2,x 3),(x 2,y 1),(x 2,y 2),(x 3,y 1),(x 3,y 2),(y 1,y 2),共10种.记事件A 为“从零件x 1,x 2,x 3,y 1,y 2中任取2件,其等级相等”. 则A 包含的基本事件有(x 1,x 2),(x 1,x 3),(x 2,x 3),(y 1,y 2),共4种. 故所求概率为P (A )=410=0.4.8.解:(1)A ={6i,7i,8i,9i}.(2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的事件为B . 当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9; 当a =1时,b =6,7,8满足a 2+(b -6)2≤9; 当a =2时,b =6,7,8满足a 2+(b -6)2≤9; 当a =3时,b =6满足a 2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个.所以所求概率P =1124.第Ⅱ卷:提能增分卷1.解:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽到的人数如下表:(2)记从A 组抽到的3个评委为a 1,a 2,a 3,其中a 1,a 2支持1号歌手;从B 组抽到的6个评委为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手.从{a 1,a 2,a 3}和{b 1,b 2,b 3,b 4,b 5,b 6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率p =418=29.2.解:由集合P ={x |x (x 2+10x +24)=0}可得P ={-6,-4,0},由Q ={y |y =2n -1,1≤n ≤2,n ∈N *}可得Q ={1,3},则M =P ∪Q ={-6,-4,0,1,3},因为点A 的坐标为(x ′,y ′),且x ′∈M ,y ′∈M ,所以满足条件的点A 的所有情况为(-6,-6),(-6,-4),(-6,0),(-6,1),(-6,3),…,(3,3),共25种.(1)点A 正好在第三象限的可能情况为(-6,-6),(-4,-6),(-6,-4),(-4,-4),共4种,故点A 正好在第三象限的概率P 1=425.(2)点A 在y 轴上的可能情况为(0,-6),(0,-4),(0,0),(0,1),(0,3),共5种,故点A 不在y 轴上的概率P 2=1-525=45.(3)点A 正好落在区域x 2+y 2≤10上的可能情况为(0,0),(1,0),(0,1),(3,1),(1,3),(3,0),(0,3),(1,1).共8种,故点A 落在区域x 2+y 2≤10上的概率P 3=825.3.解:(1)共有36个基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9),共36个.(2)记事件“所抽取的记者的编号之和小于17但不小于11”为事件A ,即事件A 为“x ,y ∈{1,2,3,4,5,6,7,8,9},且11≤x +y <17,其中x <y ”,由(1)可知事件A 共含有15个基本事件,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),共15个.“都是男记者”记作事件B ,则事件B 为“x <y ≤5”,包含:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.故P (A )+P (B )=1536+1036=2536.。
苏教版最新的高二数学苏教版选修2-1课时跟踪训练:(十六) 求曲线的方程 Word版含解析
课时跟踪训练(十六) 求曲线的方程1.到两坐标轴距离相等的点的轨迹方程是________.2.等腰三角形底边的两个顶点是B (2,1),C (0,-3),则另一顶点A 的轨迹方程是________.3.已知两定点A (-1,0),B (2,0),动点P 满足P A PB =12,则P 点的轨迹方程是________. 4.已知两定点A (-2,0),B (1,0),如果动点P 满足P A =2PB ,则点P 的轨迹所包围的图形的面积等于________.5.已知直线l :2x +4y +3=0,P 为l 上的动点,O 为坐标原点,点Q 分线段OP 为1∶2两部分,则Q 点的轨迹方程是________.6.若动点P 在曲线y =2x 2+1上移动,求点P 与Q (0,-1)连线中点M 的轨迹方程.7.已知双曲线2x 2-2y 2=1的两个焦点为F 1、F 2,P 为动点,若PF 1+PF 2=6,求动点P 的轨迹E 的方程.且OA u u u r ·OB u u u r =-8.如图所示,A (m ,3m )和B (n ,-3n )两点分别在射线OS ,OT 上移动,12,O 为坐标原点,动点P 满足OP u u u r =OA u u u r +OB u u u r . (1)求mn 的值;(2)求动点P 的轨迹方程,并说明它表示什么曲线?答 案1.解析:设动点M (x ,y ),到两坐标轴的距离为|x |、|y |.则|x |=|y |,∴x 2=y 2.答案:x 2=y 22.解析:设点A 的坐标为(x ,y ).由已知得AB =AC ,即(x -2)2+(y -1)2=x 2+(y +3)2.化简得 x +2y +1=0.∵点A 不能在直线BC 上,∴x ≠1,∴顶点A 的轨迹方程为x +2y +1=0(x ≠1).答案:x +2y +1=0(x ≠1)3.解析:设P (x ,y ),由已知得(x +1)2+y 2(x -2)2+y 2=12,化简得:x 2+4x +y 2=0.即(x +2)2+y 2=4. 答案:(x +2)2+y 2=44.解析:设P (x ,y ),由题知(x +2)2+y 2=4[(x -1)2+y 2],整理得x 2-4x +y 2=0,配方得(x -2)2+y 2=4,可知圆的面积为4π.答案:4π 5.解析:据题意,OP u u u r =3OQ u u u r ,设P (x ′,y ′),Q (x ,y ),则⎩⎪⎨⎪⎧ x ′=3x ,y ′=3y ,又∵P (x ′,y ′)在2x +4y +3=0上,∴2×(3x )+4×(3y )+3=0,即2x +4y +1=0,即点Q 的轨迹方程为2x +4y +1=0.答案:2x +4y +1=06.解:设P (x 0,y 0),中点M (x ,y ),则⎩⎪⎨⎪⎧ x =x 0+02,y =y 0-12,∴⎩⎪⎨⎪⎧x 0=2x ,y 0=2y +1. 又P (x 0,y 0)在曲线y =2x 2+1上,∴2y +1=2(2x )2+1,即y =4x 2.∴点M 的轨迹方程为y =4x 2.7.解:依题意双曲线方程可化为x 212-y 212=1, 则F 1F 2=2.∴PF 1+PF 2=6>F 1F 2=2,∴点P 的轨迹是以F 1,F 2为焦点的椭圆,其方程可设为x 2a 2+y 2b 2=1(a >b >0). 由2a =6,2c =2得a =3,c =1.∴b 2=a 2-c 2=8.则所求椭圆方程为x 29+y 28=1. 故动点P 的轨迹E 的方程为x 29+y 28=1. 8.解:(1)由OA u u u r ·OB u u u r =(m ,3m )·(n ,-3n )=-2mn .得-2mn =-12,即mn =14. (2)设P (x ,y )(x >0),由OP u u u r =OA u u u r +OB u u u r ,得(x ,y )=(m ,3m )+(n ,-3n )=(m +n ,3m -3n ), ∴⎩⎪⎨⎪⎧x =m +n ,y =3m -3n , 整理得x 2-y 23=4mn , 又mn =14, ∴P 点的轨迹方程为x 2-y 23=1(x >0). 它表示以原点为中心,焦点在x 轴上,实轴长为2,焦距为4的双曲线x 2-y 23=1的右支.。
高中数学第二章2.1.1曲线与方程2.1.2求曲线的方程课时跟踪训练含解析新人教A版选修2
求曲线的方程[A 组 学业达标]1.方程y =|x |x 2表示的曲线为图中的( )解析:y =|x |x 2,x ≠0,为偶函数,图象关于y 轴对称,故排除A ,B. 又因为当x >0时,y =1x >0; 当x <0时,y =-1x >0,所以排除D. 答案:C2.方程(x 2-4)2+(y 2-4)2=0表示的图形是( ) A .两个点 B .四个点 C .两条直线D .四条直线解析:由⎩⎪⎨⎪⎧x 2-4=0,y 2-4=0,得⎩⎪⎨⎪⎧ x =2,y =2,或⎩⎪⎨⎪⎧x =2,y =-2, 或⎩⎪⎨⎪⎧ x =-2,y =2,或⎩⎪⎨⎪⎧x =-2,y =-2,故方程(x 2-4)2+(y 2-4)2=0表示的图形是四个点. 答案:B3.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A .x 2+y 2=3B .x 2+2xy =1(x ≠±1)C .y =1-x 2D .x 2+y 2=9(x ≠0)解析:设P (x ,y ),∵k P A +k PB =-1,∴y -0x -(-1)+y -0x -1=-1,整理得x 2+2xy =1(x ≠±1). 答案:B4.若P (2,-3)在曲线x 2-ay 2=1上,则a 的值为( ) A .2 B .3 C.12D.13解析:因为点P (2,-3)在曲线x 2-ay 2=1上,所以代入曲线方程可得a =13,故选D. 答案:D5.已知A (-1,0),B (1,0),且MA →·MB →=0,则动点M 的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=2 C .x 2+y 2=1(x ≠±1) D .x 2+y 2=2(x ≠±2)解析:设动点M (x ,y ),则MA →=(-1-x ,-y ),MB →=(1-x ,-y ). 由MA →·MB →=0,得(-1-x )(1-x )+(-y )2=0, 即x 2+y 2=1. 答案:A6.直线2x +5y -15=0与曲线y =-10x 的交点坐标为________.解析:由方程组⎩⎨⎧2x +5y -15=0,y =-10x ,得⎩⎪⎨⎪⎧x =10,y =-1或⎩⎨⎧x =-52,y =4,即它们的交点坐标为(10,-1)或⎝ ⎛⎭⎪⎫-52,4.答案:(10,-1)或⎝ ⎛⎭⎪⎫-52,47.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是____________.解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 20+1.又M 为AB 的中点,所以⎩⎨⎧x =0+x2,y =y 0-12,即⎩⎪⎨⎪⎧x 0=2x ,y 0=2y +1,将其代入y 0=2x 20+1得,2y +1=2×(2x )2+1, 即y =4x 2. 答案:y =4x 28.已知定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于________.解析:设点P 的坐标为(x ,y ),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹所包围的图形的面积等于4π. 答案:4π9.已知方程ax 2+by 2=2的曲线经过点A ⎝ ⎛⎭⎪⎫0,53和点B (1,1),求a ,b 的值.解析:依题意,得⎩⎨⎧259b =2,a +b =2,解得⎩⎪⎨⎪⎧a =3225,b =1825.10.在平面直角坐标系中,已知动点P (x ,y ),PM ⊥y 轴,垂足为M ,点N 与点P关于x 轴对称,且OP →·MN →=4,求动点P 的轨迹方程.解析:由已知得M (0,y ),N (x ,-y ),则MN →=(x ,-2y ),故OP →·MN →=(x ,y )·(x ,-2y )=x 2-2y 2,依题意知,x 2-2y 2=4,因此动点P 的轨迹方程为x 2-2y 2=4.[B 组 能力提升]11.曲线y =-1-x 2与曲线y +|ax |=0(a ∈R)的交点个数为( ) A .1 B .2 C .3D .4解析:利用数形结合的思想方法,如图所示: 曲线y =-1-x 2表示x 2+y 2=1的下半圆,曲线y +|ax |=0,即y =-|a ||x |, 当x ≥0时,即y =-|a |x ,当x <0时即y =|a |x ,得两曲线交点2个. 故选B. 答案:B12.已知|AB →|=3,A ,B 分别在x 轴和y 轴上运动,O 为原点,OP →=13OA →+23OB →,则点P 的轨迹方程为( ) A .x 2+y 24=1B.x 24+y 2=1C.x 29+y 2=1D .x 2+y29=1解析:设P (x ,y ),A (a,0),B (0,b ),由OP →=13OA →+23OB →,得(x ,y )=13(a,0)+23(0,b ), ∴a =3x ,b =32y . ∵|AB →|=3,∴a 2+b 2=9,∴(3x )2+⎝ ⎛⎭⎪⎫3y 22=9,即x 2+y 24=1.答案:A13.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 解析:由(cos α-2)2+sin 2α=3, 得cos α=12,又因为0≤α<2π,所以α=π3或α=53π. 答案:π3或5π314.一动点到y 轴距离比到点(2,0)的距离小2,则此动点的轨迹方程为________. 解析:设动点P (x ,y ),则由条件,得(x -2)2+y 2=|x |+2,两边同时平方,得y 2=4x +4|x |,当x ≥0时,y 2=8x ;当x <0时,y =0,所以动点的轨迹方程为y 2=8x (x ≥0)或y =0(x <0).答案:y 2=8x (x ≥0)或y =0(x <0)15.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.解析:法一:设弦的中点为P (x ,y ), 则另一端点为(2x,2y )在圆(x -1)2+y 2=1上, 故(2x -1)2+4y 2=1, 即⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1). 法二:如图所示,设所作弦的中点为P (x ,y ),连接CP , 则CP ⊥OP ,|OC |=1,OC 的中点M ⎝ ⎛⎭⎪⎫12,0,所以动点P 的轨迹是以点M 为圆心,以OC 为直径的圆,故轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14.又因为点P 不能与点O 重合,所以0<x ≤1. 故所作弦的中点的轨迹方程为 ⎝ ⎛⎭⎪⎫x -122+y 2=14(0<x ≤1).16.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ →=OM →+ON →,求动点Q 的轨迹方程. 解析:设Q (x ,y ),点M (x 0,y 0)(y 0≠0), 则点N (0,y 0). 因为OQ →=OM →+ON →,所以(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0), 即⎩⎪⎨⎪⎧x =x 0,y =2y 0所以⎩⎨⎧x 0=x ,y 0=y2.又因为点M 在圆C 上, 所以x 2+y 24=4,即x 24+y 216=1(y ≠0), 所以动点Q 的轨迹方程为x 24+y 216=1(y ≠0).。
2020学年高中数学课时作业6曲线与方程求曲线的方程新人教A版选修2-1(2021-2022学年)
课时作业6 曲线与方程求曲线的方程|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.下列各组方程表示相同曲线的是()A.y=x与y=错误!B.y=x2与y=|x|C.(x-1)2+(y+2)2=0与(x-1)(y+2)=0D.y=错误!未定义书签。
与y=|x|解析:A中y=x表示直线,y=错误!=|x|表示两条射线;B中y=x2表示抛物线,y=|x|表示两条射线;C中前者表示圆,后者表示两条直线x=1和y=-2,故选D。
答案:D2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x-y=0对称解析:同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.答案:C3.下列选项中方程与曲线能够对应的是( )解析:A中方程表示圆,B中方程表示两条直线y=x和y=-x;D中方程可化为y=错误!未定义书签。
(x〉0),只能取第一象限的图象. 答案:C4.已知两点M(-2,0),N (2,0),点P 为坐标平面内的动点,满足|错误!未定义书签。
|·|MP →|+错误!未定义书签。
·错误!未定义书签。
=0,则动点P (x ,y )的轨迹方程为( )A.y 2=8x B.y 2=-8x C.y 2=4x D.y 2=-4x解析:设点P的坐标为(x ,y),则错误!=(4,0),错误!=(x +2,y ),错误!未定义书签。
=(x -2,y ),∴|错误!未定义书签。
|=4,|错误!|=错误!未定义书签。
,错误!未定义书签。
·错误!未定义书签。
=4(x -2).根据已知条件得4错误!未定义书签。
=4(2-x ).整理得y 2=-8x 。
∴点P 的轨迹方程为y 2=-8x 。
答案:B5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C的轨迹方程是( ) A.4x -3y-16=0或4x-3y +16=0 B .4x -3y-16=0或4x-3+24=0 C.4x -3y +16=0或4x -3y +24=0 D .4x -3y+16=0或4x -3y -24=0解析:由两点式,得直线AB 的方程是错误!=错误!未定义书签。
高中数学课时训练(四)曲线与方程求曲线的方程新人教A版选修2-1(2021年整理)
(浙江专版)2018年高中数学课时跟踪检测(四)曲线与方程求曲线的方程新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学课时跟踪检测(四)曲线与方程求曲线的方程新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学课时跟踪检测(四)曲线与方程求曲线的方程新人教A版选修2-1的全部内容。
课时跟踪检测(四)曲线与方程求曲线的方程层级一学业水平达标1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)() A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上解析:选B 将点M(2,1)的坐标代入方程知M∈l,M∈C.2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称 D.关于x-y=0对称解析:选C 同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.3.方程x+|y-1|=0表示的曲线是( )解析:选B 方程x+|y-1|=0可化为|y-1|=-x≥0,则x≤0,因此选B.4.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足|MN|·|MP|+MN·NP=0,则动点P(x,y)的轨迹方程为()A.y2=8x B.y2=-8xC.y2=4x D.y2=-4x解析:选B 设点P的坐标为(x,y),则MN=(4,0),MP=(x+2,y),NP=(x-2,y),∴|MN|=4,|MP|=错误!,MN·NP=4(x-2).根据已知条件得4 错误!=4(2-x).整理得y2=-8x.∴点P的轨迹方程为y2=-8x.5.已知A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是( )A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0解析:选B 由两点式,得直线AB的方程是y-0 4-0=x+12+1,即4x-3y+4=0,线段AB的长度|AB|=错误!=5.设C的坐标为(x,y),则错误!×5×错误!=10,即4x-3y-16=0或4x-3y+24=0.6.方程x2+2y2-4x+8y+12=0表示的图形为________.解析:对方程左边配方得(x-2)2+2(y+2)2=0.∵(x-2)2≥0,2(y+2)2≥0,∴错误!解得错误!从而方程表示的图形是一个点(2,-2).答案:一个点(2,-2)7.已知两点M(-2,0),N(2,0),点P满足PM·PN=12,则点P的轨迹方程为________________.解析:设P(x,y),则PM=(-2-x,-y),PN=(2-x,-y).于是PM·PN=(-2-x)(2-x)+y2=12,化简得x2+y2=16,此即为所求点P的轨迹方程.答案:x2+y2=168.已知点A(0,-1),当点B在曲线y=2x2+1上运动时,线段AB的中点M的轨迹方程是________________.解析:设M(x,y),B(x0,y0),则y0=2x错误!+1.又M为AB的中点,所以错误!即错误!将其代入y0=2x错误!+1得,2y+1=2×(2x)2+1,即y=4x2.答案:y=4x29.在平面直角坐标系中,已知动点P(x,y),PM⊥y轴,垂足为M,点N与点P关于x轴对称,且OP·MN=4,求动点P的轨迹方程.解:由已知得M(0,y),N(x,-y),则MN=(x,-2y),故OP·MN=(x,y)·(x,-2y)=x2-2y2,依题意知,x2-2y2=4,因此动点P的轨迹方程为x2-2y2=4.10.已知圆C的方程为x2+y2=4,过圆C上的一动点M作平行于x轴的直线m,设m与y 轴的交点为N,若向量OQ=OM+ON,求动点Q的轨迹.解:设点Q的坐标为(x,y),点M的坐标为(x0,y0)(y0≠0),则点N的坐标为(0,y0).因为OQ=OM+ON,即(x,y)=(x0,y0)+(0,y0)=(x0,2y0),则x0=x,y0=错误!.又点M在圆C上,所以x错误!+y错误!=4,即x2+错误!=4(y≠0).所以动点Q的轨迹方程是错误!+错误!=1(y≠0).层级二应试能力达标1.已知点O(0,0),A(1,-2),动点P满足|PA|=3|PO|,则点P的轨迹方程是( ) A.8x2+8y2+2x-4y-5=0B.8x2+8y2-2x-4y-5=0C.8x2+8y2+2x+4y-5=0D.8x2+8y2-2x+4y-5=0解析:选A 设动点P(x,y),则由|PA|=3|PO|,得错误!=3错误!.化简,得8x2+8y2+2x-4y-5=0.故选A.2.下列四组方程表示同一条曲线的是( )A.y2=x与y=错误!B.y=lg x2与y=2lg xC.错误!=1与lg(y+1)=lg(x-2)D.x2+y2=1与|y|=1-x2解析:选D 根据每一组曲线方程中x和y的取值范围,不难发现A、B、C中各组曲线对应的x或y的取值范围不一致;而D中两曲线的x与y的取值范围都是[-1,1],且化简后的解析式相同,所以D正确.故选D.3.方程y=-错误!对应的曲线是()解析:选A 将y=-错误!平方得x2+y2=4(y≤0),它表示的曲线是圆心在原点,半径为2的圆的下半部分,故选A.4.已知0≤α≤2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为()A.错误!B.错误!C.错误!或错误!D.错误!或错误!解析:选C 将点P的坐标代入曲线(x-2)2+y2=3中,得(cos α-2)2+sin2α=3,解得cos α=12.又0≤α<2π,所以α=错误!或错误!.故选C.5.方程|x-1|+|y-1|=1表示的曲线所围成的图形的面积是________.解析:方程|x-1|+|y-1|=1可写成错误!或错误!或错误!或错误!其图形如图所示,它是边长为2的正方形,其面积为2.答案:26.给出下列结论:①方程错误!=1表示斜率为1,在y轴上的截距为-2的直线;②到x轴距离为2的点的轨迹方程为y=-2;③方程(x2-4)2+(y2-4)2=0表示四个点.其中正确结论的序号是________.解析:对于①,方程错误!=1表示斜率为1,在y轴上的截距为-2的直线且除掉点(2,0),所以①错误;对于②,到x轴距离为2的点的轨迹方程为y=-2或y=2,所以②错误;对于③,方程(x2-4)2+(y-4)2=0表示点(-2,2),(-2,-2),(2,-2),(2,2)四个点,所以③正确.故填③.答案:③7.已知A为定点,线段BC在定直线l上滑动,|BC|=4,点A到直线l的距离为3,求△ABC外心的轨迹方程.解:建立平面直角坐标系,使x轴与l重合,点A在y轴上(如图所示),则A(0,3).设△ABC的外心为P(x,y),因为点P在线段BC的垂直平分线上,所以不妨令B(x+2,0),C(x-2,0).又点P在线段AB的垂直平分线上,所以|PA|=|PB|,即错误!=错误!,化简得x2-6y+5=0.于是△ABC外心的轨迹方程为x2-6y+5=0.8.已知两点P(-2,2),Q(0,2)以及一条直线l:y=x,设长为错误!的线段AB在直线l上移动,求直线PA和QB的交点M的轨迹方程.解:设A(m,m),B(m+1,m+1),当m≠-2且m≠-1时,直线PA和QB的方程分别为y=错误!(x+2)+2和y=错误!x+2.由错误!消去m,得x2-y2+2x-2y+8=0.当m=-2时,直线PA和QB的方程分别为x=-2和y=3x+2,其交点为(-2,-4),满足方程x2-y2+2x-2y+8=0.当m=-1时,直线PA和QB的方程分别为y=-3x-4和x=0,其交点为(0,-4),满足方程x2-y2+2x-2y+8=0.综上,可知所求交点M的轨迹方程为x2-y2+2x-2y+8=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(五十六) 曲线与方程1.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC =λ1OA +λ2OB (O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线2.(2012·焦作模拟)设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=23.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆4.若点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y5.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点的椭圆经过A ,B 两点,则椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1)B .y 2-x 248=1(y ≥1)C .x 2-y 248=1(x ≤-1)D .x 2-y 248=1(x ≥1)6.(2012·杭州模拟)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA =AP ,则点P 的轨迹方程为( )A .y =-2xB .y =2xC .y =2x -8D .y =2x +47.点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是________.8.直线x a +y2-a=1与x 、y 轴交点的中点的轨迹方程是________.9.已知向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ).则点M (x ,y )的轨迹C 的方程为______________.10.(2012·四川高考改编)如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C,试求轨迹C的方程.11.(2012·苏州模拟)已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆的圆心为点C.(1)求动点C的轨迹方程;(2)过点F的直线l2交动点C的轨迹于P,Q两点,交直线l1于点R,求RP,·RQ,的最小值.12.(2012·山西模拟)已知椭圆的中心是坐标原点O,焦点F1,F2在y轴上,它的一个顶点为A (2,0),且中心O 到直线AF 1的距离为焦距的14,过点M (2,0)的直线l 与椭圆交于不同的两点P ,Q ,点N 在线段PQ 上.(1)求椭圆的标准方程;(2)设|PM |·|NQ |=|PN |·|MQ |,求动点N 的轨迹方程.1.设过点P (x ,y )的直线分别与x 轴正半轴和y 轴正半轴交于A ,B 两点,点Q 与点P关于y 轴对称,O 为坐标原点,若BP ,=2PA ,,OQ ,·AB ,=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)2.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)3.(2012·辽宁高考)如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积;(2)求直线AA 1与直线A 2B 的交点M 的轨迹方程.答 案课时跟踪检测(五十六)A 级1.选A 设C (x ,y ),则OC =(x ,y ),OA =(3,1),OB =(-1,3),∵OC =λ1OA +λ2OB ,∴⎩⎪⎨⎪⎧x =3λ1-λ2y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.2.选D 如图,设P (x ,y ),圆心为M (1,0).连接MA ,则MA ⊥PA ,且|MA |=1,∴|PM |=|MA |2+|P A |2= 2.即|PM |2=2,即P 的轨迹方程为 (x -1)2+y 2=2.3.选B 设N (a ,b ),M (x ,y ),则a =x -22,b =y 2,代入圆O 的方程得点M 的轨迹方程是(x -2)2+y 2=22,此时|PF 1|-|PF 2|=|PF 1|-(|PF 1|±2)=±2,即||PF 1|-|PF 2||=2,2<|F 1F 2|故所求的轨迹是双曲线.4.选C 点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,说明点P (x ,y )到点F (0,2)和到直线y +2=0的距离相等,所以P 点的轨迹为抛物线,设抛物线方程为x 2=2py ,其中p =4,故所求的轨迹方程为x 2=8y .5.选A 由题意知|AC |=13,|BC |=15,|AB |=14,又∵|AF |+|AC |=|BF |+|BC |, ∴|AF |-|BF |=|BC |-|AC |=2,故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.又c =7,a =1,b 2=48,∴点F 的轨迹方程为y 2-x 248=1(y ≤-1).6.选B ∵RA =AP ,∴R ,A ,P 三点共线,且A 为RP 的中点,设P (x ,y ),R (x 1,y 1),则由RA =AP ,得(1-x 1,-y 1)=(x -1,y ),则⎩⎪⎨⎪⎧1-x 1=x -1,-y 1=y ,即x 1=2-x ,y 1=-y ,将其代入直线y =2x -4中,得y =2x .7.解析:依题意有|QP |=|QF |, 则||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1.答案:x 2-y 23=18.解析:设直线x a +y2-a =1与x 、y 轴交点为A (a,0),B (0,2-a ),A 、B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1,∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案:x +y =1(x ≠0,x ≠1) 9.解析:∵(a +3b )⊥(a -3b ), ∴(a +3b )·(a -3b )=0,∴a 2-3b 2=0,∴x 2+3y 2-3=0,即点M (x ,y )的轨迹C 的方程为x 23+y 2=1.答案:x 23+y 2=110.解:设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在; 当x =1时,直线MB 的斜率不存在.于是x ≠1且x ≠-1,此时,MA 的斜率为y x +1,MB 的斜率为yx -1.由题意,有y x +1·yx -1=4,化简可得4x 2-y 2-4=0.故动点M 的轨迹C 的方程是4x 2-y 2-4=0(x ≠1且x ≠-1). 11.解:(1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线,∴动点C 的轨迹方程为x 2=4y .(2)由题意知,直线l 2方程可设为y =kx +1(k ≠0), 与抛物线方程联立消去y ,得x 2-4kx -4=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为⎝⎛⎭⎫-2k ,-1, ∴RP ·RQ =⎝⎛⎭⎫x 1+2k ,y 1+1·⎝⎛⎭⎫x 2+2k ,y 2+1 =⎝⎛⎭⎫x 1+2k ⎝⎛⎭⎫x 2+2k +(kx 1+2)·(kx 2+2) =(1+k 2)x 1x 2+⎝⎛⎭⎫2k +2k (x 1+x 2)+4k 2+4 =-4(1+k 2)+4k ⎝⎛⎭⎫2k +2k +4k 2+4 =4⎝⎛⎭⎫k 2+1k 2+8.∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP RQ ≥4×2+8=16,即RP ·RQ 的最小值为16. 12.解:(1)设椭圆的标准方程是y 2a 2+x 2b 2=1(a >b >0). 由于椭圆的一个顶点是A (2,0), 故b 2=2.根据题意得∠AF 1O =π6,sin ∠AF 1O =ba ,即a =2b ,a 2=8,所以椭圆的标准方程是y 28+x 22=1.(2)设P (x 1,y 1),Q (x 2,y 2),N (x ,y ),由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x -2).直线l 的方程与椭圆方程联立消去y 得 (k 2+4)x 2-4k 2x +4k 2-8=0. 由Δ=16k 4-4(k 2+4)(4k 2-8)>0,得-2<k <2.根据根与系数的关系得x 1+x 2=4k 24+k 2,x 1x 2=4k 2-84+k 2.又|PM |·|NQ |=|PN |·|MQ |, 即(2-x 1)(x 2-x )=(x -x 1)(2-x 2).解得x =1,代入直线l 的方程得y =-k ,y ∈(-2,2). 所以动点N 的轨迹方程为x =1,y ∈(-2,2).B 级1.选A 设A (a,0),B (0,b )(a ,b >0).可得BP =(x ,y -b ),PA ,=(a -x ,-y ),OQ =(-x ,y ),AB =(-a ,b ).由BP=2PA ,得⎩⎪⎨⎪⎧x =2a -2x ,y -b =-2y ,即⎩⎪⎨⎪⎧a =32x ,b =3y .由OQ ·AB =1得ax +by =1.所以32x 2+3y 2=1(x >0,y >0).2.选A 设另两个切点为E 、F ,如图所示, 则|PE |=|PF |,|ME |=|MB |, |NF |=|NB |,从而|PM |-|PN |=|ME |-|NF |= |MB |-|NB |=4-2=2<|MN |,所以P 的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支.a =1,c =3,则b 2=8.故方程为x 2-y 28=1(x >1).3.解:(1)设A (x 0,y 0),则矩形ABCD 的面积S =4|x 0||y 0|.由x 209+y 20=1得y 20=1-x 209,从而 x 20y 20=x 20⎝⎛⎭⎫1-x 209=-19⎝⎛⎭⎫x 20-922+94. 当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6. (2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 29.④ 将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).。