心血管病影像诊断
医学影像技术在心血管疾病诊断中的应用研究
医学影像技术在心血管疾病诊断中的应用研究第一章:引言心血管疾病是指发生在心脏和血管系统中的各种病理改变所导致的临床综合征。
它们是全球范围内最常见的疾病之一,也是造成人类死亡的主要原因之一。
早期和准确的心血管疾病诊断对于及时采取合理的治疗手段至关重要。
随着医学影像技术的发展,它在心血管疾病的诊断中发挥着越来越重要的作用。
本章将介绍医学影像技术在心血管疾病诊断中的意义和价值。
第二章:常用的医学影像技术心血管疾病的诊断通常需要使用多种医学影像技术来获取相关信息。
本章将介绍主要的医学影像技术,包括X射线摄影、超声诊断、核医学、磁共振成像和计算机断层扫描等。
每种技术的原理、优势和不足将会被详细讨论。
此外,还将介绍它们在心血管疾病诊断中的具体应用。
第三章:心脏病变的影像表现及诊断心脏病变是心血管疾病的重要组成部分。
本章将重点介绍心脏病变在各种影像技术中的表现特点,并结合临床实例进行分析和解读。
例如,冠状动脉疾病在血管造影和计算机断层扫描中的表现、心肌梗死在核医学和磁共振成像中的特点等。
通过对这些典型病例的分析,我们可以更好地理解心脏病变在不同影像技术中的诊断价值。
第四章:血管病变的影像表现及诊断血管病变是心血管疾病的另一个重要方面。
本章将讨论不同影像技术对血管病变的表现和诊断方法。
例如,动脉粥样硬化在超声诊断和磁共振成像中的影像特点、深静脉血栓在超声诊断和计算机断层扫描中的表现等。
同时,我们还将介绍一些新兴的影像技术在血管病变诊断中的应用,如基于机器学习的自动分割和影像特征提取等。
第五章:医学影像技术的挑战和发展方向尽管医学影像技术在心血管疾病诊断中取得了很大的进展,但仍面临一些挑战。
本章将介绍目前医学影像技术所面临的主要问题,如辐射剂量、图像重建和解读的主观性等。
同时,我们还将展望未来医学影像技术的发展方向,如人工智能在影像诊断中的应用、低剂量成像技术的发展等。
第六章:结论本文系统地介绍了医学影像技术在心血管疾病诊断中的应用研究。
基于CTA技术的心血管病影像分析
基于CTA技术的心血管病影像分析随着科技的不断发展,医学影像学也得到了飞速的发展。
CTA,即计算机断层扫描血管造影技术,是目前最常见、最准确的心血管影像诊断手段之一。
随着CTA技术的不断完善,其应用范围也不断扩大,成为了心血管病诊断、分析和治疗中重要的手段之一。
本文将从CTA技术的基本原理、心血管病影像分析流程、CTA技术在心血管病影像分析中的应用以及未来发展方向四个方面进行探讨。
CTA技术的基本原理CTA技术是一种将计算机断层扫描技术与血管造影技术相结合的影像学技术。
其基本原理是采用放射性物质注射至人体血管系统中,再通过多层薄片低剂量X 线扫描,将不同位置的断层图像重建成三维图像以呈现人体血管系统的具体形态,同时可以通过其微小的血管宽度分辨率和高对比度达到精细的血管显示效果。
这使得CTA技术成为了一种无创、可靠、准确、非常方便的影像诊断手段。
心血管病影像分析流程心血管病影像分析是指利用CTA技术获取的心血管影像进行详细的分析和诊断。
其流程通常包括如下几个步骤。
第一步是影像获取,即通过CTA技术获取心血管影像。
该步骤一般需要患者服用口服或静脉注射造影剂,然后通过CT扫描器进行断层成像,生成三维图像和二维图像,完成数据采集。
第二步是影像分割,即对所获取的影像进行分割和重构以获取心血管系统的三维模型。
该步骤的目的是将心血管影像中的血管图像从背景和其他组织中分离,并提取出感兴趣的血管模型。
第三步是血管分析,即对所分割的血管模型进行定量分析。
通过该步骤,可以通过血管的长度、面积、形态、直径和弯曲度等特征参数进行定量计算分析,从而评估血管功能和疾病情况。
第四步是疾病诊断,即基于血管分析结果和临床症状对患者进行诊断。
通过该步骤,可以判断患者是否存在心血管疾病和病变的类型和程度,以指导治疗和预后判断。
CTA技术在心血管病影像分析中的应用CTA技术在临床中已被广泛应用于心血管系统的诊断和治疗,其具体应用包括以下方面。
影像学在心血管疾病诊断中的应用与进展
影像学在心血管疾病诊断中的应用与进展心血管疾病是当今社会中最常见的健康问题之一,也是导致全球疾病负担的主要原因之一。
而影像学作为一种非侵入性的诊断工具,对于心血管疾病的早期诊断和监测起到了重要的作用。
本文将探讨影像学在心血管疾病诊断中的应用与进展。
一、超声心动图超声心动图是目前最常用的心脏影像学检查方法之一,它通过波束与心脏组织相互作用,形成一系列图像,以评估心脏的结构和功能。
超声心动图能够准确测量心腔的容积和压力,检测心脏瓣膜的异常和心肌的运动情况。
近年来,超声心动图技术得到了迅猛发展,出现了三维超声心动图和应变成像等新技术,这些技术的出现使得对心脏疾病的诊断更加准确和可靠。
二、计算机断层扫描(CT)计算机断层扫描(CT)作为一种非侵入性的影像学技术,能够提供高分辨率的心脏图像。
它通过应用X射线和计算机算法,将多个切面的图像重建成三维图像。
CT可以准确评估冠状动脉的狭窄程度和斑块的特征,并且能够提供心室功能的定量分析。
此外,CT还可以用于三维重建和心血管介入手术的规划,为临床治疗提供重要的参考。
三、磁共振成像(MRI)磁共振成像(MRI)是一种通过利用磁场和无线电波来生成图像的影像学技术。
相比于CT,MRI无辐射、无创伤,并且对软组织有更好的解剖对比度。
在心血管疾病诊断中,MRI能够提供心脏和血管的结构和功能信息,并可以评估心肌的灌注和纤维化等参数。
此外,MRI 还可以应用于心脏成像引导下的热消融,对心律失常的治疗起到重要的辅助作用。
四、核医学核医学是一种利用放射性标记剂来评估心脏和血管功能的影像学技术。
其中单光子发射计算机断层扫描(SPECT)和正电子发射计算机断层扫描(PET)是核医学中最常用于心血管疾病的技术。
SPECT和PET可以评估心肌灌注、心室功能和炎症等指标,对冠心病、心肌梗死和心肌炎等心血管疾病的诊断和监测具有重要意义。
综上所述,影像学在心血管疾病诊断中的应用与进展取得了显著的成就。
心脏大血管常用的影像学检查方法
心脏大血管是人体重要的血液运输通道,它们的正常结构和功能对人体的健康起着至关重要的作用。
为了准确诊断心脏大血管的疾病,常用的影像学检查方法包括超声心动图、计算机断层扫描(CT)和磁共振成像(MRI)等。
以下对这些影像学检查方法进行详细介绍。
1. 超声心动图超声心动图是一种无创的检查方法,通过利用超声波来观察心脏和大血管的结构和功能。
它可以直观地显示心脏的收缩和舒张过程,检查心脏壁运动、心室大小和瓣膜功能等情况。
超声心动图具有操作简单、无辐射、无创伤等优点,广泛应用于心脏瓣膜病、心肌病等心血管疾病的筛查和诊断。
2. 计算机断层扫描(CT)CT是一种非侵入性的影像学检查方法,通过不同方向的X射线扫描来获取心脏和大血管的立体图像。
CT可以准确显示心脏和大血管的解剖结构,对动脉粥样硬化斑块、动脉瘤等病变有很高的诊断准确性。
CT血管造影技术可以清晰显示血管内腔的情况,有助于评估血管狭窄和阻塞的程度。
3. 磁共振成像(MRI)MRI是一种高分辨率的影像学检查方法,它利用强磁场和无线电波来获取人体组织的信号,再通过计算机处理得到图像。
MRI可以清晰显示心脏和大血管的解剖结构,对心脏肌肉和心包等软组织有很好的显示效果。
MRI在心室肥厚、心肌炎症、心包疾病等方面具有明显的优势。
以上是目前在临床上常用的心脏大血管影像学检查方法,它们各有特点,可以相互补充,提高对心脏大血管疾病的诊断准确性。
在实际应用中,医生会根据患者的具体情况和疾病类型来选择合适的影像学检查方法,以帮助患者早日明确诊断并进行有效治疗。
希望通过不断的技术进步和临床实践,能够进一步提高心脏大血管影像学检查方法的准确性和精密度,更好地服务于心血管疾病患者的诊断和治疗。
心脏大血管的影像学检查方法在临床上扮演着非常重要的角色,它不仅可以帮助医生准确诊断心脏大血管疾病,还可以协助医生制定出更加有效的治疗方案。
下面将继续介绍这些影像学检查方法的详细特点,以及它们在实际临床应用中的优势和局限性。
影像诊断学心脏和大血管
aortic valve
water-bottle
雪人型 sabot
snow-man
第三节 心脏大血管疾病的基本影像表现 一、心脏增大 (二) 房室增大-左心房
left atrial enlargement : • “double density sign” • a prominent bulge of the left atrial contour(left atrial appendage ); • upward displacement of the left mainstem bronchus; • marked posterior displacement of the esophagus.
第二节 心脏大血管正常影像解剖
二、正常心脏大血管所见--MRI
Heart
myocardium endocardium valves atria ventricles pericardium
第二节 心脏大血管正常影像解剖
二、正常心脏大血管造影所见--冠状动脉DSA
(1) Rt. coronary a. Post descending branch atrial branch
2. CT检查
常规, 超速CT扫描(多层面、电子束)和CTA
3. MRI检查
成像方位和脉冲序列
4. USG检查 5. 核医学
第二节 心脏大血管正常影像解剖
一、心脏大血管普通摄影解剖 (一)标准摄影位置的心脏大血管解剖-后前位
第二节 心脏大血管正常影像解剖
一、心脏大血管普通摄影解剖 (二)标准摄影位置的心脏大血管解剖-左侧位
oblique (斜位心)
perpendicular (垂位心)
心脏与大血管的影像诊断
渐加快,会导致门控失效;扫描中其心率变
慢,将延长扫描时间,一但患者不能耐受而 体动,、则图像质量下降,甚至使检查失败。 被检查者在扫描过程中一定要保持静止不动, 故应注意取得其合作,小儿或不能配合者可
应用镇静剂。
心脏大血管MRI扫描的层面选择
1 .人体轴横、冠和矢状位扫描 MRI 扫描层面 与人体轴线一致,患者平卧,操作简单,便于 同传统 X线平片、体层摄影及 X线 CT等影像技 术对比。实践证明,人体横断面是心脏MRI扫 描最基本的层面方位,有利于判断心腔、大血 管解剖结构及相对位置;但是按人体轴线切层 所获图像斜切心脏,在一定程度上影响心腔径 线、室壁厚度测量的准确性,也不利于与超声 心动图等影像技术对比,为其不足之处。
成像方法
普通检查 透视 心脏摄片 特殊检查
US
ECT CT MRI 心血管造影
透视
优点是可以从多角度上观察心脏和大血管 的大小、形态、搏动及其与临近器官的关系。 不足之处,影像清晰度较差,不能留下永 久地图像记录。
常规采取立位观察,观察顺序为后前位、左、右 斜位或侧位。如果病情不允许可取坐位、半坐位或卧 位观察。另外,透视可对心内钙化进行定位,分析钙 化随心动周期的运动情况 .吞钡检查可显示食管与心脏 大血管的邻接关系,尤其是与左心房和主动脉的关系, 对确定左心房有无增大或增大程度有重要价值。
短轴断面像无斜切问题,可准确测量心腔
径线和室壁厚度,以及进行心功能测定, 便于与超声心动图对照。
横断位是心脏大血管 MRI 扫描 的基本层面,通常以其为基础、、 根据不同诊断要求,再外加其他方 位的切层扫描。
正常X线表现
(一) 正常解剖 从心脏和肺的前面观察,右心房构成右心 缘,右心房向上与上腔静脉连接,其开口位右 心房后部,房间隔形成右心房的后内壁,在房 间隔的前方,右心房与主动脉根部邻近。右心 室为心脏最前面的部分,与胸骨贴近,肺动脉 瓣和右心室流出道位于主动脉根部之前方和左 侧。室间隔将右心室与左心室分开。心脏的后 上部为左心房,左、右肺静脉与左心房后部连 接。左心室位左心房的前面和略偏左。在正位 上,心脏的左心缘主要由左心室构成。
医学影像处理技术在心血管疾病诊断中的应用
医学影像处理技术在心血管疾病诊断中的应用近年来,随着医学影像处理技术的不断发展,心血管疾病诊断进入了一个全新的阶段。
这些新技术不仅提高了心血管疾病的准确性和早期发现率,还减少了患者的痛苦和医疗费用。
本文将对医学影像处理技术在心血管疾病诊断中的应用进行探讨。
首先,医学影像处理技术在心血管疾病诊断中的应用最为广泛的一项技术是计算机断层扫描(CT)。
CT扫描利用X射线通过不同角度对患者进行断层成像,可以获得高分辨率的三维影像。
在心血管疾病诊断中,CT扫描可以精确评估心脏的结构和功能,检测冠状动脉狭窄、动脉壁钙化等病变。
同时,CT扫描还可以用于心血管手术的规划和导航,使手术更加精确和安全。
其次,磁共振成像(MRI)也是一种常用的医学影像处理技术,在心血管疾病诊断中有着独特的优势。
MRI利用磁场和无害的无线电波对患者进行成像,可以获得高对比度和高分辨率的图像。
相比于CT扫描,MRI不需要使用任何放射性物质,对患者的身体没有任何损伤。
在心血管疾病诊断中,MRI可以获得心脏的详细结构和功能信息,评估心肌梗死的面积和程度,检测心肌炎和心肌病等疾病。
除了CT和MRI,超声心动图也是心血管疾病诊断中常用的技术之一。
超声心动图利用超声波对心脏进行成像,可以观察心脏的结构和功能,检测心肌收缩和松弛的异常。
近年来,随着超声心动图技术的不断发展,新的技术如三维超声心动图和应变超声心动图已经应用于心血管疾病的诊断中。
这些新技术可以提供更加准确和详细的心脏结构和功能信息,帮助医生更好地判断心血管疾病的严重程度和预后。
此外,还有一些辅助性的医学影像处理技术在心血管疾病诊断中扮演着重要的角色。
例如,心电图(ECG)可以记录心脏的电活动,帮助医生判断是否存在心脏病。
同样地,放射性核素心脏显像可以检测心脏血液供应不足和心肌梗死等病变。
这些技术与其他医学影像处理技术相结合,可以提供更加全面和准确的心血管疾病诊断结果。
总之,医学影像处理技术在心血管疾病诊断中的应用为医生提供了更多的信息,改善了诊断的准确性和早期发现率。
医学影像技术在心血管疾病中的诊断价值
医学影像技术在心血管疾病中的诊断价值心血管疾病是世界范围内影响人类健康的主要疾病之一,医学影像技术成为辅助心血管疾病诊断的重要工具,为疾病诊断,治疗和随访提供了可靠的底稿。
本文从影像技术、心血管疾病的诊断和治疗方面探讨医学影像技术在心血管疾病中的诊断价值。
I. 影像技术医学影像技术包括CT、MRI、PET/CT等多种成像技术。
在心血管疾病的诊断方面,CT和MRI是主要的影像技术,其优势在于它们不需要直接接触患者,且无创,对患者无痛苦,无侵入性。
CT是一种非侵入性、不需要造影剂的影像技术,可以提供较为精细的血管解剖图像,在冠状动脉成像方面尤为适用。
CT 血管造影技术对预测斑块稳定性,辅助识别斑块类型,对于急性冠状动脉综合征(ACS)等疾病的诊断具有较高的准确性。
MRI则可以提供更为详细的心脏解剖信息,尤其是功能指标与心肌和灌注等生理指标相结合,可以提供更加准确的诊断信息。
比如,MRI心肌灌注成像可以同时评估心室功能,心肌梗死面积及缺血分布,为临床诊断及治疗提供了更为精确的信息。
II. 心血管疾病的诊断心血管疾病的诊断主要包括冠心病、心肌梗死、心功能不全、心排出量减少等。
1.冠心病的诊断冠心病是心血管疾病的最常见病种之一。
影像技术在冠心病的诊断中已经得到广泛应用。
CT 冠状动脉成像技术(CCTA)可以发现冠状动脉管腔狭窄、斑块和缺血性心脏病等。
并且,在诊断ACS时,CCTA具有极高的准确性,其结果与冠状动脉造影(CAG)可以得到较为一致的结果。
近年来,基于人工智能的影像诊断技术也逐渐发展成熟,可以大大提高 CCTA 与 CAG 之间的一致性,提高诊断准确性。
此外,心血管核磁共振技术(CMR)也具有诊断冠心病的重要价值,其准确度可与CAG相媲美。
CMR 可以评估心肌灌注、心肌梗死和缺血性心脏病的功能障碍等指标,此外 CMR 还可以评估冠状动脉的扭曲度、轴向位移等病理生理信息。
2. 心肌梗死的诊断心肌梗死(AMI)是由于冠状动脉狭窄或阻塞,导致心肌缺血坏死。
医学影像技术在心血管疾病中的应用进展
医学影像技术在心血管疾病中的应用进展心血管疾病是全球范围内的一大健康难题,损害着人们的生命质量和寿命。
然而,随着医学影像技术的不断发展和创新,医生们能够更加准确地诊断和治疗心血管疾病。
本文将重点介绍医学影像技术在心血管疾病中的应用进展。
一、成像方法为了对心血管疾病进行准确的诊断和治疗,医学影像技术提供了多种成像方法。
其中最常用的方法包括X射线、超声波、核磁共振(MRI)和计算机断层扫描(CT)。
1. X射线成像:X射线是最早被使用于成像技术的方法之一。
通过对人体进行X射线透视或摄影,医生可以观察到心脏和血管的形态,并发现异常变化。
2. 超声波成像:超声波是一种无创且低风险的成像方法,适用于对心脏功能和血流进行评估。
通过超声波探头产生高频声波并接收反射信号,医生可以获取心脏和血管的实时图像。
3. 核磁共振成像:MRI利用强磁场和无害的无线电波,生成具有高分辨率的图像。
这种非侵入性成像方法可以提供丰富的解剖和功能信息,对心脏肌肉、血管和周围组织进行详细评估。
4. 计算机断层扫描:CT扫描使用X射线源和旋转探测器,可以快速获取横截面图像。
它在心血管影像学中得到广泛应用,能够评估冠状动脉狭窄、血栓形成等情况。
二、心血管疾病诊断医学影像技术可为心血管疾病的准确诊断提供重要信息。
以下是常见心血管疾病的诊断方法:1. 冠脉造影:冠脉造影是通过将显影剂注入冠脉来观察冠脉情况的方法。
X射线透视下,医生可以检查是否存在冠状动脉堵塞或狭窄等异常情况。
2. 血流动力学监测:通过超声心动图和其他心血管影像技术,医生可以评估心脏的收缩功能、充盈情况和运动能力等指标,以帮助诊断心脏瓣膜疾病、心肌梗死等。
3. 功能性核医学检查:功能性核医学检查包括单光子发射计算机断层扫描(SPECT)和正电子发射计算机断层扫描(PET),可以评估心肌灌注、代谢和神经调节等功能。
4. 血管成像技术:血管成像技术如CT血管造影和磁共振血管成像可以直接观察到血管内腔的情况,评估血管壁的异常变化及动脉粥样硬化程度。
医学影像处理技术在心血管疾病诊断中的应用
医学影像处理技术在心血管疾病诊断中的应用随着医学机器学习和影像处理技术的快速发展,医学影像处理技术越来越成为心血管疾病诊断中的重要辅助手段。
在传统的心血管疾病诊断方法中,通过血液检测、心电图、断层扫描等手段获得的医学数据,需要进行大量的人工分析和处理才能得出准确的诊断结果。
而医学影像处理技术能够从三维的医学数据中提取重要的信息,实现对心血管疾病的自动化诊断和分析,减少人工分析和处理的工作量,提高诊断的准确性和效率。
一、心血管疾病的影像诊断心血管疾病是指影响心脏和血管健康的一系列疾病,包括冠状动脉疾病、心肌梗死、心衰、心律失常、高血压、动脉硬化等。
现代医学影像学技术已成为心血管疾病诊断的重要手段,包括X线摄影、超声、核医学影像、CT和MRI等。
这些影像技术可以准确地显示心血管系统的各种情况,并帮助医生进行精准诊断和治疗。
二、在心血管疾病诊断中,医学影像处理技术的应用主要包括以下几个方面。
1. 分割分割是将医学影像中的组织、器官、血管等结构分离出来的过程。
在心血管影像中,分割主要用于检测病变、计算器官体积和血管流量等操作。
传统的方法需要医生手动完成,效率低下、结果不一致。
而医学影像处理技术可以自动进行分割,并精确地识别出不同组织和结构。
2. 重建在心血管影像的三维重建中,医学影像处理技术可以让医生从任意视角观察心血管系统,以查看其立体结构和组织分布。
这样的重建还可以直观地展示循环系统的血流方向和速度,帮助医生进行更准确的分析和诊断。
3. 呈现与可视化医学影像处理技术还可以将复杂的心血管系统数据转化为更易于理解和分析的形式,如图像、曲线、动画等。
这样医生可以更直观地观察和研究心血管系统的形态、结构和功能,辅助临床判断和治疗。
4. 诊断与分析支持在心血管疾病的诊断过程中,医生需要对疾病进行全面的分析和评估。
医学影像处理技术可以自动提取出影像中的数字化特征,并通过模式识别、机器学习等方法进行分类分析和病灶定位,为医生提供更精确的诊断结果和治疗方案。
医学影像技术在心血管疾病中的应用
医学影像技术在心血管疾病中的应用随着现代医学的发展,医学影像技术正在成为心血管疾病的重要诊断手段。
医学影像技术可以帮助医生及时发现心血管疾病,提高诊断准确率,同时也为治疗和随访提供重要参考。
一、心血管疾病简述心血管疾病包括冠心病、高血压、心力衰竭等多种心脏和血管疾病。
这些疾病的主要特点是心肌缺血、心脏结构和功能异常、心脏骤停等。
心血管疾病严重威胁着人们的健康和生命,世界卫生组织统计显示,全球每年有1700万人死于心血管疾病,其中心脏病死亡居首位。
二、医学影像技术在诊断心血管疾病中的应用1. 超声心动图超声心动图是临床应用最广泛的医学影像技术之一。
通过超声波探头对心脏进行反射和散射,获得心脏内部结构和功能信息,帮助医生对心脏病变进行诊断和评估。
比如心脏瓣膜狭窄、二尖瓣脱垂等可以通过超声心动图诊断和评估。
2. CT血管造影CT血管造影是一种非侵入性的检查方法。
它通过机器内旋转式X光管和检测器,获取血管内部结构图像,并可实现3D图像重建。
它可以清晰地显示心脏和大血管内部的情况,有助于诊断动脉粥样硬化、动脉瘤、血栓等疾病。
3. 核磁共振成像核磁共振成像是一种利用磁场和高频电磁场对人体进行成像的技术。
它通过对心脏的信号进行采集和处理,可以获得心脏的解剖结构、功能和代谢信息。
可以用于评估心肌缺血、心肌纤维化、心功能和心脏大小等。
三、医学影像技术在治疗心血管疾病中的作用1. 心脏介入治疗心血管疾病的介入治疗是指通过进入动脉或静脉,将导管等器械送入患者血管系统,进行一系列治疗操作的方法。
介入治疗可以用于冠心病、心律失常、心力衰竭等疾病的治疗。
医学影像技术可以提供即时动态图像,帮助医生准确定位病变部位,指导治疗操作。
2. 心脏手术对于一些重症心脏疾病,如心脏瓣膜病变、先心病、心脏肿瘤等,需要进行手术治疗。
医学影像技术可以帮助医生了解患者的心脏结构和功能,评估手术风险,同时也可以在手术中提供实时图像引导手术。
四、医学影像技术在心血管疾病中的未来发展随着医学影像技术的不断发展和创新,我们预计在未来将会出现更多的新技术和方法。
医疗影像处理技术在心血管疾病诊断中的应用
医疗影像处理技术在心血管疾病诊断中的应用近年来,随着医学影像技术的发展和进步,医疗影像处理技术在临床诊断中的应用越来越广泛。
其中,医疗影像处理技术在心血管疾病诊断中的应用越来越受到关注和重视。
本文将探讨医疗影像处理技术在心血管疾病诊断中的应用,以及其在改善诊断准确性、提高治疗效果方面的优势。
心血管疾病是世界范围内的主要死亡原因之一,因此准确的诊断和及时的干预对于患者的生存和生活质量至关重要。
传统的心血管疾病诊断方法主要包括心电图、胸部X光片以及血液检查等,这些方法虽然能够提供一些诊断参考,但是对于心血管疾病的诊断准确性和敏感性存在一定的局限性。
而医疗影像处理技术能够通过利用计算机算法对心血管影像进行分析和处理,提取有关心血管系统的重要信息,以帮助医生更准确地进行心血管疾病诊断。
首先,医疗影像处理技术可以通过三维重建心血管影像,提供更直观和全面的信息。
传统的二维心血管影像只能提供有限的信息,而三维重建技术能够将血管结构以立体的形式展现出来,使医生更容易检测和判断病变部位和程度。
此外,医疗影像处理技术还可以应用于心血管疾病的图像分割和特征提取。
通过图像分割技术,可以将心血管影像从背景中分离出来,使得医生可以清晰地观察血管的形态和结构。
而通过特征提取技术,可以自动提取出一系列与心血管疾病相关的特征,例如血管的直径、血管壁的厚度等,这些特征有助于医生判断病变的类型和严重程度。
此外,医疗影像处理技术还可以应用于心血管疾病的功能分析和动态观察。
例如,在冠状动脉疾病的诊断中,可以通过对冠状动脉血流的模拟和分析,评估血流的速度和压力分布情况,以帮助医生判断患者的血管供血情况。
同时,医疗影像处理技术还可以对心肌功能进行评估,例如提取心脏收缩和舒张功能的参数,评估心脏的收缩力和功能状态。
除了上述的应用之外,医疗影像处理技术还可以应用于心血管疾病的预后评估。
通过对患者的心血管影像进行长期的跟踪和观察,可以评估患者病情的发展和变化情况,判断治疗的效果和预测患者的预后。
心血管疾病的放射影像诊断技术
心血管疾病的放射影像诊断技术随着现代医学的进步和发展,心血管疾病的诊断和治疗也取得了重大突破。
其中,放射影像诊断技术在心血管领域中扮演着至关重要的角色。
通过使用X线、超声波、计算机断层扫描(CT)和核磁共振成像(MRI),医生们能够获得详尽而准确的患者心血管系统内部结构和功能信息,并用于确诊、评估风险以及指导治疗方案的制定。
一、 X线影像技术X线是最早应用于临床医学诊断的放射线。
通过将X射线穿透患者身体进行成像,可以观察到心血管系统的形态结构,并对存在的异常情况进行初步判断。
例如,胸部X线片可以用于检测肺水肿、肺动脉高压等与心力衰竭有关的问题。
二、超声波技术超声波是一种无创且安全可靠的成像技术,广泛应用于心脏和大血管的诊断。
它通过无痛的声波波束穿过患者体壁,然后反射回来,在计算机屏幕上形成实时图像。
超声波可以提供心脏大小、整体功能以及每个心腔的收缩和舒张情况等方面的信息,有助于检测异常和评估心脏功能。
三、计算机断层扫描技术(CT)计算机断层扫描利用X射线和计算机重建技术,能够提供高分辨率的三维影像,并且对血管结构进行清晰的显示。
CT技术在心血管领域中广泛应用,可以帮助医生准确评估冠脉供血情况,发现血管狭窄或阻塞的程度,并指导介入治疗。
此外,CT还可检测主动脉夹层、肺动脉栓塞等紧急情况。
四、核磁共振成像技术(MRI)核磁共振成像是一种基于患者体内水分子信号的成像方法,结合了强大的软组织对比度和多平面重建能力。
在心血管领域中,MRI可以显示心脏和大血管的形态及功能,如左室搏动情况、心脏瓣膜运动以及动脉血流速度等。
此外,MRI还可以评估心肌梗死后的心肌纤维化程度,帮助判断患者预后。
总结:放射影像诊断技术在心血管疾病的诊断和治疗中发挥着重要作用。
X线影像技术可以初步了解患者胸部情况;超声波技术可提供详细的心脏功能信息;计算机断层扫描技术能够提供高分辨率的三维影像,指导介入治疗;核磁共振成像技术则具有强大的对比度和多平面重建能力。
医学影像在心血管疾病诊断与治疗中的应用(一)
医学影像在心血管疾病诊断与治疗中的应用(一)医学影像在心血管疾病诊断与治疗中的应用近年来,随着医学影像技术的飞速发展,其在心血管疾病诊断与治疗中的应用也越来越广泛。
以下是一些医学影像在心血管疾病中的主要应用:血管造影法(Angiography)•血管造影是一种通过向患者体内注入造影剂,并借助X射线等影像技术观察血管状态的方法。
•它可以清晰地显示血管的形态、大小和分布,帮助医生判断有无狭窄、堵塞等异常情况。
•血管造影常用于心脏冠状动脉疾病的诊断,如冠状动脉狭窄、冠脉支架植入术前术后的评估等。
心脏超声检查(Echocardiography)•心脏超声检查是一种利用超声波技术观察心脏结构和功能的方法。
•它可以提供心脏的实时图像,便于医生评估心脏收缩和舒张功能、心腔大小以及心脏瓣膜功能等。
•心脏超声检查常用于心脏瓣膜病变的诊断与监测,也可用于观察心脏壁运动异常等信息。
心电图(Electrocardiography)•心电图是一种记录心脏电活动的方法,通过放置电极在患者身上,测量心脏电信号并生成图形。
•它可以帮助医生判断是否存在心脏节律异常、心肌缺血等情况。
•心电图常用于心律失常的诊断,如心房颤动、室性心动过速等。
CT扫描(Computed Tomography)•CT扫描是一种以X射线为基础的成像技术,通过不同角度的X射线扫描,生成具有高分辨率的横断面图像。
•它可以提供心脏的结构和血管的清晰图像,有助于发现动脉瘤、血栓等异常情况。
•CT冠状动脉成像(CT coronary angiography)是一项常用的检查,可以评估冠状动脉狭窄和斑块的分布情况。
核素医学(Nuclear Medicine)•核素医学是一种利用放射性核素标记的药物,通过核医学显像仪观察其在患者体内的分布情况。
•核素医学可以评估心脏器官的血流情况、骨骼肌肉代谢以及心肌是否缺血等。
•心脏放射性同位素显像(Myocardial Perfusion Imaging)是一项常用的核素医学检查,对心肌缺血的诊断具有重要价值。
医学影像技术在心血管疾病中的应用
医学影像技术在心血管疾病中的应用心血管疾病是指心脏和血管系统发生病变的一类疾病,包括冠心病、心肌梗塞、心律失常等。
随着现代医学技术的日益发展,医学影像技术在诊断心血管疾病方面起到了越来越重要的作用。
一、医学影像技术的种类医学影像技术主要分为X线透视、超声波、CT(计算机断层摄影),MRI(磁共振成像)等。
其中X线透视是最常见的一种医学影像技术,可以用于检查心脏、肺、骨骼等部位。
超声波的应用范围更广,可以检测心脏、血管、腹部、乳腺等。
CT和MRI则是一种较为先进的医学影像技术,它们能够帮助医生获得更为准确的图像信息,从而更好地诊断心血管疾病。
二、医学影像技术对心血管疾病的诊断心血管疾病的临床表现多样,诊断起来比较困难。
医学影像技术的出现大大地缓解了这种困境。
通过医学影像技术,医生可以观察到患者的心脏、血管、器官等部位的内部结构和变化,在评估病情和制定治疗方案时提供了重要的依据。
在冠心病的诊断中,CT和MRI是非常有用的工具。
CT冠状动脉成像(CTA)是一种非创伤性的心脏检查方法,能够提供冠状动脉内腔的三维图像,以评估动脉狭窄程度和位置。
而MRI心脏成像则可以在不注射对比剂的情况下,提供更为清晰的心脏图像,对心肌缺血、心肌梗塞等疾病的诊断有很大的帮助。
超声心动图是心血管疾病检查中最常用的影像技术之一。
通过超声波可以观察心脏收缩、舒张、瓣膜开闭等运动和变化,评估心脏的大小、形状和功能状态。
此外,由于超声心动图无放射线、无创伤性等特点,适用于各年龄段人群的心脏检查。
三、医学影像技术对心血管疾病的治疗医学影像技术不仅可以用于心血管疾病的诊断,还可以指导心血管病的治疗。
在心脏介入治疗中,导管的正确定位对治疗的成功至关重要。
X线透视技术可以帮助医生精确定位导管,完成心脏介入治疗。
在心脏分流手术中,超声技术也起到了非常重要的作用。
在导管插入静脉后,通过超声波检查确认插管位置,确保导管引出血液流向正确,以避免手术后出现并发症。
心血管影像学技术分析与评估
心血管影像学技术分析与评估随着医学影像技术的不断发展和进步,心血管影像学在临床中起到了至关重要的作用。
心血管疾病是全球范围内造成死亡和致残最主要的原因之一,而准确的影像学分析与评估对于疾病诊断、治疗方案选择以及效果评价具有重要意义。
本文将从宏观和微观两个方面介绍心血管影像学技术分析与评估的相关内容。
一、宏观层面:基于整体解剖结构的分析在宏观层面上,心血管影像学技术主要通过对整个心脏及其周围结构进行分析与评估。
这类技术可以使用各种成像方法获取包括超声、X线放射线成像和核医学等图像,并根据图像信息进行解剖结构的定量测量、异常部位定位等。
1. 超声心动图超声心动图是一种无创且无辐射损伤的检查方法,通过超声波探头在胸壁上扫描形成二维或三维实时动态图像。
其优势在于可以观察心脏双瓣膜功能、射血分数、室壁运动和心腔大小等参数。
通过超声心动图的定量和定性分析,我们能够评估心脏的结构与功能,诊断各种先天性或后天性心血管病变,并指导治疗方案制定。
2. CT冠状动脉造影CT冠状动脉造影是一种无创的影像学技术,能够通过计算机重建全面解剖复原冠状动脉系统。
该技术可以检测冠状动脉中的斑块、堵塞以及肺栓塞等情况,并准确评估其程度和部位。
3. 核医学核医学技术常用于评估心肌供血、代谢及心功能。
其中单光子发射计算机断层显像(SPECT)与正电子发射计算机断层显像(PET)可提供更加灵敏度高、特异性强的信息。
这些技术通过放射性同位素示踪剂追溯心肌血流和代谢过程,对缺血区域进行定位和评估。
二、微观层面:基于细胞和分子水平的分析除了宏观层面上的整体解剖结构分析,心血管影像学技术还可以进行微观层面上的细胞和分子水平的分析。
这些技术有助于深入研究心血管疾病的发生机制、生理过程以及药物治疗效果评估等。
1. 心脏四维超声心脏四维超声技术将传统二维超声与时间成像相结合,可以实现对心脏内外解剖结构如动脉和肌纤维等高质量、高分辨率的三维重建。
该技术能够提供动态展示心室和房室间隔运动,探测早期舒张功能异常,并替代原来依靠手工描记多个切面得出结果的评估方法。
医学影像技术在心血管疾病诊断中的进展
医学影像技术在心血管疾病诊断中的进展心血管疾病是一类在全球范围内造成许多死亡的重要疾病。
随着医学影像技术的不断发展,心血管疾病的诊断和治疗水平也在不断提高。
本文将就医学影像技术在心血管疾病诊断中的进展进行探讨,以期为心血管疾病的早期诊断和治疗提供更多的帮助。
一、医学影像技术在心血管疾病诊断中的作用医学影像技术在心血管疾病的诊断中起着至关重要的作用。
传统的心血管疾病诊断主要通过临床症状和体征来进行,这种方法的局限性在于无法直接观察患者的心血管系统内部结构。
而医学影像技术可以通过X射线、超声波、CT、核磁共振等多种技术手段,直观地观察患者的心血管系统内部结构,为医生提供更多的诊断信息。
因此,医学影像技术在心血管疾病诊断中扮演着不可替代的角色。
二、医学影像技术在心血管疾病诊断中的应用1. X射线技术X射线技术是一种常见的医学影像技术,对于心血管疾病的诊断也有着较大的应用价值。
通过X射线检查,医生可以观察到患者心脏的形态和大小,发现心脏的异常变化。
此外,X射线检查还可以显示心脏周围的血管情况,如冠状动脉是否堵塞等,为心血管疾病的诊断提供重要信息。
2. 超声波技术超声波技术可以用于检测心脏的结构和功能,是心血管疾病诊断中常用的一种影像技术。
通过超声波检查,医生可以观察到心脏的各种功能参数,如心脏的收缩和舒张功能,心脏瓣膜的情况等。
超声波检查无需放射线照射,对患者无损害,是一种安全而有效的医学影像技术。
3. CT技术CT技术是一种通过X射线成像的技术,可以提供横断面的心血管影像,为医生提供更加详细的诊断信息。
通过CT检查,医生可以观察到心脏和血管的结构,发现心脏和血管的异常情况,如动脉硬化、动脉瘤等。
CT技术在心血管疾病的诊断中扮演着重要的角色,为医生提供重要的参考依据。
4. 核磁共振技术核磁共振技术是一种通过磁场和无损耗的电磁波来成像的技术,对心脏和血管的成像效果非常好。
通过核磁共振检查,医生可以观察到心脏和血管的结构,了解心脏功能和血液流动情况,为心血管疾病的诊断提供更多的信息。
医学影像技术在心血管疾病诊断中的创新应用
医学影像技术在心血管疾病诊断中的创新应用引言心血管疾病是当前社会常见的一类疾病,严重威胁着人们的健康和生命。
随着科学技术的不断发展,医学影像技术在心血管疾病诊断中日益显示出强大的应用潜力。
本文将重点探讨医学影像技术在心血管疾病诊断中的创新应用,旨在为相关领域的研究和临床实践提供一定的参考。
一、医学影像技术在心血管疾病中的应用现状1.1 X射线影像技术X射线影像技术是目前最常用的医学影像技术之一,在心血管疾病的诊断中也发挥着重要作用。
通过X射线影像技术,医生可以清晰地看到患者心脏和血管的形态、结构和功能,从而对心脏病变进行准确的诊断。
1.2 超声影像技术超声影像技术是非常安全和无创的一种医学影像技术,被广泛应用于心血管疾病的诊断中。
超声影像技术可以实时观察心脏和血管的运动和功能,对心脏瓣膜病变、心肌梗死等疾病起到了关键作用。
1.3 CT和MRI技术CT和MRI技术是目前医学影像技术中应用最为广泛和先进的两种技术,也被广泛应用于心血管疾病的诊断中。
CT技术可以提供更加清晰和详细的心脏和血管影像,MRI技术则可以提供更多的功能性信息,比如心脏的收缩和舒张功能等。
二、医学影像技术在心血管疾病诊断中的创新应用2.1 心脏CT造影技术心脏CT造影技术是近年来新兴的一种医学影像技术,可以同时提供心脏和血管的解剖结构和功能信息。
通过心脏CT造影技术,医生可以更加准确地诊断心脏瓣膜病变、冠脉疾病等心血管疾病,并且可以提前发现患者存在的潜在风险。
2.2 心脏MRI功能成像技术心脏MRI功能成像技术是一种结合MRI技术和心脏功能评估的新型影像技术,可以同时提供心脏的解剖结构和功能信息。
通过心脏MRI功能成像技术,医生可以准确评估患者心脏的收缩和舒张功能,对心血管疾病的诊断和治疗起到了关键作用。
2.3 心脏3D打印技术心脏3D打印技术是一种新兴的医学影像技术,可以将患者心脏的影像数据转化为3D打印模型。
通过心脏3D打印技术,医生可以更加直观地了解患者心脏的解剖结构和病变情况,为手术方案的制定提供重要参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同的心包积液
心包积液
缩窄性心包炎
• 基本征象:心影不大或轻度增大
心缘变直
搏动减弱或消失
“蛋壳样”钙化 肺淤血
心 包 缩 窄 、 钙 化
心 包 钙 化
心 包 填 塞
冠状动脉粥样硬化性心脏病(冠心病) Cornary heart disease
病理:动脉硬化累及冠脉,使冠状动脉狭窄、
梗阻,导致心肌缺血、梗塞、室壁瘤形成、 心室破裂、室间隔穿孔以及乳头肌断裂等 一系列改变。
主动脉与肺动脉疾病
郑州大学第一附属医院放射科 张永高
主动脉夹层 Arterial Dissection
定义:多种病因造成的主动脉内膜撕裂,血流经内膜撕裂口灌 人中膜,使主动脉壁中膜分离形成血肿或所谓“双腔”主 动脉,即扩张的假腔和受压变形的真腔。 病理:内膜撕裂多起于升主动脉,在主动脉瓣上2cm~3cm处 或主动脉弓降部,左锁骨下动脉开口以远。夹层可累及主 动脉主要分支,如冠状动脉、头臂动脉、脊髓动脉和肾动 脉等,引起缺血或梗塞改变;可累及主动脉瓣环,引起主 动脉瓣关闭不全;可破入心包、胸腔,纵隔和腹膜后等部 位,引起心包填塞以及胸腔、纵隔、腹膜后出血。 临床:急性:剧烈胸痛,放散 慢性:无症状,影像检查而发现
先天性心血管病
本文档由医学百事通高端医生网专家制作
在线咨询医生网址:
概 述
由于胚胎时期,心脏的发育异常所形成的,为小儿常 见的器质性心脏病。 分类: 1.按血液动力学:1)左右分流
2)右左分流 3)双向分流 4)无分流
2.按肺血的分布:1)肺血多
2)肺血少 3)肺血正常
ASD
中 少 量 分 流
ASD合并肺动脉高压
超声
肺静脉造影
左房造影
RA
LA
房 间 隔 缺 损
CT
MRI
CT和MRI 可见房间隔中断
法乐四联症
Tetralogy of Follot (TOF or F4 )
病理:最常见的紫绀属复杂畸形先心病之一,占
30%。 常并发ASD — F5及右位主动脉弓(1/31/4)。 四种畸形:肺动脉狭窄—多为漏斗部狭窄 室间隔缺损—巨大的膜周部缺损 主动脉骑跨—主动脉前移<75% 右心室肥厚—由于阻力负荷增加
*前两者为主要畸形,决定血液动力学的关键PS。
血液动力学:
巨大VSD、重度肺动脉狭窄,导致两心室 压力接近,室水平右左分流量,体 动脉血氧含量; 肺动脉狭窄,使肺血流量,加重乏氧;
临床:
生后46月出现紫绀、杵状指(趾),喜蹲踞, 活动少,发育迟缓。L24SM、ST(+)、P2
广义(不典型) F4
心包积液
• 基本征象: 250350ml时,心影正常
• 典型征象:巨大的心脏与清晰的肺纹理不相称 “烧瓶”心或“球”形心; 搏动减弱或消失; 肺纹理正常或减少 左心衰时肺淤血、肺水肿
心包炎
• 血流动力学:
积液→压力升高→心室舒张受限
↓
心房、静脉压升高,心排血量减少 心包填塞→左心衰→肺淤血、肺水肿
CT扫描:
1.平扫:可发现冠状动脉钙化。
2. CTA:可发现冠脉管腔内栓子类型及狭窄程度的判断、 冠脉搭桥及支架术后评估、计算心功能等,目前已成 为冠心病筛查的主要手段
MRI:
1. 急期:T1与T2均延长,T2WI有助于鉴别。
2. 陈旧心梗:局部心壁薄,心肌增厚率及运动降低,可 看到稍高信号的附壁血栓,Cine MR可观察瓣膜返流
血管造影:
左室及冠状动脉造影 目前被认为是“金标准”
方法:
RCA 46ml;LCA 68ml; LV 3040ml,17ml/S 多体位投照,避开脊柱
造影表现:
1.管腔不规则或充盈缺损,不同程度狭窄。 >50%狭窄截面血流量为1/4,有病理意义 2.重度狭窄可见逆向充盈的侧枝循环
3.室壁瘤形成
血管造影:
左房或左室造影。 1、左房造影可显示: “圆顶征” “喷射征” 左房排空延迟及扩大 2、左室造影: “圆顶样”或“鱼口样”充盈缺损改变 瓣口开放受限。
典型MS
MS(两上肺静脉扩张,肺淤血)
MS(肺循环高压)
MS平片(钙化)
血管造影
MS综合影像诊断
心包炎
• 干性心包炎 • 湿性心包炎、渗出性心包炎或心包积液 • 缩窄性心包炎
主动脉夹层 Arterial Dissection
分型:多采用Debakey分型,分三型 Ⅰ型:破口位于升主动脉,累及升主动脉、主动脉弓、降主动 脉并延至腹升主动脉
Ⅲ型:夹层位于主动脉弓降部以远,破口多位于降主动脉近段,
分为两个亚型,Ⅲ甲型,夹层局限于胸段降主动脉,Ⅲ乙
及体肺侧枝的了解不如血管造影
动脉导管未闭
Patent Ductus Arteriosus(PDA)
居先心病的第二位,仅次于ASD,约20%。
病理:出生后胎儿期维持血液循环的动脉导管没有
闭锁,而持续存在。
分型: 园柱型
漏斗型
缺损型
导管瘤
血液动力学改变:
1.由于主动脉与肺动脉之间压力相差 悬殊,引起持续性左右分流,使肺循 环、左心系统血容量增多,左心扩大、 肥厚;体循环血量相对减少;
3.按临床有无紫绀:1)紫绀属
2)非紫绀属
房间隔缺损
Atrial Septal Defect(ASD)
病理:原始心房间隔发育、融合、吸收异常,在
出生后心房间残留孔道所致。
血液动力学:
1. 由于两心房压差45mmHg ,
通过 ASD的血液为左右分流,
从而使右 心系统的血容量增多,
肺血增多,右心系统增大;
4. 室间隔穿孔: 出现心室水平左向右异常分流。
1)急期:心脏扩大,以左室大为主,左心衰表现。
2)心衰控制后:左向右分流征象显著。临床可闻收缩期杂 音并触及震颤。
5. 乳头肌断裂或功能失调:
1)乳头肌断裂:引起急性二尖瓣关闭不全,进行性肺静脉 高压,肺水肿。心脏增大以左室大为主,
左房轻大。
2)乳头肌功能失调:引起轻-中度二尖瓣关闭不全.左房室 增大,肺淤血及间质性肺水肿
型,夹层延至腹主动脉远段
影像学征象
X线: 1.急性:1)纵隔影增宽或形成局限性肿块 扩张性搏动,边缘较模糊, 短期复查进行性加重; 2)主动脉壁(内膜)钙化内移,>4mm; 3)心影增大以左室大为主,胸腔及心包积液。 2.慢性:1)主动脉普遍扩张,边缘清晰; 2)升主动脉高度扩张,应注意继发于Marfan综合 征的主动脉夹层; 3) 病变处搏动减弱或消失; 4) 主动脉壁(内膜)钙化内移,少见;
2.长期肺血流量增多,导致肺动脉高 压。
PDA血液动力学
影像学征象
X线: 1.肺血多,肺动脉段突出; 2.左房、左室大;与VSD不同是左房大的明显;
3.主动脉结宽,部分可见“漏斗征”,约40%;
4.大血管的搏动增强。
*“漏斗征”的病理基础为动脉导管在主动脉端
的开口处漏斗状扩张。
超声、 MRI与CT:可显示心内结构的异常,
血管造影:1. 主动脉显影时,假腔内造影剂充盈,或主动脉梭形扩张;
2. 主动脉异常扩张,>相邻近心端正常管腔30%; 3. 混合性动脉瘤:梭形扩张基础上有囊状膨凸; 4. 累及升主动脉根部的主动脉夹层,应注意主动脉瓣、冠状窦及冠 脉情况; 5. 附壁血栓的判定。
4.室间隔穿孔
左室段局限凸出,不自然的左室增大
室 壁 瘤 的 钙 化
冠心病左心衰
治疗前 治疗后
室 壁 瘤
室壁瘤附壁血栓
慢性心梗室壁瘤形成
MRI冠状动脉成像(多处狭窄)
冠心病的综合影像诊断
影像诊断的评价
1. 平片诊断不能定性,但可早于临床发现左心衰征 象,特别对于并发症的诊断有一定价值 2.血管造影可提供详细的解剖学改变,为手术及判 断愈后提供依据,但此检查为创伤性检查 3.CT对发现钙化敏感,而且钙化程度及范围与病变 呈正相关,CTA可以作为冠脉造影前的筛查手段 4.MRI能较好显示心肌壁及心腔内结构,作为无创 检查是定期随访及评价预后的主要方法
风湿性心脏瓣膜病
二尖瓣狭窄(Mitral valve Stenosis; MS) 血液动力学:
1.由于瓣口面积减小,舒张期左房压力增加,导 致左房扩大,左房压力继续升高,则逆传至肺静 脉,引起肺静脉压升高—肺淤血; 2.同时肺动脉为克服阻力,肺动脉压相应增高, 肺小动脉收缩,加重右心室负荷,导致右心室扩大。
并可看到主动脉与肺动脉之间的交通;
但如果PDA较小时诊断受限;
心血管检查: 1.根据导管的走行异常来判断PDA的存在;
2.主动脉造影可在主动脉显影的同时肺动脉显影;
3.肺动脉造影时可见肺动脉显影时,顶端的造影
剂“稀释征”;或降主动脉早于升主动脉显影;
4.有条件的可同时做介入治疗。
PDA
术前
术后
PDA造影
临床:无症状或有心绞痛、心梗及梗塞后并发
症,心律紊乱,心衰及猝死。
影像学征象
X线: 1. 隐性冠心病和心绞痛:X线平片多无异常。
2. 心肌梗塞:50%正常X线,部分可有下列改变 1)主动脉型心,以左室大为主; 2)区域性搏动减弱或消失,或“相反”搏动; 3)主动脉屈曲延长、钙化; 4)肺循环:1/51/4不同程度肺静脉高压; 5)梗塞后综合征:肺炎、心包炎、胸腔积液。 3. 室壁瘤: 1)左室缘局限性膨凸; 2)“不自然”的左室增大; 3)左室缘的搏动异常:矛盾、反向、减弱; 4)左室壁的钙化; 5)左室缘纵隔—与心包粘连。 * 真性室壁瘤:局部心肌坏死,形成纤维化。 假性室壁瘤:心肌穿孔,慢性漏血,血肿机化。
典 型 F4
重 症 F4
影像学征象
X线: 1. 心影近似“靴型”,心胸比率<0.55; 2. 右心室增大,心尖圆隆上翘; 3. 肺动脉段平直或凹陷,肺血少; 4. 主动脉结增宽,1/31/4合并右位主动脉弓。 5. 重症可见肺内粗乱、网状血管纹理,而无 明确的肺门结构——体肺侧枝循环。