基于数学史研究的课题.doc

合集下载

研究性学习课题:杨辉三角

研究性学习课题:杨辉三角

THANKS
感谢观看
杨辉三角在其他数学领域的应用研究
总结词
杨辉三角在组合数学、概率论、数论等领域 都有广泛的应用,研究这些应用有助于深入 理解相关数学领域的基本原理。
详细描述
杨辉三角是组合数学中的重要工具,它可以 用来计算组合数、排列数等。此外,杨辉三 角在概率论中也有应用,如计算概率的加法 定理等。同时,杨辉三角在数论中也有应用 ,如计算质因数分解等。研究这些应用有助 于深入理解相关数学领域的基本原理和应用
杨辉三角在计算机科学中的应用
总结词
杨辉三角在计算机科学中也有着广泛的应用,它为计算机算法设计和数据结构提供了重 要的启示。
详细描述
杨辉三角的规律性和高效性使得它在计算机科学中有着广泛的应用。例如,利用杨辉三 角可以设计高效的算法来计算组合数、排列数等,同时也可以利用杨辉三角来设计一些 特殊的数据结构,如动态规划等。此外,杨辉三角在计算机图形学、加密算法等领域也
3
杨辉三角的数字排列方式具有对称性、规律性和 高效性等特点,使得它在解决一些数学问题时具 有独特的优势。
杨辉三角的性质和特点
杨辉三角的每一行数字都是上 一行相邻两个数字之和,这种 递推关系使得杨辉三角具有高
度的自相似性。
杨辉三角的数字排列具有规律 性,如每一行的数字个数、对 称性等,这些规律使得杨辉三 角在解决数学问题时具有高效
杨辉三角在数学归纳法中的应用
总结词
数学归纳法是一种证明与自然数有关的命题的数学方法,而 杨辉三角为其提供了一种有效的工具。
详细描述
在数学归纳法的应用过程中,杨辉三角可以提供组合数的一 些性质和关系,从而简化了归纳法的证明过程。例如,利用 杨辉三角可以证明组合数的递推公式,进而证明与自然数有 关的命题。

数学史融入数学教学研究的若干思考

数学史融入数学教学研究的若干思考

数学史融入数学教学研究的若干思考一、本文概述本文旨在探讨数学史如何有效地融入数学教学研究,以提升教学质量和学生的学习体验。

数学史不仅是数学学科的重要组成部分,也是培养学生数学素养和思维能力的重要途径。

通过将数学史融入数学教学,可以帮助学生更好地理解数学的本质,掌握数学的思想方法,激发学习数学的兴趣和动力。

本文将从数学史融入数学教学的意义、方法、实践案例等方面展开论述,以期为数学教学研究提供新的视角和思路。

本文将阐述数学史融入数学教学的意义。

数学史作为数学学科的一部分,记录了数学的发展历程和数学家们的探索过程,蕴含着丰富的数学思想和方法。

通过引入数学史,可以帮助学生了解数学的发展历程,理解数学概念和方法的形成背景,从而更好地掌握数学知识。

同时,数学史中的故事和案例也可以激发学生的学习兴趣,培养他们的数学思维和创新能力。

本文将探讨数学史融入数学教学的方法。

数学史融入数学教学需要遵循一定的原则和方法,如选择适当的数学史内容、设计合适的教学活动等。

本文将介绍一些常用的数学史融入数学教学的方法,如案例分析法、历史比较法、情境模拟法等,并探讨这些方法在实际教学中的应用和效果。

本文将通过实践案例来展示数学史融入数学教学的具体效果。

通过分析一些成功的数学史融入数学教学的案例,可以总结出一些有效的经验和做法,为其他教师提供借鉴和参考。

也可以发现一些存在的问题和不足,为进一步改进和完善数学史融入数学教学提供思路和方向。

本文旨在探讨数学史融入数学教学研究的有效方法和实践案例,以期为数学教学研究提供新的视角和思路。

通过数学史与数学教学的有机结合,我们可以更好地培养学生的数学素养和思维能力,推动数学教学质量的提升。

二、数学史在数学教学中的作用数学史在数学教学中扮演着重要的角色,其价值和意义不容忽视。

将数学史融入数学教学,不仅能够帮助学生更深入地理解数学的本质,还能够提升他们的学习兴趣和思维能力。

数学史可以帮助学生理解数学的发展脉络和背景。

一堂基于数学史的教学设计课例:复数(第1课)

一堂基于数学史的教学设计课例:复数(第1课)

是 否研 究 过 类 似 的 问题 ? 问 题 是 如何 得 到解 决
的?带着 这 个 问题 , 我们 来 回顾 一 下 以往 学 过 让 的数集. 问: 我们 学过 的数集 有 哪些?
( 学 生读)由此 看来 , 自然数 集 、 数 集 、 请 从 整
有理 数集 到实数 集 , 一次数 的概 念 的发 展 , 的 每 新 数集 都是 在 原来 数 集 的基 础 上 “ 加 ”了一 种 新 添
引入 负整数 , 数系从 自然 数 集 N扩 充 到 了整 数 集 Z 为 了解 决 整数 中有 些数 不 能整 除 的 问题 , 入 ; 引
分数 , 系从 整数 集 z扩 充到 了有理 数集 Q; 数 为了
J- 1 和 5 5 一j- 1 ” - 5.
问题 2 j 1 - = 5是数 吗?如 果是 , 它是 什 么
是分数 . 此 , 类 知 道 了世 间还 存 在 着 另 一 类 从 人
数, 那就 是无 理数 . 其 次 , 数学 内部来 看 , 系的发 展是 为 了消 从 数 除数学 内部 的矛盾 . 如解 下列方 程 : ① + 4一 o ② 3 ; x一 2 —0 ③ z ; 一 2—0 .
样 的数 ? 请大 家 回忆一 下 , 我们 在 以往 的学 习过 程 中 ,
解决有 些有 理数 开方 不 是有 理数 的矛盾 , 入无 引 理数 , 系从 有理 数集 Q扩充 到 了实 数集 R 数 .
因此 , 上述几 个数集 有如 下 的包 含关 系 : N
Z Q R.

2 ・ 6
中学 数学月 刊
21 0 2年第 7期

堂基 于数 学史 的教 学设 计 课 例 : 复数 ( 1课 ) 第

一道基于数学史的数学试题的命制与评析

一道基于数学史的数学试题的命制与评析

一道基于数学史的数学试题的命制与评析程银生杨巧玲摘要:卡莱尔的几何解法是数学史上解一元二次方程的著名方法之一。

在一次命制九年级上学期期末考试数学卷压轴题的过程中,尝试重构卡莱尔的几何解法,将“圆和直线的交点”与“一元二次方程的根”关联,促使学生在运用圆、相似三角形等相关知识解决问题的过程中拓宽数学视野,激发学习兴趣,深化知识理解,激发创新意识。

在试题测评反馈、讲评拓展的基础上反思得到关于数学史类试题命制与数学史类试题融入数学教学的体会。

关键词:数学史;数学试题;卡莱尔的几何解法;一元二次方程现各版本教材、各级各类考试中,以数学史为背景的阅读材料、习题、试题等日益增多,数学史素材的整理、裁剪和加工已成为试题命制的重要途径和方法。

其中,2022年浙江省台州市中考数学卷第24题以直角三角板的移动操作为载体,融入卡莱尔的一元二次方程的几何解法,构思精妙,让人深感佩服。

我們在一次命制九年级上学期期末考试数学卷压轴题的过程中,尝试重构卡莱尔的几何解法,将“圆和直线的交点”与“一元二次方程的根”关联,促使学生在运用圆、相似三角形等相关知识解决问题的过程中拓宽数学视野,激发学习兴趣,深化知识理解,激发创新意识。

一、卡莱尔的几何解法简介19世纪英国著名文学家和历史学家卡莱尔(ThomaCarlyle,1795—1881)在爱丁堡大学读书时,给出了一个十分新颖、简洁的任意一元二次方程实根的几何解法。

这个解法后来被他的老师——苏格兰数学家莱斯利(JohnLelie,1766—1832)收入《几何基础(第三版)》(1817)一书中,成为数学史上解一元二次方程的著名方法之一。

具体如下:三、命制设想本题共设五个环节,前三个环节中方程的二次项系为1,后两个环节中二次项系数非1,五个环节逐层递进,由简单到复杂、由特殊到一般,让在学生解决问题的过程中,感受问题研究的一般思路与方法。

命制“超级模仿秀”环节时,我们曾考虑直接呈现卡莱尔的几何解法史料。

基于历史探究的数学概念教学及案例分析

基于历史探究的数学概念教学及案例分析
间的距离” 量 ) ( .
1 相 似 性 策 略 及 案 例 分 析 .
③ 普罗克拉斯认 为必须 同时从关 系 、 质和量三
方面 来定 义 角 的大 小 ( ) 量 、存 在 的形 状 和特 征
() 1 相似性策略
相 似性 策略是 通过 考察历 史 的概念 发展 系统 ( )两条直线之 间的关 系. 质 、 与现行教材 内容的概念体 系之间的相似性 , 出与 找
就相似 进行解 构 , 其根据是按 照数 学史上该概念 形成 的几 清历 史与当前 概念的表面相似和实质相似.
个关键特征进行分 析 ,探索学生在学习此概念时可 点的分析来说 , 有对历 史与现行概念 的定性与定量
能存在的障碍 ; 然后对这几个特征进行重构 , 其标准 分析法 、 综合 分析法以及测量法等.
越大.
溯到公元前 30 阿基米德注意到了下面两个数列, 0 年,
11 ,0,0,0,o, ,O 1 1。1 l5…… … … …①
0 1 2 3, 5, … … … … ( ,, , 4, …
② “ 的方 面 : 量” 一些学 生认 为 , 边越长或 者边
所 围区域越大 , 角越大.
【 教育观测 】 古希腊 时代 , 无论 哪一种定 义 , 都
当前 概念具 有 内在联 系和易 于学 生理解 的导 入方 未能 完善地 刻画角的概念. 通过调查六年级学生对 法. 运用相似性策 略不仅 可以从 概念发展史 中得到 角概 念的理解并与角概念 的历史进行 比较 , 发现学
教 学 启 示 ; 时 又 能 发 现 教 材 中 的 概 念 是 从 历 史 上 同 生 对 角 的理 解 也 分 成 三种 情 形 :
18 44年法 国数学家舒 开注意到 了上述两 数列

基于数学史的数学文化课例研究

基于数学史的数学文化课例研究

ʌ课堂研究·特设专栏:HPM课例研究(之二十四)ɔ编者按:随着新一轮数学课程改革的发展,数学文化逐渐融入数学教育教学,日益受到师生的关注㊂为推动基于数学史的数学文化课例教学的实证研究,2021年,本刊将继续特邀华东师范大学汪晓勤教授及其HPM研究团队分享基础教育阶段数学文化课例教学的实证研究,旨在让大家更好地认识数学本质㊁洞见数学价值㊁品味数学文化,促进教师专业发展,落实数学学科立德树人的教育任务㊂基于数学史的数学文化课例研究余庆纯1,汪晓勤2(1 华东师范大学数学科学学院,上海㊀200241;2 华东师范大学教师教育学院,上海㊀200062)ʌ摘㊀要ɔ基于数学史的数学文化课例研究聚焦数学的知识源流㊁学科联系㊁社会角色㊁审美娱乐与多元文化五个维度,彰显数学四大价值㊂数学文化课例研究强调数学史内容㊁实证方法与技术融合㊂ 互联网+教育 时代,数学文化课例研究要不断深挖数学史素材,扎根实证教学,融合信息技术,促进文化育师,落实立德树人的根本任务㊂ʌ关键词ɔ数学史;数学文化;课例研究;实证方法;技术融合ʌ作者简介ɔ余庆纯,华东师范大学数学科学学院在读博士研究生,主要从事数学史与数学教育研究;汪晓勤,华东师范大学教师教育学院教授㊁博士生导师,主要从事数学史与数学教育研究㊂ʌ基金项目ɔ上海高校 立德树人 人文社会科学重点研究基地之数学教育教学研究基地研究项目 数学课程与教学中落实立德树人根本任务的研究(A8)什么是数学文化?有研究者基于国内数学文化研究,分别从数学学科㊁文化㊁数学共同体㊁数学活动等多元角度阐释数学文化的内涵,即数学文化是指一群人(数学家),当他们从事数学活动时,遵循共同的数学规则,经过长期的㊁历史的沉淀,形成了关于数学知识㊁精神㊁思想方法㊁思维方式等的共同约定的总和[1]㊂‘普通高中数学课程标准(2017年版)“(以下简称‘标准“)提出,数学文化不仅是指数学的思想㊁精神㊁语言㊁方法㊁观点以及它们的形成和发展,还包括数学在人类生活㊁科学技术㊁社会发展中的贡献和意义,以及与数学相关的人文活动[2]㊂其中,数学史是数学文化的有机组成部分,不仅展现了数学概念公式㊁定理命题㊁问题解决㊁思想方法等的演进过程,而且展现了多元文化背景下数学的学科联系㊁社会角色与人文活动㊂课程改革以来,我国全面深化新时代教师队伍改革,强调教师要树立正确的历史观㊁民族观㊁国家观㊁文化观,开展中小学教师活动,促进教师终身学习与专业发展[3]㊂因此,如何在数学课程中提升数学教师的专业发展,促进数学文化的教学实践,已然成为新时代数学教师队伍改革普遍关注的热点问题之一㊂有研究表明,学科教学是教师专业发展的核心,课例研究是教师专业发展的有效抓手㊂早在21世纪初,顾泠沅教授便开展了基于数学学科的课例教学研究,依据行动研究的实证范式,总结数学教师教学特征与实践智慧,推进新世纪数学教师队伍的专业发展[4]㊂HPM(数学史与数学教育之间的关系)是数学教育的重要研究领域之一,其以喜闻乐见的形式呈现数学知识的来龙去脉,在科学严谨的数学逻辑体系中渗透丰富多彩的数学文化㊂从21世纪初至今,在HPM与教师专业发展研究中,课例研究不仅提升了数学教师个体的专业知识㊁教学能力与人文情怀,而且帮助一线数学教师㊁教研员与高校数学教育研究者共同组建教师专业学习共同体(pro⁃fessionallearningcommunity,简称PLC)㊂其中,在课例教学环节里,已有实证研究表明,教育取向的数学史在不同程度上彰显知识之谐㊁方法之美㊁探究之乐㊁能力之助㊁文化之魅㊁德育之效等教育价值[5]㊂然而,在HPM教学实践中依旧存在 高评价㊁低运用 的现象㊂为了突破这一教学实践困境,教师专业学习共同体基于‘标准“中数学文化的概念内涵与数学四类价值,提出基于数学史的数学文化理论框架[6-7],借鉴该理论框架,在基础教育阶段开展一系列的数学文化课例实践,旨在推动数学文化走进课堂㊁助教学㊁促成长㊂鉴于此,本研究主要阐述基于数学史的数学文化内涵与理论框架,介绍基于数学史的数学文化课例研究的基本要素㊁实证方法㊁技术融合等内容,为促进文化育师,落实立德树人的根本任务提供理论支撑与实践参考㊂一㊁数学文化内涵扎根于西方学者总结的数学史教育价值,结合‘标准“提出的课程目标㊁教学建议等内容,构建基于数学史的数学文化的概念内涵与理论框架,将其分成知识源流㊁学科联系㊁社会角色㊁审美娱乐与多元文化五个维度(见表1),指向数学的科学价值㊁应用价值㊁文化价值㊁审美价值四类价值(见表2),进一步基于德尔菲法㊁文本分析法对该理论框架进行修正与论证,且以初中和高中HPM课例实证该理论框架的普适性(如图1)[8]㊂表1㊀基于数学史的数学文化内涵的五个维度五个维度具体内涵知识源流在某个知识点的历史演进过程中,涉及的人物与事件㊁概念与术语㊁问题与求解㊁命题与证明等学科联系数学与其他学科之间的密切联系社会角色数学在人类生活㊁科学技术㊁社会发展中的价值㊁贡献与意义审美娱乐数学美(包括对称美㊁奇异美㊁简洁美㊁统一美等)与趣味数学,展现出人类对美学标准㊁智力好奇㊁趣味娱乐的追求多元文化不同时期㊁不同地域的数学家在同一数学课题上的贡献,以及与数学相关的人文活动表2㊀数学的四类价值四类价值价值内涵科学价值数学是自然科学的基础,不仅是运算和推理的工具,而且是表达和交流的语言,帮助人们理解和表达现实世界中事物的本质㊁关系与规律应用价值数学与人类社会生活紧密关联,数学应用渗透到现代社会及人们日常生活的各个方面;数学助力现代科学技术的发展,推动社会生产力的发展,为社会创造价值文化价值数学承载着思想和文化,是人类文明的重要组成部分㊂数学相关的人文活动展现科学主义与人文主义的丰富底蕴,彰显数学的人文内涵审美价值数学能陶冶情操,让人从感性走向理性,提升审美情趣和审美能力;数学改善思维品质,在形象思维的基础上增强理性思维能力图1㊀基于数学史的数学文化理论框架随着新一轮基础教育改革的不断推进,基于数学史的数学文化理论逐渐走进一线教学实践,分别在基础教育阶段开展实证性的课例研究,旨在探寻数学学科文化育人的本质内涵,更加深刻地揭示数学文化的核心教育价值,促进数学学科立德树人的有效落实㊂二㊁数学文化课例研究(一)研究内容基于数学史的数学文化课例研究,是指教师专业学习共同体(PLC)围绕某一特定的数学概念术语㊁公式定理㊁问题解决等内容,借助线上线下融合式研修的形式,携手开展主题课例的系列研修活动,如资料习得㊁教学设计㊁交流研讨㊁实践教学㊁反馈评价㊁反思整理㊁课例记录等㊂基于数学史的数学文化课例研究,其主要流程有五个基本环节(如图2)㊂图2㊀基于数学史的数学文化课例研究流程(1)确定课例主题㊂数学文化课例研究强调数学史内容,聚焦某一特定的数学概念术语㊁公式定理㊁问题解决等内容,进行教育取向的数学史料研究,且基于数学史的数学文化五个维度展开分析㊂(2)规划教学设计㊂聚焦该主题的数学文化㊁课标要求㊁教材比较㊁教学实况㊁学情基础等相关内容,综合考虑 历史发生序 数理逻辑序 心理认知序 三个序列的有机统一,经历数学文化课例主题的教学设计㊁共同研讨㊁优化设计等过程㊂现以 锐角三角比的意义 课例主题为例,进行阐述说明㊂①知识源流:借鉴20世纪上㊁中叶英美教科书中的锐角三角函数的引入方式,选择性地进行教学重构,以校园生活为背景,引导学生基于不同实际情境,探究系列 不可测问题 的解决方法,在分析问题㊁解决问题的过程中掌握锐角三角比的概念定义,学会根据直角三角形中两边的长求解锐角三角比的值,揭示学习锐角三角比的重要性㊁必要性,为学生在高中学习三角函数奠定基础㊂②学科联系:在跨学科联系中,锐角三角比是天文学㊁航海学的重要内容之一㊂③社会角色: 日晷 作为古代计时工具,凝结着锐角三角比在社会生活中的实际运用,展现出数学源于生活㊁服务于生活的重要角色㊂④审美娱乐:正切和余切等锐角三角比有着密切关系,体现了数学的简洁美㊁统一美㊂⑤多元文化:基于20世纪早期英美教科书,将数学家们探索 锐角三角比的意义 的过程转化为校园生活中 不可测问题 的活动探究㊂通过古今对照,表现出不同时期㊁不同文化下数学家们对 锐角三角比 研究的贡献,展现多元的数学文化㊂(3)实施课堂教研㊂开展数学文化课例教学与研究,要聚焦课堂教学的自然生成㊁数理人文的和谐统一;同时要注意收集学生反馈㊁同行评议等实证数据㊂(4)反思课例教学㊂反思主题课例教学中数学史文化素材的运用与教育价值的达成㊁教师自身专业知能的发展㊁教师专业学习共同体的合作等,有助于进一步优化课例㊂(5)撰写课例记录㊂基于数学史的数学文化课例研究流程,记录课例研究过程的实践智慧㊁心得体会与专业成长,进一步聚焦数学文化课例的教学与评价,为今后开展主题的数学文化课例提供参考㊂(二)研究主体数学文化课例研究的主体是由一线数学教师㊁教研员与高校HPM研究者共同组成,形成教师专业学习共同体(PLC)㊂近年来,其从个体化学习转向合作式学习,聚焦特定的课例主题,开展自主学习+合作学习的行动研究,在设计 教学 观察 反思中螺旋式地优化数学文化课例研究㊂教师学习(teacherlearning)是教师专业发展的必经之路[9],教师主体角色从教学者向学习者转变㊂对于数学文化课例研究的教师专业学习共同体来说,需要树立共享学习的价值观,充分发挥各自的专业优势,如一线数学教师㊁教研员扎根于基础教育实践,提供本土化的教学智慧;高校HPM研究者立足数学文化课例研究等教育理论,聚焦国际化的教育洞见㊂这将打通基础教育阶段与高等教育阶段之间的教育鸿沟,形成 中小学 大学 合作机制(schoolanduniversitypartnershipmechanism,简称SUPM)㊂(三)研究形式数学文化课例研究主要有以下四种形式㊂(1)专家引导㊂采用专家讲座的方式,自上而下对数学史㊁数学文化㊁课例研究等相关内容进行专业性的引导㊂(2)自主学习㊂学习基于数学史的数学文化等HPM相关理论,阅读相关主题的数学史素材,分析数学文化内涵不同维度的分布情况,比较不同版本的课标㊁教材之间的异同等㊂(3)合作学习㊂聚焦某一课例主题,以线上线下融合的方式进行小组合作学习,开展基于数学史的数学文化课例主题汇报㊂同时,教师专业学习共同体基于理论或实践视角,对该课例汇报内容进行反馈与评价㊂(4)实践应用㊂融合数学文化素材,开展课例教学,收集学生反馈㊁同行评价等数据,不断优化数学文化课例实践㊂(四)实证方法一般而言,教育研究分为思辨研究和实证研究两类㊂思辨研究主要解决 应然 问题,注重概念㊁理论与观点等内容的构建,通过逻辑推理来回答概念性㊁规范性的问题,而实证研究主要关注 实然 问题,基于收集与分析数据信息得出研究结果㊂实证研究又分为质性研究㊁量化研究与混合研究㊂长期以来,在传统的思辨研究范式主导下,理论研究常常具有较大的争议性㊁不确定性㊂近年来,随着对科学化㊁规范化研究方法的不断探索,数学教育研究逐渐摆脱思辨研究的束缚,开展了实证研究新范式㊂在数学文化课例研究中,教师专业学习共同体主要基于行动研究范式,开展课例设计 教学 观察 反思,这与21世纪初顾泠沅教授开展的课例研究有相似之处㊂在数学文化课例研究的不同环节,呈现出不同的教育实证研究方法,其中较具有代表性的为以下几个方面㊂(1)在教育取向的数学史研究中,高校研究者往往采用历史研究法,按照历史演进的时间顺序㊁数学文化内涵的分类维度等,对不同主题的数学史料进行解析㊂(2)在数学文化课例教学中,教师经常采用问卷调查㊁深度访谈㊁视频分析等方法,对学生反馈㊁同行评议㊁教师反思等方面的实证数据进行收集,基于理论与实践的角度,共同评价数学文化课例的教学质量㊂其中,问卷调查聚焦课例教学前后学生认知水平的变化情况㊁数学文化的感知异同与情感信念的转变发展;深度访谈关注学生在教学前后转变的深层动因;视频分析常运用于课例教学,通过分析教学片段中的师生互动㊁生生互动,深度解析数学文化融入教学的分布状况与价值彰显,助力教师改进教学,促进其专业化发展㊂(五)技术融合在 互联网+教育 时代,技术在数学文化课例的研究过程中扮演着重要的角色,线上线下融合式的课例研究成为主流㊂基于在线网络平台开展数学文化课例研究,常采用线上形式进行资料共享㊁主题汇报㊁交流研讨,线下形式进行自主学习㊁教学设计㊁实践教学㊁观察反思等,助力教师专业学习共同体的多元发展㊂其中,线上课例研讨可借助腾讯会议㊁钉钉㊁Classin㊁微信等在线网络平台搭建网络学习社区,运用腾讯文档㊁思维导图等技术工具呈现教学设计,开展在线编辑;在课例教学中,教师可结合几何画板㊁GeoGebra㊁希沃白板㊁流转笔记等信息化工具,再现数学家探寻概念公式㊁命题定理等过程,揭示化曲为直㊁以直代曲㊁数形结合等方法的本质;基于PPT㊁数位板㊁白板等演示工具制作的HPM微视频㊁微课,生动地展示数学知识的来龙去脉㊁数学思想的古今传承,彰显不同时期㊁不同国家数学文化的历史性㊁人文性㊂三㊁结语基于数学史的数学文化课例研究聚焦数学的知识源流㊁学科联系㊁社会角色㊁审美娱乐与多元文化五个维度,彰显数学四大价值㊂数学文化课例研究强调数学史内容㊁实证方法与技术融合㊂在 互联网+教育 时代,为进一步提升数学文化课例研究的数理人文,教师专业学习共同体需做好以下三个方面的工作㊂(1)深挖数学史素材㊂数学文化课例扎根于数学史研究,为数学教学提供丰富的教学素材与思想养料,然而在教学实证研究中,笔者发现数学文化内涵的五个维度运用却不均衡,因此教师专业学习共同体需要进一步深挖数学史素材,梳理数学知识的来龙去脉与文化维度的分布情况,寻找数学与其他学科之间的密切联系,发现数学在社会生活中的重要运用,品味数学奇趣之美,揭示东西方数学文化的互融互通㊂(2)扎根实证教学㊂基于数学史的数学文化课例研究,承载了发展学生数学学科核心素养的理性知能与人文情怀,支撑了教师专业学习共同体的合作学习与专业发展㊂可见,数学文化课例教学不仅要聚焦教学实践,而且要注重教育实证方法㊂基于问卷调查㊁深度访谈㊁视频分析等实证方法,还原数学文化课堂的自然生成,揭示数学的教育价值㊂(3)融合信息技术㊂信息技术为数学文化课例研究插上腾飞的翅膀,优化教学内容,提高教学效率,提升教学水平,推动信息化课例研修的历史性嬗变㊂数学教师借助信息技术开展基于数学文化的章节起始课㊁基于问题解决的探究重构课㊁基于历史命题的单元复习课,巧妙地融入翻转课堂㊁同步课堂㊁云课堂等多元教学形式,借助电子学习单㊁流转笔记㊁电子档案袋等形式,开展以学生为本的数学阅读㊁数学写作等活动,助力 互联网+教育 时代数学文化课例的实践㊂参考文献:[1]杨豫晖,吴姣,宋乃庆.中国数学文化研究述评[J].数学教育学报,2015(1):87-90.[2]中华人民共和国教育部.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2018.[3]张侨平,陈敏.课例研究的缘起和流变:回顾与前瞻[J].全球教育展望,2020(8):75-91.[4]顾泠沅,王洁.教师在教育行动中成长:以课例为载体的教师教育模式研究[J].全球教育展望,2003(1):44-49.[5]WANGXQ,WANGK.Acategorizationmodelforeduca⁃tionalvaluesofhistoryofmathematics:anempiricalstudy[J].Sci⁃ence&Education,2017(26):1029-1052.[6]汪晓勤.基于数学史的数学文化内涵课例分析[J].上海课程教学研究,2019(2):37-43.[7]余庆纯,汪晓勤.基于数学史的数学文化内涵实证研究[J].数学教育学报,2020(3):68-74.[8]林庄燕,汪晓勤.初中HPM课例中的数学文化内涵分析[J].教育研究与评论(中学教育教学),2019(1):57-63.[9]桑国元.教师作为学习者:教师学习研究的进展与趋势[J].首都师范大学学报(社会科学版),2017(1):142-148.(责任编辑:陆顺演)(上接第4页)本技能和基础性核心素养的落实㊂在此前提下,教学还要关注学生学习的差异性㊂不同区域㊁不同家庭背景㊁不同学生的个性特征,对教学目标的设立㊁教学内容的选择㊁教学方法的运用㊁教学评价的指标都有所不同㊂当然,教学的差异应该统一在一个课程标准㊁一本语文教材中,即无论何时何地的教学,都应该努力实现课程标准和语文教材所设立的基准,以基准为轴心并在基准上,向左右拓展㊁向纵深发展,形成丰富多彩的差异化㊁风格化教学㊂(三)高标期求与底线坚守语文教材为学生的语文知识学习和能力获得提供了基本资源,也提出了基本的达标要求㊂但是,作为 语文要素 和 人文主题 双线并进的语文教材,没有明确的人文达标的标准和具体要求,这一问题不仅表现在教材中,也表现在‘课程标准(2011)“中,或许正是‘课程标准(2011)“对人文素养语焉不详以致语文教材无从做实做细㊂这就给语文教育中的人文教育带来了难题㊂在语文教学中,人文教育时常 天马行空 ,不仅内容上空疏高远而不切实际,而且在目标与程度上也混乱模糊㊂有些语文教学热衷于在人文主题教育上往高处飘㊁往大处行㊁往空里谈㊂况且,语文教材中涉及人文教育的内容,一般是宏大叙事㊁英雄典范㊁道德楷模㊁君子圣贤,有些教学更是喜欢对此拔高渲染,要求学生与之看齐,自以为这样做可以收到感动㊁震动的效果㊂殊不知,这样过高过大的道德教育不仅没有实效,反而适得其反,会导致学生道德的低能感和挫败感㊂因为,我们的孩子往往终归平凡㊂事实上,基础教育阶段就是平凡的教学教平凡的人㊂语文教学中关于人文教育的着力点主要是底线教育㊁准则教育,引导学生坚守道德底线,在日常生活中恪守准则,这便是基础教育基础性的人文要义,也是基础教育阶段人文教育的重心所在㊂如何处理好人文理想教育与道德底线教育关系,是当代语文教育迫切需要解决的重大课题㊂参考文献:[1]叶圣陶.叶圣陶语文教育论集[M].北京:教育科学出版社,2015.(责任编辑:罗小荧)。

《数学史融入数学教学的方式研究文献综述1700字》

《数学史融入数学教学的方式研究文献综述1700字》

数学史融入数学教学的方式研究文献综述关于数学史与数学教学的研究,研究者们从不同学段和不同教学内容上进行研究。

根据研究需要本部分从数学史内容、选取、方式及实践成果梳理相关研究。

1.数学史融入数学教学的内容研究数学史内容的呈现方式上有隐形和显性之分,隐性数学史即观念层面的,显性数学史内容即通过图片或文字等载体直接呈现出来的。

通过梳理文献发现,大部分研究是针对显性数学史内容的研究。

因此,可以将研究分为两类,一类是对教材中数学史内容的编排及呈现方式展开研究,多是对不同版本教材中的数学史内容进行比较研究,进而为教材编写者提供建议。

如王保红(2018)等人研究发现北师版注重运用数学史引导学生解决问题,华师版偏重运用数学史拓展学生思维。

也有学者对初中教材中的数学史内容进行研究,如刘兰(2019)从数学史内容的数量、知识领域、内容分类等对比不同版本教材的差异。

也有学者对高中教材开展研究,如李伟康(2020)从知识主题、栏目分布、运用方式、信息载体、历史时期、所属国家六个维度比较人教A 版、人教B 版、北师版三个版本高中数学教材中数学史内容的异同点。

另一类是根据实际教学情况分析课堂中融入的数学史内容,研究哪些史料适合走进课堂,为教师、教学提出相关的教学建议,偏重研究教材中数学史类别、选取等。

福韦尔(Fauvel,2000)将数学史内容分为三种:一是数学史的原始资料,二是经过别人翻译或加工的二手材料,三是在原始材料和二手材料的基础上,重构数学史,进而应用到课堂。

张梦婷(2019)将数学史的内容分为数学思想的历史资料、历史名题的历史资料、数学知识的历史资料、以及经典数学问题的历史资料。

总体来看,关于数学史内容的相关研究,主要是针对教材中的数学史内容开展。

1.数学史内容的选取福瑞帝(Furinghetti,2003)指出数学史的选取步骤:第一,归纳教材中提供的史料;第二,选择数学史;第三,搜集相关的原始资料;第四,将搜集到的原始资料与选取内容进行整合与加工。

一节基于数学史的教学课例:正四棱台的体积公式

一节基于数学史的教学课例:正四棱台的体积公式

一节基于数学史的教学课例:正四棱台的体积公式
朱哲;张维忠
【期刊名称】《中学数学教学参考:教师版》
【年(卷),期】2004(000)003
【摘要】对中西古代数学文化的深入研究,特别是这种历史的挖掘,目的还是为了指向现实、着眼于未来。

本文给出的一节基于数学史的教学课例,正是笔者设想的在数学教育中通过数学史的渗透,在传统与现代之间架起一座桥梁,从而实现数学教育的现代化。

【总页数】4页(P8-11)
【作者】朱哲;张维忠
【作者单位】浙江师范大学数理学院
【正文语种】中文
【中图分类】G633.63
【相关文献】
1.古巴比伦正四棱台体积公式古证复原
2.刍甍、羡除、刍童及楔形四棱台的体积公式
3.正棱台体积和侧面积公式及应用
4.正四棱台体积公式的再探索和教学尝试
5.学生的想法出乎我的意料--《正四棱台体积公式》教学尝试及所得
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于数学史研究的课题数学史研究的背景研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。

和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。

数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。

它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。

具体地说,它所研究的内容是:%1数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩ 数学史文献学;等等。

按其研究的范围又可分为内史和外史。

内史从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;外史从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。

数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。

学术界通常将数学发展划分为以下五个时期:数学萌芽期(公元前600年以前);初等数学时期(公元前600年至17世纪中叶);变量数学时期(17世纪中叶至19世纪20年代);近代数学时期(19世纪20年代至第二次世界大战);现代数学时期(20世纪40年代以来)。

数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。

人们研究数学史的历史,由来甚早。

古希腊时就曾有人写过一部《几何学史》, 可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一•卷的注文中还保留有一部分资料。

中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。

12世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。

这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。

近代西欧各国的数学史研究,是从18世纪,由J. É.蒙蒂克拉、C. 博絮埃、A. C.克斯特纳同时•开始,而以蒙蒂克拉1758年出版的《数学史》(1799〜1802年又经J. de拉朗德增补)为代表。

从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。

19 世纪末叶以后的数学史研究可以分为下述几个方面。

%1通史研究代表作可以举出M.B.康托尔的《数学史讲义》(4卷,1880〜1908)以及C.B.博耶(1894、1919)、D.E.史密斯(2 卷,1923〜1925)、洛里亚(3 卷,1929〜1933)等人的著作。

法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。

以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的口本学者也都有多卷本数学通史出版。

1972年美国M.克莱因所著《古今数学思想》一书,被认为是70年代以来的一•部佳作。

%1古希腊数学史许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有J.L.海贝格、胡尔奇、T.L.希思等人。

洛里亚和希思还写出了古希腊数学通史。

20世纪30年代起,著名的代数学家范•德•瓦尔登在古希腊数学史方面也作出成绩。

60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。

%1古埃及和巴比伦数学史把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。

查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。

他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。

他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巳比伦数学史研究成果。

范嚏•瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。

%1断代史和分科史研究德国数学家(C・)F.克莱因著的《19世纪数学发展史讲义》(1926〜1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。

直到1978年法国数学家J.迪厄多内所写的《1700〜1900数学史概论》出版之前,断代体数学史专著并不多,但却有(C.II. )IL外尔写的《半个世纪的数学》之类的著名论文。

对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。

许多著名数学家参预数学史的研究,可能是基于(J・-)H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。

”%1历代数学家的传记以及他们的《全集》、《选集》的整理和出版这是数学史研究的大量工作之一。

此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。

%1专业性学术杂志最早出现于19世纪末,M.B.康托尔(1877〜1913, 30 卷)和洛里亚(1898〜1922, 21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884〜1915, 30卷)。

现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。

中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。

例如较早的《汉书•律历志》说数学是“推历、生律、制器、规圆、矩方、权重、衡平、准绳、嘉量,探硕索稳,钩深致远,莫不用焉”。

《隋书•律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。

历代正史《列传》中,有时也给出了数学家的传记。

正史的《经籍志》则记载有数学书目。

在中国古算书的序、跋中,经常出现数学史的内容。

如刘徽注《九章算术》序(263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。

宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。

程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书日。

以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。

主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724〜1777)、李潢(?〜1811)、阮元(1764〜1849)、沈钦裴(1829 年校算《四元玉鉴》)、罗士琳(1789〜1853)等人。

②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795〜1799)。

其后,罗士琳作“补遗”(1840), 诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898) o 《畴人传》, 实际上就是一部人物传记体裁的数学史。

收入人物多,资料丰富,评论允*,它完全可以和蒙蒂克拉的数学史相媲美。

利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。

他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的。

经过半个多世纪, 李俨的论文自编为《中算史论丛》(1〜5集,1954〜1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。

从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。

钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。

从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。

20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。

有一些中国的古典算书已经有口、英、法、俄、德等文字的译本。

在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。

数学史上的重要意义1、科学意义每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。

其现实性首先表现在科学概念与方法的延续性方面,今口的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。

数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巳赫猜想等历史上的难题,长期以来一•直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。

国内外许多著名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。

中国著名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为“吴方法”的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。

科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为*1今科技发展决策的制定提供依据,也是我们预见科学未来的依据。

多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图等荒唐事,避免我们在这样的问题上白费时间和精力。

同时,总结中国数学发展史上的经验教训,对中国当今数学发展不无益处。

2、文化意义美国数学史家M.克莱因曾经说过:"-•个时代的总的特征在很大程度上与这个时代的数学活动密切相关。

这种关系在我们这个时•代尤为明显”。

“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。

数学己经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。

相关文档
最新文档