遗传算法解释及代码(一看就懂)

合集下载

jupyter 遗传算法代码

jupyter 遗传算法代码

一、什么是Jupyter和遗传算法Jupyter是一种交互式计算环境,可以用于数据清洗和转换、数值模拟、统计建模、数据可视化和机器学习等多种数据处理工作。

而遗传算法是一种模拟自然选择和遗传规律的优化算法,主要用于解决复杂的优化问题。

二、Jupyter中的遗传算法实现在Jupyter中,可以使用Python编程语言来实现遗传算法。

首先需要引入相关的库,如numpy、random等,然后按照遗传算法的基本原理来编写代码。

三、遗传算法的基本原理1. 初始化种裙:随机生成一定数量的个体作为初始种裙。

2. 选择:根据个体的适应度值,利用适应度函数进行选择,选择适应度高的个体作为父母个体。

3. 交叉:通过交叉操作,将父母个体的基因进行组合,产生新的个体。

4. 变异:对新个体的基因进行变异操作,引入新的基因信息。

5. 重复选择、交叉和变异操作,直到满足终止条件。

6. 最终得到适应度较高的个体,即为所求的优化解。

四、使用Jupyter编写遗传算法代码的步骤1. 引入相关的库```pythonimport numpy as npimport random```2. 初始化种裙```pythondef init_population(pop_size, chromosome_length):population = np.random.randint(0, 2, (pop_size, chromosome_length))return population```3. 选择```pythondef select(population, fitness_value):index = np.random.choice(np.arange(len(population)),size=len(population), replace=True,p=fitness_value/fitness_value.sum())return population[index]```4. 交叉```pythondef crossover(parents, pc=0.6):children = np.empty(parents.shape)for i in range(0, len(parents), 2):if np.random.rand() < pc:crossover_point = np.random.randint(1, len(parents[i])) children[i] = np.concatenate((parents[i][:crossover_point], parents[i+1][crossover_point:]))children[i+1] =np.concatenate((parents[i+1][:crossover_point],parents[i][crossover_point:]))else:children[i] = parents[i]children[i+1] = parents[i+1]return children```5. 变异```pythondef mutate(children, pm=0.01):for i in range(len(children)):for j in range(len(children[i])):if np.random.rand() < pm:children[i][j] = 1 - children[i][j]return children```6. 遗传算法主程序```pythonpop_size = 100chromosome_length = 10max_gen = 100population = init_population(pop_size, chromosome_length)for gen in range(max_gen):fitness_value = calculate_fitness_value(population)parents = select(population, fitness_value)children = crossover(parents)new_population = mutate(children)population = new_population```五、总结通过Jupyter和Python编程语言,我们可以比较轻松地实现遗传算法,并用于解决各种优化问题。

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)Python遗传算法框架使用实例(一)使用Geatpy实现句子匹配在前面几篇文章中,我们已经介绍了高性能Python遗传和进化算法框架——Geatpy的使用。

本篇就一个案例进行展开讲述:pip install geatpy更新至Geatpy2的方法:pip install --upgrade --user geatpy查看版本号,在Python中执行:import geatpyprint(geatpy.__version__)我们都听过“无限猴子定理”,说的是有无限只猴子用无限的时间会产生特定的文章。

在无限猴子定理中,我们“假定”猴子们是没有像人类那样“智能”的,而且“假定”猴子不会自我学习。

因此,这些猴子需要“无限的时间"。

而在遗传算法中,由于采用的是启发式的进化搜索,因此不需要”无限的时间“就可以完成类似的工作。

当然,需要产生的文章篇幅越长,那么就需要越久的时间才能完成。

下面以产生"T om is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much."的句子为例,讲述如何利用Geatpy实现句子的搜索。

之前的文章中我们已经讲述过如何使用Geatpy的进化算法框架实现遗传算法编程。

这里就直接用框架。

把自定义问题类和执行脚本编写在下面的"main.py”文件中:# -*- coding: utf-8 -*-import numpy as npimport geatpy as eaclass MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置) # 定义需要匹配的句子strs = 'Tom is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much.'self.words = []for c in strs:self.words.append(ord(c)) # 把字符串转成ASCII码M = 1 # 初始化M(目标维数)maxormins = [1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = len(self.words) # 初始化Dim(决策变量维数)varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [32] * Dim # 决策变量下界ub = [122] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界ubin = [1] * Dim # 决策变量上边界# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵diff = np.sum((Vars - self.words)**2, 1)pop.ObjV = np.array([diff]).T # 把求得的目标函数值赋值给种群pop的ObjV执行脚本if __name__ == "__main__":"""================================实例化问题对象============================="""problem = MyProblem() # 生成问题对象"""==================================种群设置================================"""Encoding = 'RI' # 编码方式NIND = 50 # 种群规模Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)"""================================算法参数设置=============================="""myAlgorithm = ea.soea_DE_rand_1_L_templet(problem, population) # 实例化一个算法模板对象myAlgorithm.MAXGEN = 2000 # 最大进化代数"""===========================调用算法模板进行种群进化========================="""[population, obj_trace, var_trace] = myAlgorithm.run() # 执行算法模板population.save() # 把最后一代种群的信息保存到文件中# 输出结果best_gen = np.argmin(obj_trace[:, 1]) # 记录最优种群是在哪一代best_ObjV = obj_trace[best_gen, 1]print('最优的目标函数值为:%s'%(best_ObjV))print('有效进化代数:%s'%(obj_trace.shape[0]))print('最优的一代是第 %s 代'%(best_gen + 1))print('评价次数:%s'%(myAlgorithm.evalsNum))print('时间已过 %s 秒'%(myAlgorithm.passTime))for num in var_trace[best_gen, :]:print(chr(int(num)), end = '')上述代码中首先定义了一个问题类MyProblem,然后调用Geatpy内置的soea_DE_rand_1_L_templet算法模板,它实现的是差分进化算法DE-rand-1-L,详见源码:运行结果如下:种群信息导出完毕。

遗传算法代码python

遗传算法代码python

遗传算法代码python一、简介遗传算法是一种通过模拟自然选择和遗传学原理来寻找最优解的优化算法。

它广泛应用于各种领域,包括优化问题、搜索和机器学习等。

二、代码概述以下是一个简单的遗传算法的Python代码示例,用于解决简单的优化问题。

该算法使用一个简单的二进制编码方式,并使用适应度函数来评估每个个体的适应度。

三、代码实现```pythonimportnumpyasnp#遗传算法参数POPULATION_SIZE=100#种群规模CROSSOVER_RATE=0.8#交叉概率MUTATION_RATE=0.1#变异概率MAX_GENERATIONS=100#最大迭代次数#适应度函数deffitness(individual):#在这里定义适应度函数,评估每个个体的适应度#这里简单地返回个体值的平方,可以根据实际问题进行调整returnnp.sum(individual**2)#初始种群生成pop=np.random.randint(2,size=(POPULATION_SIZE,))#迭代过程forgenerationinrange(MAX_GENERATIONS):#评估种群中每个个体的适应度fitness_values=np.apply_along_axis(fitness,1,pop)#选择种群selected_idx=np.random.choice(np.arange(POPULATION_SIZE), size=POPULATION_SIZE,replace=True,p=fitness_values/fitness_va lues.sum())selected_pop=pop[selected_idx]#交叉操作ifCROSSOVER_RATE>np.random.rand():cross_points=np.random.rand(POPULATION_SIZE,2)<0.5#随机选择交叉点cross_pop=np.array([np.hstack((individual[cross_points[i, 0]:cross_points[i,1]]+individual[cross_points[i,1]:],other))f ori,otherinenumerate(selected_pop)]).T#合并个体并随机交叉得到新的个体cross_pop=cross_pop[cross_points]#将交叉后的个体重新排列成原始种群大小selected_pop=np.vstack((selected_pop,cross_pop))#将新个体加入种群中#变异操作ifMUTATION_RATE>np.random.rand():mutated_pop=selected_pop+np.random.randn(POPULATION_SIZE, 1)*np.sqrt(np.log(POPULATION_SIZE))*(selected_pop!=pop).astyp e(np.float)#根据变异概率对个体进行变异操作,得到新的个体种群mutated_pop=mutated_pop[mutated_pop!=0]#将二进制种群中值为0的个体去掉,因为这些个体是随机的二进制串,不是解的一部分,不应该参与变异操作selected_pop=mutated_pop[:POPULATION_SIZE]#将新种群中除最后一个以外的部分加入原始种群中(即新的种群被排除了适应度最差的个体)#选择当前最好的个体(用于更新最优解)best_idx=np.argmax(fitness_values)best_solution=selected_pop[best_idx]print(f"Generation{generation}:Bestsolution:{best_solutio n}")```四、使用示例假设要解决一个简单的优化问题:求一个一维函数的最小值。

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。

它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。

它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。

从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。

如此模仿生命的进化进行不断演化,直到满足期望的终止条件。

运算流程:Step 1:对遗传算法的运行参数进行赋值。

参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。

Step 2:建立区域描述器。

根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。

Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step 4:执行比例选择算子进行选择操作。

Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。

Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。

运用遗传算法工具箱:运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。

目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。

实际上,GADS就是大家所看到的Matlab中自带的工具箱。

我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。

因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

matlab遗传算法代码

matlab遗传算法代码

matlab遗传算法代码
1 、算法概述
遗传算法(Genetic Algorithms,GA)是一种仿生学优化算法,它借用遗传学中物
竞天择的进化规则,模拟“自然选择”与“遗传进化”得出选择最优解的过程。

其基本原
理是对现有的种群中的各个个体,将其表示成某种形式的编码,然后根据自变量与约束条件,利用杂交、变异等操作,产生新一代解的种群,不断重复这一过程,最终求出收敛到
最优解的种群。

2、遗传算法的作用
遗传算法的主要作用在于优化多元函数,能够在大量的变量影响目标函数值的情况下
寻求最优解。

和其它现有的数值优化技术比较,如梯度下降法等,遗传算法更能适应“凸”和“非凸”都能解决,不受约束条件与搜索空间的影响较大,又叫做“智能搜索法”。


计算机视觉等计算机技术领域,经常用遗传算法来对一系列特征参数进行搜索和调节,成
功优化提高了系统的正确处理率。

3、matlab遗传算法的实现
Matlab的遗传算法应用是基于GA Toolbox工具箱,它提供了一个功能强大的、可扩
展的包装器,可用于构建遗传算法模型。

(1)编写最优化函数:
使用和设置最优化表达式或函数、变量;
(2)设置参数编码:
设置变量的编码,比如选择0-1二进制、0-10十进制;
(3)选择遗传算法的方法
选择遗传算法的方法,可以在多个选择中选择,比如变异、杂交等;
(4)设置运算参数:
设置每代的种群数、最大进化的世代数;
(5)运行遗传算法:
根据设定的参数运行遗传算法,算出收敛到最优解的种群;
(6)获得最优解:
获得收敛到最优解的条件下的最优解,得出最优解所在位置等参数,完成整个优化搜索。

遗传算法代码

遗传算法代码

遗传算法代码遗传算法是一种基于自然选择和遗传学原理的优化算法,用于解决许多复杂的优化问题,如机器学习、图像处理、组合优化等。

以下是一个简单的遗传算法代码示例:1. 初始化种群首先,我们需要创建一组初始个体,称为种群。

每个个体都是由一组基因表示的,这些基因可能是一些数字、布尔值或其他类型的值。

我们可以使用随机数生成器生成这些基因,并将它们组合成一个个体。

2. 适应度函数为了衡量每个个体的表现,我们需要编写一个适应度函数。

该函数将计算每个个体的适应度得分,该得分反映了该个体在解决优化问题方面的能力。

适应度函数将对每个个体进行评分,并将其分配到一个适应度等级。

3. 选择操作选择操作是基于每个个体的适应度得分来选择哪些个体将被选择并用于生成下一代种群。

较高适应度的个体将有更高的概率被选择,而较低适应度的个体将有更低的概率被选择。

这通常是通过轮盘赌选择方法实现的。

4. 交叉操作交叉操作是将两个个体的基因组合并以生成新的个体。

我们可以将两个随机个体中的某些基因进行交换,从而创建新的个体。

这样的交叉操作将增加种群的多样性,使其更有可能找到最优解。

5. 变异操作变异操作是用于引入种群中的随机性的操作。

在变异操作中,我们将随机选择一个个体,并随机更改其中的一个或多个基因。

这将引入新的、未经探索的基因组合,从而增加种群的多样性。

6. 迭代随着种群不断进化,每个个体的适应度得分也将不断提高。

我们将重复执行选择、交叉和变异操作,以生成新的个体,并淘汰旧的个体。

这个不断迭代的过程将继续,直到达到预设的迭代次数或找到最优解为止。

这是一个简单的遗传算法代码示例,它演示了如何使用遗传算法来解决优化问题。

在实际应用中,我们可以进一步对算法进行优化,以获得更好的结果。

【智能算法】超详细的遗传算法(GeneticAlgorithm)解析和TSP求解代码详解

【智能算法】超详细的遗传算法(GeneticAlgorithm)解析和TSP求解代码详解
1) 在喜马拉雅山脉的地图上找到相应的位置坐标,算出海拔高度。(相当于通过自变量求得适应函数的值)然后判读该不该射杀该袋鼠。 2) 可以知道染色体交叉和变异后袋鼠新的位置坐标。
回到3.1中提的求一元函数最大值的问题。在上面我们把极大值比喻为山峰,那么,袋鼠的位置坐标可以比喻为区间[-1, 2]的某一个x坐标 (有了x坐标,再通过函数表达式可以算出函数值 <==> 得到了袋鼠染色体编码,解码得到位置坐标,在喜马拉雅山脉地图查询位置坐标算 出海拔高度)。这个x坐标是一个实数,现在,说白了就是怎么对这个x坐标进行编码。下面我们以二进制编码为例讲解,不过这种情况下以 二进制编码比较复杂就是了。(如果以浮点数编码,其实就很简洁了,就一浮点数而已。)
就像0和1两种碱基,然后将他们串成一条链形成染色体。一个位能表示出2种 状态的信息量,因此足够长的二进制染色体便能表示所有的特征。这便是二进制编码。如下:
1110001010111
它由二进制符号0和1所组成的二值符号集。它有以下一些优点:
image 当指针在这个转盘上转动,停止下来时指向的个体就是天选之人啦。可以看出,适应性越高的个体被选中的概率就越大。
遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。 适用于二进制编码个体或浮点数编码个体的交叉算子: 1. 单点交叉(One-point Crossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。 2. 两点交叉与多点交叉:
(1) 两点交叉(Two-point Crossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。 (2) 多点交叉(Multi-point Crossover) 3. 均匀交叉(也称一致交叉,Uniform Crossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两 个新个体。 4. 算术交叉(Arithmetic Crossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。 咳咳,根据国际惯例。还是抓一个最简单的二进制单点交叉为例来给大家讲解讲解。 二进制编码的染色体交叉过程非常类似高中生物中所讲的同源染色体的联会过程――随机把其中几个位于同一位置的编码进行交换,产生新 的个体。

(完整版)遗传算法c语言代码

(完整版)遗传算法c语言代码
//随机产生变异概率
srand((unsigned)time(NULL));
for(i=0;i<num;i++)
{
bianyip[i]=(rand()%100);
bianyip[i]/=100;
}
//确定可以变异的染色体
t=0;
for(i=0;i<num;i++)
{
if(bianyip[i]<pm)
printf("\n******************是否想再一次计算(y or n)***********************\n");
fflush(stdin);
scanf("%c",&choice);
}while(choice=='y');
return 0;
}
{
flag=0;
break;
}
}
if(flag)
{
group[i].city[j]=t;
j++;
}
}
}
printf("************初始种群如下****************\n");
for(i=0;i<num;i++)
{
for(j=0;j<cities;j++)
printf("%4d",group[i].city[j]);
{
group[i].p=1-(double)group[i].adapt/(double)biggestsum;
biggestp+=group[i].p;

遗传算法介绍并附上Matlab代码

遗传算法介绍并附上Matlab代码

1、遗传算法介绍遗传算法,模拟达尔文进化论的自然选择和遗产学机理的生物进化构成的计算模型,一种不断选择优良个体的算法。

谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个基本上是最优的,那么以后再继续这样下去,就可以一直最优了。

2、解决的问题先说说自己要解决的问题吧,遗传算法很有名,自然能解决的问题很多了,在原理上不变的情况下,只要改变模型的应用环境和形式,基本上都可以。

但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。

本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化,函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:怎么样,还是有一点复杂的吧,当然你还可以任意假设和编写,只要符合就可以。

那么现在问你要你一下求出最大值你能求出来吗?这类问题如果用遗传算法或者其他优化方法就很简单了,为什么呢?说白了,其实就是计算机太笨了,同时计算速度又超快,举个例子吧,我把x等分成100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小,找到最大值不就可以了吗,很笨吧,人算是不可能的,但是计算机可以。

而遗传算法也是很笨的一个个搜索,只不过加了一点什么了,就是人为的给它算的方向和策略,让它有目的的算,这也就是算法了。

3、如何开始?我们知道一个种群中可能只有一个个体吗?不可能吧,肯定很多才对,这样相互结合的机会才多,产生的后代才会多种多样,才会有更好的优良基因,有利于种群的发展。

那么算法也是如此,当然个体多少是个问题,一般来说20-100之间我觉得差不多了。

那么个体究竟是什么呢?在我们这个问题中自然就是x值了。

其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选100个不同的x值,不明白的话就假设是100个猴子吧。

遗传算法-简单理解

遗传算法-简单理解

遗传算法(Genetic Algorithm)又叫基因进化算法,或进化算法。

属于启发式搜索算法一种,这个算法比较有趣,并且弄明白后很简单,写个100-200行代码就可以实现。

在某些场合下简单有效。

本文就花一些篇幅,尽量白话方式讲解一下。

首先说一下问题。

在我们学校数据结构这门功课的时候,时常会有一些比较经典的问题(而且比较复杂问题)作为学习素材,如八皇后,背包问题,染色问题等等。

上面列出的几个问题都可以通过遗传算法去解决。

本文列举的问题是TSP(Traveling Salesman Problem)类的问题。

TSP问题实际上是‖哈密顿回路问题‖中的‖哈密顿最短回路问题‖.如下图,就是要把下面8个城市不重复的全部走一遍。

有点像小时候玩的画笔画游戏,一笔到底不能重复。

TSP不光是要求全部走一遍,并且是要求路径最短。

就是有可能全部走一遍有很多走法,要找出其中总路程最短的走法。

和这个问题有点相似的是欧拉回路(下图)问题,它不是要求把每个点都走一遍,而是要求把每个边都不重复走一遍(点可以重复),当然欧拉回路不是本算法研究的范畴。

本文会从TSP引申出下面系列问题1、TSP问题:要求每个点都遍历到,而且要求每个点只被遍历一次,并且总路程最短。

2、最短路径问题:要求从城市1 到城市8,找一条最短路径。

3、遍历m个点,要求找出其距离最短的路线。

(如果m=N总数,其实就是问题1了,所以问题1可以看成是问题3的特例)。

遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。

在上面tsp问题中,一个城市节点可以看成是一个基因,一个最优解就是一条路径,包含若干个点。

就类似一条染色体有若干基因组成一样。

所以求最短路径问题,可以抽象成求最优染色体的问题。

遗传算法很简单,没有什么分支判断,只有两个大循环,流程大概如下流程中有几个关键元素:1、适度值评估函数。

人工智能遗传算法及python代码实现

人工智能遗传算法及python代码实现

人工智能遗传算法及python代码实现人工智能遗传算法是一种基于生物遗传进化理论的启发式算法,常用于求解复杂的优化问题。

它的基本思想是通过自然选择和基因交叉等机制,在种群中不断进化出适应性更强的个体,最终找到问题的最优解。

遗传算法通常由以下几个步骤组成:1. 初始化种群:从问题空间中随机生成一组解作为初始种群。

2. 评价适应度:利用一个适应度函数来评价每个解的适应性,通常是优化问题的目标函数,如最小化代价、最大化收益等。

3. 选择操作:从种群中选择一些具有较高适应度的个体用于产生新的种群。

选择操作通常采用轮盘赌选择方法或精英选择方法。

4. 交叉操作:将两个个体的染色体进行交叉、重组,生成新的子代个体。

5. 变异操作:对新产生的子代个体随机变异一些基因,以增加种群的多样性。

6. 生成新种群:用选择、交叉和变异操作产生新的种群,并进行适应度评价。

7. 终止条件:如果达到终止条件,算法停止,否则返回步骤3。

遗传算法的优点是可以适应各种优化问题,并且求解精度较高。

但由于其需要进行大量的随机操作,因此效率相对较低,也较容易陷入局部最优解。

在实际应用中,遗传算法常与其他算法结合使用,以求得更好的结果。

以下是使用Python实现基本遗传算法的示例代码:import randomimport math# 定义适应度函数,用于评价每个个体的适应程度def fitness_func(x):return math.cos(20 * x) + math.sin(3 * x)# 执行遗传算法def genetic_algorithm(pop_size, chrom_len, pcross, pmutate, generations):# 初始化种群population = [[random.randint(0, 1) for j in range(chrom_len)] for i in range(pop_size)]# 迭代指定代数for gen in range(generations):# 评价种群中每个个体的适应度fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]# 选择操作:轮盘赌选择roulette_wheel = []for i in range(pop_size):fitness = fits[i]roulette_wheel += [i] * int(fitness * 100)parents = []for i in range(pop_size):selected = random.choice(roulette_wheel)parents.append(population[selected])# 交叉操作:单点交叉for i in range(0, pop_size, 2):if random.uniform(0, 1) < pcross:pivot = random.randint(1, chrom_len - 1)parents[i][pivot:], parents[i+1][pivot:] = parents[i+1][pivot:], parents[i][pivot:]# 变异操作:随机翻转一个基因for i in range(pop_size):for j in range(chrom_len):if random.uniform(0, 1) < pmutate:parents[i][j] = 1 - parents[i][j]# 生成新种群population = parents# 返回种群中适应度最高的个体的解fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]best = fits.index(max(fits))return sum(population[best]) / (chrom_len * 1.0)# 测试遗传算法print("Result: ", genetic_algorithm(pop_size=100, chrom_len=10, pcross=0.9, pmutate=0.1, generations=100))上述代码实现了遗传算法,以优化余弦函数和正弦函数的和在某个区间内的最大值。

算法】超详细的遗传算法(GeneticAlgorithm)解析

算法】超详细的遗传算法(GeneticAlgorithm)解析

算法】超详细的遗传算法(GeneticAlgorithm)解析01 什么是遗传算法?1.1 遗传算法的科学定义遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。

遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。

1.2 遗传算法的执行过程(参照百度百科)遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码。

初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

遗传算法java代码

遗传算法java代码

遗传算法java代码遗传算法(Genetic Algorithm)是一种基于生物进化的启发式算法,通过模拟自然选择、交叉和突变等基因操作来优化问题的解。

以下是一个基于Java的遗传算法示例代码:```javaimport java.util.ArrayList;import java.util.List;import java.util.Random;//假设我们要求解的问题是求一个二进制序列的最大值,这个序列的长度为10public class GeneticAlgorithm//染色体长度private static final int CHROMOSOME_LENGTH = 10;//种群大小private static final int POPULATION_SIZE = 100;//迭代次数private static final int MAX_GENERATIONS = 100;//交叉概率private static final double CROSSOVER_RATE = 0.8;//变异概率private static final double MUTATION_RATE = 0.1; //随机数生成器private static final Random RANDOM = new Random(; //个体类private static class Individual//染色体private int[] chromosome;//适应度private double fitness;public Individuachromosome = new int[CHROMOSOME_LENGTH];fitness = 0.0;}//初始化染色体public void initializeChromosomfor (int i = 0; i < CHROMOSOME_LENGTH; i++) chromosome[i] = RANDOM.nextInt(2);}}//计算个体的适应度public void calculateFitnesint decimalValue = 0;for (int i = CHROMOSOME_LENGTH - 1; i >= 0; i--) decimalValue += chromosome[i] * Math.pow(2, CHROMOSOME_LENGTH - i - 1);}fitness = decimalValue;}//获取个体的适应度public double getFitnesreturn fitness;}//获取染色体public int[] getChromosomreturn chromosome;}//设置染色体public void setChromosome(int[] chromosome)this.chromosome = chromosome;}}//生成初始种群private static List<Individual> createInitialPopulatioList<Individual> population = new ArrayList<>(;for (int i = 0; i < POPULATION_SIZE; i++)Individual individual = new Individual(;individual.initializeChromosome(;population.add(individual);}return population;}//选择父母个体private static Individual selectParent(List<Individual> population)double sumFitness = 0.0;for (Individual individual : population)sumFitness += individual.getFitness(;}double randomFitness = RANDOM.nextDouble( * sumFitness;double cumulativeFitness = 0.0;for (Individual individual : population)cumulativeFitness += individual.getFitness(;if (cumulativeFitness > randomFitness)return individual;}}return population.get(0);}//交叉操作private static Individual crossover(Individual parent1, Individual parent2)Individual offspring = new Individual(;int[] parent1Chromosome = parent1.getChromosome(;int[] parent2Chromosome = parent2.getChromosome(;int crossoverPoint = RANDOM.nextInt(CHROMOSOME_LENGTH - 1) + 1;int[] offspringChromosome = new int[CHROMOSOME_LENGTH];System.arraycopy(parent1Chromosome, 0, offspringChromosome, 0, crossoverPoint);System.arraycopy(parent2Chromosome, crossoverPoint, offspringChromosome, crossoverPoint, CHROMOSOME_LENGTH - crossoverPoint);offspring.setChromosome(offspringChromosome);return offspring;}//变异操作private static void mutate(Individual individual)int[] chromosome = individual.getChromosome(;for (int i = 0; i < CHROMOSOME_LENGTH; i++)if (RANDOM.nextDouble( < MUTATION_RATE)chromosome[i] = chromosome[i] == 0 ? 1 : 0;}}individual.setChromosome(chromosome);}//遗传算法主函数public static void main(String[] args)List<Individual> population = createInitialPopulation(;for (int generation = 0; generation < MAX_GENERATIONS; generation++)for (Individual individual : population)individual.calculateFitness(;}Individual bestIndividual = population.get(0);for (Individual individual : population)if (individual.getFitness( > bestIndividual.getFitness() bestIndividual = individual;}}System.out.println("Generation: " + generation + " Best Individual: " + bestIndividual.getFitness();List<Individual> newPopulation = new ArrayList<>(;while (newPopulation.size( < POPULATION_SIZE)Individual parent1 = selectParent(population);Individual parent2 = selectParent(population);Individual offspring = crossover(parent1, parent2);mutate(offspring);newPopulation.add(offspring);}population = newPopulation;}}```以上示例代码实现了一个简单的二进制序列的最大化遗传算法。

遗传算法解释及代码(一看就懂)

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

(完整版)遗传算法的基本原理

(完整版)遗传算法的基本原理

遗传算法的基本原理和方法一、编码编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。

解码(译码):遗传算法解空间向问题空间的转换。

二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。

格雷码(Gray Code):在相邻整数之间汉明距离都为1。

(较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。

二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。

动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。

编码方法:1、二进制编码方法缺点:存在着连续函数离散化时的映射误差。

不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。

3、浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。

4、各参数级联编码:对含有多个变量的个体进行编码的方法。

通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。

5、多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。

评估编码的三个规范:完备性、健全性、非冗余性。

二、选择遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。

slp遗传算法代码

slp遗传算法代码

slp遗传算法代码遗传算法(Genetic Algorithm)是通过模拟生物进化过程来解决问题的一种随机优化算法。

该算法可以应用于各种优化问题,并且具有全局优化能力、鲁棒性强等特点,被广泛应用于优化问题的解决中。

下面将介绍SLP遗传算法的代码实现。

SLP遗传算法是一种求解单目标离散组合优化问题的遗传算法。

其流程如下:1. 随机生成一个种群2. 对每个个体进行适应度计算3. 选择操作:根据轮盘赌算法等选择方法选择优秀的个体,保留至下一代。

4. 交叉操作:从选择出的优秀个体中随机选取两个进行交叉,生成子代。

5. 变异操作:对子代进行变异操作,增加遗传的多样性。

6. 重复执行第2至第5步,直到满足终止条件。

以下是SLP遗传算法的代码实现:import randomclass SLP_GA():def __init__(self, fit_func, pop_size=50,chrom_len=10, max_iter=100, p_crossover=0.8, p_mutation=0.15): """:param fit_func: 适应度函数:param pop_size: 种群大小:param chrom_len: 染色体长度:param max_iter: 最大迭代次数:param p_crossover: 交叉概率:param p_mutation: 变异概率"""self.fit_func = fit_funcself.pop_size = pop_sizeself.chrom_len = chrom_lenself.max_iter = max_iterself.p_crossover = p_crossoverself.p_mutation = p_mutationself.generation = [] # 当前种群self.best_chrom = None # 最优个体self.best_fitness = None # 最优适应度def init_population(self):"""初始化种群"""for i in range(self.pop_size):chrom = [random.randint(0, 1) for _ inrange(self.chrom_len)]fit = self.fit_func(chrom)self.generation.append((chrom, fit))def selection(self):"""选择操作"""total_fit = sum([fit for chrom, fit inself.generation])select_prob = [fit / total_fit for chrom, fit in self.generation] # 计算每个个体被选择的概率new_generation = []for i in range(self.pop_size):# 轮盘赌算法选择优秀个体choice = random.choices(self.generation, select_prob)[0]new_generation.append(choice)self.generation = new_generationdef crossover(self):"""交叉操作"""new_generation = []for i in range(self.pop_size // 2): # 随机选取两个个体进行交叉chrom1, fit1 = random.choice(self.generation) chrom2, fit2 = random.choice(self.generation) if random.random() < self.p_crossover:cross_pos = random.randint(1,self.chrom_len - 1) # 随机交叉点new_chrom1 = chrom1[:cross_pos] + chrom2[cross_pos:]new_chrom2 = chrom2[:cross_pos] + chrom1[cross_pos:]new_generation.append((new_chrom1, self.fit_func(new_chrom1)))new_generation.append((new_chrom2, self.fit_func(new_chrom2)))else:new_generation.append((chrom1, fit1)) new_generation.append((chrom2, fit2)) self.generation = new_generationdef mutation(self):"""变异操作"""for i in range(self.pop_size):chrom, fit = self.generation[i]if random.random() < self.p_mutation:mut_pos = random.randint(0,self.chrom_len - 1) # 随机变异位chrom[mut_pos] = 1 - chrom[mut_pos] # 变异操作self.generation[i] = (chrom,self.fit_func(chrom))def evolve(self):"""遗传算法进化过程"""self.init_population()for i in range(self.max_iter):self.selection()self.crossover()self.mutation()self.best_chrom, self.best_fitness = max(self.generation, key=lambda x: x[1])def run(self):"""运行函数,返回最终结果"""self.evolve()return self.best_chrom, self.best_fitness # 示例应用def knapsack(chrom):# 物品重量、价值和背包容量weights = [2, 2, 4, 6, 5, 8, 5, 11, 15]values = [4, 6, 8, 3, 5, 3, 7, 10, 13]w_limit = 30w_total = 0v_total = 0for i in range(len(chrom)):if chrom[i] == 1:w_total += weights[i]v_total += values[i]if w_total > w_limit:return 0else:return v_totalga = SLP_GA(fit_func=knapsack)print(()) # 输出最大价值及其对应的0/1序列。

遗传算法简单易懂的例子

遗传算法简单易懂的例子

遗传算法简单实例为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。

例:求下述二元函数的最大值:(1) 个体编码遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。

本题中,用无符号二进制整数来表示。

因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。

例如,基因型 X=101110 所对应的表现型是:x=[ 5,6 ]。

个体的表现型x和基因型X之间可通过编码和解码程序相互转换。

(2) 初始群体的产生遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始群体数据。

本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。

如:011101,101011,011100,111001(3) 适应度汁算遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传机会的大小。

本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接利用目标函数值作为个体的适应度。

(4) 选择运算选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。

一般要求适应度较高的个体将有更多的机会遗传到下一代群体中。

本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。

其具体操作过程是:•先计算出群体中所有个体的适应度的总和fi ( i=1.2,…,M );•其次计算出每个个体的相对适应度的大小 fi / fi ,它即为每个个体被遗传到下一代群体中的概率,•每个概率值组成一个区域,全部概率值之和为1;•最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。

(5) 交叉运算交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某两个个体之间的部分染色体。

遗传算法解释及代码(一看就懂)

遗传算法解释及代码(一看就懂)

遗传算法解释及代码(一看就懂)遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

(完整版)遗传算法简介及代码详解

(完整版)遗传算法简介及代码详解

遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。

遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。

遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。

初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。

适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。

SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。

遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。

前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。

非常重要的过程。

遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。

例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。

将0-1字符串作为0-1背包问题的解就属于二进制编码。

遗传算法有3个最基本的操作:选择,交叉,变异。

选择:选择一些染色体来产生下一代。

一种常用的选择策略是“比例选择”,也就是个体被选中的概率与其适应度函数值成正比。

假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。

比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:轮盘赌算法/** 按设定的概率,随机选中一个个体* P[i]表示第i个个体被选中的概率*/int RWS(){m =0;r =Random(0,1); //r为0至1的随机数for(i=1;i<=N; i++){/* 产生的随机数在m~m+P[i]间则认为选中了i* 因此i被选中的概率是P[i]*/m = m + P[i];if(r<=m) return i;}}交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。

例如:交叉前:00000|011100000000|1000011100|000001111110|00101交叉后:00000|000001111110|1000011100|011100000000|00101染色体交叉是以一定的概率发生的,这个概率记为Pc 。

变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。

变异发生的概率记为Pm 。

例如:变异前:000001110000000010000变异后:000001110000100010000适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。

有时需要区分染色体的适应度函数与问题的目标函数。

例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。

适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

三.基本遗传算法的伪代码基本遗传算法伪代码/** Pc:交叉发生的概率* Pm:变异发生的概率* M:种群规模* G:终止进化的代数* Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程*/初始化Pm,Pc,M,G,Tf等参数。

随机产生第一代种群Popdo{计算种群Pop中每一个体的适应度F(i)。

初始化空种群newPopdo{根据适应度以比例选择算法从种群Pop中选出2个个体if ( random ( 0 , 1 ) < Pc ){对2个个体按交叉概率Pc执行交叉操作}if ( random ( 0 , 1 ) < Pm ){对2个个体按变异概率Pm执行变异操作}将2个新个体加入种群newPop中} until ( M个子代被创建 )用newPop取代Pop}until ( 任何染色体得分超过Tf,或繁殖代数超过G )四.基本遗传算法优化下面的方法可优化遗传算法的性能。

精英主义(Elitist Strategy)选择:是基本遗传算法的一种优化。

为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。

插入操作:可在3个基本操作的基础上增加一个插入操作。

插入操作将染色体中的某个随机的片段移位到另一个随机的位置。

五. 使用AForge.Genetic解决TSP问题是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。

中包含有一个遗传算法的类库。

主页:/代码下载:/p/aforge/介绍一下AForge的遗传算法用法吧。

AForge.Genetic的类结构如下:图1. AForge.Genetic的类图下面用AForge.Genetic写个解决TSP问题的最简单实例。

测试数据集采用网上流传的中国31个省会城市的坐标:13042312363913154177224437121399348815353326155632381229419610044312790438657030071970256217562788149123811676133269537151678391821794061237037802212367625784029283842632931342919083507236733942643343932012935324031403550254523572778282623702975操作过程:(1) 下载类库,网址:/p/aforge/downloads/list(2) 创建C#空项目GenticTSP。

然后在AForge目录下找到AForge.dll 和AForge.Genetic.dll,将其拷贝到TestTSP项目的bin/Debug目录下。

再通过“Add Reference...”将这两个DLL添加到工程。

(3) 将31个城市坐标数据保存为bin/Debug/Data.txt 。

(4) 添加TSPFitnessFunction.cs,加入如下代码:TSPFitnessFunction类using System;using AForge.Genetic;namespace GenticTSP{///<summary>/// Fitness function for TSP task (TravalingSalasman Problem)///</summary>publicclass TSPFitnessFunction : IFitnessFunction{// mapprivateint[,] map =null;// Constructorpublic TSPFitnessFunction(int[,] map){this.map = map;}///<summary>/// Evaluate chromosome - calculates its fitness value///</summary>publicdouble Evaluate(IChromosome chromosome){return1/ (PathLength(chromosome) +1);}///<summary>/// Translate genotype to phenotype///</summary>publicobject Translate(IChromosome chromosome)return chromosome.ToString();}///<summary>/// Calculate path length represented by the specified chromosome///</summary>publicdouble PathLength(IChromosome chromosome){// salesman pathushort[] path = ((PermutationChromosome)chromosome).Value;// check path sizeif (path.Length != map.GetLength(0)){thrownew ArgumentException("Invalid path specified - not all cities are visited");}// path lengthint prev = path[0];int curr = path[path.Length -1];// calculate distance between the last and the first citydouble dx = map[curr, 0] - map[prev, 0];double dy = map[curr, 1] - map[prev, 1];double pathLength = Math.Sqrt(dx * dx + dy * dy);// calculate the path length from the first city to the lastfor (int i =1, n = path.Length; i < n; i++){// get current citycurr = path[i];// calculate distancedx = map[curr, 0] - map[prev, 0];dy = map[curr, 1] - map[prev, 1];pathLength += Math.Sqrt(dx * dx + dy * dy);// put current city as previousprev = curr;}return pathLength;}}(5) 添加GenticTSP.cs,加入如下代码:GenticTSP类using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.IO;using AForge;using AForge.Genetic;namespace GenticTSP{class GenticTSP{staticvoid Main(){StreamReader reader =new StreamReader("Data.txt"); int citiesCount =31; //城市数int[,] map =newint[citiesCount, 2];for (int i =0; i < citiesCount; i++){string value = reader.ReadLine();string[] temp = value.Split('');map[i, 0] =int.Parse(temp[0]); //读取城市坐标map[i, 1] =int.Parse(temp[1]);}// create fitness functionTSPFitnessFunctionfitnessFunction =new TSPFitnessFunction(map);int populationSize = 1000; //种群最大规模/** 0:EliteSelection算法* 1:RankSelection算法* 其他:RouletteWheelSelection 算法* */int selectionMethod =0;// create populationPopulationpopulation =new Population(populationSize,new PermutationChromosome(citiesCount),fitnessFunction,(selectionMethod ==0) ? (ISelectionMethod)new EliteSelection() : (selectionMethod ==1) ? (ISelectionMethod)new RankSelection() : (ISelectionMethod)new RouletteWheelSelection());// iterationsint iter =1;int iterations =5000; //迭代最大周期// loopwhile (iter < iterations){// run one epoch of genetic algorithmpopulation.RunEpoch();// increase current iterationiter++;}System.Console.WriteLine("遍历路径是: {0}", ((PermutationChromosome)population.BestChromosome).ToString()); System.Console.WriteLine("总路程是:{0}",fitnessFunction.PathLength(population.BestChromosome)); System.Console.Read();}}}。

相关文档
最新文档