自制喷气式发动机
手工微型发动机制作方法
手工微型发动机制作方法手工制作微型发动机是一项具有挑战性的工艺活动,需要一定的机械知识和技巧。
本文将介绍一种简单的方法来制作微型发动机。
我们需要准备以下材料和工具:铝制材料、钳子、锉刀、钻头、螺丝刀、铜管、铜丝、电线、电池、电动机和发动机配件。
第一步,我们需要制作发动机的主体部分。
首先,我们可以使用铝制材料来制作发动机的外壳。
根据设计,使用钳子将铝制材料剪成合适的大小,并使用锉刀修整边缘,使其光滑。
第二步,我们需要制作发动机的气缸和活塞。
使用钻头在外壳上钻孔,以便安装气缸。
然后,将铜管剪成合适的长度,固定在外壳上。
接下来,使用铜丝制作活塞,并将其安装在气缸内。
第三步,我们需要制作发动机的点火装置。
首先,将电线连接到电池的正负极上。
然后,将电线连接到电动机的引擎部分。
最后,使用螺丝刀将电动机安装在发动机的外壳上。
第四步,我们需要制作发动机的燃料供给系统。
使用铜管制作燃料供给管道,并将其连接到发动机的气缸上。
然后,将燃料供给装置连接到管道上,并确保燃料能够顺利流入气缸。
第五步,我们需要测试并调整发动机。
将电池连接到点火装置上,并启动电动机。
观察发动机是否能够正常运转,并调整点火装置和燃料供给系统,以确保发动机的稳定性和性能。
通过以上步骤,我们就可以制作一个简单的微型发动机。
当然,这只是一个基本的制作方法,可以根据自己的需求和创意进行改进和扩展。
制作微型发动机是一项很有趣的工艺活动,不仅可以增加我们的机械知识和技巧,还可以培养我们的动手能力和创造力。
希望本文对您有所帮助,祝您制作微型发动机成功!。
(整理)DIY航模脉冲式喷气发动机
DIY航模脉冲式喷气发动机脉冲式喷气发动机结构简单,加工方便,并比普通内燃机发动机高的燃烧效,因此适用于各种航空,海模,车辆模中。
你也可以自己设计做成喷气助动车辆。
本手册将从原理开始,教你如何打造出自己的喷气发动机。
原理结构介绍脉动喷气发动机工作时,首先把压缩空气打入单向阀门,或使发动机在空中运动,这时便有气流进入燃烧室,然后油咀喷油,火花塞点火燃烧。
这时长尾喷管在燃气喷出后,由于燃气流的惯性作用,虽然燃烧室内的压强同外面大气的压强相等,仍会继续向外喷,所以在燃烧室内造成空气稀薄的现象,使压强显著降低到小于大气压,于是空气再次打开单向活门流入燃烧室,喷油点火燃烧,开始第二个循环。
这样周而复始,发动机便可不断地工作了。
这种发动机由进气到燃烧、排气的循环过程进行得很快,一秒钟大约可达40~50次。
脉动式发动机在原地可以起动,构造简单,重量轻,造价便宜。
这些都是它的优点。
但它只适于低速飞行(速度极限约为每小时640~800公里),飞行高度也有限,单向阀门的工作寿命短,加上振动剧烈,燃油消耗率大等缺点,使得它的应用受到限制。
第一章如何设计自己的发动机设计参数:1.油气比喷气发动机依靠油气燃烧产生反作用力,根据油品的爆炸极限,燃油与空气重量比,一般在15-20%。
即一升空气约需一克的油。
2.喷气频率,喷气发动机喷气频率与机身长度有关,同一直径下,机身越长频率越低。
2.机身直径与长度比L/D发动机长度与直径是发动机设计的重要步聚,长度与比直径一般在10-17。
4.计算公式发动机的推力是由许多因素决定的,如下公式可说明:m*va=F*tV = 发动机体积(dm^3.)f = 喷气频率. (Hz)va = 喷气速度. (m/s)F = 推力(N, Newton)fc = 油耗(gram/second)m = 空气质量kgt =时间s秒.以时间一秒,m=实际进入发动机的油气量X换算得出m*v=F*t. m = mass = X %实际推力:F (Newton) = (X * D^2 * 3.1415 * L * v^2 )/(L * 8)由以上公式可以得出尾喷管直径越大,发动机的推力越大,同时进入的油气X越多就能产生更大的推力。
修车铺造喷气发动机
修车铺造喷气发动机一单把偶彻底震撼了一把的生意今天偶修车铺里接到一单把偶彻底震撼了一把的生意。
今早以前找偶代工旋翼机的的客户又来了,带了几张图和一个“技术专家”,要偶把图上的东西做出来。
偶开始没在意,就做几根管子和装一套摩托车电喷油泵和火花塞总承。
讨价一番后谈好工钱800材料2900,就叫了两个工人照着图去做。
就留下那个拿图纸“技术专家”留在前面“指导工作”偶自己就带着客人回后面喝茶侃大山去了。
中间也陪客户到前面看了几次“巡视工作进度”但是我也一直没太上心。
直到下午交活验货的时候那奇怪的发动机声把我们勾引出去,偶就差点掉眼镜了。
客户把这东西装在一辆经过简单改装的自行车上(由换挡张力线把手直接控制油门了),飙得比500cc的赛摩还快。
偶缠着陪客户来验货的“技术专家”问了才知道,今天造的这东西叫无阀门式脉冲喷气发动机。
是从二战末期的德国V1导弹上使用的单阀门式脉冲喷气发动机改进而来的德意志第三帝国的末日科技产物。
来头还真不小啊。
(没了易磨损的单向阀门,工作寿命比现在的民用涡轮喷气发动机还长)偶当时就斯巴达了,偶的摩托车修理铺能造喷气发动机了?还是神马大有来头的无阀门式脉冲喷气发动机。
偶至少石化了有半分钟。
然后我找仔细问了今天干活的工人又上百度查了一圈。
终于确定了,原来这客户是前几天受了网上一木匠自制喷骑自行车的刺激,想把他那架原来使用雅马哈750活塞发动机的山寨旋翼机给改成喷气动力的。
今天造的这个台喷气机只是先来试试水的。
不过这东西实在是太简单了。
2mm不锈钢板冲挤焊接成酒杯型形的内管外套一个1.2mm镀锌板滚卷焊接成的雪茄型外管就是发动机主体,再接上一套摩托车用的火花塞总承和电喷油泵总承就齐了(网上的原设计更简单,电喷油泵都没有用,直接用虹吸式化油器的)。
含工钱才¥3700。
成本才三千七百元啊。
这东西实在是太简单(总共才十几个零件),太便宜,太容易造了(偶问过工人了,只要造过一次的,没图也能造出来)。
制作简单航空发动机原理
制作简单航空发动机原理
航空发动机是一种转换化学能为机械能的装置,利用燃烧燃油和空气
产生高温高压气体,驱动涡轮转动,使飞机产生推力前进。
以下是制作简
单航空发动机的原理步骤:
材料:
-一个塑料瓶。
-一根小管子。
-一张不易燃的纸片。
-一些打火机气体。
步骤:
1.使用刀子在瓶盖上面切一个直径稍小于小管子的孔。
2.将小管子插入瓶盖上的孔中,并用胶水封紧。
3.将纸片卷成一个小锥形,放在小管子的末端,并用胶水封紧。
4.将瓶子装满打火机气体。
5.轻轻地旋转瓶盖,使小管子朝上。
6.用打火机点燃纸片,引燃小管子内的气体。
7.当气体燃烧时,产生热量和气体压力,使小管子内的气体向外喷射,形成推力。
这就是一个简单的航空发动机制作原理了。
不过,需要注意的是,这种制作过程需要谨慎操作,避免引起意外。
使用时应该在安全的环境下进行,并且离开易燃物品。
手工微型发动机制作方法
手工微型发动机制作方法一、引言微型发动机是一种小型化的发动机,由于其体积小、重量轻、功率高等特点,被广泛应用于模型飞机、模型汽车等领域。
本文将介绍手工制作微型发动机的方法,帮助读者了解并掌握这一技巧。
二、材料准备制作微型发动机所需的材料主要包括:铝合金、磨料、钢丝、钳子、锉刀、钻头、焊锡等工具。
在开始制作之前,需要确保所有工具和材料都已准备齐全。
三、制作步骤1. 制作发动机缸体将铝合金锯成适当的尺寸,然后使用锉刀和磨料对其进行修整,使其表面光滑。
接下来,使用钻头在铝合金上钻出进气孔和排气孔。
2. 制作活塞将铝合金切割成活塞的形状,然后使用锉刀对其进行修整,确保其能够顺利在缸体内运动。
为了减小活塞与缸体之间的摩擦力,可以在活塞上涂抹一层润滑油。
3. 制作曲轴使用钢丝制作曲轴的形状,然后使用锉刀对其进行修整。
为了使曲轴具有良好的转动性能,需要保持其表面的光滑度,并确保各个曲轴连接点的间距合适。
4. 制作气门使用铝合金制作气门的形状,然后使用锉刀进行修整。
为了使气门能够正常开合,需要确保其与缸体之间的间隙适当,并保持其表面的光滑度。
5. 组装发动机将制作好的活塞、曲轴和气门组装在一起,确保它们能够顺利地配合运动。
在组装过程中,需要注意各个零件之间的配合度和间隙,以确保发动机的正常运转。
6. 焊接连接使用焊锡将发动机的各个零件进行连接,确保它们能够牢固地固定在一起。
在焊接过程中,需要控制好温度和焊接时间,以避免对零件造成损坏。
7. 调试测试组装完成后,需要对发动机进行调试测试,确保其能够正常运转。
可以通过给发动机加燃料,并使用点火器点燃来测试其点火和燃烧效果。
同时,还需要检查发动机的各个部件是否正常运作,如曲轴转动是否顺畅,气门是否正常开合等。
四、注意事项1. 在制作过程中,需要注意安全,避免因工具使用不当而造成伤害。
2. 在焊接连接时,需要注意控制好温度,避免对零件造成损坏。
3. 在调试测试时,需要小心操作,避免因点火不当而引发火灾等事故。
自制发动机小制作方法
自制发动机小制作方法自制发动机是一项很有技术挑战性的任务,需要一定的机械、电子和材料学知识。
下面是一个简单的自制发动机的制作方法。
首先,我们需要准备以下材料和工具:1. 燃烧室和气缸:可以使用铝合金或不锈钢等材料制作。
2. 活塞和连杆:可以使用铝或钢制作。
3. 曲轴和凸轮轴:可以购买标准规格的产品或自行加工制作。
4. 配气装置和气门:可以使用购买的配件或自行设计和制作。
5. 燃料喷射器和火花塞:可以购买标准规格的产品。
6. 燃料系统和点火系统:可以购买标准规格的产品。
7. 其他附件:如冷却系统、润滑系统、空气滤清器等。
制作步骤如下:1. 设计发动机结构:首先,需要确定所需的功率、转速和工作环境等参数,然后设计发动机的结构和相应的尺寸。
2. 制作燃烧室和气缸:根据设计图纸,使用铝合金或不锈钢等材料制作燃烧室和气缸,并确保其密封性和强度。
3. 制作活塞和连杆:根据设计图纸,使用铝或钢等材料制作活塞和连杆,确保其质量和精度。
4. 加工曲轴和凸轮轴:如果没有能力加工曲轴和凸轮轴,可以购买标准规格的产品。
如果能够加工,可以根据设计图纸加工曲轴和凸轮轴。
5. 设计和制作配气装置和气门:根据设计要求,设计和制作配气装置和气门,可以使用购买的配件或自行制作。
6. 安装燃料喷射器和火花塞:购买标准规格的燃料喷射器和火花塞,并按照设计要求安装在燃烧室中。
7. 安装燃料系统和点火系统:购买标准规格的燃料系统和点火系统,并按照设计要求安装在发动机上。
8. 安装其他附件:安装冷却系统、润滑系统、空气滤清器等其他附件,确保发动机正常工作。
制作完成后,需要进行测试和调试:1. 检查和调整发动机结构:检查发动机各个部件的安装情况和间隙,确保各部件之间的配合良好,没有松动或过紧的现象。
2. 确认燃料和点火系统工作正常:通过观察燃油喷射和火花塞点火情况,确认燃料和点火系统工作正常。
3. 调整曲轴和凸轮轴的相位:根据发动机的转向和气门的工作要求,调整曲轴和凸轮轴的相位。
空气发动机制作方法
空气发动机制作方法“哎呀,这车子又没油了!”我抱怨着,“要是有个不用油的发动机就好了。
”“嘿,你还别说,真有不用油的发动机呢,叫空气发动机。
”一旁的爸爸笑着说。
“哇,空气发动机?那是怎么做的呀?”我好奇地追问。
爸爸神秘一笑,说:“来,我给你讲讲空气发动机制作方法。
”首先呢,我们要准备一些材料。
像一个坚固的罐子,最好是金属的哦;一个气嘴,能给罐子充气的那种;还有一些管子和接头。
接下来就是制作步骤啦!先把气嘴安装在罐子上,一定要安装牢固哦,不然等下充气的时候可就麻烦啦。
然后把管子接到气嘴上,另一头接到你想让空气发动机带动的装置上,比如一个小风扇啥的。
这里可得注意啦!安装的时候要仔细检查,不能有漏气的地方。
不然空气都跑掉了,发动机可就没法工作咯。
那空气发动机有啥优势呢?它不需要油呀,多环保呀!而且制作成本也不高,材料都很容易找到呢。
你看啊,在一些小玩具上就可以用空气发动机呀,比如自制的小赛车,用空气发动机来驱动,跑得也挺快呢。
还有啊,在一些模型制作中也能发挥大作用。
就说上次我和爸爸一起做的那个小模型飞机,我们就给它装上了空气发动机,哇,飞起来可带劲了!看着它在空中翱翔,那种成就感简直爆棚呀!“哇,这么厉害呀!”我惊叹道,“那我们赶紧也做一个吧。
”“哈哈,好呀,那我们这就开始动手。
”爸爸笑着说。
于是,我和爸爸就开始忙碌起来,找材料、安装、调试,忙得不亦乐乎。
虽然中间也遇到了一些小问题,但在我们的共同努力下,一个小小的空气发动机终于制作成功啦!当我看到那个小风扇在空气发动机的带动下呼呼转动时,心里别提多高兴了。
这就是我们自己动手做出来的呀,感觉太奇妙啦!我觉得呀,自己动手做东西真的好有趣,不仅能学到知识,还能收获快乐和成就感。
以后我还要做更多更有趣的东西,让我的生活变得丰富多彩!所以呀,大家也都可以试试自己制作空气发动机哦,相信你们也会爱上这种感觉的!。
无阀脉动喷气发动机的制作
Valveless Pulsejet Engines 1.5-- a historical review of valveless pulsejet designs --by Bruno OgorelecThe idea that the simplest engine an enthusiast can make at home is a jet engine will sound strange to most people -- we perceive jet engines as big complex contraptions pushing multi-million dollar aircraft through the skies. Yet, this is completely true. In its most basic form – the valveless pulsejet -- the jet engine can be just an empty metal tube shaped in a proper way. Everyone able to cut sheet metal and join metal parts can build one in a garage or basement workshop.Due to peculiar historical circumstances, this interesting fact has escaped popular attention. It is not familiar even to enthusiasts of jet propulsion. You are not very likely to see or hear jet engines roaring in people’s back yards on Sunday afternoon. Few if any people can be seen flying aircraft powered by jet engines they have built themselves.This document aims to help change that.However, it is not a how-to primer. It is an attempt to describe and explain the valveless pulsejet in principle. It also offers a rough sketch of the amazing variety of layouts the inventors and developers have tried during the long but obscure history of this device.My aim is to inspire, rather than teach. My goal is to demonstrate that jet power is accessible to everyone in a great variety of simple ways. Should you find the inspiration, plenty of information on the practical steps towards jet power will be available elsewhere.2 HOW DOES A VALVELESS PULSEJET WORK?The picture below shows one of the many possible layouts of a valveless pulsejet engine. It has a chamber with two tubular ports of unequal length and diameter. The port on the right, curved backwards, is the intake pipe. The bigger, flared one on the left is the exhaust, or tailpipe. In some other engines, it is the exhaust pipe that is bent into the U-shape, but the important thing is that the ends of both ports point in the same direction.When the fuel-air mixture combusts in the chamber, the process generates a great amount of hot gas very quickly. This happens so fast that it resembles an explosion. The immediate, explosive rise in internal pressure first compresses the gas inside and then pushes it forcefully out of the chamber.Two powerful spurts of hot expanding gas are created – a big one that blows through the tailpipe and a smaller one blowing through the intake. Leaving the engine, the two jets exert a pulse of thrust – they push the engine in the opposite direction.As the gas expands and the combustion chamber empties, the pressure inside the engine drops. Due to inertia of the moving gas, this drop continues for some time even after the pressure falls back to atmospheric. The expansion stops only when the momentum of the gas pulse is completely spent. At that point, there is a partial vacuum inside the engine.The process now reverses itself. The outside (atmospheric) pressure is now higher than the pressure inside the engine and fresh air starts rushing into the ends of the two ports. At the intake side, it quickly passes through the short tube, enters the chamber and mixes with fuel. The tailpipe, however, is rather longer, so that the incoming air does not even get as far as the chamber before the engine is refilled and the pressure peaks.One of the prime reasons for the extra length of the tailpipe is to retain enough of the hot exhaust gas within the engine at the moment the suction starts. This gas is greatly rarified by the expansion, but the outside pressure will push it back and increase its density again. Back in the chamber, this remnant of previous combustion mixes vigorously with the fresh fuel/air mixture that enters from the other side. The heat of the chamber and the free radicals in the retained gas will cause ignition and the process will repeat itself.The spark plug shown on the picture is needed only at start-up. Once the engine fires, the retained hot gas provides self-ignition and the spark plug becomes unnecessary. Indeed, if spark ignition is left on, it can interfere with the normal functioning of the engine.It took me more than 300 words to describe it, but this cycle is actually very brief. In a small (flying model-sized) pulsejet, it happens more than 250 times a second.The cycle is similar to that of a conventional flap-valve pulsejet engine, like the big Argus (which powered the V-1 flying bomb) or the small Dynajet used to power flying models. There, the rising pressure makes the valve flaps snap shut, leaving only one way for the hot gas to go -- into the exhaust tube. In the J-shaped and U-shaped valveless engines, gas spews out of two ports. It does not matter, because they both face in the same direction.Some valveless pulsejet designers have developed engines that are not bent backwards, but employ various tricks that work in a similar fashion to valves -- i.e. they allow fresh air to come in but prevent the hot gas from getting out through the intake. We shall describe some3of those tricks at a later point.You may wonder about the sharp transition from the intake tract into the chamber. It is necessary to generate strong turbulence in the incoming air, so that it mixes with injected fuel properly. A gentler, more gradual entry would not generate the necessary swirling of gases. In addition, turbulence increases the intensity of combustion and the rate of the heat release.THE BEGINNINGSThe idea of using the elastic properties of air to generate power pulses is very old. The first pulsejet engines were built in France at the very beginning of the 20th century. They found only very limited use at the time and were soon forgotten for all practical purposes.In the 1930s, however, German engineer Paul Schmidt rediscovered the principle by accident while trying to develop a detonation engine. He built a series of impressive pulsejets with valves. At roughly the same time and in the same country, engineers at the Argus engine company were working on a valveless device that used compressed air.The circumstances were much more propitious now. The world was preparing for a big war and the war machines were gearing up. The German War Ministry brought Schmidt and Argus together, which resulted in the development of the first mass produced jet engine. Like the Schmidt engines, it used valves and natural aspiration, but its mechanisms were greatly modified by Argus.Thus, while the opposed sidesin World War II were still trying toput together their first jet-poweredfighter aircraft in 1944, theVergeltungswaffe 1 (or V-1 forshort) was regularly buzzing itsway to England with a 1,870-lbload of explosives. Its Fieselerairframe was powered by theArgus As 109-014 pulsejet engine.You can see one flying over theEnglish countryside on the photoon the right.The utter simplicity, low costand demonstrated effectiveness ofthe pulsejet impressed the Alliesso much that they badly wanted tohave something similar. It lookedamazing to everyone that a devicethat simple could power a seriousflying machine. Capturedexamples of the Argus werecarefully studied and copies builtand tested.It soon became obvious that thepulsejet had certain drawbacksand limitations, but the basicprinciple still looked very attractiveand ideas for improvementabounded. Various uses for thedevice were contemplated. Ford Motor Company built a proper assembly line to manufacture Argus copies. With the end of the war, some of the projects were scuttled, but the Cold War started soon and the quest for a better pulsejet continued.Unfortunately, progress was very slow and purely incremental. In the mid 1950s, after a decade of effort, developers were not that much better off than their wartime German predecessors. In total contrast, the advances in turbojet design over the same period were4 tremendous. By that time, turbojet-powered fighters already had the Korean War behind them. Turbojet strategic bombers were carrying nuclear weapons in their bomb bays and turbojet airliners were getting ready to earn their money carrying businessmen and the idle rich from continent to continent.It was becoming completely clear to everyone that the turbojet was the jet engine of the future. Engineers were still excited by the promise of the pulsejet, but the reality was not to be denied. During the 1950s and 1960s, most pulsejet researchers gradually abandoned their efforts and turned to other things.THE ADVANTAGESWhat originally attracted and excited the researchers and developers most of all about the pulsejet engine was a peculiar property of pulsating combustion – it can be self-compressing. In the pulsejet, the fuel-air mixture does not burn steadily, at a constant pressure, as it does in the other jet engines. It burns intermittently, in a quick succession of explosive pulses. In each pulse, the gaseous products of combustion are generated too fast to escape from the combustor at once. This raises the pressure inside the combustor steeply, which increases combustion efficiency.The pulsejet is the only jet engine combustor that shows a net pressure gain between the intake and the exhaust. All the others have to have their highest pressure created at the intake end of the chamber. From that station on, the pressure falls off. Such a decreasing pressure gradient serves to prevent the hot gas generated in the combustor from forcing its way out through the intake. This way, the gas moves only towards the exhaust nozzle in which pressure is converted to speed.The great intake pressure is usually provided by some kind of compressor, which is a complex and expensive bit of machinery and consumes a great amount of power. Much of the energy generated in the turbojet engine goes to drive a compressor and only the remainder provides thrust.The pulsejet is different. Here, the exhaust pressure is higher than the intake pressure. There is pressure gain across thecombustor, rather than loss. Moreover,the pulsejet does it without wasting thepower generated by combustion. Thisis very important. According to somerough figures, a 5-percent gain incombustion pressure achieved by thismethod gives about the sameimprovement in overall efficiency as the85-percent gain produced by acompressor, all other things beingequal. Now, that’s rather impressive.Personally, I am interested in thepulsejet for another reason -- because itbrings the jet engine back to the people.It is a back-to-basics kind of machine,so simple to be accessible even toenthusiasts with rudimentary skills andsimple tools. Turbojets and fanjets areat the opposite end of the complexityscale. In most cases they employinaccessible, cutting-edge technology.Just look at the collection ofpulsejets on the picture on the right.They were built by Stephen Bukowsky,a high-school student, purely out of fun.5 If I remember it right, the three valveless engines (second, third and fifth from left) each tookhim about a couple of days to make. This is just a part of Steve’s collection!Cost is another advantage. Pulsejets are cheaper than even the simplest piston engines of comparable output. In contrast, turbojets are frighteningly expensive.THE DISADVANTAGESSo, given the advantages, why did the pulsejet disappear from view? There are several reasons.A big problem is that the gain in efficiency offered by pulsating combustion is not at all easy to utilize for propulsion. Paradoxically, the central problem here is the same as the source of the benefit – namely, pulsation. The very means of increasing combustion efficiency makes it difficult to take advantage of the result.The real potential for the pulsejet has always been in its use as the combustor for a turbine engine, rather than as an engine in itself. Its ability to generate pressure gain is greatly multiplied in a high-pressure environment. Compared to the more usual constant-pressure combustor, it can either give the same power with much smaller mechanical loss and lower fuel consumption, or much greater power for the same amount of fuel.Alas, a turbine demands steady flows to function efficiently. Unsteadiness generates loss. Also, pulsations are dangerous for the brittle axial turbine blades. Radial turbines are tougher in that respect, but they are less efficient, especially so with intermittent flow. They are mostly used to exploit waste heat, as in a turbocharger, rather than as prime movers. Researchers have toyed with converting pulsations into a steady flow, but most methods proved inefficient.But, how about simplicity? In a manner of speaking, a pulsejet is what remains when you remove all the complex and expensive parts from a turbojet and leave only the simple and cheap combustor that is hidden in the middle.Well, yes, simplicity is attractive, but it also has its disadvantages. The promise of the pulsejet on its own, outside a turbojet, is less significant. The pressure gain is still there, but in the atmospheric pressure environment, without the multiplication offered by the compressor, it does not amount to very much. The average pressure in the working cycle is low, the specific power unimpressive and fuel efficiency poor. The power ‘density’ is much lower too. For the same engine bulk, you get less thrust than with the competing jet engines.Pushing the pulsejet further down the scale of desirability in the postwar era was the fact that even with the improvements arrived at in the 1950s and 60s; the pulsations still produced horrible noise and mad vibration. Pulsejets depending on reed valves were also short-lived and unreliable. OK, they were cheap, but in the Cold War era that was certainly not a prime consideration.Finally, there was little that pulsejets were really good for. For a while, it looked like they would power small helicopters. Some spectacular-looking prototypes were built, especially in France. In the end, however, they never made the grade, mostly for aerodynamic reasons.6 The French briefly used pulsejet power on motor gliders and flying drones, too. Cheap flying drones and missiles were built in several countries, including the US, Russia and China. The picture above shows the French Arsenal 501 target drone, powered by a valved engine. The color picture on the first page of this document shows a Chinese target drone with a valveless engine.That was about it. Given the ample defense budgets, most of the real-life applications that required a jet engine were better satisfied with a turbojet or with rocket power.Civilian industry did not look upon the pulsejet with any greater kindness. Turbojet development was intense and engineers had little time for the exotic pulsating things that few people understood properly anyway. The difficulty of defining the processes inside the pulsejet mathematically was a major problem for most researchers and engineers. Modeling the semi-chaotic pulsating combustion was far too much for the computing abilities of the time. It meant that pulsejet design was unpredictable -- part science and part black art. Industry tries hard to avoid such tricky propositions.By the mid-1960s only a few isolated enthusiasts still considered the pulsejet as a potential aircraft powerplant. The noisy tube was in a blind alley and relegated to the role of model aircraft engine and such humdrum applications as an efficient combustor for central heating systems, a power unit for agricultural spray dusters and a blower and shaker for industrial slurry drying machinery.CHANGE OF CIRCUMSTANCESSo, why look at pulsejets now? Well, my reason is the change of circumstances.Sometime in the early 1980s, ultralight fun flying started getting increasingly popular due to the availability of good, simple and affordable flying platforms – hang gliders and paragliders. When provided with motor power, these machines offered unprecedented freedom of flight to anyone interested. In addition, with the fantastic development of modern electronics, a whole new class of unmanned flying machines appeared, designed as utility platforms for a variety of telecommunications, surveillance, measuring and sensing devices.All those new flying machines, whether designed for fun or utility, are powered by piston engines that drive propellers. Jet engines only appear at the very top end of the price scale – on machines costing several hundred thousand dollars apiece.All the piston engines currently used in ultralight flying are relatively heavy and cumbersome, even in their simplest form. They also require much ancillary equipment, like reductors, prop shafts, propellers etc. etc. Having all that gear mounted on a lightweight flying machine almost defeats the original purpose. A simple lightweight pulsejet seems much more appropriate.Turbojets, on the other hand, are terriblyexpensive – far out of enthusiasts’ reach. Thingsare not likely to get much better in the nearfuture, either. Because of the very hightechnological requirements, the cost of turbojetengines has always remained high. Only thesmall turbojets based on old turbocharger partsare relatively inexpensive, because their mostprecious parts are taken off scrapped truckengines, but even their prices are not pleasant.In contrast, the humble low-technologypulsejet is laughingly cheap by any standard.Besides, in the engine sizes likely to be usedby enthusiasts, the best pulsejets can compete inperformance with the other jet engines,especially in the power-to-weight stakes.I am often told that a jet engine will never be good for recreational purposes. Jet propulsion is really efficient only at relatively high airspeeds, seemingly making it unsuitable for low-speed devices such as hang gliders. However, maybe a niche for a simple jet engine7can be found at the top end of hang-glider performance – possibly with rigid wings.Also, the rule does not seem to be very strict. For instance, a British Doodlebug harness powered by a Microjet turbojet engine has been tested with delightful results with a regular foot-launched hang glider (see the picture).This bodes well for pulsejets. When equipped with a thrust augmenter, a good pulsejet can be optimized for speeds much lower than those of other jet engines. It can hardly fail to perform at least as well as the Microjet in a similar application. In terms of thrust to weight it is already superior.Tote up those points and the lightweight, simple, cheap low-speed pulsejet engine suddenly starts making a lot of sense. Its admittedly high fuel consumption, noise and vibration need not be of major importance for the applications I have in mind -- or may perhaps be alleviated or designed out of the concept.The enormous advances in computing power over the past few decades have made modeling of pulsating combustion more realistic, too. It is still not easy even for the supercomputers, but it can now be done. This can cut down development time drastically and make it much more straightforward.Finally, our understanding of pulsating combustion has advanced to the point where these engines can be designed on paper with performance predictability much closer to that of the other engine types.It is perhaps time to blow the dust off the old tube.WHY VALVELESS?The ordinary pulsejet is already a very simple engine. It is just a piece of tube cut to the required dimensions, with a few small flaps and a fuel jet at one end. So, one might ask, why go that one small step further and eliminate the valves?The prime reason is that the use of flap valves limits the reliability and longevity of the engine. The valves of the As 109-014 lasted for only about 30 minutes of continuous use. Given that its role was to destroy itself in the end anyway, this was not a big fault, but today you might have a flying model that is your pride and joy up in the air, or you may even want to fly yourself. You really need your engine to last a bit longer.Admittedly, development has improved the design in many ways and stretched its working life from minutes into hours, but the fundamental problem remains. In fact, it looks well nigh insoluble, given that the valves are supposed to satisfy conflicting demands.In the interest of combustion efficiency, they should not impose their own timing on the flows. This is very important, as the combustion process is not only intermittent but also somewhat erratic and highly dependent on feedback. If we want to avoid disturbing the natural progress of the pulsation as much as possible, the valves must respond to changes of pressure almost instantaneously. To do that, they have to be as light as possible.At the same time, however, they have to endure great mechanical stress (bending open and slamming shut at high-speed) and do it in a high-temperature environment. They have to be very tough. If something has to be light, yet exposed to great abuse, it either spells short life or exotic technology. The former is impractical and the latter is expensive.Finally, there is a question of elegance. I find the idea of a jet engine that is actually just a cheap empty metal tube without moving parts very appealing. Making the various gases jump through hoops and produce useful tricks without resorting to any mechanical complexity is a nifty thing that will be appreciated by all lovers of simplicity and elegance. (I am talking of elegance in the mathematical sense -- desired result achieved with minimal complication.) KADENACY OSCILLATION, THERMAL BREATHING AND ACOUSTIC RESONANCEBefore getting into details of actual engine designs, let’s get some important theory out of8 the way. People who hate theory may skip this part, but my advice is to skip it only if you are already reasonably familiar with the laws of acoustics and fluid mechanics and aware of how they pertain to pulsejets. On the other hand, people who like theory should be warned that the following is a greatly simplified description of very complex mechanisms.EffectKadenacyIn the explanation of the working cycle, I described how inertia keeps driving the expanding gas out of the engine all the way until the pressure in the chamber falls below atmospheric. The opposite thing happens in the next part of the cycle, when the outside air pushes its way in to fill the vacuum. The combined momentum of the gases rushing in through the two opposed ports causes the chamber briefly to be pressurized above atmospheric before ignition.There is thus an oscillation of pressure in the engine caused by inertia. The gases involved in the process (air and gaseous products of combustion) are stretched and compressed between the inside and outside pressures. In effect, those fluids behave like an elastic medium, like a piece of rubber. This is called the Kadenacy Effect.The elastic character of gas is used to store some of the energy created in one combustion cycle and use it in the next. The energy stored in the pressure differential (partial vacuum) makes the aspiration (replacement of the burned gas with fresh fuel-air mixture) possible. Without it, pulsejets would not work.Some observers have noticed another, additional facet of the process, akin to breathing. Swiss pulsating combustion wizard Francois H. Reynst called it ‘thermal breathing’ – heating the gas causes it to expand (and the engine to ‘exhale’) while the cooling of the gas due to convection of heat to the cooler chamber walls leads to contraction, and the engine ‘inhales’. AcousticsOther people studying the process came up with the acoustic explanation of the same process. They detected acoustic resonance behind the pressure swings.Namely, the explosion in the chamber generates a pressure wave that strikes the engine tube and the air within it, making them ‘ring’ like a bell hit by a hammer. The pressure wave travels up and down the tube. When the wave front reaches an end of the tube, part of it reflects back. Reflections from opposed ends meet and form the so-called ‘standing wave’.Everyone who has heard a pulsejet roar knows that it is a sound generator. The fact needs no amplification – the noise is… well, not just deafening; it is an über-sound that shakes all things around you seriously. What the establishment of the standing wave means is that this ‘sound’, just like its lesser brethren, will obey the laws of resonance.Graphically, the standing wave is best represented by a double sine curve. The same is true for the pulsejet cycle. The undulations of a single sine curve depict the changes of gas pressure and gas speed inside a pulsejet engine very well. The doubling of the curve – the addition of a mirror image, so to say – shows that the places where the pressure and speed are the highest in one part of the cycle will be the places where they are the lowest in the opposite part.The changes of pressure and the changes of gas speed do not coincide. They follow the same curve but are offset from each other. One trails (or leads) the other by a quarter of the cycle. If the whole cycle is depicted as a circle – 360 degrees – the speed curve will be offset from the pressure curve by 90 degrees.The resonance establishes a pattern of gas pressures and speeds in the engine duct that is peculiar to the pulsejet and not found in the other jet engines. In some ways it resembles a 2-stroke piston engine resonant exhaust system more than in does a conventional jet engine. Understanding this pattern is very important, for it helps determine the way the events in the engine unfold.When considering a pulsejet design, it is always good to remember that those machines are governed by a complex interaction of fluid thermodynamics and acoustics.ofResonanceElementsIn acoustic terms, the combustion chamber is the place of the greatest impedance, meaning that the movement of gas is the most restricted. However, the pressure swings are the greatest. The chamber is thus a speed node but a pressure antinode.9 The outer ends of the intake and exhaust ports are the places of the lowest impedance. They are the places where the gas movement is at the maximum and the speed changes are the greatest – in other words, they are speed antinodes. The pressure swings are minimal, so that the port ends are pressure nodes.The pressure outside the engine is constant (atmospheric). The pressure in the combustion chamber seesaws regularly above and below atmospheric. The pressure changes make the gases accelerate through the ports in one direction or another, depending on whether the pressure in the chamber is above or below atmospheric.The distance between a node and an antinode is a quarter of the wavelength. This is the smallest section of a standing wave that a resonating vessel can accommodate. In a valveless pulsejet, this is the distance between the combustion chamber (pressure antinode) and the end of the tailpipe (pressure node). This length will determine the fundamental wavelength of the standing wave that will govern the engine operation.The distance between the chamber and the end of the intake is rather shorter. It will accommodate a quarter of a wave of a shorter wavelength. This secondary wavelength must be an odd harmonic of the fundamental.Given that a valveless pulsejet is a tube open at both ends, you may wonder at the above statements. Namely, an open tube is not a quarter-wave resonator. It normally has a pressure antinode in the center and a node at each end – which comprises half a wavelength. Nevertheless, it is much closer to reality to look at a valveless engine as two different quarter-wave oscillators mounted back to back than as a single half-wave oscillator. The underlying half-wave character of the resonance of the entire duct is still there, of course, but its effects are completely drowned by everything else that is happening inside.So, the tailpipe length must be an odd multiple of intake pipe lengths for the engine to work properly. However, please note that we are talking of acoustic length. The required physical length is somewhat different. It changes with the temperature (which changes the local speed of sound). Thus, it will not be the same in all parts of the engine. It will not be the same with the engine cold (e.g. at the startup) and when it is hot, either. This is the source of much frustration for experimenters and the reason why a new pulsejet invariably requires some tuning and fiddling to achieve proper working resonance.Waves and FlowsBoth the ‘Kadenacy’ and the ‘acoustic’ approaches to the definition of the pulsejet cycle are correct. In a roundabout way, both may be considered just different manifestations of the same thing. However, they are not the same thing. This should not be forgotten.The classical acoustical phenomena take place at small pressure changes, low gas velocities and little gas displacement. Sound waves are vibrations -- roughly speaking, elastic, reversible disturbances in the medium. In pulsejets, we see great pressure variations, high gas velocities and great gas displacement. The forces involved are stronger than the elastic forces keeping the molecules of the medium together, meaning that the medium (gas) is not just made to vibrate, but is irreversibly displaced. It is made to flow.It is difficult to see the difference between the wave and the flow, but it can be done. A wave is not a material phenomenon, but an energy phenomenon. It is a moving disturbance in a force field. That is why it will easily turn any corner, including doubling back 180 degrees.A fluid flow, which has mass and inertia, will not. So, the two can be made to separate, which demonstrates that they are in fact two, rather than one.You can see pressure waves separated from flow in the valveless pulsejet designs that feature ports with irreversible flows (e.g. an intake that does not also serve as an auxiliary exhaust). In such ports, pressure waves will move with the flow in one direction and without the flow in the opposite direction.To recapitulate, pulsejets follow their own, distinctive, Kadenacy-like cycle of compression and rarefaction powered by the self-excited explosive combustion process and helped along by the heat convection pattern. The genesis of the cycle has nothing to do with acoustics and everything to do with thermodynamics. There is no doubt, however, that the scenario of events resembles acoustical phenomena very closely. As a consequence, the laws of acoustics can and do apply. They superimpose themselves over the thermodynamic events and modify the inflow and outflow of gas, often significantly so.Because of that, one should watch out for acoustic resonance, knowing that the regular pressure impulses will inevitably set up standing waves, which will influence the timing and。
自制无阀脉冲发动机的资料
无阀脉冲喷气发动机(Valveless Pulse Jet)无阀脉冲喷气发动机是世界上最简单的引擎之一。
这种引擎发明在60年代,但是由于涡轮喷气发动机的问世而停止了发展。
我曾经按照Lockwood/Hiller的专利模式的方案制造了一个这样的发动机。
发动机可以制作成不同打小,只要保证各开口的比例相同即可。
这种发动机没有可活动的零件,这意味着会很耐用,这是他的一大优点。
这发动机还可以用几乎所有的石油产品来驱动,只要能确保燃料在进入发动机之前能保持稳定。
(我现在用的是50%柴油和50%汽油的混合物,我的第一台是用气体燃料的)这发动机的结构简单,制作比较便宜。
下面是一些种类的脉冲喷气发动机和无阀脉冲喷气发动机的爆炸产生推力原理图。
我不知道它每秒爆炸多少次,但是我估计大概30至50次。
这一系列的爆炸产生难以置信的噪声和共振。
小心你邻居!真希望将来可以测量到它的工作频率啊!.发动时,丙烷供应到燃烧室并被火花塞点燃,接着爆炸开始,瞬间产生巨大的气压将热空气从发动机的两个开口喷出。
当空气被喷出燃烧室,燃烧室内便产生一个真空。
这真空会迫使即将被喷出排气管的火焰吸回燃烧室。
此时喷管已经排出了火焰并吸入了新鲜空气。
这个循环一次又一次地重复直到燃料用完。
下图为此过程的展示。
(ps:这里一定要注意我所说的喷管和排气管是分别是哪条)从这种模式看,很容易制作成各种大小。
在我画的图(下图),你可以看到我的发动机是以Lockwood/Hiller的模式为基础的,虽然在排气管位置与他的模式有一点点不同,但是这只是为了更容易制作。
我的发动机运作的很好,不过还没测量过他的推力。
我计划做些增推力装置并安装在我的发动机上,这样可以增加推力。
在有些案例中,增加推力装置可以使推力翻倍。
下面是一些缩写:∙NL = 喷嘴长度∙NM = 喷嘴直径∙CL = 燃烧室长∙CM = 燃烧室直径∙TL = 排气管长∙TM = 排气管直径∙∙ PS:没错!这里就是整个发动机的全部构造,说白了就是特殊形状的钢管丙烷瓶能在各个气站里买到,我买了一个11kg的瓶(工业尺寸)一共花费925挪威币,冲丙烷充了330挪威币。
自制喷气式发动机
自制喷气式发动机自制喷气式发动机2010-03-19 17:24:20| 分类:动手动脑DIY | 标签:喷气式发动机自制喷气式超轻型飞机超轻型飞行器 |字号订阅自制喷气式发动机《转》自1988年出第一架模型引擎後,模型界引擎的。
1993年法国jpx推出以丙烷为燃料的商品航模涡喷发动机,随后各种商业涡喷厂家日渐增多,使得涡喷发动机的价钱到了人们能接受的水平,因此,飞按比列缩小,配上喷气发动机的航模象真机,成了发达国家地区的航模爱好者最热门的爱好。
但是商品涡喷发动机,价格昂贵,折合人民币高达30000元,因此在许多国家,因此许多爱好者选择自己制涡喷发动机。
自从英国的一位工程师级的发烧友kurt shreckling自己设计的第一款涡轮喷气发动机,并在1998年出版了一本书名叫,《航模喷气发动机-Gas turbine engine for aircraft model》,打破了涡喷爱好者不能业余自制的神话,书中是以他自己设计FD3-64为例,详细介绍了这款发动机的制作过程,用的是普通车床,及不锈钢为主料制成,目的是让爱好者能用日常找到的材料来加工出来,虽然推力不够专业的商品机大,但其推力用在航模上绰绰有余,加上其制作成本很低,约100美元,成为国外喷气机爱好者最热门的制作,从这开始,各种型号自制涡喷发动机在此基础上改进发展起来。
从最初的fd3-64的2.5公斤推力到,最新的12公斤推力。
这一切都是广大涡喷自制爱好者努力研究的结果做为自制涡喷的原型机,可能现在你打算自制涡喷时,不用选择制作fd3-64,因为它毕竟是98年的产品,现在的国外爱好者的通过改进设计,自制涡喷已经达到12公斤推力。
推重比10左右。
但不要认为它已过时,而一无用处,因为fd3-64的制作理论,让你在家哩打造涡喷成为了现实,不用去担心没有航空发动机制造厂的专用设备,因为日常生活中你能找到相应的材料来加工。
同时,作者打破迷信专业厂家的思想,自己开动脑筋,用中国人的话说,就是想尽一切土办法,在科学的理论指导下制成了能用于航模的喷气发动机。
制作喷气式战斗机发动机设计流程
制作喷气式战斗机发动机设计流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!制作喷气式战斗机发动机发动机设计流程喷气式战斗机发动机是现代航空技术的重要组成部分,它对于战机的性能和作战效果至关重要。
自制涡轮喷气发动机_基于FLUENT旋转机械
刚开始接触FLUENT,做的不好,抛砖引玉,希望大家提出建议和意见。
整了个增压涡轮310s不锈钢。
发动机整体设计基于FD34,但是由于离心涡轮结构改变,需要从新设计动力涡轮。
前处理在workbench中弄,导入模型,添加包围体。
边界条件,网格划分的很渣,希望大神们教教我划分网格。
这个案例严格来说应该用动网格来做是吧。
由于是涡喷的压缩机部分,所以没有温度,故采用Density_Based求解器。
Viscous-Standard k-e方程。
Cell Zone 对涡轮设置转速为10000(经验值)。
时速平均45m/s,设置进口风速。
耦合面设置。
请无视动网格设置,完全不知道怎么回事。
隐式求解器,一阶迎风。
然后采用默认监视器,初始化。
求解中。
打开CFD-post。
然后还可以在workbench中耦合静力分析,校验轴承的受力。
因为对于玩具级的涡喷最重要的是轴承。
取得一些数据以后,为动力涡轮的提供依据。
这是另外购买的套件,最后组装起来的的家伙,还没有试车。
还有很多疏漏,希望大家不要吝啬,予以指正,谢谢大家观看。
科学班自制发动机的原理
科学班自制发动机的原理发动机是一种将燃料能转化为机械能的装置,是现代交通工具的重要部件。
科学班自制发动机主要是通过使用简单的材料和原理,以了解发动机运行的基本原理和构造。
首先,科学班自制发动机的原理是基于内燃机的工作原理。
内燃机是一种将燃料燃烧产生的高温高压气体的膨胀能转化为机械能的装置。
科学班自制发动机主要通过燃料的燃烧来产生高温高压气体,然后利用活塞和曲轴等组件将高压气体的膨胀能转化为机械能。
具体来说,科学班自制发动机通常是基于往复式内燃机设计的,即通过往复运动的活塞来实现气缸内燃料的燃烧和压缩。
发动机通常由气缸、活塞、曲轴、连杆、气门等组件组成。
首先,科学班自制发动机需要一个气缸,气缸是一个封闭的空间,内部是活塞在运动。
活塞是一个金属圆柱体,能够在气缸内往复运动。
气缸内分为上下两个腔,分别称为顶死点腔和底死点腔。
其次,活塞与曲轴通过连杆连接。
连杆是一种连接活塞和曲轴的构件,能够将活塞的上下往复运动转换为曲轴的旋转运动。
曲轴是一个金属轴,当活塞在顶死点腔上升时,曲轴被活塞连杆向下拖动,当活塞在底死点腔下降时,曲轴被活塞连杆向上拉动,从而实现连续的旋转运动。
然后,科学班自制发动机需要燃烧室。
燃烧室是气缸内的一个区域,燃料和空气在此区域混合并燃烧。
在汽油发动机中,燃烧室通常在活塞顶部有一个火花塞,火花塞能够产生火花点燃混合气体。
最后,科学班自制发动机需要气门系统。
气门是位于气缸的开口处的机械门,能够控制燃料和废气的进出。
气门分为进气门和排气门,进气门用于将新鲜空气和燃料进入燃烧室,排气门用于将燃烧后的废气排出。
科学班自制发动机的运行可以大致分为四个冲程:进气冲程、压缩冲程、燃烧冲程和排气冲程。
在进气冲程中,活塞向下运动,气缸内产生负压,进气门打开,新鲜空气和燃料进入燃烧室。
在压缩冲程中,活塞向上运动,气缸内的空气和燃料被压缩,增加其温度和压力。
在燃烧冲程中,火花塞点燃混合气体,燃料燃烧释放能量,气体膨胀,推动活塞向下运动。
制作喷气式飞机的原理是
制作喷气式飞机的原理是制作喷气式飞机的原理涉及到许多复杂的工程知识和科学原理。
下面以喷气式飞机的动力系统、空气动力学和结构设计等方面为主进行解析。
喷气式飞机的动力系统是实现飞机飞行的关键。
其主要部分是喷气发动机。
喷气发动机通过燃烧燃料产生高温高压的气体,然后将气体喷出,产生反作用力推动飞机前进。
喷气发动机具有高推力功率密度、高速度和高效率的特点,是喷气式飞机得以高速飞行的基础。
喷气发动机的工作过程一般包括压气、燃烧和喷射三个阶段。
首先,空气通过进气道被压缩,提高空气压力和温度。
其次,燃料被喷射到被压缩的空气中,燃烧产生高温高压气体。
最后,喷气发动机将高温高压气体喷出,形成喷射推力。
喷气发动机的效率与推力有很大关系,而推力取决于喷气速度和喷气量。
增加喷气速度可提高飞行速度,提高喷气量可增加推力。
喷气式飞机除了动力系统的设计,还需要考虑空气动力学的影响。
空气动力学研究飞机在空气中的运动规律和飞行性能。
主要通过翼型设计、机身外形和控制设备等来实现。
飞机的翼型设计与气动力密切相关。
翼面的形状和厚度会影响升力和阻力的生成,进而影响飞机的飞行性能。
同时,机身外形对飞机的气动特性也有重要影响。
合理的机身外形可以减小阻力、提高飞行速度。
飞机的操纵性能也非常重要。
操纵设备包括操纵面,如副翼、升降舵和方向舵等。
它们通过改变飞机表面的形状和角度来调整飞机的姿态和方向。
合理设计的操纵设备可以提高飞机的可控性和稳定性。
此外,飞机的结构设计也是制作喷气式飞机的重要一环。
飞机的结构主要包括机身、机翼、机尾等部件。
这些部件需要经过结构分析和强度计算来保证其在飞行过程中的安全可靠。
总之,制作喷气式飞机需要综合运用动力系统、空气动力学和结构设计等知识与技术。
通过合理的设计和工艺流程,才能实现高效、安全的喷气式飞机的制造。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自制喷气式发动机自制喷气式发动机2010-03-19 17:24:20| 分类:动手动脑DIY | 标签:喷气式发动机自制喷气式超轻型飞机超轻型飞行器|字号订阅自制喷气式发动机《转》自1988年出第一架模型引擎後,模型界引擎的。
1993年法国jpx推出以丙烷为燃料的商品航模涡喷发动机,随后各种商业涡喷厂家日渐增多,使得涡喷发动机的价钱到了人们能接受的水平,因此,飞按比列缩小,配上喷气发动机的航模象真机,成了发达国家地区的航模爱好者最热门的爱好。
但是商品涡喷发动机,价格昂贵,折合人民币高达30000元,因此在许多国家,因此许多爱好者选择自己制涡喷发动机。
自从英国的一位工程师级的发烧友kurt shreckling自己设计的第一款涡轮喷气发动机,并在1998年出版了一本书名叫,《航模喷气发动机-Gas turbine engine for aircraft model》,打破了涡喷爱好者不能业余自制的神话,书中是以他自己设计FD3-64为例,详细介绍了这款发动机的制作过程,用的是普通车床,及不锈钢为主料制成,目的是让爱好者能用日常找到的材料来加工出来,虽然推力不够专业的商品机大,但其推力用在航模上绰绰有余,加上其制作成本很低,约100美元,成为国外喷气机爱好者最热门的制作,从这开始,各种型号自制涡喷发动机在此基础上改进发展起来。
从最初的fd3-64的2.5公斤推力到,最新的12公斤推力。
这一切都是广大涡喷自制爱好者努力研究的结果做为自制涡喷的原型机,可能现在你打算自制涡喷时,不用选择制作fd3-64,因为它毕竟是98年的产品,现在的国外爱好者的通过改进设计,自制涡喷已经达到12公斤推力。
推重比10左右。
但不要认为它已过时,而一无用处,因为fd3-64的制作理论,让你在家哩打造涡喷成为了现实,不用去担心没有航空发动机制造厂的专用设备,因为日常生活中你能找到相应的材料来加工。
同时,作者打破迷信专业厂家的思想,自己开动脑筋,用中国人的话说,就是想尽一切土办法,在科学的理论指导下制成了能用于航模的喷气发动机。
他的成功,同时也鼓励了更多的爱好者参与到自制涡喷的研究与发烧行列中来,大大提高了自制涡喷的推力,这是一种挑战与锻炼。
同时我们也可以参考fd3-64的制作加工部件过程,敢于根据自己的条件,在科学理论指导下,改进加工方法。
但是fd3-64毕竟是过时的设计,它的木头压气轮需要碳纤加强,加上效率不高,因此,后来的改进采用了kkk系列或盖勒特商品压气轮部件,稍大点的汽车配件店可以买到。
FD3/46 涡轮喷气发动机制作方法-摘录在此感谢“东方蜘蛛”的大力支持原著:kurt shreckling摘自《Gas turbine engine for model aircraft-航模涡轮喷气发动机>》业余制作涡轮的工具:一台普通的车床能焊不锈钢的电焊电钻由于详细的设计与制作过程有一本80页的书那么多,以下仅为书中内容的摘要!!!1.涡轮涡轮的桨叶长度大约是外经的1/6,(对于业余爱好者来说不要问为什么),因为是作者无数次实验的数据。
涡轮不能钻孔,叶片数设计为17片。
当温度从500度降至20度时,涡轮与机壳的间隙会减少5%,也就是说设计时要预留涡轮膨胀空间,太大了不行。
没推力了。
涡轮为2.5mm耐高温不锈钢剪口弯成。
2.轴高转速低转矩,必须很硬,不然会在60000转、分的情况下共振玩完,本发动机采用铝合金以助散热,两端为不锈钢。
轴承要高转速的,达90000转、分才行。
使用润滑油降温,可以用日常找到的688代替。
3.压气叶轮材料为航空层板,或山毛榉等结实的木头。
外绕碳纤加强.4.涡轮动平衡(请参见涡喷自制问答)5.加工资料fd3-64设计与部件加工蓝图对于国内爱好者要自制涡喷,根据本人的制作经验,我个人认为,可以在对fd3-64的加工设计原理有一定了解后,制作KJ66(手工版)是一个比较合适的选择,因为如下的改造足以让你觉得动心。
1.压气轮新的设计使用了涡轮增压器用的kkk系列铝合金压气轮。
各大汽车配件店能购到由于原fd3-64木制压气轮制作比较麻烦,加上一定要碳纤加强,才能确保安全,但碳纤在国内可能很难买到。
因此会阻碍制作进程。
也可能打消你制作的欲望。
为了提高压气机的效率,简化制作步骤,因而在kj66上采用是汽车常用已做好动平衡成品kkk系列铝合金压气轮。
(本工作室可提供所需的压气轮配件)2.燃烧室原设计是圆锥状,效率不高。
环型燃烧室为重新设计为圆柱状,,不再用笨重的盘状结构燃料管,而是用6根1mm直径的注射器针来做,增加了六根燃料蒸发短管,改进后,提高了燃烧效率,有能力让涡轮转速达,103000 rpm,推力能达到5kg力。
(kj66加工手册上提供了该种燃烧室的蓝图)3.导气环(简称NGV)原ngv,要焊在外壳上,加工过程较麻烦一些,现导气环重新设计,,以配合圆柱状燃烧室,可以按图用不锈钢板来焊接加工。
其实ngv国外多种加工方法,看个人情况可以改进加工工艺。
4,涡轮涡轮可以同fd3-64制作方法一样。
直径为66mm,用3.5mm 不锈钢板来做,以增加强度。
5.轴承选用高速陶瓷角接触轴承,使转速可达到最高要求。
全陶瓷,国内价格较贵。
参考国外的爱好者也是选用普通的较高级别的进口轴承,只是在使用中不要让涡喷长时间工作在最大推力下,同时确保轴承的冷却。
fd3-64为手工自制涡喷探索出一条路,在此基础上就是以专业材料与先进的加工手段加工出来的就是著名的商品涡轮机kj66,参考意见:根据个人情况,kj66手工版的制作,我选择完全按kj66的蓝图来加工,最难解决的那个涡轮部件,完全采用fd3-64的加工方法来制作涡轮与动平衡调试,。
最适合目前国内难以买到进口材料的爱好者制作。
KJ66发动机可能是目前最流行的设计,用icon713精铸的涡轮,使之可以达到8公斤推力,这是Artesjets推出的产品,该公司为广大爱好者提供该机型各种配件,使自制爱好者也能在此基础上制造出高推力的涡喷发动机,也可能是目前世界上爱好者自制的最多的机型之一。
图显示的是自制的kj66内部部件。
商品级:KJ66性能参数直径:110mm长度: 240mm净重:0.93kg推力:8kg力价格:约1500美元kj66的手工版(适合中国爱好者参考的制作)直径:110mm长:235mm最大推力:5kg最大转速:103,000rpm排气温度:550 deg C净重1.140Kg自制喷气式发动机2010-03-19 17:24:20| 分类:动手动脑DIY | 标签:喷气式发动机自制喷气式超轻型飞机超轻型飞行器|字号订阅自制喷气式发动机《转》自1988年出第一架模型引擎後,模型界引擎的。
1993年法国jpx推出以丙烷为燃料的商品航模涡喷发动机,随后各种商业涡喷厂家日渐增多,使得涡喷发动机的价钱到了人们能接受的水平,因此,飞按比列缩小,配上喷气发动机的航模象真机,成了发达国家地区的航模爱好者最热门的爱好。
但是商品涡喷发动机,价格昂贵,折合人民币高达30000元,因此在许多国家,因此许多爱好者选择自己制涡喷发动机。
自从英国的一位工程师级的发烧友kurt shreckling自己设计的第一款涡轮喷气发动机,并在1998年出版了一本书名叫,《航模喷气发动机-Gas turbine engine for aircraft model》,打破了涡喷爱好者不能业余自制的神话,书中是以他自己设计FD3-64为例,详细介绍了这款发动机的制作过程,用的是普通车床,及不锈钢为主料制成,目的是让爱好者能用日常找到的材料来加工出来,虽然推力不够专业的商品机大,但其推力用在航模上绰绰有余,加上其制作成本很低,约100美元,成为国外喷气机爱好者最热门的制作,从这开始,各种型号自制涡喷发动机在此基础上改进发展起来。
从最初的fd3-64的2.5公斤推力到,最新的12公斤推力。
这一切都是广大涡喷自制爱好者努力研究的结果做为自制涡喷的原型机,可能现在你打算自制涡喷时,不用选择制作fd3-64,因为它毕竟是98年的产品,现在的国外爱好者的通过改进设计,自制涡喷已经达到12公斤推力。
推重比10左右。
但不要认为它已过时,而一无用处,因为fd3-64的制作理论,让你在家哩打造涡喷成为了现实,不用去担心没有航空发动机制造厂的专用设备,因为日常生活中你能找到相应的材料来加工。
同时,作者打破迷信专业厂家的思想,自己开动脑筋,用中国人的话说,就是想尽一切土办法,在科学的理论指导下制成了能用于航模的喷气发动机。
他的成功,同时也鼓励了更多的爱好者参与到自制涡喷的研究与发烧行列中来,大大提高了自制涡喷的推力,这是一种挑战与锻炼。
同时我们也可以参考fd3-64的制作加工部件过程,敢于根据自己的条件,在科学理论指导下,改进加工方法。
但是fd3-64毕竟是过时的设计,它的木头压气轮需要碳纤加强,加上效率不高,因此,后来的改进采用了kkk系列或盖勒特商品压气轮部件,稍大点的汽车配件店可以买到。
FD3/46 涡轮喷气发动机制作方法-摘录在此感谢“东方蜘蛛”的大力支持原著:kurt shreckling摘自《Gas turbine engine for model aircraft-航模涡轮喷气发动机>》业余制作涡轮的工具:一台普通的车床能焊不锈钢的电焊电钻由于详细的设计与制作过程有一本80页的书那么多,以下仅为书中内容的摘要!!!1.涡轮涡轮的桨叶长度大约是外经的1/6,(对于业余爱好者来说不要问为什么),因为是作者无数次实验的数据。
涡轮不能钻孔,叶片数设计为17片。
当温度从500度降至20度时,涡轮与机壳的间隙会减少5%,也就是说设计时要预留涡轮膨胀空间,太大了不行。
没推力了。
涡轮为2.5mm耐高温不锈钢剪口弯成。
2.轴高转速低转矩,必须很硬,不然会在60000转、分的情况下共振玩完,本发动机采用铝合金以助散热,两端为不锈钢。
轴承要高转速的,达90000转、分才行。
使用润滑油降温,可以用日常找到的688代替。
3.压气叶轮材料为航空层板,或山毛榉等结实的木头。
外绕碳纤加强.4.涡轮动平衡(请参见涡喷自制问答)5.加工资料fd3-64设计与部件加工蓝图对于国内爱好者要自制涡喷,根据本人的制作经验,我个人认为,可以在对fd3-64的加工设计原理有一定了解后,制作KJ66(手工版)是一个比较合适的选择,因为如下的改造足以让你觉得动心。
1.压气轮新的设计使用了涡轮增压器用的kkk系列铝合金压气轮。
各大汽车配件店能购到由于原fd3-64木制压气轮制作比较麻烦,加上一定要碳纤加强,才能确保安全,但碳纤在国内可能很难买到。
因此会阻碍制作进程。
也可能打消你制作的欲望。
为了提高压气机的效率,简化制作步骤,因而在kj66上采用是汽车常用已做好动平衡成品kkk系列铝合金压气轮。