八年级数学上学期中考试题及答案(2020年)
2020年八年级数学上期中试卷附答案
2020年八年级数学上期中试卷附答案一、选择题1.已知一个等腰三角形一内角的度数为80o ,则这个等腰三角形顶角的度数为( ) A .100o B .80o C .50o 或80o D .20o 或80o2.下列分式中,最简分式是( )A .B .C .D . 3.如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定 4.要使分式13a +有意义,则a 的取值应满足( ) A .3a =- B .3a ≠- C .3a >- D .3a ≠5.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -6.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处7.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.58.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .259.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b10.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .4 11.2012201253()(2)135-⨯-=( ) A .1-B .1C .0D .1997 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4 D .以上结果都不对 二、填空题13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.14.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。
2020年八年级数学上期中试题(及答案)
2020年八年级数学上期中试题(及答案)一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x 人,则所列方程为( )A .18018032x x -=-B .18018032x x -=+C .18018032x x -=+D .18018032x x-=- 2.下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠B =∠E ,∠C =∠F C .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF 3.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C4.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .2B .4C .32D .425.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25276.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)7.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .78.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7 10.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12±11.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .1412.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8二、填空题13.已知11 5x y +=,则232 2x xy y x xy y-+=++_____. 14.当x =_________时,分式33x x -+的值为零. 15.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________16.若关于x 的方程x 1m x 5102x-=--无解,则m= . 17.已知22139273m ⨯⨯=,求m =__________. 18.因式分解:2()4()a a b a b ---=___.19.若11x y+=2,则22353x xy y x xy y -+++=_____ 20.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是_____.三、解答题21.先化简,再求值:[(2x +y )(2x -y )-3(2x 2-xy )+y 2]÷(-x ),其中x=2,y =-1. 22.已知:如图,∠ABC,射线BC 上一点D ,求作:等腰△PBD,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.(不写作法,保留作图痕迹)23.说明代数式2()()()(2)x y x y x y y y ⎡⎤--+-÷-+⎣⎦的值,与y 的值无关. 24.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?25.如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC与△AEB全等吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.D解析:D【解析】分析:根据全等三角形的判定定理AAS,可知应选D.详解:解:如图:A选项中根据AB=DE,BC=EF,∠A=∠D 不能判定两个三角形全等,故A错;B选项三个角相等,不能判定两个三角形全等,故B错;C选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C错;D选项中根据“AAS”可判定两个三角形全等,故选D;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.3.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形, D选项中∠A=2∠B=3∠C,即3∠C +32∠C +∠C =180°,∠C =36011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.4.B解析:B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.5.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=27 25.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.6.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.7.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.8.A解析:A 【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .9.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形.10.D解析:D【解析】【分析】根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】∵2222=(2)223(3)49x xy x m x y y y ±⨯⨯+++,∴12mxy xy =±,解得m=±12. 故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 11.A解析:A【解析】【分析】利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n=0,从而解关于n 的方程即可.【详解】∵2n +2n +2n +2n =2,∴4×2n =2, ∴2×2n =1, ∴21+n =1,∴1+n=0,∴n=﹣1,故选A .【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m •a n =a m+n (m ,n 是正整数).12.D解析:D【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -.故选D考点:平方差公式二、填空题13.1【解析】【分析】先根据可得出x+y 与xy 的关系式然后在式子中将xy 用x+y 来表示化简后可得结果【详解】∵∴则xy=故答案为:1【点睛】本题考查分式的化简求值解题关键是将xy 转化为x+y 的形式解析:1【解析】【分析】 先根据11 5x y +=可得出x+y 与xy 的关系式,然后在式子232 2x xy y x xy y-+++中,将xy 用x+y 来表示,化简后可得结果.【详解】 ∵11 5x y+= ∴ 5x y xy +=,则xy=()15x y + 372()2()23255 1272()()55x x y y x y x xy y x xy y x x y y x y -+++-+===++++++ 故答案为:1【点睛】本题考查分式的化简求值,解题关键是将xy 转化为x+y 的形式.14.3【解析】【分析】分式的值为零时:分子等于零但是分母不等于零【详解】依题意得:x-3=0且x+3≠0解得x=3故答案是:3【点睛】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于解析:3【解析】【分析】分式的值为零时:分子等于零,但是分母不等于零.【详解】依题意得:x-3=0且x+3≠0,解得x=3.故答案是:3.【点睛】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.15.cm【解析】【分析】【详解】∵AD是BC边上的中线∴BD=CD∵△ABC的周长为27cmAC=9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD周长为19cm∴AB解析:cm.【解析】【分析】【详解】∵AD是BC边上的中线,∴BD=CD,∵△ABC的周长为27cm,AC=9cm,∴AB+BC=27-9=18 cm,∴AB+2BD=18 cm,∵AD=6cm,△ABD周长为19cm,∴AB+BD=19-6=13 cm,∴BD=5 cm,∴AB=8 cm,故答案为8 cm.16.﹣8【解析】【分析】试题分析:∵关于x的方程无解∴x=5将分式方程去分母得:将x=5代入得:m=﹣8【详解】请在此输入详解!解析:﹣8【解析】【分析】试题分析:∵关于x的方程x1mx5102x-=--无解,∴x=5将分式方程x1mx5102x-=--去分母得:()2x1m-=-,将x=5代入得:m=﹣8【详解】请在此输入详解!17.8【解析】【分析】根据幂的乘方可得再根据同底数幂的乘法法则解答即可【详解】∵即∴解得故答案为:8【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法熟练掌握幂的运算法则是解答本题的关键解析:8【解析】【分析】根据幂的乘方可得293m m =,3273=,再根据同底数幂的乘法法则解答即可.【详解】∵22139273m ⨯⨯=,即22321333m 创=,∴22321m ++=,解得8m =,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.18.【解析】分析:先提公因式再利用平方差公式因式分解即可详解:a2(a-b )-4(a-b )=(a-b )(a2-4)=(a-b )(a-2)(a+2)故答案为:(a-b )(a-2)(a+2)点睛:本题考查的解析:()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.19.【解析】【分析】由=2得x+y=2xy 整体代入所求的式子化简即可【详解】=2得x+y=2xy 则==故答案为【点睛】本题考查了分式的基本性质解题关键是用到了整体代入的思想 解析:311【解析】【分析】 由11x y+=2,得x+y=2xy ,整体代入所求的式子化简即可. 【详解】11x y+=2,得x+y=2xy 则22353x xy y x xy y -+++=22325xy xy xy xy ⋅-⋅+=331111xy xy =,故答案为3 11.【点睛】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.20.85°【解析】【分析】根据三角形内角和得出∠C=60°再利用角平分线得出∠DBC=35°进而利用三角形内角和得出∠BDC的度数【详解】∵在△ABC中∠A=50°∠ABC=70°∴∠C=60°∵BD平解析:85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.三、解答题21.2x-3y,7【解析】【分析】先计算括号内多项式运算,再合并同类项,算除法,最后代数值计算即可.【详解】解:原式=-[4x2-y2-6x2+3xy+y2]×1 x=(2x2-3xy)×1 x=2x-3y将x=2,y=-1带入得,原式=4+3=7.故答案为:7.【点睛】本题是整式的乘除法运算,考查了平方差公式以及合并同类项.22.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P 在∠ABC 的平分线上,∴点P 到∠ABC 两边的距离相等(角平分线上的点到角的两边距离相等),∵点P 在线段BD 的垂直平分线上,∴PB=PD (线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.23.说明见解析.【解析】试题分析:根据整式的混合运算的法则和顺序,先算完全平方和平方差,然后合并同类项化简,通过关化简可判断.试题解析:原式=()()222222x xy y x yy y -+-+÷-+=x-y+y=x∴代数式的值与y 无关.24.(1)28和2012是神秘数(2)84k +是4的倍数(3)8k 不能整除8k+4【解析】【分析】(1)根据“神秘数”的定义,设这两个连续偶数分别为2m ,2m+2,列方程求出m 的值即可得答案;(2)根据“神秘数”的定义可知(2n)2-(2n-2)2=4(2n-1),即可得答案;(3)由(2)可知“神秘数”是4的倍数,但一定不是8的倍数,而连续两个奇数的平方差一定是8的倍数,即可得答案.【详解】(1)设设这两个连续偶数分别为2m ,2m+2,则根据题意得:(2m+2)2-(2m)2=28,8m+4=28,m=3,∴2m=6,2m+2=8,即82-62=28,∴28是“神秘数”.(2m+2)2-(2m)2=2012,8m+4=2012,m=501,∴2m=1002∴2012是“神秘数”.(2)是;理由如下:∵(2n)2-(2n-2)2=4(2n-1),∴由这两个连续偶数构造的神秘数是4的倍数.(3)由(2)可知“神秘数”可表示为4(2n-1),∵2n-1是奇数,∴4(2n-1)是4的倍数,但一定不是8的倍数,设两个连续的奇数为2n-1和2n+1,则(2n+1)2-(2n-1)2=8n.∴连续两个奇数的平方差是8的倍数,∴连续两个奇数的平方差不是“神秘数”.【点睛】本题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用25.答案见解析【解析】试题分析:由中点定义及AB=AC,可得到AD=AE,再通过SAS证明△ADC≌△AEB即可.试题解析:解:△ADC≌△AEB.理由如下:∵AB=AC,D,E分别是AB,AC的中点,∴AD=AE.在△ADC和△AEB中,∵AC=AB,∠A=∠A(公共角),AD=AE,∴△ADC≌△AEB(SAS).。
2020-2021学年度上学期八年级期中考试数学试卷(图片版含答案)
2020-2021学年度上学期质量监测(一)八年级数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D 2.C 3.A 4.B 5.B 6.D 7.D 8.A 二、填空题(每小题3分,共18分)9.6 10.3a - 11.11 12.3- 13.7 14.90 三、解答题(本大题共10小题,共78分) 15.(1)解:原式=(3)(3)a b a b +-……………………4分 (2)解:原式=22(816)x x -+……………………2分 =22(4)x -……………………4分 16.(1)解:原式=2x y -……………………5分 (2)解:原式=(2002)(2002)-⨯+ =222002-……………………3分 =39996……………………5分17.证明:∵1803ABC ∠=︒-∠,1804ABD ∠=︒-∠, ∠3=∠4,∴ABC ABD ∠=∠……………………3分 ∵AB AB =,∠1=∠2,∴△ABC ≌△ABD . ……………………5分 ∴AC =AD . ……………………6分 18.解:原式=222441a a a -+-=21a -……………………4分 当2a =时,原式=221⨯-=3.……………………6分 19.解:.……………………6分20.证明:∵AE ∥DF ,∴∠A =∠D .……………………2分∵CE ∥BF ,∴∠ECA =∠FBD . ……………………4分 ∵AC AB BC =+,DB DC BC =+,AB =DC . ∴AC =DB .∴△AEC ≌△DFB . ……………………6分 ∴AE =DF .……………………7分 21.解:由题意得,2(3)(4)()a b a b a b ++-+ ……………………3分=222212342a ab ab b a ab b +++--- ……………………5分 =2115a ab +.答:绿化的面积为2(115)a ab +平方米.……………………7分22.解:(1)∵5a =3,∴22(5)39a ==.……………………2分(2)∵5a =3,5b =8,5c =72,∴5537252758a c ab cb-+⨯⨯===.……………………5分 (3)2c a b =+.……………………8分23.解:(1)262x x -+2226332x x =-+-+ ……………………2分 ()237x =-- ……………………4分 (2)226215x y x y ++-+222263215x x y y -=+++++22(3)(1)5x y =++-+ ……………………6分 ∵2(3)0x +≥,2(1)0y -≥, ∴22(3)(1)55x y ++-+≥, ∴22(3)(1)50x y ++-+>,∴不论x ,y 取任何实数,多项式226215x y x y ++-+的值总为正数.……………………8分 24.解:(1)B ……………………3分 (2)证明:∵△ABC 、△ADE 均为等边三角形, ∴AD =AE ,AB =AC . 由旋转得:∠DAB =∠EAC .ABCABC图① 图②∴△ADB≌△AEC.……………………8分(3)60或120 ……………………12分。
2020年八年级数学上期中试卷含答案
2020年八年级数学上期中试卷含答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣3.从甲地到乙地有两条路:一条是全长750km的普通公路,另一条是全长600km高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h,则下列等式正确的是()A.600x+5=7502xB.600x-5=7502xC.6002x+5=750xD.6002x-5=750x4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )A.△ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC的中点6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A .132°B .134°C .136°D .138° 7.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C8.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处9.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .710.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 3 11.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=-12.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .4二、填空题13.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .14.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 15.使分式的值为0,这时x=_____.16.分解因式:2x 2﹣8=_____________17.某工厂储存350吨煤,按原计划用了3天后,由于改进了炉灶和烧煤技术,每天能节约2吨煤,使储存的煤比原计划多用15天.若设改进技术前每天烧x 吨煤,则可列出方程________.18.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .19.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.20.已知13a a +=,则221+=a a_____________________; 三、解答题21.解分式方程:23211x x x +=+- 22.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长.23.已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD =AE .24.解分式方程(1)2101x x -=+. (2)2216124x x x --=+- 25.解分式方程:22111x x x +=--【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形;B 选项中该图形是轴对称图形不是中心对称图形;C 选项中既是中心对称图形又是轴对称图形;D 选项中是中心对称图形又是轴对称图形.故选B .考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.3.C解析:C【解析】【分析】分别表示出客车在普通公路和高速公路上行驶的时间,即可得到方程.【详解】 根据题意:客车在普通公路上行驶的时间是750x 小时,在高速公路上行驶的时间是6002x 小时,由所需时间比走普通公路所需时间少5小时可列方程:6002x +5=750x, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意找到等量关系是解题的关键.4.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.5.D解析:D【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA ,∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形, D选项中∠A=2∠B=3∠C,即3∠C +32∠C +∠C =180°,∠C =36011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.8.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.9.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.10.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x2•B=32x5-16x4,∴B=-8x3+4x2∴A+B=-8x3+4x2+(-4x2)=-8x3故选C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.11.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D 、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF P ,则C 、F 、A 三点共线,故④错误;即可得出答案.【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF V 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF P 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误;综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.二、填空题13.15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm 而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm 时3+3=6不能构成三角形因此这种解析:15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当腰为3cm 时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm .故填15.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使1 2x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.15.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法16.2(x+2)(x﹣2)【解析】【分析】先提公因式再运用平方差公式【详解】2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2)【点睛】考核知识点:因式分解掌握基本方法是关键解析:2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.17.【解析】【分析】设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据储存的煤比原计划多用15天即可列方程求解【详解】解:设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据题意得:故答案为:解析:3503350315 2x xx x---=-【解析】【分析】设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据储存的煤比原计划多用15天,即可列方程求解.【详解】解:设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据题意得:35033503152x xx x---=-,故答案为:35033503152x xx x---=-.【点睛】本题考查了分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.18.【解析】试题分析:如图连接OA∵OBOC分别平分∠ABC和∠ACB∴点O到ABACBC的距离都相等∵△ABC的周长是20OD⊥BC于D且OD=3∴S△ABC=×20×3=30考点:角平分线的性质解析:【解析】试题分析:如图,连接OA,∵OB 、OC 分别平分∠ABC 和∠ACB ,∴点O 到AB 、AC 、BC 的距离都相等,∵△ABC 的周长是20,OD ⊥BC 于D ,且OD=3,∴S △ABC =12×20×3=30. 考点:角平分线的性质.19.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M ∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅V V V V ,由此推出50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,从而得出45.5 4.541AED ADF EFD S S S=-=-=V V V . 【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅V V V V ,∴50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,∴45.5 4.541AED ADF EFD S S S=-=-=V V V .故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅V V V V 是解此题的关键.20.7【解析】【分析】把已知条件平方然后求出所要求式子的值【详解】∵∴∴=9∴=7故答案为7【点睛】此题考查分式的加减法解题关键在于先平方 解析:7【解析】【分析】把已知条件平方,然后求出所要求式子的值.【详解】 ∵13a a+=, ∴219a a ⎛⎫+= ⎪⎝⎭, ∴2212+a a + =9, ∴221+=a a =7. 故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.三、解答题21.x =-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x +1)( x -1),化为整式方程求解,求出x 的值后不要忘记检验.【详解】解:方程两边同时乘以(x +1)( x -1)得: 2x (x -1)+3(x +1)=2(x +1)( x -1)整理化简,得 x =-5经检验,x =-5是原方程的根∴原方程的解为:x =-5.22.底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.设△ABC 的腰长为xcm ,则AD =DC =12xcm. 分下面两种情况解:①AB +AD =x +12x =9, ∴x =6. ∵三角形的周长为9+15=24(cm), ∴三边长分别为6cm ,6cm ,12cm. 6+6=12, 不符合三角形的三边关系,舍去;②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.23.见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB 即可.试题解析:∵AB=AC,点D 是BC 的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB 平分∠DAE,∴∠BAD=∠BAE.在△ADB 和△AEB 中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.24.(1)x=-2;(2)无解【解析】【分析】【详解】(1)去分母得:2(1)0x x +-=,解此整式方程得:2x =-,检验:当2x =-时,(1)0x x +≠,∴原方程的解为:2x =-.(2)去分母得:22(2)164x x --=-,解此整式方程得:2x =-,检验:当2x =-时,(2)(2)0x x +-=,∴2x =-是原方程的增根,∴原方程无解.【点睛】解分式方程时需注意两点:(1)解分式方程的基本思路是“去分母,化分式方程为整式方程”;(2)求得对应的整式方程的解后,需检验,再作结论.25.x=-3【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:方程左右两边同时乘以(x-1)²得:2+2x=x-1,解得:x=-3,经检验x=-3是原分式方程的解.点睛:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.。
2019-2020学年人教版八年级上学期期中考数学试卷(含答案解析)
2019-2020学年人教版八年级上学期期中考数学试卷(时间:90分钟)一、选择题(每小题3分,共36分.将正确答案前的字母填在下面表格中) 1.下列图形其中是轴对称图形的个数为A .1B .2C .3D .42.如下图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是A .POB .PQC . MOD .MQ3.化简aa a -+-111的结果为 A .-lB .1C .11-+a a D .aa -+114.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有A .1个B .2个C .3个D .4个5.下列是分式方程的是 A .0132=++πyxB .012=-xx C .21331+=+x xD .01462=++x x6.已知3:=y x ,则分式222)(yx y x --的值是 A .43B .2627C .21D .1314 7.在分式x y x 443+,a b 424+,1142--x x ,222b ab aba --中,最简分式有( )个A .0个B .1个C .2个D .3个8.已知5332=--a b b a ,求a b的值是A .218B .821C .198D .819 9.如果把分式yx x+2中的x 和y 都扩大3倍,那么分式的值 A .扩大3倍B .缩小3倍C .缩小6倍D .不变10.如下图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合.已知AC=5cm ,△ADC 的周长为17cm ,则BC 的长为A .7cmB .10cmC .12cmD .22cm11.化简分式)1112(122++-÷-x x x 的结果是 A .2 B .12+x C .12-xD .-212.如下图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=_____A .15°B .30°C .45°D .60°二、填空题:(每小题3分,共18分)13.已知3:2:=b a ,3:2:=a c ,则______::=c b a .14.如下图所示,AB=DB ,∠ABD=∠CBE ,请你添加一个适当的条件_______,使△ABC ≌△DBE .(只需添加一个即可)15.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是28cm 2,AB=8cm ,AC=6cm ,则DE=_______cm .16.若0≠-=y x xy ,则_________11=-yx . 17.x1,y 1,y x +1的最简公分母是_________. 18.如图,取一张长方形纸片ABCD ,按图中所示的方式将纸片折叠,EF 、EG 为两条折痕,求∠GEF 的度数是__________.三、解答题:(本大题共6小题,共61分.解答应写出必要的计算过程、推演步骤或文字说明.)19.(本题满分8分)已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .20.计算:(本题满分l5分)(1)112)(22-+-÷-a a a a a(2)431)111(2-++÷-+-x x x x x x (3))131(12--+÷--x x x x21.(本题满分10分)△ABC在网格坐标系中的位置如图所示,请完成下列问题:(1)请直接写出A、B、C三点的坐标;(2)请画出△ABC关于y轴对称的△A′B′C′ (其中A′,B′,C′分别是A、B、C的对应点,不写画法);(3)直接写出A′,B′,C′三点的坐标;(4)观察△ABC与△A′B′C′三组对应点的坐标,写出关于y轴对称的点的坐标有何特点?请用一句话叙述.如图,已知线段a ,b 和α∠,求作△ABC ,使∠B=α∠,AB=b ,BC=a .(写出作法,保留作图痕迹)23.(本题满分8分)化简求值:xx x x x x -+-÷+--1144)11(22,其中1=x如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AD=BD.(1)试说明DC=DE;(2)求∠B的度数.参考答案一、选择题(每小题3分,共36分)1.C 2.B 3.B 4.C 5.B 6.C 7.C 8.C 9.D 10.C 11.A 12.A 二、填空题(每小题3分,共18分)13.6 :9 :4 14.∠C=∠E 或∠A=∠D 或BC=BE 15.4 16.-1 17.)(y x xy + 18.90°三、解答题(本大题共6小题,共61分) 19.(本题满分8分) 证明:∵∠1=∠2∴∠1+∠BAD=∠2+∠BAD 即∠BAC=∠EAD ………………………2分 又∵AB=AE ,∠B=∠E∴△ABC ≌△AED………………………………………………7分 ∴BC=ED……………………………………………8分 20.(本题满分l5分)计算:(1)a ………………………………………………5分 (2)4+x ……………………………………………5分 (3)21+x ……………………………………………5分 21.(本题满分l0分)(1)A (-2,3),B (-3,1),C (1,-2)…………………………………3分 (2)画图正确…………………………………………………5分(3)A′(2,3),B′(3,1),C′(-1,-2)………………………………8分(4)平面坐标系中,关于y 轴对称的点的坐标横坐标互为相反数,纵坐标相同……10分22.(本题满分8分)作图题:正确画出图形,作图痕迹清晰………………………………………………4分 正确写出作法………………………………………………………8分 23.(本题满分8分)化简求值:解:原式22)12(11)1)(1(--⨯----=x x x x x x2)12(1112--⨯--=x xx x x211-=………………………………………………………6分 当1=x 时,原式=-1……………………………………………………8分 24.(本题满分12分)解:(1)∵∠C=90°,∴CD ⊥AC .…………………………………………2分 又∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DE=DC .……………………………………………………………5分 (2)∵AD 是△ABC 的角平分线,∴∠CAD=∠EAD .……………………………………………………7分 ∵AD=BD ,∴△ABD 为等腰三角形,∴∠DAB=∠B ,∴∠CAB=2∠B .……………………………………10分 又∵∠CAB+∠B=90°,即3∠B=90°,∴∠B=30°.……………………12分。
2020年八年级数学上期中试卷(及答案)
2020年八年级数学上期中试卷(及答案)一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.72.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣3.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④5.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4C.32D.426.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A .角平分线上的点到这个角两边的距离相等B .角的内部到角的两边的距离相等的点在角的平分线上C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确7.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 8.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25279.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .6 10.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4 D .以上结果都不对 11.已知a b 3132==,,则a b 3+的值为( ) A .1B .2C .3D .27 12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.15.已知11 5x y +=,则232 2x xy y x xy y-+=++_____. 16.关于x 的方程25211a x x -+=---的解为正数,则a 的取值范围为________. 17.因式分解:2()4()a a b a b ---=___.18.若11x y+=2,则22353x xy y x xy y -+++=_____ 19.如图,△ABC 中.点D 在BC 边上,BD=AD=AC ,E 为CD 的中点.若∠CAE=16°,则∠B 为_____度.20.因式分解:x 2y ﹣y 3=_____.三、解答题21.计算:(1)211x x x +-+; 解方程:(2)32833x x x -=- 22.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x 2﹣4x +1)(x 2﹣4x +7)+9进行因式分解的过程. 解:设x 2﹣4x =y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.23.计算:(1)332111xx x x⎛⎫-⋅⎪-⎝⎭.(2)224244x xx x x---++.24.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.25.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.2.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.3.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D 项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x ,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.4.D解析:D【解析】【分析】根据SAS 证△ABD ≌△EBC ,可得∠BCE =∠BDA ,结合∠BCD =∠BDC 可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE =∠DAE ,即AE =EC ,由AD =EC ,即可得③正确;过E 作EG ⊥BC 于G 点,证明Rt △BEG ≌Rt △BEF 和Rt △CEG ≌Rt △AEF ,得到BG =BF 和AF =CG ,利用线段和差即可得到④正确.【详解】解:①∵BD 为△ABC 的角平分线,∴∠ABD =∠CBD ,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.5.B解析:B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.6.B解析:B【解析】【分析】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB.【详解】如图,过点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺的宽度相等,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选B.【点睛】本题考查角平分线的判定定理,角的内部,到角两边的距离相等的点在这个角的平分线上;熟练掌握定理是解题关键.7.A解析:A【解析】【分析】A.利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B.利用同底数幂的乘法法则计算得到结果,即可做出判断;C.利用单项式乘单项式法则计算得到结果,即可做出判断;D.利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A.(﹣x3)2=x6,本选项正确;B.a2•a3=a5,本选项错误;C.2a•3b=6ab,本选项错误;D.a6÷a2=a4,本选项错误.故选A.【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.8.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=27 25.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m )3÷(2n )2.9.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.10.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .11.B解析:B【解析】分析:由于3a ×3b =3a+b ,所以3a+b =3a ×3b ,代入可得结论. 详解:∵3a ×3b =3a+b∴3a+b=3a ×3b=1×2=2故选:B .点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.12.B解析:B【解析】【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【详解】∵△ABC为等边三角形,∴AB=AC,∵∠1=∠2,BE=CD,∴△ABE≌△ACD,∴AE=AD,∠BAE=∠CAD=60°,∴△ADE是等边三角形,故选B.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD =60°再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =215.1【解析】【分析】先根据可得出x+y 与xy 的关系式然后在式子中将xy 用x+y 来表示化简后可得结果【详解】∵∴则xy=故答案为:1【点睛】本题考查分式的化简求值解题关键是将xy 转化为x+y 的形式解析:1【解析】【分析】 先根据11 5x y +=可得出x+y 与xy 的关系式,然后在式子232 2x xy y x xy y-+++中,将xy 用x+y 来表示,化简后可得结果.【详解】 ∵11 5x y += ∴ 5x y xy +=,则xy=()15x y + 372()2()23255 1272()()55x x y y x y x xy y x xy y x x y y x y -+++-+===++++++ 故答案为:1【点睛】本题考查分式的化简求值,解题关键是将xy 转化为x+y 的形式.16.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x −1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0,∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.17.【解析】分析:先提公因式再利用平方差公式因式分解即可详解:a2(a-b )-4(a-b )=(a-b )(a2-4)=(a-b )(a-2)(a+2)故答案为:(a-b )(a-2)(a+2)点睛:本题考查的解析:()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.18.【解析】【分析】由=2得x+y=2xy 整体代入所求的式子化简即可【详解】=2得x+y=2xy 则==故答案为【点睛】本题考查了分式的基本性质解题关键是用到了整体代入的思想 解析:311【解析】【分析】 由11x y+=2,得x+y=2xy ,整体代入所求的式子化简即可. 【详解】11x y+=2,得x+y=2xy 则22353x xy y x xy y -+++=22325xy xy xy xy ⋅-⋅+=331111xy xy =, 故答案为311.【点睛】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.19.37【解析】【分析】先判断出∠AEC=90°进而求出∠ADC=∠C=74°最后用等腰三角形的外角等于底角的2倍即可得出结论【详解】解:∵AD=AC 点E 是CD 中点∴AE⊥CD∴∠AEC=90°∴∵AD解析:37【解析】【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【详解】解:∵AD=AC ,点E 是CD 中点,∴AE ⊥CD ,∴∠AEC=90°,∴9074C CAE ∠=︒-∠=︒,∵AD=AC ,∴∠ADC=∠C=74°,∵AD=BD ,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为:37°.【点睛】此题主要考查了等腰三角形的性质,直角三角形的性质,三角形外角的性质,求出∠ADC=74°是解本题的关键.20.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)1x 1+;(2)x= 1 【解析】【分析】 (1)先通分,然后再化简;(2)先去分母,再解方程,最后验根.【详解】(1)原式=2211111x x x x x -+=+++; (2)32833x x x -=- 3(x-3)=2-8x11x=11x=1 当x=1时,分式的分母不为0,故x=1是分式方程的解.【点睛】本题考查分式的化简和解分式方程,注意解分式方程时,最后一定要验根.22.(1)C ;(2)(x ﹣2)4;(3)(x +1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C ;(2)(x 2﹣4x +1)(x 2﹣4x +7)+9,设x 2﹣4x =y ,则:原式=(y +1)(y +7)+9=y 2+8y +16=(y +4)2=(x 2﹣4x +4)2=(x ﹣2)4.故答案为:(x ﹣2)4;(3)设x 2+2x =y ,原式=y (y +2)+1=y 2+2y +1=(y +1)2=(x 2+2x +1)2=(x +1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.23.(1)-1;(2)2644x x --. 【解析】【分析】(1)先算括号内的减法,再算乘法即可;(2)分子分母能因式分解的先因式分解,化简后根据异分母分式的减法法则进行计算.【详解】解:(1)原式33111x x x x -=⋅=--; (2)原式()()()()()()()22222642222222422x x x x x x x x x x x x x x x x +--++---=-=-==-++---. 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.24.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB 的平分线,在角平分线上截取AD=h ,可得点D ,过点D 作AD 的垂线,从而得出△ABC .【详解】解:如图所示,△ABC 即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.25.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000,解得24663y ,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.。
初二上数学试卷及答案中考
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 3/42. 已知a、b是方程x^2-4x+3=0的两根,则a+b的值为()A. 2B. 3C. 4D. 53. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 对顶角相等C. 相邻角互补D. 对顶角互补4. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标为()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)5. 下列各数中,绝对值最小的是()A. -5B. 0C. 3D. -36. 下列代数式中,最简形式是()A. a^2b^2c^2 / abcB. a^2 + b^2C. (a+b)^2 - 4abD. (a+b)(a-b)7. 若x^2-6x+9=0,则x的值为()A. 1B. 3C. 6D. -38. 下列各图中,正确表示y=2x-1的函数图象的是()A. B. C. D.9. 已知a、b、c是三角形的三边,且a+b>c,b+c>a,a+c>b,则下列结论正确的是()A. a>b>cB. b>a>cC. c>a>bD. 无法确定10. 下列方程中,无解的是()A. 2x+1=0B. x^2=4C. 2x-1=0D. 2x^2-4x+2=0二、填空题(每题3分,共30分)11. 已知x+y=5,x-y=1,则x=______,y=______。
12. 等边三角形的边长为6,则其高为______。
13. 下列数中,质数有______。
14. 下列各式中,同类项是______。
15. 下列函数中,反比例函数是______。
16. 若sinα=1/2,则α的值为______。
17. 下列图形中,全等的是______。
18. 若a=3,b=4,则a^2+b^2=______。
19. 下列数中,平方根为整数的是______。
2020年初二数学上期中试卷(含答案)(1)
2020年初二数学上期中试卷(含答案)(1)一、选择题1.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =12.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x - 3.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .424.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+ B .40004000210x x -=+ C .40004000210x x -=-D .40004000210x x -=- 5.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形6.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .257.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b8.若分式25xx-+的值为0,则x的值是()A.2B.0C.-2D.-59.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.480x+480+20x=4B.480x-480+4x=20C.480x-480+20x=4D.4804x--480x=2010.计算:(a-b)(a+b)(a2+b2)(a4-b4)的结果是( )A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b811.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )A.B.C.D.12.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D.x2+3x+16=0二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.15.若分式15x-有意义,则实数x的取值范围是_______.16.关于x的分式方程211x ax+=+的解为负数,则a的取值范围是_________.17.点P(-2, 3)关于x轴对称的点的坐标为_________18.若分式67x--的值为正数,则x的取值范围_____.19.已知x m=6,x n=3,则x2m﹣n的值为_____.20.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.三、解答题21.如图,在等边△ABC中,点D,E分别在边AC,AB上,且AD=BE,BD,CE交于点P,CF⊥BD,垂足为点F.(1)求证:BD=CE;(2)若PF=3,求CP的长.22.如图,某校准备在校内一块四边形ABCD草坪内栽上一颗银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹).23.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.24.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?25.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x 3+.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D 项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x ,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.2.B解析:B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.3.B解析:B【解析】【分析】求出AD =BD ,根据∠FBD +∠C =90°,∠CAD +∠C =90°,推出∠FBD =∠CAD ,根据ASA 证△FBD ≌△CAD ,推出CD =DF 即可.【详解】解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD ,∴∠EAF=∠FBD ,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC , ∴AD=BD ,在△ADC 和△BDF 中CAD DBF AD BDFDB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADC ≌△BDF ,∴DF=CD=4,故选:B .【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10.故选C.考点:多边形内角与外角.6.B解析:B【解析】【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.8.A解析:A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值.详解: 根据题意得:x-2=0,且x+5≠0,解得 x=2.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.9.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得 480x -480+20x =4 故答案为:C .【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.10.D解析:D【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -.故选D考点:平方差公式11.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x 万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系. 12.C解析:C【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.15.【解析】由于分式的分母不能为0x-5在分母上因此x-5≠0解得x 解:∵分式有意义∴x-5≠0即x≠5故答案为x≠5本题主要考查分式有意义的条件:分式有意义分母不能为0解析:【解析】由于分式的分母不能为0,x-5在分母上,因此x-5≠0,解得x.解:∵分式15x-有意义,∴x-5≠0,即x≠5.故答案为x≠5.本题主要考查分式有意义的条件:分式有意义,分母不能为0.16.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a由分式方程解为负数得到1-a<0且1-a≠-1解得:a>1且解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析17.(-2-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变纵坐标互为相反数进行求解【详解】解:点P(-23)则点P关于x轴对称的点的坐标为(-2-3)故答案为:(-2-3)【点睛】本题考查解析:(-2,-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【详解】解:点P(-2, 3),则点P关于x轴对称的点的坐标为(-2,-3)故答案为:(-2,-3).【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.18.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x<0∴x>7解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.19.12【解析】【分析】逆用同底数幂的除法法则和幂的乘方的运算法则进行解答即可【详解】∵∴故答案为12【点睛】熟记同底数幂的除法法则:幂的乘方的运算法则:并能逆用这两个法则是解答本题的关键解析:12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键. 20.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶 解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS ); ③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此, 只有②正确,故答案是1.本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.三、解答题21.(1)见解析;(2)6【解析】【分析】(1)根据等边三角形的性质得到AB=BC ,∠BAC=∠ABC ,且AD=BE 则可得出△ABD ≌△BCE ,再利用全等三角形的性质即可得到答案;(2)根据(1)可知∠ABC=60º,△ABD ≌△BCE 得到∠FPC 的度数,再根据有一个角是30°的直角三角形的性质即可得到答案;【详解】解:(1)证明:∵△ABC 为等边三角形,∴ AB=BC ,∠BAC=∠ABC=60º,又∵AD=BE ,在△ABD 和△BCE 中,AB BC BAC ABC AD BE =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△BCE (SAS ),∴BD=CE(2)由(1)可知∠ABC=60º,△ABD ≌△BCE ,∴∠ABD=∠BCE ,∴∠ABD+∠CBD =∠ABC=60º,∴∠BCE+∠CBD =60º,∴∠BPC =180º-60º=120º(三角形内角和定理),∴∠FPC =180º-120º=60º,∵CF ⊥BD ,∴△CPF 为直角三角形,∴∠FCP =30º,∴CP=2PF ,∵PF=3,∴CP=6【点睛】本题主要考查了全等三角形的判定和性质、三角形内角和定理、有一个角是30°的直角三角形的性质,熟练掌握各知识点并灵活运用是解题的关键.22.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.23.每套《水浒传》连环画的价格为120元【解析】【分析】设每套《水浒传》连环画的价格为x 元,则每套《三国演义》连环画的价格为(x+60)元,根据等量关系“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列方程进行求解即可得.【详解】设每套《水浒传》连环画的价格为x 元,则每套《三国演义》连环画的价格为()60x +元,由题意, 得480036002?60x x =+, 解得120x =,经检验,120x =是原方程的解,且符合题意,答:每套《水浒传》连环画的价格为120元.【点睛】本题考查了分式方程的应用,找到题中的等量关系是解题的关键,注意解完方程后要进行检验.24.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元. 由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元)由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯ 解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.25.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能.。
2020年八年级数学上期中试卷及答案【可修改文字】
可编辑修改精选全文完整版2020年八年级数学上期中试卷及答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为( )A .100B .80C .50或80D .20或80 3.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =14.下列分式中,最简分式是( )A .B .C .D .5.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 6.分式可变形为( ) A . B . C . D .7.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( )A .7B .8C .6D .5 8.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º9.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b) 10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)11.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( ) A .3 B .2 C .1D .1- 12.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7二、填空题13.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .14.当x =_____时,分式293x x -+的值为零. 15.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________. 18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.如图所示,AB ∥CD ,∠ABE=66°,∠D=54°,则∠E 的度数为_____度.20.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.三、解答题21.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).22.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 23.解方程:.24.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC =5,求△ADE 的周长.(2)若∠BAD +∠CAE =60°,求∠BAC 的度数.25.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80,顶角为180808020--=;()2等腰三角形的顶角为80.因此这个等腰三角形的顶角的度数为20或80.故选D.【点睛】.解答此类题目的关键是要注意分类讨本题考查等腰三角形的性质及三角形的内角和定理论,不要漏解.3.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.4.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式; B.,分式的分子与分母含公因式2,不是最简分式; C.,分式的分子与分母含公因式x -2,不是最简分式; D.,分式的分子与分母含公因式a ,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 5.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.8.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.9.C解析:C【解析】【分析】利用平方差公式的逆运算判断即可.【详解】解:平方差公式逆运算为:()()22a b a b a b +-=- 观察四个选项中,只有C 选项符合条件.故选C.【点睛】此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键.10.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.11.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 12.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形.二、填空题13.15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm 而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm 时3+3=6不能构成三角形因此这种解析:15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当腰为3cm 时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm .故填15.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x 的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【详解】 ∵分式293x x -+的值为零, ∴x 2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k 的值【详解】方程两边都乘(x+1)(x ﹣1)得2(x+1)+kx =3(x ﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k 的值.【详解】方程两边都乘(x +1)(x ﹣1),得2(x +1)+kx =3(x ﹣1),即(k ﹣1)x =﹣5,∵最简公分母为(x +1)(x ﹣1),∴原方程增根为x =±1, ∴把x =1代入整式方程,得k =﹣4.把x =﹣1代入整式方程,得k =6.综上可知k =﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4- 解析:4m ≤且2m ≠【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和18.cm 【解析】【分析】【详解】∵AD 是BC 边上的中线∴BD=CD∵△ABC 的周长为27cmAC =9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD 周长为19cm∴AB解析:cm .【解析】【分析】【详解】∵AD 是BC 边上的中线,∴BD=CD ,∵△ABC 的周长为27cm ,AC =9cm ,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD 中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=1解析:12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答.解:∵AB ∥CD ,∴∠BFC=∠ABE=66°,在△EFD 中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC ﹣∠D=12°. 20.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M ∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅,由此推出50 4.545.5ADM ADF ADG EFD SS S S ==-=-=,从而得出 45.5 4.541AED ADF EFD S S S =-=-=.【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅,∴50 4.545.5ADM ADF ADG EFD SS S S ==-=-=, ∴45.5 4.541AED ADF EFD S S S =-=-=.故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅是解此题的关键.三、解答题21.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.22.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去).代入化简后的式子得原式1125x ==+. 【点睛】 此题考查分式的化简求值,掌握运算法则是解题关键23.无解.【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:去分母得:15x-12=4x+10-3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.24.(1)5;(2)120°【解析】【分析】(1)根据线段垂直平分线的性质得到DA =DB ,EA =EC ,则△ADE 的周长=AD +DE +EA =BC ,即可得出结论;(2)根据等边对等角,把∠BAD +∠CAE =60°转化为∠B +∠C =60°,再根据三角形内角和定理即可得出结论.【详解】(1)∵边AB 、AC 的垂直平分线分别交BC 于D 、E ,∴DA =DB ,EA =EC ,∴△ADE 的周长=AD +DE +AE =DB +DE +EC =BC =5;(2)∵DA =DB ,EA =EC ,∴∠DAB =∠B ,∠EAC =∠C ,∴∠BAD +∠CAE =∠B +∠C =60°,∴∠BAC =180°-(∠B +∠C )=180°-60°=120°.【点睛】本题考查了等腰三角形的判定与性质、线段的垂直平分线的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解答本题的关键. 25.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y本科普书.依题意得550×8+12y≤10000,解得24663y ,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.。
2020学年人教版八年级(上)期中考试综合数学试卷 解析版
2020学年人教版八年级(上)期中考试综合数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列垃圾分类的图标(不含文字与字母部分)中,是轴对称图形的是()A.B.C.D.2.(3分)下列长度的三条线段不能组成三角形的是()A.3,4,5 B.1,,2 C.6,8,10 D.1.5,2.5,4 3.(3分)下列命题的逆命题是真命题的是()A.对顶角相等B.等角对等边C.同角的余角相等D.全等三角形对应角相等4.(3分)若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A.3 B.4 C.1或3 D.3或55.(3分)在△ABC中,∠C=90°,AC=5,BC=12,CD⊥AB于D,则CD长为()A.4 B.C.D.6.(3分)如图,在△ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是()A.64°B.42°C.32°D.26°7.(3分)如图,若要将一块不能弯曲的正方形(不考虑厚度)搬进室内,需要通过一扇高为2m,宽为1m的门,以下边长的木块中哪块可以通过此门?()A.2.8m B.2.5mC.2.2m D.以上答案都不对8.(3分)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法不正确的是()A.S△ABE=S△BCE B.∠AFG=∠AGFC.BH=CH D.∠FAG=2∠ACF9.(3分)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+β=180°10.(3分)如图钢架中,∠A=15°,现焊上与AP1等长的钢条P1P2,P2P3…来加固钢架,若最后一根钢条与射线AB的焊接点P到A点的距离为4+2,则所有钢条的总长为()A.16 B.15 C.12 D.10二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,如果∠A:∠B:∠C=4:5:9,那么△ABC按角分类是三角形.12.(3分)如图所示,在△ABC和△DE中,B,E,C,F在同一条直线上.已知AB=DE,AC =DP,使△ABC≌△DEF还需要添加一个适当的条件.(只需添加一个即可)13.(3分)等腰△ABC周长为16cm,其中两边长的差为2cm,则腰长为cm.14.(3分)在同一平面内,有相互平行的三条直线a,b,c,且a,b之间的距离为1,b,c之间的距离是2,若等腰Rt△ABC的三个顶点恰好各在这三条平行直线上,如图所示,在△ABC的面积是.15.(3分)Rt△ABC中,∠C=90°,AC=,点D为BC边上一点,且BD=AD,∠ADC=60°,则△ABC的周长为.(结果保留根号)16.(3分)如图,已知等边△ABC的边长为4,点P,Q分别是边BC,AC上一点,PB=1,则PA=,若BQ=AP,则AQ=.三.解答题(共7小题)17.判断下列命题的真假,并给出证明(1)两个锐角的和是钝角;(2)若a>b,则a2>b2;18.如图,已知D是△ABC内一点.(1)求作△ADE,使得D,E分别在AC的两侧,且AD=AE,∠DAE=∠BAC;(2)在(1)的条件下,若AB=AC,连BD,EC,求证:BD=EC.19.在如图所示的4×4的方格中,每个小正方格的边长都为1.(1)在图中画△ABC.使AB=,BC=3,AC=;(2)作出AC边上的高线BH,并求BH的长.20.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积21.如图,在△CBD中,CD=BD,CD⊥BD,BE平分∠CBA交CD于点F,CE⊥BE垂足是E,CE与BD交于点A.求证(1)求证:BF=AC;(2)求证:BE是AC的中垂线;(3)若BD=2,求DF的长.22.(1)在等腰三角形ABC,∠A=130°,求∠B的度数(2)在等腰三角形ABC中,∠A=40°,求∠B的度数.(3)根据(1)(2)问后发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时请你探索x的取值范围,并用含x的式子表示∠B的度数.23.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,沿CD折叠,使点B落在CA边上的B′处,展开后,再沿BE折叠,使点C落在BA边上的C′处,CD与BE交于点F.(1)求AC′的长度;(2)求CE的长度;(3)比较四边形EC′DF与△BCF面积的大小,并说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列垃圾分类的图标(不含文字与字母部分)中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.2.(3分)下列长度的三条线段不能组成三角形的是()A.3,4,5 B.1,,2 C.6,8,10 D.1.5,2.5,4 【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【解答】解:A,∵3+4>5∴能构成三角形;B,∵1+>2∴能构成三角形;C,∵8+6>10∴能构成三角形;D,∵1.5+2.5=4∴不能构成三角形.故选:D.3.(3分)下列命题的逆命题是真命题的是()A.对顶角相等B.等角对等边C.同角的余角相等D.全等三角形对应角相等【分析】分别写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:相等的角是对顶角,不成立,如位于不同平面上的两个相等的角就不是对顶角,是假命题;B、逆命题为:等边对等角,成立,是真命题;C、逆命题为:相等的角为同一个角的余角,不成立,因为钝角没有余角,是假命题;D、逆命题为:对应角相等的三角形全等,不成立,如形状相同的两个大小不一样的三角板,是假命题;故选:B.4.(3分)若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A.3 B.4 C.1或3 D.3或5【分析】根据全等求出DE=AB=2,DF=AC=4,根据△DEF的周长为奇数求出EF的长为奇数,再根据EF长为奇数和三角形三边关系定理逐个判断即可.【解答】解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,D、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;A、当EF=3时,由选项D知,此选项错误;B、当EF=4时,不符合EF为奇数,故本选项错误;C、当EF=1或3时,其中1无法构成三角形,故本选项错误;故选:D.5.(3分)在△ABC中,∠C=90°,AC=5,BC=12,CD⊥AB于D,则CD长为()A.4 B.C.D.【分析】根据勾股定理求出AB,再根据三角形的面积公式求出即可.【解答】解:由勾股定理得:AB===13,∵由三角形的面积公式得:S△ACB==,即AC×BC=AB×CD,∴5×12=13×CD,解得:CD=,故选:B.6.(3分)如图,在△ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是()A.64°B.42°C.32°D.26°【分析】根据直角三角形的性质可求∠B的度数,再根据等腰三角形的性质可求∠BCD 的度数,根据角的和差关系可求∠ACD的度数.【解答】解:∵在△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°,∵BC=BD,∴∠BCD=(180°﹣64°)÷2=58°,∴∠ACD=90°﹣58°=32°.故选:C.7.(3分)如图,若要将一块不能弯曲的正方形(不考虑厚度)搬进室内,需要通过一扇高为2m,宽为1m的门,以下边长的木块中哪块可以通过此门?()A.2.8m B.2.5mC.2.2m D.以上答案都不对【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】解:如图,连接AB,由勾股定理得:AB2=22+12=5,∵2.82=7.84,2.52=6.25,2.22=4.84<5,故选:C.8.(3分)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法不正确的是()A.S△ABE=S△BCE B.∠AFG=∠AGFC.BH=CH D.∠FAG=2∠ACF【分析】根据三角形中线定义和三角形面积公式可对A选项进行判断;根据等角的余角相等得到∠ABC=∠DAC,再根据角平分线的定义和三角形外角性质可对B选项进行判断;根据等角的余角相等得到∠BAD=∠ACB,再根据角平分线的定义可对D选项进行判断.【解答】解:∵BE是中线得到AE=CE,∴S△ABE=S△BCE,所以A选项的说法正确;∵∠BAC=90°,AD是高,∴∠ABC=∠DAC,∵CF是角平分线,∴∠ACF=∠BCF,∵∠AFG=∠FBC+∠BCF,∠AGF=∠GAC+∠ACF,∴∠AFG=∠AGF,所以B选项的说法正确;∵∠BAD+∠DAC=90°,∠DAC+∠ACB=90°,∴∠BAD=∠ACB,而∠ACB=2∠ACF,∴∠FAG=2∠ACF,所以D选项的说法正确.故选:C.9.(3分)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+β=180°【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.10.(3分)如图钢架中,∠A=15°,现焊上与AP1等长的钢条P1P2,P2P3…来加固钢架,若最后一根钢条与射线AB的焊接点P到A点的距离为4+2,则所有钢条的总长为()A.16 B.15 C.12 D.10【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,然后根据最后一根钢条与射线AB的焊接点P到A点的距离为4+2,可以求得每根钢条的长度,从而可以求得所有钢条的总长.【解答】解:∵添加的钢管长度都与AP1相等,∠A=15°,∴∠AP2P1=∠A=15°,…,∴从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,第四个是60°,第五个是75°,第六个就不存在了,∴一共有5根.设AP1=a,作P2D⊥AB于点D,∵∠A=15°,AP=P1P2,∴∠P2P1D=30°,∴P1D=a,∴P1P3=a,同理可得,P3P5=a,∵最后一根钢条与射线AB的焊接点P到A点的距离为4+2,∴a+a+a=4+2,解得,a=2,∴所有钢条的总长为2×5=10,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,如果∠A:∠B:∠C=4:5:9,那么△ABC按角分类是直角三角形.【分析】根据三角形的内角和等于180°求出最大的角∠C,然后作出判断即可.【解答】解:∵∠C=180°×=90°,∴此三角形是直角三角形.故答案为:直角.12.(3分)如图所示,在△ABC和△DE中,B,E,C,F在同一条直线上.已知AB=DE,AC =DP,使△ABC≌△DEF还需要添加一个适当的条件∠A=∠D.(只需添加一个即可)【分析】此题是一道开放型的题目,答案不唯一,只有符合全等三角形的判定定理即可.【解答】解:添加的条件是:∠A=∠D,理由是:∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:∠A=∠D.13.(3分)等腰△ABC周长为16cm,其中两边长的差为2cm,则腰长为或6 cm.【分析】设等腰△ABC的腰为xcm,底边为(x+2)cm或(x﹣2)cm,根据三角形的周长列出方程,解方程即可得到结论.【解答】解:设等腰△ABC的腰为xcm,底边为(x+2)cm,∴2x+x+2=16,∴x=,x+2=,且能构成三角形,∴腰长为cm,设等腰△ABC的腰为xcm,底边为(x﹣2)cm,∴2x+x﹣2=16,∴x=6,x﹣2=4,且6,6,4能构成三角形,∴腰长为6cm,综合以上可得腰长为6cm或cm.故答案为:或6.14.(3分)在同一平面内,有相互平行的三条直线a,b,c,且a,b之间的距离为1,b,c之间的距离是2,若等腰Rt△ABC的三个顶点恰好各在这三条平行直线上,如图所示,在△ABC的面积是 5 .【分析】过点B作BE⊥a于点E,过点C作CF⊥a于点F,由余角的性质可得∠CAF=∠BAE,由“AAS”可证△ABE≌△CAF,可得AE=CF=1,由勾股定理可求AB的长即可解决问题.【解答】解:如图,过点B作BE⊥a于点E,过点C作CF⊥a于点F,∵a,b之间的距离是1,b,c之间的距离是2,∴BE=3,CF=1,∵∠BAC=90°,BE⊥AF∴∠BAE+∠CAF=90°,∠BAE+∠ABE=90°∴∠CAF=∠BAE,且AB=AC,∠AEB=∠AFC=90°∴△ABE≌△CAF(AAS)∴AE=CF=1,∴在Rt△ABE中,AB==,∵∠BAC=90°,AB=AC=∴S△ABC=•AB•AC=5故答案为:5.15.(3分)Rt△ABC中,∠C=90°,AC=,点D为BC边上一点,且BD=AD,∠ADC=60°,则△ABC的周长为3+3 .(结果保留根号)【分析】要求△ABC的周长,只要求得BC及AB的长度即可.根据Rt△ADC中∠ADC的正弦值,可以求得AD的长度,也可求得CD的长度;再根据已知条件求得BD的长度,继而求得BC的长度;运用勾股定理可以求得AB的长度,求得△ABC的周长.【解答】解:在Rt△ADC中,∵sin∠ADC=,∴AD===2.∴BD=AD=2,∵tan∠ADC=,DC===1,∴BC=BD+DC=3.在Rt△ABC中,AB==2,∴△ABC的周长=AB+BC+AC=2+3+=3+3.故答案为:3+3.16.(3分)如图,已知等边△ABC的边长为4,点P,Q分别是边BC,AC上一点,PB=1,则PA=,若BQ=AP,则AQ= 3 .【分析】连接AP,过A作AD⊥BC于D,根据等边三角形的性质得到BD=CD=BC=4=2,∠BAD=30°,解直角三角形即可得到结论.【解答】解:连接AP,过A作AD⊥BC于D,∵△ABC是等边三角形,∴BD=CD=BC=4=2,∠BAD=30°,∴AD=AB=2,∵PB=1,∴PD=1,∴PA===;连接BQ,过B作BH⊥AC于H,∴AH=AC=2,∴BH=AD=2,∴HQ===1,∴AQ=AH+HQ=3,故答案为:,3.三.解答题(共7小题)17.判断下列命题的真假,并给出证明(1)两个锐角的和是钝角;(2)若a>b,则a2>b2;【分析】(1)根据锐角和钝角的概念,举一个反例即可;(2)根据有理数的乘方法则证明;【解答】解:(1)两个锐角的和是钝角,是假命题,例如,一个角是30°,另一个是40°,则这两个角的和是70°,70°不是钝角,∴两个锐角的和是钝角,是假命题;(2)若a>b,则a2>b2,是假命题,例如:a=﹣1,b=﹣2,a2=1,b2=4,则a2<b2,∴a>b,则a2>b2,是假命题.18.如图,已知D是△ABC内一点.(1)求作△ADE,使得D,E分别在AC的两侧,且AD=AE,∠DAE=∠BAC;(2)在(1)的条件下,若AB=AC,连BD,EC,求证:BD=EC.【分析】(1)根据D,E分别在AC的两侧,且AD=AE,∠DAE=∠BAC,即可作出△ADE;(2)根据∠DAE=∠BAC,得出∠BAD=∠CAE,再判定△ABD≌△ACE(SAS),即可得到BD=EC.【解答】解:(1)如图所示,△ADE即为所求;(2)如图所示,连BD,EC,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=EC.19.在如图所示的4×4的方格中,每个小正方格的边长都为1.(1)在图中画△ABC.使AB=,BC=3,AC=;(2)作出AC边上的高线BH,并求BH的长.【分析】(1)根据勾股定理即可作出长是,3,的线段,即可作出三角形;(2)利用△ABC的面积,然后利用三角形的面积公式求解.【解答】解:(1)如图所示:△ABC即为所求.(2)S△ABC=BC•AD=AC•BH,∴×3×2=×BH,∴BH=.20.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积【分析】(1)根据等腰三角形的性质即可得到结论.(2)利用轴对称的性质即可证明.(3)连接BE交AD于点P,此时PE+PC的值最小.证明四边形ABDE是平行四边形,求出PD即可解决问题.【解答】解:(1)∵AB=AC,AD是中线,∴∠BAD=∠CAD;(2)连接EC.结论:BD=CE.理由:∵AD是中线,∴BD=CD,∵AD,AE关于AC对称,∴CD=CE,∴BD=CE;(3)连接BE交AD于点P,此时PE+PC的值最小.∵AB=AC,∠BAC=90°,BD=DC=4,∴AD=AE=4,由题意AE∥BD,AE=AD=BD,∴四边形ABDE是平行四边形,∴PA=PD=2,∵PD⊥BC,∴S△BCP=×8×2=8.21.如图,在△CBD中,CD=BD,CD⊥BD,BE平分∠CBA交CD于点F,CE⊥BE垂足是E,CE与BD交于点A.求证(1)求证:BF=AC;(2)求证:BE是AC的中垂线;(3)若BD=2,求DF的长.【分析】(1)欲证明BF=AC,只要证明△BDF≌△CDA(ASA)即可.(2)只要证明BC=BA即可解决问题.(3)连接AF,只要证明DF=AD,AF=CF,设DF=AD=x,利用勾股定理构建方程即可解决问题.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDF=∠ADC=∠AEB=90°,∵∠DBF+∠A=90°,∠DCA+∠A=90°,∴∠DBF=∠DCA,∵BD=CD,∴△BDF≌△CDA(SAS),∴BF=AC.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠BEA=∠BEC=90°,∴∠A+∠ABE=90°,∠BCA+∠CBE=90°,∴∠A=∠BCA,∴BC=BA,∵BE⊥AC,∴CE=EA,∴BE是AC的中垂线.(3)解:连接AF.∵△BDF≌△CDA,∴AD=DF,设DF=AD=x,∵BE垂直平分AC,BD=CD=2,∴CF=AF=2﹣x,在Rt△ADF中,∵AF2=DF2+AD2,∴(2﹣x)2=x2+x2,解得x=﹣2+2或﹣2﹣2(舍弃),∴DF=﹣2+2.22.(1)在等腰三角形ABC,∠A=130°,求∠B的度数(2)在等腰三角形ABC中,∠A=40°,求∠B的度数.(3)根据(1)(2)问后发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时请你探索x的取值范围,并用含x的式子表示∠B的度数.【分析】(1)根据三角形内角和定理,因为∠A=130°>90°,看到∠B=∠C=25°;(2)根据三角形内角和定理,因为∠A=40°<90°,所以推出∠A=∠B或∠A=∠C 或∠B=∠C,∠B的度数可求.(3)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)根据三角形内角和定理,∵∠A=130°>90°,∠B=∠C=25°;(2)若∠A为顶角,则∠B=(180°﹣∠A)÷2=70°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×40°=100°;若∠A为底角,∠B为底角,则∠B=40°;故∠B=70°或100°或40°;(3)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个,∠B=()°;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.23.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,沿CD折叠,使点B落在CA边上的B′处,展开后,再沿BE折叠,使点C落在BA边上的C′处,CD与BE交于点F.(1)求AC′的长度;(2)求CE的长度;(3)比较四边形EC′DF与△BCF面积的大小,并说明理由.【分析】(1)根据翻折可知:BC=BC′即可求AC′的长度;(2)设CE的长为x,根据翻折可得EC′=EC,再根据勾股定理即可求CE的长度;(3)根据翻折可得∠BCD=45°,作DG⊥BC于点G,可得DG=CG,再根据tan∠ABC===,进而求得DG的长,再求△BDC和△BEC′的面积,进而可以比较四边形EC′DF与△BCF面积的大小.【解答】解:(1)根据翻折可知:BC=BC′=3,∴AC′=AB﹣BC′=5﹣3=2答:AC′的长度为2.(2)由折叠的性质可得:∠AC′E=∠BCE=90°,∵∠A=∠A,∴△AEC′∽△ABC∴=即=∴EC′=,由折叠的性质得,CE=C′E=.答:CE的长度为.(3)结论:S四边形EC′DF<S△BCF,理由如下:如图,作DG⊥BC于点G,由折叠得:∠DCB=∠ACD=45°∴DG=CG设DG=x,则CG=x,BG=3﹣x,tan∠ABC===∴=x=∴DG=∴S△BDC=BC•DG=3×=S△BEC′=S△BEC=BC•CE=×3×=∵>∴S△BDC>S△BEC′∵S△BDC=S△BFC+S△BDF,S△BEC′=S四边形EC′DF+S△BDF,∴S四边形EC′DF<S△BCF.。
2020年八年级数学上期中试卷(带答案)
2020年八年级数学上期中试卷(带答案)一、选择题1.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为()A.6B.8C.10D.8或102.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如果(x+1)(2x+m)的乘积中不含x的一次项,则m的值为()A.2 B.-2 C.0.5 D.-0.55.如图,在等腰 ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°6.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2B.3C.1D.1.57.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.118.已知A=﹣4x2,B是多项式,在计算B+A时,小马虎同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 39.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .6 10.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒ 11.2019年5月24日,中国·大同石墨烯+新材料储能产业园正式开工,这是大同市争当能源革命“尖兵”的又一重大举措.石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,石墨烯的理论厚度为0.00000000034米,这个数据用科学记数法可表示为( ) A .90.3410-⨯B .113.410-⨯C .103.410-⨯D .93.410-⨯ 12.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12±二、填空题13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 15.如果关于x 的分式方程m 2x 1x 22x-=--有增根,那么m 的值为______. 16.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.17.若226m n -=-,且3m n -=-,则m n + =____.18.若分式15x -有意义,则实数x 的取值范围是_______. 19.已知13a a +=,则221+=a a _____________________; 20.如图,△ABC 中.点D 在BC 边上,BD=AD=AC ,E 为CD 的中点.若∠CAE=16°,则∠B 为_____度.三、解答题21.已知:如图,∠ABC,射线BC 上一点D ,求作:等腰△PBD,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.(不写作法,保留作图痕迹)22.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 23.已知 a m =2,a n =4,a k =32(a≠0).(1)求a 3m+2n ﹣k 的值;(2)求k ﹣3m ﹣n 的值.24.将下列多项式分解因式:(1)22()2()a b a b c c ++++.(2)24()a a b b -+.(3)22344xy x y y --.(4)()2224116a a +-.25.如图,点O 是线段AB 和线段CD 的中点.(1)求证:△AOD ≌△BOC ;(2)求证:AD ∥BC .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C .【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.2.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD 是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD 沿AE 折叠,∴△ADE≌△AFE, ∴∠DAE=∠EAF=12∠DAF=15°. 故选C .【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.B解析:B【解析】【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.【详解】(x+1)(2x+m)=2x2+(m+2)x+m,由乘积中不含x的一次项,得到m+2=0,解得:m=-2,故选:B.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.5.C解析:C【解析】【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.6.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.7.C解析:C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C 选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.8.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x 2•B=32x 5-16x 4,∴B=-8x 3+4x 2∴A+B=-8x 3+4x 2+(-4x 2)=-8x 3故选C .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.10.C解析:C【解析】【分析】根据多边形的内角和公式()2180n -•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】Q 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,Q 多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.11.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】12.D解析:D【解析】【分析】根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】∵2222=(2)223(3)49x xy x m x y y y ±⨯⨯+++,∴12mxy xy =±,解得m=±12. 故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 二、填空题13.60【解析】【分析】首先连接AB 由题意易证得△AOB 是等边三角形根据等边三角形的性质可求得∠AOB 的度数【详解】连接AB 根据题意得:OB=OA=AB∴△AOB 是等边三角形∴∠AOB=60°故答案为:解析:60【解析】【分析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【详解】连接AB ,根据题意得:OB =OA =AB ,∴△AOB 是等边三角形,∴∠AOB =60°. 故答案为:60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB =OA =AB .14.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使12x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零 则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.15.-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值让最简公分母确定可能的增根;然后代入化为整式方程的方程求解即可得到正确的答案【详解】解:去分母方程两边同时乘以 解析:-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x 20-=,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】 解:m 2x 1x 22x-=--, 去分母,方程两边同时乘以x 2-,得:m 2x x 2+=-,由分母可知,分式方程的增根可能是2,当x 2=时,m 422+=-,m 4=-.故答案为4-.【点睛】考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和17.2【解析】【分析】将利用平方差公式变形将m-n=3代入计算即可求出m+n 的值【详解】解:∵m2-n2=(m+n )(m-n )=6且m-n=3∴m+n=2【点睛】此题考查了利用平方差公式因式分解熟练掌握解析:2【解析】【分析】将22m n -利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值。
2020年八年级数学上期中试题附答案
2020年八年级数学上期中试题附答案一、选择题1.如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,CD 是斜边AB 上的高,若AD=3cm ,则斜边AB 的长为( )A .3cmB .6cmC .9cmD .12cm 2.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数( )A .24°B .25°C .30°D .35°3.如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.正确的是( )A .①B .②C .①②D .①②③4.下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠B =∠E ,∠C =∠F C .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF 5.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -6.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º7.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠8.下列运算正确的是( ) A .(-x 3)2=x 6 B .a 2•a 3=a 6 C .2a •3b =5ab D .a 6÷a 2=a 3 9.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为A .()16040018x 120%x ++=B .()16040016018x 120%x-++= C .16040016018x 20%x -+= D .()40040016018x 120%x-++= 10.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°11.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4 B .480x -480+4x =20 C .480x -480+20x =4 D .4804x --480x=20 12.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 2二、填空题13.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是_________. 14.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.15.已知x 2+mx-6=(x-3)(x+n),则m n =______.16.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 17.当x =_________时,分式33x x -+的值为零. 18.若a+b=17,ab=60,则a-b 的值是__________.19.若22(5)0a b -+-=,则点P (a ,b )关于x 轴对称的点的坐标为____.20.若实数,满足,则______. 三、解答题21.先化简,再求值:计算2213693+24a a a a a a a +--+-÷--,再从-2、0、2、3四个数中选择一个合适的数作为a 的值代入求值.22.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.23.今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.”(l )第一批车厘子每千克进价多少元?.(2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价325a 元进行促销,结果第二批车厘子的销售利润为1520元,求a 的值。
浙教版2020学年八年级(上)期中考试数学试题卷及答案
2020学年八年级(上)数学试卷期中考试卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一.选择题(本题有10小题,每小题3分,共30分)1.下面三条线段(单位:厘米)可以构成三角形的是( ▲ ) A. 1,2,3 B. 2,3,4C. 5,7,13D. 2,5,82.下列防疫的图标中是轴对称图形的是( ▲ )A. B.C. D.3.若x>y ,则下列判断中错误的是( ▲ ) A. x+2>y+2 B. x-1>y-1C. 5x>5yD. -3x>-3y4.在平面直角坐标系中,点A(2,-6)在( ▲ )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.不等式3x-6≥0的解集在数轴上表示正确的是( ▲ )A. B. C.D.6.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( ▲ )A. 50°B. 80°C. 65°或50°D. 50°或80° 7.如图,在Rt △ABC 中,CE 是斜边AB 上的中线,CD ⊥AB ,若CD=5,CE=6, 则△ABC 的面积是( ▲ )A.24B. 25C. 30D. 36 8.已知关于x 的不等式组 的整数解共有6个,则a 的取值范围是( ▲ )A.-5<a ≤-4B.-5≤a ≤-4C. -4≤a ≤2D.-4<a ≤2 9.如图,点P 在∠AOB 的角平分线上,点P 到OA 边的距离等于10,点Q 是OB 边上的任意一点,下列选项正确的是( ▲ )第7题第9题⎩⎨⎧->-≥-1230x a xA. PQ<10B. PQ>10C. PQ ≥10D. PQ ≤10 10. 如图,△ABC 中,AB=AC ,AD 是角平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,对于结论:①DE=DF ;②BD=CD ;③AD 上任一点到AB 、AC 的距离相等; ④AD 上任一点到B 、C 的距离相等.其中正确的是( ▲ ) A. 仅①② B. 仅③④C. 仅①②③D. ①②③④卷 Ⅱ说明:本卷共有14小题,共52分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题(本题有6小题,每小题3分,共18分)11.“y 的2倍与6的和比1小”用不等式表示为 .12.如图所示,AB=AC ,要说明△ABE ≌△ACD ,可添加的条件是 .13.命题“如果a=b ,那么|a|=|b|”的逆命题是 (填“真命题“或“假命题”). 14.如图,已知:∠A=∠D ,∠1=∠2,下列条件中:①∠E=∠B ;②EF=BC ;③AB=EF ;④AF=CD.能使△ABC ≌△DEF 的有 .(填序号)15.在Rt △ABC 中,AB=3cm ,BC=4cm ,则AC= cm.16.如图所示,在△ABC 中,∠BAC=110°,EF ,MN 分别为AB ,AC 的垂直平分线,如果BC长为不等式3x-1<4x-5的最小整数解,那么△FAN 的周长为 cm ,∠FAN= .三、解答题(本题有8小题,第17~22题每题6分,第23~24题每题8分,共52分,各小题都必须写出解答过程)17.(本题6分)解不等式组:⎪⎩⎪⎨⎧≥-+>+12512x x x x ,并求它的所有整数解之和.18.(本题6分)如图所示,已知AB ⊥CF ,DE ⊥CF ,垂足分别为点B ,E ,AB=DE.请添加一个适当条件,使△ABC ≌△DEF ,并给出证明. 添加条件: 证明:第10题第14题第12题第16题19.(本题6分)如图所示,在Rt △ABC 中,∠ACB=90°.(1)在边BC 上求作一点P ,使PA=PB.(不写作法,保留作图痕迹)(2)连结AP ,若AC=4,BC=8时,试求BP 的长.20.(本题6分)如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上的一点,连结CD ,DE ,已知∠EDB=∠ACD. (1)求证:△DEC 是等腰三角形;(2)当∠BDC=5∠EDB ,BD=2时,求EB 的长.21.(本题6分)已知P (2a-12,1-a )位于第三象限,点Q (x ,y )位于第二象限且是由点P 向上平移一定单位长度得到的.(1)若点P 的纵坐标为-3,试求出a 的值;(2)在(1)的条件下,试求出符合条件的一个点Q 的坐标;(3)若点P 的横、纵坐标都是整数,试求出a 的值以及线段PQ 长度的取值范围.22.(本题6分)某地区有一块长方形水稻试验田,试验田的长、宽如图所示(单位:m ).试验田分两部分,一部分为水渠,另一部分为新型水稻种植田(阴影部分). (1)用含a ,b 的式子表示新型水稻种植田的面积(结果化成最简形式).(2)若a=30,b=40,在“农民丰收节”到来之时水稻成熟,计划先由甲型收割机一部分,再由乙型收割机收割剩余部分,甲型收割机收割水稻每平方米的费用为0.3元,乙型收割机收割水稻每平方米的费用为0.5元.若要收割全部水稻的费用不超过5000元,问:甲型收割机最少收割多少平方米的水稻?A CB23.(本题8分)如图,已知△ABC 中,∠B=90 º,AB=8cm ,BC=6cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求PQ 的长;(2)当点Q 在边BC 上运动时,出发几秒钟,△PQB 能形成等腰三角形?(3)当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间(直接写出答案).24.(本题8分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.[特例感知]①等腰直角三角形_________勾股高三角形(请填写“是”或者“不是”); ②如图1,已知△ABC 为勾股高三角形,其中C 为勾股顶点,CD 是AB 边上的高.若BD=2,AD=1,试求线段CD的长度.[深入探究]如图2,已知△ABC 为勾股高三角形,其中C 为勾股顶点且CA >CB,CD 是AB 边上的高.试探究线段AD 与CB 的数量关系,并给予证明;[推广应用]如图3,等腰△ABC 为勾股高三角形,其中AB=AC >BC,CD 为AB 边上的高,过点D 向BC 边引平行线与AC 边交于点E .若CE=a ,试求线段DE 的长度.B QC B A 图1 1 2D C B 图2 D B 图32020学年第一学期八年级数学质量监测八年级数学参考答案一、选择题(本题有10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案B C D D B D C A CD评分标准 选对一题给3分,不选,多选,错选均不给分11.2y+6<1 12.答案不限(如∠B=∠C ) 13.假命题14. ②④ 15.75或 16.三、解答题(本题有8小题,第17~22题每题6分,第23~24题每题8分,共52分) 17.(本题6分)解不等式①,得x>-1 ……1分 解不等式②,得x ≤3 ……2分 ∴不等式组的解集是-1<x ≤3. ……2分即这个不等式组的所有整数解之和是:0+1+2+3=6. ……1分 18.(本题6分)添加条件:∠C=∠F ……2分 证明如下:∵AB ⊥CF ,DE ⊥CF , ∴∠ABC=∠DEF=90°.在△ABC 与△DEF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DE AB DEF ABC F C∴△ABC ≌△DEF (AAS ). ……4分 19.(本题6分) (1)……3分(2)设BP=x ,则AP=x ,CP=BC-PB=8-x , 在Rt △ACP 中,∵PC 2+AC 2=AP 2,∴2224-8x x =+)(,解得x=5, 即BP 的长为5. ……3分20.(本题6分) (1)证明:∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,且∠EDB=∠ACD , ∴∠E=∠DCE ,∴△DEC 是等腰三角形; ……3分 (2)设∠EDB=α,则∠BDC=5α, ∴∠E=∠DCE=60°-α, ∴6α+60°-α+60°-α=180°, α=15°, ∴∠E=∠DCE=45°, ∴∠EDC=90°,过点D 作DH ⊥CE 于H ,∵BD=2,∠DBH=60°, ∴BH=BD 21=1,DH=22BH BD -=3,DH=EH=3, ∴BE=EH-BH=1-3. ……3分 21.(本题6分)解:(1)1-a=-3,a=-4. ……1分(2)由a=4得:2a-12=2×4-12=-4,点Q (x,y )在第二象限,∴y>0; 取y=1,得点Q 的坐标为(-4,1) ……2分(3) 因为点P (2a-12,1-a )位于第三象限, 所以⎩⎨⎧<-<-010122a a ,解得1<a<6 .……1分因为点P 的横、纵坐标都是整数,所以a=2或3或4或5;当a=2时,1-a=-1,所以PQ>1;当a=3时,1-a=-2,所以PQ>2;当a=4时,1-a=-3,所以PQ>3;当a=5时,1-a=-4,所以PQ>4. ……2分 22.(本题6分)(1)新型水稻种植田的面积为(3b+b-a )(2b+b-a )-2a -b )(=ab b 5112-. ……3分 (2)当a=30时,b=40时,新型水稻种植田的面积116005112=-ab b (平方米), 设甲型收割机收割水稻a 平方米,则乙型收割机收割水稻面积为(11600-a )平方米, 根据题意,得0.3a+0.5(11600-a )≤5000,解得:a ≥4000, 答:甲型收割机最少收割4000平方米的水稻. ……3分 23.(本题8分)(1)当t=2时,则AP=2,BQ=2t=4, ∵AB=8cm,∴BP=AB-AP=8-2=6(cm ),在Rt △BPQ 中,由勾股定理得PQ=)(132462222cm BQ BP =+=+, 即PQ 的长为cm 132. ……2分 (2)由题意可知AP=t ,BQ=2t , ∵AB=8,∴BP=AB-AP=8-t ,当△PQB 为等腰三角形时,则有BP=BQ ,即8-t=2t ,解得t=38, ∴出发38后△PQB 能形成等腰三角形; ……3分 (3)在△ABC 中,由勾股定理可求得AC=10,当点Q 在AC 上时,AQ=BC+AC-2t=16-2t , ∴CQ=AC-AQ=10-(16-2t )=2t-6, ∵△BCQ 为等腰三角形,∴有BQ=BC 、CQ=BC 和CQ=BQ 三种情况:①当BQ=BC=6时,如图1,过点B 作BD ⊥AC ,则CD=CQ 21=t-3, 在Rt △ABC 中,求得BD=524.在Rt △BCD 中,由勾股定理可得,222CD BD BC +=,即22235246)()(-+=t , 解得t=6.6或t=-0.6<0(舍去); ②当CQ=BC=6时,则2t-6=6,解得t=6; ③当CQ=BQ 时,则∠C=∠QBC , ∴∠C+∠A=∠CBQ+∠QBA , ∴∠A=∠QBA , ∴QB=QA , ∴CQ=AC 21=5,即2t-6=5,解得t=5.5; 综上可知当t 的值为6.6秒或6秒或5.5秒时,△BCQ 为等腰三角形. ……3分 24. (本题8分) 特例感知:①等腰三角形是勾股高三角形; ……1分 ②如图1中,根据勾股定理可得:1,42222+=+=CD CA CD CB ,于是31)4(222=+-+=)(CD CD CD , ∴CD=3. ……2分深入探究:如图2中,由222CD CB CA =-可得:222CB CD CA =-,而222AD CD CA =-,∴22CB AD =,即AD=CB. ……3分 推广应用:过点A 向ED 引垂线,垂足为G ,∵“勾股高三角形”△ABC 为等腰三角形,且AB=AC>BC , ∴只能是222CD BC AC =-,由上问可知AD=BC.又∵ED ∥BC ,∴∠1=∠B. 而∠AGD=∠CDB=90°, ∴△AGD ≌△CDB (AAS ), ∴DG=BD.易得△ADE 与△ABC 均为等腰三角形, 根据三线合一原理可知ED=2DG=2BD. 又AB=AC ,AD=AE , ∴BD=EC=a ,∴ED=2a. ……2分。
2020年初二数学上期中试卷附答案
2020年初二数学上期中试卷附答案一、选择题1.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为( )A .6B .8C .10D .8或102.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个 3.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°4.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .8 5.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C6.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为A .()16040018x 120%x ++=B .()16040016018x 120%x-++=C .16040016018x 20%x-+= D .()40040016018x 120%x -++= 8.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2C .8D .11 9.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12±10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .11.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.15.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 16.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.17.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 18.因式分解:a 3﹣2a 2b+ab 2=_____. 19.若实数,满足,则______.20.若2x+5y ﹣3=0,则4x •32y 的值为________.三、解答题21.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?22.因式分解:(1)2a 2﹣4a ;(2)()()229m n m n --+.23.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件;(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元.24.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.25.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C .【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.2.C解析:C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.5.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形, D选项中∠A=2∠B=3∠C,即3∠C +32∠C +∠C =180°,∠C =36011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.6.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.7.B解析:B【解析】试题分析:由设原计划每天加工x 套运动服,得采用新技术前用的时间可表示为:160x天,采用新技术后所用的时间可表示为:()400160120%x -+天。
初二中考试卷数学答案上册
一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. 3/4答案:D2. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a/2 > b/2D. a^2 > b^2答案:A3. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:D4. 下列运算中,正确的是()A. (-3) × (-2) = 6B. (-3) × 2 = -6C. (-3) ÷ (-2) = -1.5D. (-3) ÷ 2 = -1.5答案:B5. 如果sinα = 1/2,那么α是()A. 30°B. 45°C. 60°D. 90°答案:A6. 下列代数式中,同类项是()A. 2x^2B. 3x^2C. 2x^2 + 3yD. 4x^2 - 5x答案:B7. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 2x = 6D. 3x + 4 = 2x答案:D8. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 3/xD. y = x + 2答案:C9. 下列命题中,正确的是()A. 平行四边形是矩形B. 对角线互相平分的四边形是平行四边形C. 等腰三角形是等边三角形D. 等边三角形是等腰三角形答案:B10. 下列图形中,是正多边形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:A二、填空题(每题2分,共20分)11. (-2)^3 = ______答案:-812. 3/4 - 1/2 = ______答案:1/413. sin45° = ______答案:√2/214. 2x - 3 = 7,x = ______答案:515. (x + 2)^2 = 25,x = ______答案:3 或 -516. y = 2x + 3,当x = 2时,y = ______答案:717. 下列函数中,y = kx + b,k > 0,b > 0的函数图象在()A. 第一、二象限B. 第一、三象限C. 第一、四象限D. 第二、四象限答案:A18. 下列图形中,对角线互相平分的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:C19. 下列命题中,正确的是()A. 平行四边形是矩形B. 对角线互相平分的四边形是平行四边形C. 等腰三角形是等边三角形D. 等边三角形是等腰三角形答案:B20. 下列图形中,是正多边形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:A三、解答题(每题10分,共30分)21. 解下列方程:3x - 2 = 5x + 4答案:x = -322. 解下列方程组:\[\begin{cases}2x + 3y = 7 \\x - y = 1\end{cases}\]答案:x = 2,y = 123. 已知y = kx + b,当x = 1时,y = 2;当x = 2时,y = 4,求k和b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B C
5
10
15
20
泾干镇中学八年级数学期中考试题
考试时间:90分钟
满分:120分
出题人:岳超
审题人:岳超
一、选择题(每小题3分,共30分)1、在
0,52.3,3
,
3
11,
414.1,2,25中,无理数有
(
)
A 、1个
B 、2个 C
、3个 D
、4个
2、下列说法不正确的是(
)
A 、5
1
251
的平方根是; B 、
的算术平方根
是819;
C 、
2
1.0的平方根是
0.1 ; D
、
3
273
3、下列各式中正确的是(
)
A 、7)
7(2
B 、
39
C 、4)
2(
2
D 、
3
33484、三角形各边长度的如下,其中不是直角三角形的是()
A. 3,4,5
B. 6,8,10
C. 5
,11,12 D. 8,15,17
5、将图形
按顺时针方向旋转90度后的图形是(
)
A . B
. C
. D
、
6、如图,从位置来看,下列是由左边第一个图平移得到的是( )
A .
B .
C .
D .
7、如图所示△AOC 绕O 点旋转到△BOD ,则下列结论错误的是()
A 、∠C =∠D
B 、AC=BD
C
、AC ∥BD D 、∠AOC =∠BOD
8、已知一个多边形的内角和等于它的外角和,则这个多
边形是(
)
A .三角形
B .四边形
C .五边形 D
.六边形.
9、下列图形中,是中心对称图形但不是轴对称图形的是
(
)
A .平行四边形
B .矩形 C
.菱形 D .正方形
10、正方形具有而菱形不一定具有的性质是()
A 对角线互相垂直
B 对角线互相平分
C 对角线相等
D 对角线平分一组对角二、填空题(每空2分,共20分)
11、36的平方根是
,64的立方根是
,
2的绝对值是
;
12、化简:
64
9=
,))((32
32
=
;
13、比较大小,填>或<号:119 11
,2
332, 14
、
用同一种多边形作平面镶嵌的有_____、______.(列举2种)
15、如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 到点C
的距离 5cm ,一只蚂蚁如果沿着长方体的表面从A 点爬到B 点,需要
爬行的最短距离是
.
三、
化简(每小题6分,共24分)
16、75
27
12
17
、
3
615
18、
533
60
15
19
、
700
287
1
四、求下列各式中的x。
(每题6分,共12分)
20、x2 = 49 21、(x+3)3 = 64
五、解答题(共34分)
22.(7分)如图,A,B,C,D四个工厂正好分布在一个等腰梯形区域的四个顶点处。
现要建造一个污水处理厂处理这四个工厂排出的污水,如果要求这个污水
处理厂到四个厂的距离相等,试在图中作出这个污水处理厂的位置。
(保留作图痕迹,不写作法。
)
A B
23.(12分) 如图:在平行四边形ABCD中,点E是AD的中点,BE的延长线与CD 的延长线相交于点F,①求证:△ABE≌△DFE;②试连结BD、AF,判断四边形ABDF 的形状,并证明你的结论。
24、(15分)如图,在梯形ABCD中,AD∥BC,∠B=∠C,DE∥AB且交BC于点E。
(1)AB=DE吗?为什么?
(2)∠DEC=∠C吗?
(3)由此你能得到什么结论?
答案
一、1、B,2、B,3、D,4、C,5、D,6、C,7、C,8、B,9、A,10、C。
二、11、±6;2;√2. 12、3\8;1,
13、﹤;﹥ 14、三角形,四边形,正六边形
15、25cm.
三、
D C。