磁场中旋转圆问题
2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)
磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。
带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。
带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。
2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。
一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。
二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。
旋转圆法解决磁场临界问题
旋转圆法解决磁场临界问题引言磁场临界问题是许多物理学领域中常见的一个问题。
它涉及到判断一个系统中的磁场是否达到了一个临界值,从而影响系统的稳定性和性能。
解决磁场临界问题对于磁场控制和应用有着重要的意义。
在本篇文章中,我们将介绍一种名为”旋转圆法”的方法来解决磁场临界问题。
旋转圆法的原理旋转圆法是一种通过观察磁场随时间的演化来判断系统是否达到了临界值的方法。
该方法基于以下原理:1.假设一个系统中的磁场具有周期性变化的特性。
这意味着磁场随时间的变化可以用一个周期函数来描述。
2.根据系统的运动方程,可以得到磁场随时间的演化方程。
通过求解这个方程,我们可以得到磁场的解析表达式。
3.当系统的磁场达到临界值时,磁场的周期性变化将出现剧烈的变化。
这可以通过观察磁场的振幅、频率或相位等特征来判断。
基于以上原理,旋转圆法提供了一种便捷和直观的方法来判断磁场临界问题。
旋转圆法的步骤下面我们将介绍旋转圆法的具体步骤:步骤1:建立磁场模型首先,我们需要建立一个适当的磁场模型,以描述系统中的磁场特性。
这可以根据具体问题来确定,可以是一个简单的数学模型,也可以是一个复杂的物理模型。
建立磁场模型的目的是为了求解磁场随时间的演化方程,从而得到磁场的解析表达式。
步骤2:求解磁场演化方程根据磁场模型,我们可以得到磁场随时间的演化方程。
这是一个常微分方程,可以通过数值方法或解析方法求解。
解析方法可以提供磁场的解析表达式,而数值方法可以给出磁场的数值解。
步骤3:观察磁场的周期性变化利用得到的磁场解析表达式或数值解,我们可以观察磁场随时间的周期性变化。
可以通过绘制磁场随时间的图像来直观地观察磁场的变化。
在这个过程中,我们可以注意到磁场的振幅、频率或相位等特征的变化。
步骤4:判断磁场是否达到临界值根据观察到的磁场特征,我们可以判断磁场是否达到了临界值。
当磁场的振幅、频率或相位等特征发生剧烈变化时,可以认为磁场已经达到了临界值。
这意味着系统的性质和稳定性将发生明显的变化。
高中物理-17 磁场旋转圆问题—高中物理三轮复习重点题型考前突破
“动态圆”模型带电粒子在磁场中做圆周运动轨迹的圆心位置变化的问题称为动态圆问题.常用的有两种模型.1.确定的入射点O 和速度大小v ,不确定速度方向(旋转圆模型)在垂直于纸面的无限大的磁感应强度为B 的匀强磁场中,在O 点有一粒子源在纸面内,朝各个方向发射速度大小为v ,质量为m ,电荷量为+q 的带电粒子(重力不计),这些带电粒子在匀强磁场中做同方向旋转匀速圆周运动.其特点是:(1)各动态圆圆心O 1、O 2、O 3 、O 4 、O 5(取五个圆)的轨迹分布在以粒子源O 为圆心,R =mv qB为半径的一个圆周上(如图虚线所示).(2)带电粒子在磁场中能经过的区域是以粒子源O 为圆心,2R 为半径的大圆(如图实线所示).(3)各动态圆相交于O 点.一、单边界磁场1、如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 、带电荷量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域.不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R =mvBq.哪个图是正确的( )答案:A 解析 由于带电粒子从O 点以相同速率射入纸面内的各个方向,射入磁场的带电粒子在磁场内做匀速圆周运动,其运动半径是相等的.沿ON 方向(临界方向)射入的粒子,恰能在磁场中做完整的圆周运动,则过O 点垂直MN 方向的右侧恰为一临界半圆;若将速度方向沿ON 方向逆时针偏转,则在过O 点垂直MN 方向的左侧,其运动轨迹上各个点到O 点的最远距离,恰好是以O 为圆心,以2R 为半径的14圆弧.A 正确. 2.(多选)(2012·江苏·9)如图所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,粒子重力不计,最远能落在边界上的A 点.下列说法正确的有( )A .若粒子落在A 点的左侧,其速度一定小于v 0B .若粒子落在A 点的右侧,其速度一定大于v 0C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd 2mD .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd 2m答案:BC 解析 带电粒子在磁场中做匀速圆周运动,qv 0B =mv 20r ,所以r =mv 0qB ,当带电粒子从不同方向由O 点以速度v 0进入匀强磁场时,其轨迹是半径为r 的圆,轨迹与边界的交点位置最远是离O 点2r 的距离,即OA =2r ,落在A 点的粒子从O 点垂直入射,其他粒子则均落在A 点左侧,若落在A 点右侧则必须有更大的速度,选项B 正确.若粒子速度虽然比v 0大,但进入磁场时与磁场边界夹角过大或过小,粒子仍有可能落在A 点左侧,选项A 、D 错误.若粒子落在A 点左右两侧d 的范围内,设粒子运动轨迹的半径为r ′,则r ′≥2r -d 2,代入r =mv 0qB ,r ′=mv qB ,解得v ≥v 0-qBd 2m,选项C 正确. 3.(多选)如图所示,一粒子发射源P 位于足够大绝缘板AB 的上方d 处,能够在纸面内向各个方向发射速率为v 、电荷量为q 、质量为m的带正电的粒子。
数学圆法巧解磁场中的临界问题(解析版)
数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。
产生圆形旋转电磁场的所有条件
产生圆形旋转电磁场的所有条件
要产生圆形旋转电磁场,需要满足以下条件:
1. 电磁场必须是交变电磁场,在时间上有周期性变化。
2. 磁场的方向必须垂直于旋转轴线,并且在平面上呈现圆形分布。
3. 电磁场的强度必须随着时间变化,并且在旋转轴线上呈现周期性的变化。
4. 电磁场的频率必须足够高,使得所产生的旋转磁场在人眼中能够看到。
为了满足这些条件,可以使用旋转电流来产生旋转磁场。
具体方法包括:
1. 在一个导线上通以交流电流,使得电流在导线中形成周期性变化。
可以通过交流电源或者震荡电路来提供交流电流。
2. 将导线绕成圆形或环形,使得电流在导线周围形成圆形分布。
3. 控制交流电流的频率,使得旋转磁场的频率足够高,以满足人眼的视觉要求。
需要注意的是,以上是一种常见的方法,可以产生简单的圆形
旋转电磁场。
实际应用中,可能会有其他的方法和条件,具体需要根据具体的研究或设计要求来确定。
磁场(旋转圆,缩放圆,移动圆)教程文件
磁场(旋转圆,缩放圆,移动圆)旋转圆问题1,宽h=2cm的有界且有垂直纸面向内的匀强磁场,纵向范围足够大,现有一群带正电的粒子从0点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为R=5cm,求匀强磁场右边界粒子射出的范围。
2在真空中,半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s的速度从磁场边界上直径ab一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角θ表示)?最大偏转角多大?3 如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里.许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射人磁场区域.不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子能经过区域,其中R=mv/qB.哪个图是正确的?()A BC D4如图所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直于纸面向里。
P为屏上的一小孔,PC与MN垂直,一群质量为m的粒子(不计重力),一相同速率V,从P出沿垂直与磁场的方向射入磁场范围,粒子入射方向在于磁场B垂直的屏面内,且三开在于PC夹角为θ的范围内。
则在屏MN 上被粒子打中的区域的长度为A B C D .5:如图,电子源S能在图示纸面360°范围内发射速率相同的电子(质量为m,电量为e),M、N是足够大的竖直挡板,与S的水平距离OS=L,挡板左侧是垂直纸面向里,磁感应强度为B的匀强磁场。
(1)要使发射的电子能到达挡板,电子速度至少为多大?(2)若S发射的电子速率为eBL/m时,挡板被电子击中的范围有多大?6如图所示,A1、A2为两块面积很大、相互平行的金属板,两板间距离为d,以A1板的中点为坐标原点,水平向右和竖直向下分别建立x轴和y轴,在坐标为(0,d21)的P处有一粒子源,可在坐标平面内向各个方向不断发射同种带电粒子,这些带电粒子的速度大小均为v0,质量为m,带电量为+q,重力忽略不计,不考虑粒子打到板上的反弹,且忽略带电粒子对金属板上电荷分布的影响.(1)若只在A1、A2板间加上恒定电压U0,且A1板电势低于A2板,求粒子打到A1板上的速度大小;(2)若只在A1、A2板间加上一方向垂直于纸面向外的匀强磁场,磁感应强度为B,且B<dqmv2,求A1板上有粒子打到的区域范围(用x轴坐标值表示);(3)在第(2)小题前提下,若在A1、A2板间再加一电压,使初速度垂直指向OA1A2xyPA 1板的粒子打不到A 1板,试确定A 1、A 2板电势的高低以及电压的大小.7如图,圆形区域内有一垂直纸面的匀强磁场,P 为磁场边界上的一点。
带电粒子旋转圆问题有界磁场
带电粒子旋转圆问题
当一个带电粒子在有界磁场中旋转成圆形轨道时,其运动可由洛伦兹力和向心力共同决定。
洛伦兹力是由磁场和带电粒子的电荷性质决定的力,它始终垂直于带电粒子的速度和磁场方向。
向心力则是由带电粒子的质量和速度决定的力,它指向圆心,使得带电粒子保持在圆形轨道上。
首先,考虑洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷大小、速度以及磁场强度相关。
在磁场中,洛伦兹力会使带电粒子受到一个向心力的作用,引导其沿着圆形轨道运动。
洛伦兹力的方向始终垂直于速度和磁场的方向,这使得带电粒子的速度方向会不断发生变化,从而导致其轨道是一个圆形。
其次,向心力也会参与其中。
向心力始终指向圆心,使得带电粒子保持在圆形轨道上。
向心力的大小与带电粒子的质量和速度有关。
在带电粒子绕圆形轨道运动时,向心力和洛伦兹力相等,使得带电粒子保持运动的稳定性。
需要注意的是,带电粒子的质量、电荷大小、速度和磁场强度等因素会影响带电粒子在有界磁场中旋转圆的半径和速度。
通过调节磁场强度或改变粒子的性质,可以实现对带电粒子旋转圆运动的调控。
总之,在有界磁场中,带电粒子旋转成圆形轨道的问题涉及到洛伦兹力和向心力的相互作用。
这种运动是通过调节带电粒子的性质和磁场强度来实现的,可以用来研究电磁场中粒子的运动规律。
带电圆环旋转产生电流大小公式
带电圆环旋转产生电流大小公式一、带电圆环产生电流的原理当一个带电圆环在磁场中旋转时,由于磁场的存在,带电圆环中的电子会受到磁场力的作用,产生一个向心力。
根据洛伦兹力定律,电子受到的向心力与速度方向垂直,使电子做圆周运动。
这个运动过程中,电子的速度在不断改变,因此会产生加速度。
根据加速度产生电磁辐射的原理,带电圆环会产生一个电磁波,即电流。
二、带电圆环旋转产生电流大小的计算公式根据法拉第电磁感应定律,当一个闭合回路中的磁通量发生变化时,会在回路中产生感应电动势。
对于带电圆环旋转产生的电流而言,可以利用该定律来计算电流大小。
根据法拉第电磁感应定律,感应电动势的大小与磁通量的变化率成正比。
在带电圆环旋转的过程中,电磁感应的磁通量的变化率可以表示为:Φ = B * A * cosθ其中,Φ表示磁通量,B表示磁场的强度,A表示圆环的面积,θ表示磁场方向与法线方向之间的夹角。
根据电磁感应定律,感应电动势与磁通量的变化率成正比,即:ε = -dΦ/dt其中,ε表示感应电动势,dΦ/dt表示磁通量的变化率。
根据欧姆定律,电动势与电流的关系为:ε = IR其中,I表示电流,R表示电阻。
带电圆环旋转产生的电流大小可以表示为:I = -(dΦ/dt) / R三、带电圆环旋转产生电流的实际应用带电圆环旋转产生的电流在实际应用中具有广泛的用途。
例如,它可以应用于发电机的原理中。
发电机利用带电圆环在磁场中旋转产生的电流来产生电能。
通过控制带电圆环的旋转速度和磁场的强度,可以调节发电机产生的电流大小,以满足不同的电能需求。
带电圆环旋转产生的电流还可以应用于感应加热技术。
感应加热利用电流在导体中产生的热效应,将电能转化为热能。
通过控制带电圆环旋转的速度和磁场的强度,可以调节感应加热过程中产生的电流大小,从而实现对物体的加热控制。
总结起来,带电圆环旋转产生的电流大小可以通过计算公式来确定。
在实际应用中,可以利用这一原理来设计和控制各种电子设备,以满足不同的需求。
考点12:旋转圆法--带电粒子在磁场中运动的临界问题
考点12:旋转圆法--带电粒子在磁场中运动的临界问题当粒子的入射速度大小确定而方向不确定时,所有不同方向入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转(作图)中,也容易发现“临界点”.另外,要重视分析时的尺规作图,规范而准确的作图可突出几何关系,使抽象的物理问题更形象、直观,如图. ①适用条件a.速度大小一定,方向不同粒子源发射速度大小一定,方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若入射初速度为v 0,由q v 0B =m v 20R 得圆周运动半径为R =m v 0qB .b.轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点O 为圆心、半径R =m v 0qB 的圆(这个圆在下面的叙述中称为“轨迹圆心圆”)上. ②界定方法将半径为R =m v 0qB 的圆的圆心沿着“轨迹圆心圆”移动,从而探索出临界条件,这种方法称为“旋转圆法”.1.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.2.如图所示,在边长ab =1.5L 、bc =3L 的矩形区域内存在着垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域内各个方向发射速度大小相等的同种带电粒子.若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用.下列说法正确的是( )A.粒子带负电C.粒子的比荷为πBt 0D.粒子在磁场中运动的最长时间为2t 0 2.D[由题设条件作出以O 1为圆心的轨迹圆弧,如图所示,由左手定则可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ=32L L =32,解得θ=π3,可得T =6t 0,选项B 错误;根据洛伦兹力公式和牛顿第二定律可得T =2πm qB ,解得m q =3t 0Bπ,选项C 错误;根据周期公式,粒子在磁场中运动时间t =mαqB ,在同一圆中,半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是以O 2为圆心的圆弧,如图所示,由图中几何关系可知α=2π3,解得t =2t 0,选项D 正确.]3.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.4.如图所示,在0≤x ≤3a 的区域内存在与xOy 平面垂直的匀强磁场,磁感应强度大小为B .在t =0时刻,从原点O 发射一束等速率的相同的带电粒子,速度方向与y 轴正方向的夹角分布在0°~90°范围内.其中,沿y 轴正方向发射的粒子在t =t 0时刻刚好从磁场右边界上P (3a ,3a )点离开磁场,不计粒子重力,下列说法正确的是( )A .粒子在磁场中做圆周运动的半径为3aB .粒子的发射速度大小为4πa t 0C .带电粒子的比荷为4π3Bt答案 D解析 根据题意作出沿y 轴正方向发射的带电粒子在磁场中做圆周运动的运动轨迹如图所示, 圆心为O ′,根据几何关系,可知粒子做圆周运动的半径为r =2a ,故A 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3 ,运动时间t 0=2π3×2a v 0,解得:v 0=4πa3t 0,选项B 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3,对应运动时间为t 0,所以粒子运动的周期为T =3t 0,由Bq v 0=m ⎝⎛⎭⎫2πT 2r ,则q m =2π3Bt 0,故C 错误;在磁场中运动时间最长的粒子的运动轨迹如图所示,由几何知识得该粒子做圆周运动的圆心角为4π3,在磁场中的运动时间为2t 0,故D 正确.5.如图所示,半径为r 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场边界上A 点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k ,速度大小为2kBr 。
带电粒子在磁场中的运动旋转圆问题
带电粒子在磁场中的运动旋转圆问题带电粒子在磁场中的运动旋转圆问题在自然界中,存在这一类有趣的物理现象:当带电粒子在磁场中运动时,其轨迹会形成一个旋转圆,这是磁场对带电粒子施加力的结果。
这一现象既有理论意义,也有实际应用价值,因此一直受到科学家们的广泛关注。
本文将深入探讨带电粒子在磁场中的运动旋转圆问题,从基础知识到研究进展,希望能够对读者深入了解这一问题提供帮助。
1. 磁场基础知识我们需要了解一些基础的磁场知识。
磁场是由带电粒子或磁体所产生的一种物理现象,其对带电粒子的运动具有显著的影响。
磁场的存在可以通过磁力线来描述,磁力线以箭头指向磁场的方向,用于表示磁场的强度和方向。
在磁场中,带电粒子会受到洛伦兹力的作用,该力的方向垂直于带电粒子的运动方向和磁场的方向。
2. 带电粒子在磁场中的运动规律当带电粒子在磁场中运动时,它会受到洛伦兹力的作用,从而产生一个向心力。
这个向心力使得带电粒子在磁场中做圆周运动,形成一个旋转圆。
带电粒子的圆周运动半径由其质量、速度和所受磁场的强度决定。
具体而言,向心力的大小可以由下式表示:F = qvB其中,F表示向心力,q表示带电粒子的电荷量,v表示带电粒子的速度,B表示磁场强度。
根据这个式子可以看出,当带电粒子的电荷量或速度增大,或磁场强度增大时,向心力也会增大,从而使得带电粒子的圆周运动半径增大。
3. 带电粒子在磁场中的应用带电粒子在磁场中的运动旋转圆问题不仅在理论物理中具有重要意义,也在实际应用领域有着广泛的应用。
一种常见的应用是在粒子加速器中,利用磁场的作用使得带电粒子在环形加速器中做圆周运动,从而达到高能量的粒子碰撞。
在核磁共振技术中,利用磁场的作用对带电粒子进行操控,从而实现对物质结构的研究和应用。
4. 对带电粒子在磁场中的运动旋转圆问题的个人观点和理解带电粒子在磁场中的运动旋转圆问题是一个非常有趣的物理现象,我个人对此有着浓厚的兴趣。
通过研究和分析这一问题,我们可以深入了解磁场对带电粒子运动的影响,并且可以应用于实际技术中。
磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)
磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型特训目标特训内容目标1旋转圆模型(1T-4T)目标2放缩圆模型(5T-8T)目标3平移圆模型(9T-12T)目标4磁聚焦模型(13T-16T)【特训典例】一、旋转圆模型1如图所示,在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中有一粒子源,粒子源从O点在纸面内同时向各个方向均匀地发射带正电的粒子,其速率为v、质量为m、电荷量为q。
PQ是在纸面内垂直磁场放置的厚度不计的挡板,挡板的P端与O点的连线与挡板垂直,距离为8mv5qB。
设打在挡板上的粒子全部被吸收,磁场区域足够大,不计带电粒子间的相互作用及重力,sin37°=0.6,cos37°=0.8。
则()A.若挡板长度为4mv5qB,则打在板上的粒子数最多B.若挡板足够长,则打在板上的粒子在磁场中运动的最短时间为127πm180qBC.若挡板足够长,则打在板上的粒子在磁场中运动的最长时间为πmqBD.若挡板足够长,则打在挡板上的粒子占所有粒子的14【答案】D【详解】A.设带电粒子的质量为m,带电量为q,粒子在磁场中受到的洛伦兹力提供做圆周运动的向心力。
设粒子做圆周运动的半径为r。
则有qvB=m v2r解得r=mvqB能打到挡板上的最远的粒子如图;由几何关系可知,挡板长度L=(2r)2-d2=6mv5qB选项A错误;BC.由以上分析知,当粒子恰好从左侧打在P点时,时间最短,如图轨迹1所示,由几何关系得粒子转过的圆心角为θ1=106°;对应的时间为t min=θ12πT=106°360°2πmqB=53πm90qB当粒子从右侧恰好打在P点时,时间最长,如图轨迹2所示,由几何关系得粒子转过的圆心角为θ2=254°对应的时间为t max=θ22πT=254°360°⋅2πmqB=127πm90qB选项BC 错误;D .如图所示,能打到屏上的粒子,在发射角在与x 轴成37°到127°范围内90°角的范围内的粒子,则打在挡板上的粒子占所有粒子的14,选项D 正确。
专题18 磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)
2022届高三物理二轮常见模型与方法综合特训专练专题18 磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型专练目标专练内容目标1旋转圆模型(1T—5T)目标2放缩圆模型(6T—10T)目标3平移圆模型(11T—15T)目标4磁聚焦模型(16T—20T)一、旋转圆模型1.如图甲所示的平面直角坐标系中,x轴上方有磁感应强度大小为B、垂直纸面向外的匀强磁场,在O点处有一粒子源,沿纸面不断地放出同种粒子,粒子的速率均为v,粒子射入磁场的速度方向与x轴正方向的夹角范围为60°—120°。
粒子的重力及粒子间的相互作用均不计。
图乙中的阴影部分表示粒子能经过的区域,其内边界与x轴的交点为E,外边界与x轴的交点为F,与y轴的交点为D(a,0)。
下列判断正确的是()A.粒子所带电荷为正电B.OF3C.粒子源放出的粒子的荷质比为v aBD.从点E离开磁场的粒子在磁场中运动的时间可能为23a v π【答案】CD【详解】A.由左手定则可知,粒子所带电荷为负电,选项A错误;B.则OD a R==则OF=2R=2a选项B错误;C.根据2vqvB mR=解得q v vm BR Ba==选项C正确;D.从点E离开磁场的粒子在磁场中转过的角度可能为120°,也可能是240°,则在磁场中运动的时间可能为233vT atπ==也可能是2433T atvπ=='选项D正确。
故选CD。
2.如图,一粒子发射源P位于足够长绝缘板AB的上方d处,能够在纸面内向各个方向发射速率为v、比荷为k的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。
已知粒子做圆周运动的半径大小恰好为d,则()A.磁感应强度的大小为d kvB.磁感应强度的大小为v kdC .同一时刻发射出的带电粒子打到板上的最大时间差为76dvπ D .同一时刻发射出的带电粒子打到板上的最大时间差为6kdvπ【答案】BC【详解】AB .根据牛顿第二定律2v qvB m d =根据题意q k m =解得v B kd =,A 错误,B 正确;CD .同一时刻发射出的带电粒子打到板上的最长时间和最短时间如图所示min 16t T =;max 34t T =粒子运动的周期为2dT v π=最大时间差为max min t t t ∆=-解得76d t vπ∆=,C 正确,D 错误。
带电粒子在磁场中运动放缩圆和旋转圆
磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
0
解:R1+R1sin30º = L/2 得R1 = L/3 R2- R2cos60º = L/2 得:R2 = L。
qBL ≥v0≥ m
qBL 3m
a
b
R1
O
q v 0
R2 B c
d
轨迹圆的旋转
• 当粒子的入射速度大小 一定而方向不确定时, 从不同方向入射的粒子 的轨迹圆都一样大,只 是位置绕入射点发生了 旋转,从定圆的动旋转 中发现临界点
如图,水平放置的平板MN上方有方向垂直于纸面向里的 匀强磁场,磁感应强度为B,许多质量为m,带电量为 +q的粒子,以相同的速率 v 沿位于纸面内的各个方向, 由小孔O射入磁场区域,不计重力,不计粒子间的相互 影响。下列图中阴影部分表示带电粒子可能经过的区域, 其中R=mv/qB,哪个图是正确的?( A )
总结:带电粒子在磁场中运动旋转圆和放缩圆
• 1、定圆心:方法 • 2、算半径:
利用v⊥R 利用弦的中垂线
几何法求半径 向心力公式求半径
• 3、从圆的动态中发现临界点。
例、如图,环状匀强磁场围成的中空区域内有自由运动的带
电粒子,但由于环状磁场的束缚,只要速度不很大,都
不会穿出磁场的外边缘。设环状磁场的内半径为R1=0.5m ,外半径为 R2=1.0m,磁场的磁感应强度 B=1.0T,若被
磁场(旋转圆,缩放圆,移动圆)
旋转圆问题1宽h=2cm 的有界且有垂直纸面向内的匀强磁场,纵向范围足够大,现有一群带正电的粒子从0点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为R=5cm,求匀强磁场右边界粒子射出的范围。
2在真空中,半径为r=3 x 10-2m 的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s 的速度从磁场边界上直径ab 一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg ,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角B表示)?最大偏转角多大?3 如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里.许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔0射人磁场区域•不计重力,不计粒子间的相互影响•下列图中阴影部分表示带电粒子能经过区域,其中R=mv/qB •哪个图是正确的?( )4如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里。
P 为屏上的一小孔,PC 与MN 垂直,一群质量为 m 的粒子(不计 重力),一相同速率V ,从P 出沿垂直与磁场的方向射入磁场范围, 向在于磁场B 垂直的屏面内,且三开在于 PC 夹角为B 的范围内。
上被粒子打中的区域的长度为5:如图,电子源S 能在图示纸面360 °范围内发射速率相同的电子(质量为m , 电量为e ), M 、N 是足够大的竖直挡板,与S 的水平距离OS = L ,挡板左侧是 垂直纸面向里,磁感应强度为 B 的匀强磁场。
(1) 要使发射的电子能到达挡板, 电子速度至少为多大?(2) 若S 发射的电子速率为eBL/m 时,挡板被电子击中的范围有多大?.r尸N2m v2JWV (1 —Zmvcos^ABC西 D2加《1 —匚。
2025高考物理总复习磁场中的动态圆模型
1
开磁场时速度方向偏转60°.不计重力,则 为(
2
A.
1
2
B.
3
3
C.
1
2
3
2
3
B )
D. 3
4
5
6
7
8
9
返回目录
专题十五
磁场中的动态圆模型
[解析] 设圆形磁场区域的半径为R,粒子的运动轨迹如图所示,沿直径MON方向
相互作用及重力,则下列说法正确的是(
CD
)
A. 随着速度的增大,粒子在磁场中运动的时间变短
B. 随着速度的增大,粒子射出磁场区域时速度的偏转角变大
C.
2 3
从AC边射出的粒子的最大速度为 kLB
3
π
3
D. 从AC边射出的粒子在磁场中的运动时间为
1
2
3
4
5
6
7
8
4
点所用时间为t2,圆心角为θ, cos
2
1
1
3
4
θ= = ,则θ=60°,故t2= ,所以 = = ,C
2
6
2
2
6
正确.
1
2
3
4
5
6
7
8
9
返回目录
专题十五
磁场中的动态圆模型
2. [2021全国乙]如图,圆形区域内有垂直纸面向里的匀强磁场,质量为m、电荷量
为q(q>0)的带电粒子从圆周上的M点沿直径MON方向射入磁场.若粒子射入磁场时
1பைடு நூலகம்
π
旋转圆法解决磁场临界问题
旋转圆法解决磁场临界问题旋转圆法是解决磁场临界问题的一种常见方法,它主要基于电磁学原理和数学计算方法,通过构建旋转圆的方式来求解磁场临界值。
本文将从以下几个方面展开介绍旋转圆法的主要内容。
一、旋转圆法的基本原理旋转圆法是一种基于电磁学原理和数学计算方法的解决磁场临界问题的方法。
其基本思想是:在磁场中存在一个旋转圆,通过对旋转圆内外两侧的磁场进行分析,可以得到磁场在旋转圆上的切向分量和法向分量,并进而求解出磁场临界值。
二、旋转圆法的具体步骤1. 绘制旋转圆:首先需要根据实际情况绘制出一个合适大小和位置的旋转圆。
2. 确定计算区域:根据实际情况确定计算区域,并将其划分为内外两侧。
3. 计算切向分量:对于内外两侧的磁场,可以通过高斯定理或安培环路定理等方法计算出其切向分量。
4. 计算法向分量:根据旋转圆的法向方向,可以将内外两侧的磁场分别投影到法向方向上,从而得到其法向分量。
5. 求解临界值:根据切向分量和法向分量的计算结果,可以求解出磁场在旋转圆上的大小和方向,并进而求解出磁场临界值。
三、旋转圆法的优缺点旋转圆法作为一种常见的解决磁场临界问题的方法,具有以下优缺点:1. 优点:旋转圆法简单易行,适用范围广泛;计算结果相对准确,能够满足实际需求;计算过程可视化,易于理解和掌握。
2. 缺点:旋转圆法需要对计算区域进行划分,并对内外两侧的磁场进行精确测量或估算;计算过程中需要考虑多种因素,如边界条件、材料特性等;在某些情况下可能存在误差或不确定性。
四、总结与展望旋转圆法是一种基于电磁学原理和数学计算方法的解决磁场临界问题的方法。
通过构建旋转圆并对其内外两侧的磁场进行分析,可以求解出磁场临界值。
旋转圆法具有简单易行、适用范围广泛、计算结果相对准确等优点,但也存在一些缺点和不足。
未来,随着科学技术的不断发展和进步,旋转圆法或许会得到更多的改进和完善,在实际应用中发挥更加重要的作用。
带电粒子在磁场中的运动旋转圆问题
带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。
从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。
一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。
洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。
2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。
这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。
二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。
通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。
2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。
这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。
三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。
这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。
2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。
这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。
四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。
比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。
深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。
总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。
磁场(旋转圆,缩放圆,移动圆)
v0与Oa 的夹角。
旋转圆问题1宽h=2cm 的有界且有垂直纸面向内的匀强磁场,纵向范围足够大,现有一群带正电的粒子从0点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中 做匀速圆周运动的轨道半径均为R=5cm ,求匀强磁场右边界粒子射出的范围。
2在真空中,半径为r=3x 10-2m 的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T ,方向如图所示,一带正电粒子,以初速度v0=106m/s 的速 度从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子荷质比为q/m=108C/kg ,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以3如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射人磁场区域.不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子能经过区域,其中R 二mv/qB .明6个图是正确的?()帛舁1KA:A/2R4如图所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直于纸面向里。
P为屏上的一小孔,PC与MN垂直,一群质量为m的粒子(不计重力),一相同速率V,从P出沿垂直与磁场的方向射入磁场范围,粒子入射方向在于磁场B垂直的屏面内,且三开在于PC夹角为e的范围内。
则在屏MN上被粒子打中的区域的长度为cos.0)A站B<3C二D5如图,电子源S能在图示纸面360°范围内发射速率相同的电子(质量为m,电量为e),M、N是足够大的竖直挡板,与S的水平距离OS=L,挡板左侧是垂直纸面向里,磁感应强度为B的匀强磁场。
(1)要使发射的电子能到达挡板,电子速度至少为多大?(2)若S发射的电子速率为eBL/m时,挡板被电子击中的范围有多大?6如图所示,A1、A2为两块面积很大、相互平行的金属板,两板间距离为d ,以 A1板的中点为坐标原点,水平向右和竖直向下分别建立x 轴和y 轴,在坐标为1d(0,2)的P 处有一粒子源,可在坐标平面内向各个方向不断发射同种带电粒子,这些带电粒子的速度大小均为v 0,质量为口,带电量为+q ,重力忽略不计,不考虑粒子打到板上的反弹,且忽略带电粒子对金属板上电荷分布的影响.(1) 若只在A 2板间加上恒定电压U 0,且A1板电势低于A 2板,求粒子打到A ]板上的速度大小;(2)若只在A1、A2板间加上一方A向垂直于纸面向外的匀强磁场,磁感°应强度为B ,且B V dq ,求人]板上有粒子打到的区域范围(用x 轴坐|=二标值'y表示);(3)在第(2)小题前提下,若在A.A 2板间再加一电压,使初速度垂直指向的粒子打不到,试确定A-A 2板电势的高低以及电压的大小.A. B. C .2D .38在半径为R 的圆形区域内,存在垂直圆面的匀强磁场。
带电圆环旋转产生电流大小公式
带电圆环旋转产生电流大小公式1. 带电圆环旋转产生电流大小公式在物理学中,带电圆环旋转产生电流是一个常见的物理现象。
这个现象是由于电荷在磁场中受到力的作用,从而导致电荷在导体中运动产生电流。
对于带电圆环而言,其大小可以由一定的公式来计算。
下面将从电磁感应的角度,介绍带电圆环旋转产生电流大小公式以及其相关的理论知识。
2. 电磁感应的原理电磁感应是电路中电流产生和变化的原理。
最初的实验是由法拉第进行的,他发现当磁铁接近导线时,导线中就会产生电流。
这个原理实际上是由电场和磁场的相互作用导致的,即当磁场变化时,会在导体中产生电场,从而导致导体中的电荷运动并产生电流。
这种现象可以用电磁感应公式来描述,即法拉第电磁感应定律。
法拉第电磁感应定律的公式为:e=-dφ/dt其中,e是感应电动势,φ是磁通量,而dt是时间的微小变化。
3. 带电圆环的电磁感应现象在带电圆环中,由于圆环自身带有电荷,所以在磁场中旋转时就会受到磁场力的作用。
这个力会导致电荷在圆环中运动,并最终导致圆环中产生电流。
这个产生的电流大小可以利用电磁感应公式来表示。
在圆环中,电流的大小可以表示为:I=Δq/Δt其中,Δq是带有电荷的导线在时间Δt内通过给定面积的电荷变化,也就是电流强度,而Δt是指时间差,是这个电流的强度在这个时间内的改变。
4. 带电圆环旋转产生电流大小公式考虑带电圆环在磁场中旋转产生电流的情况,可以得到其电流大小公式:I=νqABω其中,I是带电圆环中的电流,ν是电荷密度,A是圆环横截面积,B是磁场强度,ω是圆环每秒钟旋转的角速度。
这个公式可以从基本的电磁感应原理中推导出来。
当圆环旋转时,由于电荷在磁场中受到力的作用,从而在导体中产生电流。
由于适用于法拉第电磁感应定律,电流强度可以用磁通量变化率来表示,即:I=-dΦ/dt这里,Φ是磁通量,Δt是时间的微小变化。
当圆环旋转时,磁通量的变化率可以表示为:dΦ/dt=B.A.ω其中,B是磁场强度,A是圆环的横截面积,而ω是圆环每秒钟旋转的角速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场中旋转圆问题
1、(2005全国1)如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里。
许多质量为m 带电量为+q 的粒子,以相同的速率 v 沿位于纸面内的各个方向,由小孔O 射入磁场区域。
不计重力,不计粒子间的相互影响。
下列图中阴影部分表示带电粒子可能经过的区域,其中R =mv/Bq 。
哪个图是正确的?
2、如图5所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。
P 为屏上的一小孔,PC 与MN 垂直。
一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域。
粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内,则在屏MN 上被粒子打中的区域的长度为( )
A
. B
. C
.
D
.
3、如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离 L=16cm ,有一个点状的α 粒子放射源S ,它向各个方向发射α 粒子,α 粒子的速度都是 s m v /1036
⨯= ,已知α 粒子的电荷与质量之比
Kg C m q
/1057⨯= ,现只考虑在图纸平面中运动的
粒子,求ab 上被 粒子打中的区域的长度。
4、(2010年课标卷25题18分)如图所示,在0≤x ≤a 、0≤y ≤a/2范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B ,坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~90°范围内,已知粒子在磁场中做圆周运动的半径介于a/2
到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的 (1)速度的大小;
(2)速度方向与y 轴正方向夹角的正弦
5、在真空中,半径r=3×10-2
m 的圆形区域内有匀强磁场,方向如图所示,磁感强度B=0.2T ,
一个带正电的粒子,以初速度v 0=106
m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子
的比荷=m q
108C/kg ,不计粒子重力,求:
(1)粒子在磁场中作匀速圆周运动的半径是多少? (2)若要使粒子飞离磁场时有最大偏转角,求入射 时v 0方向与ab 的夹角θ及粒子的最大偏转角β。
6、如图9所示,一个质量为m ,带电荷量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从x 轴上的b 点穿过,其速度方向与x 轴正方向的夹角为30°,粒子的重力可忽略不计,试求:
α
S
α
(1)圆形匀强磁场区域的最小面积;(2)粒子在磁场中运动的时间;(3)b到O的距离。