七年级(下) 全等三角形 章节测试
北师大版七年级下数学《全等三角形》单元测试(含答案)
全等三角形章节测试一、心一(每小 3 分,共36 分)1. 以下法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A.周相等的两个三角形全等B. 面相等的两个三角形全等C. 三个角相等的两个三角形全等D.三条相等的两个三角形全等2. 以下各段能成三角形的是⋯⋯⋯⋯⋯⋯⋯⋯( )A.3cm , 3cm, 6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm3. 以下形中,与已知形全等的是⋯⋯⋯⋯⋯⋯⋯⋯( )第3题图(A) (B) (C) (D)4. 如,已知△ ABC≌△ CDE,此中 AB=CD,那么以下中, A不正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯( )EA.AC=CEB. ∠ BAC=∠ CDEC. ∠ ACB=∠ ECDD. ∠B=∠ D BC D第 4 题5. 以下条件中,不可以判断三角形全等的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. 三条相等B. 两和一角相等C. 两角和此中一角的相等D. 两角和它的相等6. 如,把形沿BC折,点 A 和点 D 重合,那么中共有全等三角形⋯⋯⋯⋯⋯⋯⋯( )A.1B.2 AC.3D.4B EC7.在△ ABC 和△ A′ B′C′中,已知 AB= A′ B′,∠ B=∠ B′要保△ ABC≌△ A′B′ C′,可充的条D件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. ∠ B+∠A=900B.AC= A ′ C′C.BC=B ′ C′D.∠ A+∠ A′ =9008.已知在△ ABC和△ A′ B′ C′中,AB= A′ B′,∠ B=∠ B′,充下边一个条件,不可以明△ ABC≌△ A′B′ C′的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. BC=B ′ C′B. AC= A ′ C′C.∠ C=∠ C′D. ∠A=∠ A′9. 如,已知 AE=CF,BE=DF要.△ ABE≌△ CDF,需增添的一个条件是⋯⋯⋯( )A. ∠ BAC=∠ ACDB. ∠ ABE=∠ CDFC. ∠ DAC=∠ BCAD. ∠ AEB=∠ CFDD C A ADEA OAFA B A B C第 9 题 A 第 11题第 10题10. 如图 AD是△ ABC的角均分线, DE是△ ABD的高, EF 是△ ACD的高,则 ( )A. ∠ B=∠CB. ∠ EDB=∠ FDCC. ∠ ADE=∠ ADFD. ∠ ADB=∠ADC11. 如图 AC与 BD订交于点 O,已知 AB=CD,AD=BC,则图中全等三角形有 ( )A.1 对B.2 对C.3 对D.4 对12. 如图 ,D 、 E 分别是 AB,AC 上一点,若∠ B=∠ C,则在以下条件中, B没法判断△ ABE≌△ ACD是( ) DA.AD=AEB.AB=ACC.BE=CDD. ∠ AEB=∠ ADC A E C第 12 题二、专心填一填:(每题 3 分,共 24 分)C F13.如图,△ ABC≌△ DEF,点 B 和点 E, 点 A 和点 D 是对应极点,则 AB=,CB=,∠C=,∠ CAB=.14.若已知两个三角形有两条边对应,则要视这两个三角形全等,还需增添的条件能够是或. A DB E15. 如图已知 AC与 BD订交于点 O, AO=CO,BO=DO,则 AB=CD请说明原因 .第 13题A B解:在△ AOB和△ COD中AO CO(已知)(对顶角相等OBO DO(已知)D C∴△ AOB≌△ COD()第 15题A ∴ AB=DC()16. 如图,已知 AO=OB,OC=OD,AD和 BC订交于点 E, C则图中全等三角形有对 .EO BD第 16题17. 在△ ABC和△ DEF中 ,AB=4, ∠ A=350, ∠ B=700,DE=4, ∠ D= , ∠ E=700, 依据判断△ ABC≌△ DEF. A DAB=DC(已知)18.如图,在△ ABC和△ DEF中BC=DA(已知)() B 第 18 题 C ∴△ ABC≌△ DEF( ) A D19. 如图∠ B=∠ DEF,AB=DE,要证明△ ABC≌△ DEF,(1) 若以“ ASA”为依照,需增添的条件是;B EC C第 19题(2) 若以“ SAS ”为依照,需增添的条件是 .A20. 如图,△ ABC 中, AB=AC=13cm , AB 的垂直均分线交 A B 于 D,交 AC 于 E, 若△ EBC 的周长为 21cm,则 BC= cm.DEBC6 小题,共 40第 20 题三、耐心答一答: (此题有 分)21.( 此题 4 分 ) 已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠ A=∠α ,∠ B=∠β ,BC=a.22.( 此题 6 分 ) 已知 AD 均分∠ CAB,且 DC ⊥ AC, DB ⊥ AB ,那么 AB 和 AC 相等吗?请说明原因 .CDA23.( 此题 6 分 ) 如图,已知 BD=CD ,∠ 1=∠ 2.说出△ ABD ≌△ ACD 的原因 .AB1 2BD C24.( 此题 8 分) 如图,已知 AB=DC , AD=BC,说出以下判断建立的原因: (1)△ ABC ≌△ CDA (2)∠ B=∠DADBC25.( 此题 8 分 ) 如图,把大小为4× 4 的正方形方格图形分别切割成两个全等图形,比如图①,请在以下图中,沿着须先画出四种不一样的分法,把4× 4 的正方形切割成两个全等图形图①26.( 此题画法1画法28 分 ) 如图,△ ABC中, AD垂直均分 BC,H是画法AD上一点,3 画法 4连结 BH,CH.(1)AD 均分∠ BAC吗?为何?(2)你能找出几堆相等的角?请把他么写出来(不需写原因)AH一、仔细选一选:(每题 3 分,共 36 分)题号 1 2 3 4 5 6 7 8 9 10B11 12 CD答案 D B B C D C C B D C D D二、专心填一填(每题 3 分,共 24 分)13.DE,FE, ∠ F, ∠ FED. 14.3 第三边相等,这两边的夹角相等15. ∠ AOB=∠ COD,SAS,全等三角形的对应边相等16.4 17.35 0, AAS 18.AC,CA, 公共边, SSS19. ∠ A=∠ D 20.8三、耐心答一答(此题有六小题,共40 分)21. 图略 22.AB=AC 23. 略24. 略25.画法 1 画法 2 画法 3 画法 426.(1) 由△ ADB≌△ ADC(SAS)得∠ BAD=∠ CAD (4)4 对,∠ BHD=∠ CHD, ∠ ABD=∠ ACD,∠HBD=∠ HCD, ∠ BDA=∠CDA。
新北师大版七年级数学下册第三章全等三角形练习题
七年级数学周周清一、填空题1、若△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm ,则AB =_____ cm ,BC =_____ cm,AC =_____ cm.2、若△ABC ≌△DEF ,AB =DE ,AC =DF ,∠A =80°,BC =9 cm,则∠D =_____,∠D 的对边是_____=_____ cm.3、已知如图1,在△ABF 和△DEC 中,∠A =∠D ,AB =DE ,若再添加条件_____=_____,则可根据边角边公理证得△ABF ≌△DEC .4、如图2,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CE=_____cm 。
图1图2 图35、如图3,△ABC ≌△ADE ,延长BC 交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=____________。
6、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。
二、选择题1、有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm 2、下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°4、如图4,△ABD 和△ACE 都是等边三角形,那么△ADC ≌△ABE 的根据是( )图4A.SSSB.SASC.ASAD.AAS 5、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )F EDC BAA.带①去B. 带②去C. 带③去D. 带①和②去 6、下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等其中正确的个数是( )A .1个B .2个C .3个D .4个第7题 第8题 第9题7、如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A.BC=BDB.CE=DEC.BA 平分∠CBDD.图中有两对全等三角形8、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( ) (A )AD=AE (B )AB=AC(C )BE=CD (D )∠AEB=∠ADC9、如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( ) A .3个 B .2个 C .1个 D .0个10、下列条件中能确定两个三角形全等的是( )A.一边及这条边上的高相等B.一边及这条边上的中线对应相等C.两角及第三个角平分线对应相等D.两条边及夹角的平分线对应相等11、下列各组图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都为3 cm 的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形 三、解答题1、已知,如图,∠1=∠2,BD=CD,求证:AD 是∠BAC 的平分线.2、如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若∠1=∠2=∠3,AC=AE ,求证:△ABC ≌△ADEA B C D EC B A E F O3、已知线段a 和∠1,作一个△ABC ,使得AB=a ,AC=2a ,∠A=∠ 1.4、如图,已知AB =DC ,AC =DB ,E 是BC 的中点,求证:AE =DE5、如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
七年级全等三角形测试题(卷)八套
全等三角形测试题一1.下图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.在△ABC和△A'B'C'中 , 要使△ABC≌△A'B'C' , 需满足条件()A.AB=A'B', AC=A'C', ∠B=∠B'B.AB =A'B', BC=B'C', ∠A=∠A'C.AC=A'C', BC=B'C', ∠C=∠C'D.AC=A'C', BC=B'C', ∠C=∠B'3.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那么图中全等的三角形有( )对A.5 B.6 C.7 D.84.如图,在△ABC中,AC=BC,∠ACB=90°.AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是( )A.1 B.2 C.3 D.45.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.6.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=__ ______.7.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于8.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=9.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=10.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数11.已知:如图AB=CD,AD=BC 求证:AD∥BC.12.已知:如图 , E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C13.如图 , AB BC于B , AD DC于D , 且CB=CD , AC , BD相交于O.求证:∠ABD=∠ADB14.已知:如图 , AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC.15.已知:如图 , AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.16.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.全等三角形测试题二1.如图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。
全等三角形单元测试题(含答案)
全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
苏科版七年级下册数学三角形全等的条件测试题
测试2 三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1图2-2图2-34.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______,只要证______≌______证明:∵ M 为PQ 的中点(已知),∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ).∴ ∠PRM =______(______).即RM .5.已知:如图2-2,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______.证明:∵BE =CF ( ),∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB∴______≌______( ).∴ ∠A =∠D (______).6.如图2-3,CE =DE ,EA =EB ,CA =DB ,求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______,即______=______.在△ABC 和△BAD 中,=______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).综合、运用、诊断一、解答题7.已知:如图2-4,AD =BC .AC =BD .试证明:∠CAD =∠DBC .图2-48.画一画.已知:如图2-5,线段a 、b 、c .求作:ΔABC ,使得BC =a ,AC =b ,AB =c .图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?。
七年级下《全等三角形》单元测试及含答案
《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个 12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上, DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADEAD ECB图4ABDE 图1 图2 图3图5图613、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,80分)17、如图13,点A 、B 、C 、D 在同一条直线上,AB=DC ,AE 2cm习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC 中,AB=AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连接BQ 、CP ,则BQ=CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ ≌△ACP ,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP ”仍然成立,请你就图②给出证明. ACD B图12BA C DEAEB C F ECB D FAAB ED C B A 图7图8图13 图14图16图15图17 图18 图19图20 图21FEDCBA26.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.27.如图,已知等边△ABC,P在AC延长线上一点,以PA为边作等边△APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.28. 如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.29.已知AC求证:AB=AC+BD.A BCDEF参考答案:一、⑴DF EF DE ⑵70° 15cm ⑶∠ABC ⑷∠A=∠F⑸4 ⑹150° (7)3 (8)80° (9)大于 (10)2<AD<10二、⑾C ⑿D (13)D (14)C (15)B (16)C三、(17) 略(18)①△ABD≌△ACD ∵AB=AC ∠BAC=∠CAD AD=AD②无论D在AE上或AE的反向延长线上,结论都成立,证明过程如①(19)在两条路所夹角的平分线上,由比例尺算出到B点的距离为。
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题
七年级数学下册《第十二章全等三角形-角的平分线的性质》练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且1CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是______.2.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.3.如图,ABC 的三边AB ,BC ,CA 的长分别是10,15,20,其三条角平分线相交于点O ,连接OA ,OB ,OC ,将ABC 分成三个三角形,则::ABO BCO CAO S S S 等于__________.4.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC ⊥于点N ,若OM ON =,则ABO ∠=_________度.5.如图,BE、CF都是ABC的角平分线,且110∠=︒,则ABDC∠=___________.二、单选题6.如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE≅FOE,你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE<,将ABC以点A为中心逆时针旋转得到ADE,点D在BC边上,DE交7.如图,在ABC∆中,AB AC∠=∠,其中所有正确结论的AC于点F.下列结论:∠AFE DFC△△;∠DA平分BDE∠;∠CDF BAD序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠8.如图,三条公路两两相交,现计划在∠ABC中内部修建一个探照灯,要求探照灯的位置到这三条公路的距离都相等,则探照灯位置是∠ABC()的交点.A.三条角平分线B.三条中线C .三条高的交点D .三条垂直平分线9.如图,Rt∠ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .2B .3C .4D .5三、解答题10.已知40AOB ∠=︒.(1)用直尺和圆规作出AOB ∠的平分线OD (不写作法,但保留作图痕迹,写出结论);(2)已知AOB ∠与BOC ∠互为补角,画出符合条件的所有可能的图形,并求出COD ∠的度数.11.如图,在由边长为1的小正方形组成的正方形网格中,一段圆弧经过网格的格点A 、B 、C .(1)请完成如下操作:∠以点O 为原点,竖直和水平方向所在的直线为坐标轴,小正方形的边长为单位长,建立平面直角坐标系; ∠用直尺和圆规画出该圆弧所在圆的圆心D 的位置,不写作法,保留作图痕迹,并连接AD 、CD .(2)请在(1)的基础上,解答下列问题:∠写出点的坐标:C ______、D ______;∠D 的半径为______(结果保留根号);∠若扇形DAC 是一个圆锥的侧面展开图,则该圆锥的底面积为______(结果保留π);∠若点E 的坐标为()7,0,试判断直线EC 与D 的位置关系,并说明理由.12.如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.13.如图,∠ABC 中,∠ACB =90°,AB =10,BC =6,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A -C -B -A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足P A =PB 时,求此时t 的值;(2)若点P 恰好在∠BAC 的平分线上,求t 的值.14.如图,在∠ABC 中,AD 是它的角平分线,且BD =CD ,DE ∠AB ,DF ∠AC ,垂足分别为E 、F ,求证:AB =AC参考答案:1.1【分析】过点C 作CE ∠OB 于点E ,根据角平分线的性质解答即可.【详解】解:过点C 作CE ∠OB 于点E ,∠点C 在∠AOB 的平分线上,CD ∠OA 于点D ,且CD =1,∠CE =CD =1,即CE 长度的最小值是1,故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∠PM∠OA ,PN∠OB ,PM=PN∠OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.3.2:3:4【分析】过点O 分别向三边作垂线段,通过角平分线的性质得到三条垂线段长度相等,再通过面积比等于底边长度之比得到答案.【详解】解:过点O 分别向BC 、BA 、AC 作垂线段交于D 、E 、F 三点.∠CO 、BO 、AO 分别平分、、ACB CBA BAC ∠∠∠∠OD OE OF == ∠12ABO SAB OE =,12△BCO S BC OD =,12△CAO S AC OF = ∠::::10:15:202:3:4ABO BCO CAO S S S AB BC AC ===故答案为:2:3:4【点睛】本题考查了角平分线的性质,往三角形的三边作垂线段并得到面积之比等于底之比是解题关键.4.15【分析】根据ON BC ⊥,OM AB ⊥,OM ON =判断OB 是ABC ∠的角平分线,即可求解.【详解】解:由题意,ON BC ⊥,OM AB ⊥,OM ON =,即点O 到BC 、AB 的距离相等,∠ OB 是ABC ∠的角平分线,∠ 30ABC ∠=︒, ∠1152ABO ABC ∠=∠=︒. 故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.5.40°##40度【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∠BE 、CF 都是∠ABC 的角平分线,∠∠A =180°−(∠ABC +∠ACB ),=180°−2(∠DBC +∠BCD )∠∠BDC =180°−(∠DBC +∠BCD ),∠∠A =180°−2(180°−∠BDC )∠∠BDC =90°+12∠A ,∠∠A =2(110°−90°)=40°.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.6.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∠OB 平分∠AOC∠∠AOB =∠BOC当∠DOE ∠∠FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是∠DOE ∠∠FOE 的对应边,A 不正确;B 答案中OE 与OF 不是∠DOE ∠∠FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是∠DOE ∠∠FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在∠DOE 和∠FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠DOE ∠∠FOE (AAS )∠D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∠将ABC 以点A 为中心逆时针旋转得到ADE ,∠ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故∠正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故∠正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC△△,CAE CDF∴∠=∠,CDF BAD∠=∠∴,故∠正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8.A【分析】根据角平分线的性质即可得到探照灯的位置在角平分线的交点处,即可得到结论.【详解】解:∠探照灯的位置到这三条公路的距离都相等,∠探照灯位置是∠ABC的三条角平分线上,故选:A.【点睛】此题考查了角平分线的性质,数据角平分线的性质定理是解题的关键.9.B【分析】过点D作DE∠AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用∠ABD 的面积列式计算即可得解.【详解】解:如图,过点D作DE∠AB于E,∠∠C=90°,AD平分∠BAC,∠DE=CD,∠S△ABD=12AB•DE=12×10•DE=15,解得:DE=3,∠CD=3.故选:B.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.10.(1)见解析(2)图见解析,60°或120°【分析】(1 )根据角平分线的定义作出图形即可;(2)分两种情形,分别画出图形求解即可.(1)解:如图,射线OD即为所求.(2)解:如图,∠BOC与∠AOB、∠BOC'与∠AOB都互为补角,∠∠AOB=40°,且OD平分∠AOB,∠∠BOC=140°,∠BOC'=140°,∠AOD=∠BOD=12∠AOB=20°,当射线OA在∠BOC的外侧时,∠COD=∠BOC+∠BOD=140°+20°=160°;当射线OA在∠BOC'内部时,∠C'OD=∠BOC'-∠BOD=140°-20°=120°.综上,∠COD的度数为60°或120°.【点睛】本题考查作图 复杂作图,角平分线的定义,补角的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)答案见详解(2)∠62(,);20(,);∠∠54π;∠相切,理由见详解 【分析】(1)∠根据叙述,利用正方形的网格即可作出坐标轴;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D .(2)∠利用(1)中所作的坐标系,即可表示出点的坐标;∠在Rt OAD 中,利用勾股定理即可求得半径长;∠理由直角三角形全等可证得∠ADC =90°,则可求得AC 的长度,AC 的长就是圆锥的底面圆的周长,在利用圆的周长公式即可求得答案;∠利用勾股定理逆定理证明DCE 为直角三角形即可证得DC CE ⊥,从而即可得出结论.(1)∠如图,建立平面直角坐标系;∠利用过三点的圆可得圆心为圆上任意两条弦的垂直平分线的交点,即可得到D ,如图所示:(2)∠根据平面直角坐标系可得C (6,2);D (2,0);故答案为:C (6,2);D (2,0);∠在Rt AOD △中,90AOD ∠=︒,4AO =,2OD =,AD =故答案为:∠由∠得AD =在Rt DCF △中,90DFC ∠=︒,4DF =,2CF =,DC ∴在Rt AOD △和Rt DFC 中,AD DC OA DF=⎧⎨=⎩, ()Rt AOD Rt DFC HL ≅,DAO CDF ∴∠=∠,90DAO ADO ∠+∠=︒,90CDF ADO ∴∠+∠=︒,18090ADC ADO CDF ∴∠=︒-∠-∠=︒,AC ∴==,由2r π=,解得r =2254S r πππ∴===⎝⎭, ∴该圆锥的底面积为54π, 故答案为:54π. ∠直线EC 与D 相切,由图可知,在Rt CEF 中,90CFE ∠=︒,1EF =,2CF =,22222125CE EF CF ∴=+=+=,又由∠得DC =2220DC ==,2220525DC CE +=+=,22525DE ==,222DC CE DE ∴+=,∴DCE 为直角三角形,90DCE ∠=︒,DC CE ∴⊥,∴直线EC 与D 相切.【点睛】本题考查了不共线的三点确定圆心的方法、直线与圆相切的判定、根据平面直角坐标系写出点的坐标、勾股定理和圆锥的侧面展开图的弧长即为圆锥的底面圆的周长,垂径定理,圆锥的计算,正确求出弧长是难点.12.见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键. 13.(1)254 (2)323【分析】(1)连接PB ,在Rt ∠ABC 中,根据勾股定理得AC =6,由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得222PC BC PB +=,进行计算即可得;(2)由题意得,PC =t -8 , PB =14-t ,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°得PC =PE ,根据HL 得Rt ∠ACP ∠Rt ∠AEP ,即可得AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得222PE BE PB +=,进行计算即可得.(1)解:如图所示,连接PB ,∠在Rt ∠ABC 中,AB =10,BC =6,∠8AC =由于AP =PB =t ,则PC =8-t ,在Rt ∠PCB 中,根据勾股定理得:222PC BC PB +=222(8)6t t -+= 解得254t =, 即此时t 的值为254. (2)解:由题意得,PC =t -8 , PB =14-t ,如图所示,过点P 作PE ∠AB ,由于AP 平分∠BAC ,且∠ACB =90°,∠ PC =PE ,在Rt ∠ACP 与Rt ∠AEP 中,PC PE AP AP =⎧⎨=⎩∠Rt ∠ACP ∠Rt ∠AEP (HL ),∠AC =AE =8, BE =2,在 Rt ∠PEB 中,根据勾股定理得,222PE BE PB +=,222(8)2(14)t t -+=- 解得:323t =, ∠当点P 在∠BAC 的平分线上时,t 的值为323. 【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是掌握这些知识点.14.证明见解析【分析】根据角平分线的性质得到DE=DF,证明Rt∠BDE≅Rt∠CDF(HL),根据全等三角形的性质得到结论.【详解】证明:∠AD是∠ABC的角平分线又∠DE∠AB于E,DF∠AC于F∠DE=DF,∠BED=∠CFD=90°又∠BD=CD∠Rt∠BED∠Rt∠CFD(HL)∠∠B=∠C∠AB=AC.【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是掌握这些性质定理进行证明.。
【完整版】(真题汇编)人教五四学制版七年级下册数学第18章 全等三角形含答案
人教五四学制版七年级下册数学第18章全等三角形含答案一、单选题(共15题,共计45分)1、下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③ ;④ .其中正确的命题有()A.只有①②B.只有①②④C.只有①④D.①②③④2、在△ABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的长的取值范围为()A.1<AD<7B.2<AD<14C.2.5<AD<5.5D.5<AD<113、如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是( )A.AC=BDB.OD=OCC.∠A=∠CD.OA=OB4、如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,下列结论:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面积相等,其中错误的结论个数是()A.3个B.2个C.1个D.0个5、如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O 作EF∥BC,EF与AB、CD分别相交于点E、F,则△DOF的面积与△BOA的面积之比为()A.1:2B.1:4C.1:8D.1:166、如图,将两根钢条 AA',BB' 的中点连接在一起,使AA',BB' 可以绕着点O自由转动,就做成了一个测量工具(卡钳),则图中AB的长等于内槽宽A′B′ ,那么判定△OAB≌△OA′B′ 的理由是( )A.边角边B.边边边C.角边角D.角角边7、如图,在中,,,,BD平分,则点D到AB的距离等于( )A.4B.3C.2D.18、如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3B.4.5C.6D.7.59、如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是()A.70B.74C.144D.14810、如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABCD.AD=BC,BD=AC11、如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°12、如图,已知,添加下列条件还不能判定≌ 的是()A. B. C. D.13、如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°14、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC 延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A. B. C. D.15、如图,是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.1个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图,△ABC 中,AB=4,AC=2,D 是 BC 中点,若 AD 的长是整数,则AD=________.17、如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是________18、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.19、如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为________.20、在中,,截三边所得的线段相等,那么的度数是________.21、如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE (只添一个即可),你所添加的条件是________.22、如图,在△ABC中,D为BC边中点,P为AC边中点,E为BC上一点且BE =CE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PG与BC边交于点H,若BC=6,则HE=________.23、如图,在中,,为边上一点,,平分的外角,且.连接交于为边上一点,满足,连接交于H.以下结论:①;② ;③ ;④若平分,则平分正确的是________.24、如图,在正方形OABC中,点A的坐标是(-3,1),点B的纵坐标是4,则B点的横坐标是________.25、如图,△ABD≌△CBD,若∠A=100˚,∠ABC=80˚,则∠BDC=________.三、解答题(共5题,共计25分)26、如图,∠C=∠D=90°,DA=CB,∠CBA=28°,求∠DAC.27、如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.28、如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.29、如图,△ABC中,AB=AC,M是BC的中点,过点M作ME⊥AB、MF⊥AC,垂足分别为E、F.求证:ME=MF.30、已知:如图,已知点在同一直线上,是垂足,,求证:.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、D5、A6、A7、C8、C9、B11、D12、A13、B14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
最新北师大版七年级下册三角形全等的证明单元测试试题以及答案
最新七年级下册三角形单元测试试题一、选择题1.一定在△ABC内部的线段是()。
A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()。
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()。
A.4对 B.5对 C.6对 D.7对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.4厘米、5厘米、6厘米B.4厘米、4厘米、4厘米C.5厘米、13厘米、6厘米D.7厘米、9厘米、7厘米6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()。
A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为6cm和9cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种。
A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个。
A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是( ) A .0°<α<90°; B .60°<α<180°; C .60°<α<90°; D .60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( )A .锐角或直角三角形;B .钝角或锐角三角形C .直角三角形;D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( )A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高, ∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=∠________,AH叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.212.如图,∠ABC=∠ADC=∠FEC=90°.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=3,AE=5,则△AEC的面积为________.3.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.4.五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm,如果它的三边长都是整数,那么它的腰长为________cm.7.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B =______;∠C=______.8.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.三、解答题1.在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,,求△ABD 中AB 边上的高.212cm =∆ABCS4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作、、……、.当作出时,图中共有多少个不同的直角三角形?1DD 21D D 32D D k k D D 1-k k D D 1-6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成18cm和9cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC 中,D 是AB 上一点.求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,(1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =∠BMN ( ),同理∠GNM =∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ).∴ ∠GMN +∠GNM =________.2121∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC =60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.。
人教版(五四制)数学七年级下册《第18章 全等三角形》章节检测-填空题专项训练(末尾含答案解析)
试卷第1页,共77页人教版(五四制)数学七年级下册《第18章 全等三角形》章节检测-填空题专项训练(含答案解析)一、填空题1.如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为 _____.【答案】90︒【分析】如图(见解析),先根据三角形全等的判定定理证出ABC ADE ≅,再根据全等三角形的性质可得23∠∠=,由此即可得出答案.【详解】解:如图,在ABC 和ADE 中,AC AE A A AB AD =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴≅,23∴∠=∠,121390∴∠+∠=∠+∠=︒,故答案为:90︒.【点睛】本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.2.如图,在Rt △ABC 中,∠A =90°,∠ABC 的平分线BD 交AC 于点D ,AD =2,BC =6,则△BDC 的面积是 _____.【答案】6【分析】过D 作DE ⊥BC 于E ,根据角平分线的性质求出AD =DE =2,再根据三角形的面积公式求出即可.【详解】解:过D 作DE ⊥BC 于E ,∵∠ABC 的平分线是BD ,∠A =90°(即DA ⊥AB ),DE ⊥BC ,∴AD =DE ,∵AD =2,∴DE =2,∵BC =6,∴S △BDC =1162622BC DE , 故答案为:6.【点睛】本题考查的是角平分线的性质的应用,掌握“角平分线上的点到这个角的两边的距离相等”是解本题的关键.3.如图,在ABC 中,CE 平分ACB ∠,CE AD ⊥于点E ,若ABC 的面积为212cm ,则阴影部分的面积为________2cm .【答案】6【分析】试卷第3页,共77页证点E 为AD 的中点,可得△ACE 与△ACD 的面积之比,同理可得△ABE 和△ABD 的面积之比,即可解答出.【详解】解:如图,CE 平分ACB ∠,CE AD ⊥于点E ,∴∠=∠ACE DCE ,90AEC DEC ∠=∠=︒,∵CE CE =,∴ACE ≌DCE∴AE DE =,∴S △ACE :S △ACD =1:2,同理可得,S △ABE :S △ABD =1:2,∵S △ABC =122cm ,∴阴影部分的面积为S △ACE +S △ABE =12S △ABC =12×12=62cm .故答案为6.【点睛】本题主要考查了全等三角形的判定与性质及三角形面积的等积变换,解题关键是明确三角形的中线将三角形分成面积相等的两部分.4.如图,在ABC 中,4cm AC =,M 是AB 的中点,MN AB ⊥交AC 于点N ,BCN △的周长是7cm ,则BC 的长为_________.【答案】3cm【分析】根据线段垂直平分线的性质得到NA =NB ,根据三角形的周长公式计算,得到答案.【详解】解:∵M 是AB 的中点,MN AB ⊥交AC 于点N ,∴NA =NB ,∵△BCN的周长是7cm,∴BC+CN+BN=7(cm),∴BC+CN+NA=7(cm),即BC+AC=7(cm),∵AC=4cm,∴BC=3cm,故答案为:3cm.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC.∠ABC的角平分线交AC于点E,AD⊥BE交BE于点F,交BC于点D.O为BC的中点,连接OF,若DF=a,EF=b,则BF=__________.(用含a,b的式子表示)【答案】2a+b【分析】根据题意连接OA交BE于G.首先证明△ABF≌△CAD(ASA),推出AD=BG,再证明FG=EF,AF=DF即可得出答案.【详解】解:连接OA交BE于G.∵AB=AC,∠BAC=90°,OB=OC,∴OA=OB=OC,∴∠OAB=∠ABO=∠OAC=∠C=45°,∵BE平分∠ABC,∴∠ABG=22.5°,∵AD⊥BE,∴∠AFB=90°,∴∠BAF=67.5°,∴∠CAD=∠ABF=22.5°,∵∠BAG=∠ACD,AB=AC,∴△ABF≌△CAD(ASA),∴AD=BG,∵∠FGA=∠F AE=22.5°,∠AFG=∠AFE=90°,∴∠AGF=∠AEF=67.5°,∴AG=AE,∵AF⊥EG,∴FG=FE,∵∠BAF=∠BDF=67.5°,∴BD=BA,∵BF⊥AD,∴AF=DF,∴AD=2OF=2a,∴BF=BG+FG=AD+EF=2a+b,故答案为:2a+b.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.6.如图,已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c,下面作法中:①分别以B,C为圆心,c,b为半径作弧,两弧交于点A;②作线段BC=a;③连接AB,AC,△ABC为所求作的三角形.正确顺序应为___.(填序号)【答案】②①③【分析】根据作三角形,使三角形的三边等于已知边的作图步骤作答.【详解】解:先作线段BC=a,再分别以B,C为圆心,c,b为半径作弧,两弧交于点A,然后连接AB,AC,△ABC为所求作的三角形.试卷第5页,共77页故答案为:②①③.【点睛】本题考查的是学生利用基本作图做三角形的能力,以及用简练、准确地运用几何语言表达作图方法与步骤的能力.7.如图,若△ABC≌△DEF,BE=18,BF=4,则FC的长度是___.【答案】10【分析】根据全等三角形的性质可知BC=EF,再利用等式的性质求出BF=CE,进而可求出FC 的长度.【详解】解:∵△ABC≌△DEF,∴BC=EF,∵BF=BC﹣FC,CE=FE﹣FC,∴BF=CE,∵BF=4,∴CE=4,∴CF=BE﹣CE﹣BF=18﹣4﹣4=10.故答案为:10.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.8.如图,在△ABC中,DE是AC的垂直平分线,交BC于D,交AC于E,△ABD的周长为15cm,而AC=5cm,则△ABC的周长是__________cm【答案】20【分析】根据线段垂直平分线的性质定理,可得AD=CD,从而得到BC= BD+AD,再由△ABD 的周长为15cm,可得到AB+BC=15cm,即可求解.【详解】解:∵DE是AC的垂直平分线,∴AD=CD,∴BC=BD+CD=BD+AD,∵△ABD的周长为15cm,∴AB+BD+AD=15cm,∴AB+BC=15cm,∵AC=5cm,∴△ABC的周长是AB+BC+AC=15+5=20cm.故答案为:20【点睛】本题主要考查了线段垂直平分线的性质定理,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键.9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_______.【答案】135°135度【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=∠1+∠3=90°,可得∠1+∠2+∠3=90°.【详解】解:如图:试卷第7页,共77页∵在△ABC 和△DBE 中AB BD A D AC ED =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DBE (SAS ),∴∠3=∠ACB ,∵∠ACB +∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.【点睛】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键. 10.如图,ABC DCB △≌△,若80A =∠,35DBC ∠=,则ACD ∠等于______.【答案】30°【分析】先利用全等三角形的性质得到∠ACB =∠DBC =35°,∠D =∠A =80°,再利用三角形内角和定理求出∠DCB =180°-∠D -∠DBC =65°,由此即可得到答案.【详解】解:∵△ABC =△DCB ,∴=ACB =∠DBC =35°,∠D ==A =80°,==DCB =180°-=D -=DBC =65°,==ACD ==DCB -=ACB =30°,故答案为:30°.试卷第9页,共77页【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,解题的关键在于能够熟练掌握全等三角形的性质.11.如图,∠ACB =∠DFE ,BC =EF ,要使∠ABC ∠∠DEF ,则需要补充一个条件,这个条件可以是__________________(只需填写一个).【答案】AC =DF 或=B ==E 或=A ==D【分析】要使=ABC ==DEF ,根据判定定理,结合已知条件一边一角分别对应相等,还缺少边或角,寻找添加条件即可.【详解】解:可以添加AC =DF 或=B ==E 或=A ==D ,从而利用SAS ,AS 判定其全等. 所以填AC =DF 或=B ==E 或=A ==D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图,A E ∠=∠,AC BE ⊥,AB EF =,26BE =,9CF =,则AC =______.【答案】17【分析】由AAS 证明△ABC ≌△EFC ,得出对应边相等AC=EC ,BC =CF =9,求出EC ,即可得出AC 的长.【详解】∵AC ⊥BE ,∴∠ACB =∠ECF =90°,在△ABC 和△EFC 中,ACB ECF A EAB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△EFC ,∵BE =26,CF =9,∴AC =EC ,BC =CF =9,∵EC =BE -BC =26-9=17,∴AC =EC =17.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质定理是解题的关键.13.如图,在ABC 中,AB AC =,120A ∠=︒,12BC =.若AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN =______.【答案】4cm【分析】连接AM ,AN ,利用垂直平分线的性质得到AM BM =,AN CN =,根据已知条件证明AMN 是等边三角形,即可得解;【详解】试卷第11页,共77页连接AM ,AN ,=AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,∴AM BM =,AN CN =,=BAM B ∠=∠,CAN C ∠=∠,=AB AC =,120A ∠=︒,=30B C ∠=∠=︒,=60AMN ANM ∠=∠=︒,=AMN 是等边三角形,=AM MN AN ==,=BM MN CN ==,=12BC cm =,=4MN cm =;故答案是:4cm .【点睛】本题主要考查了垂直平分线的性质和等边三角形的判定与性质,准确计算是解题的关键. 14.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边 OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与点 M ,N 重合,过角尺顶点C 作射线 OC .由此做法得 △MOC ≌△NOC 的依据是____.【答案】SSS 边边边【分析】由作图过程可得MO =NO ,NC =MC ,再加上公共边CO =CO 可利用SSS 定理判定△MOC ≌△NOC .【详解】解:∵在△ONC 和△OMC 中ON OM CO CO NC MC =⎧⎪=⎨⎪=⎩,∴△MOC ≌△NOC (SSS ),∴∠BOC =∠AOC ,故答案为:SSS .【点睛】本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .15.如图,在ABC 中,AB AC =,AD 平分BAC ∠交BC 于点D ,16cm BC =,则BD =_________cm .【答案】8【分析】先证明,BAD CAD ∠=∠再利用SAS 证明,BAD CAD ≌再利用全等三角形的性质可得答案.【详解】解:AD平分BAC∠,BAD CAD∴∠=∠,==AB AC AD AD,,BAD CAD≌,∴=BD CD,=+=,BC BD CD16cm∴=cmBD8故答案为:8【点睛】本题考查的是全等三角形的判定与性质,掌握“利用SAS证明三角形全等”是解题的关键.16.如图,要测量水池宽AB,可从点A出发在地面上画一条线段AC,使AC⊥AB,再从点C观测,在BA的延长线上测得一点D,使∠ACD=∠ACB,这时量得AD=110m,则水池宽AB的长度是___m.【答案】110【分析】利用全等三角形的性质解决问题即可.【详解】解:∵AC⊥BD,∴∠CAD=∠CAB=90°,∵CA=CA,∠ACD=∠ACB,∴△ACD≌△ACB(ASA),∴AB=AD=110m,故答案为110.【点睛】本题考查全等三角形的应用,解题关键是理解题意,正确寻找全等三角形解决问题.17.如图,∠ABC∠∠DFE,点B、E、C、F在同一直线上,BE=2cm,BF=11cm,则EC的长度是__________.试卷第13页,共77页【答案】7cm【分析】根据全等三角形的性质得到CF=BE=2cm,故可求出EC的长.【详解】==ABC==DFE,=BC=EF=BC-EC=EF-EC∴CF=BE=2cm,=EC=BF-CF-BE=7cm,故答案为:7cm.【点睛】此题主要考查全等三角形的性质,今天的关键是根据已知条件得到CF=BE.AC ,18.如图,在ABC中,AB的垂直平分线DE交AB于点D,交AC于点E,且15cm BCE的周长等于25cm,则BC的长度等于_________cm.【答案】10【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式进行计算即可得出结论.【详解】解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长=BC+BE+EC=BC+AE+EC=BC+AC,∴BC+AC=25cm,试卷第15页,共77页∴BC =25﹣AC =25﹣15=10(cm ),故答案为:10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.19.如图,已知AC DB =.要使ABC DCB ≅.只需添加的一个条件是______.【答案】AB =DC (答案不唯一)【分析】要使△ABC ≌△DCB ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB =DC ,∵AC =DB ,BC =BC ,AB =DC ,∴△ABC ≌△DCB (SSS ),∴加一个适当的条件是AB =DC ,故答案为:AB =DC (答案不唯一).【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.20.如图,在ABC 中,90C ∠=︒,15B ∠=︒,AB 的垂直平分线交BC 于D ,交AB 于E ,若5cm AC =,则BD =___________cm .【答案】10【分析】如图,连接AD .根据线段垂直平分线的性质将BD 的长度转化为AD的长度,所以在直角ACD ∆中,利用含30度角的直角三角形来求AD 的长度.【详解】解:如图,连接AD .AB 的垂直平分线交BC 于D ,AD BD ∴=,15BAD B ∴∠=∠=︒,30ADC BAD B ∴∠=∠+∠=︒. 又在ABC ∆中,90C ∠=︒,5AC =,210AD AC ∴==.所以:BD =10故答案是:10.【点睛】本题考查了含30度角的直角三角形和线段垂直平分线的性质,解题的关键是垂直平分线上任意一点,到线段两端点的距离相等.21.如图,//AB CD ,108CDM ∠=︒,GF 交MEB ∠的角平分线EF 于点F ,120BGF ∠=︒.则F ∠=______.【答案】84︒【分析】根据//AB CD ,求出AED ∠,由对顶角相等及角平分线性质求出FEG ∠,最后根据三角形的外角性质求出F ∠即可.【详解】解://,108AB CD CDM ∠=︒,试卷第17页,共77页72AED ∴∠=︒,72MEG ∴∠=︒, EF 是MEB ∠的角平分线,1362FEG MEG ∴∠=∠=︒, 120BGF ∠=︒为三角形的外角,BGF FEG F ∴∠=∠+∠,1203684F ∴∠=︒-︒=︒,故答案是:84︒.【点睛】本题考查了平行线的性质、对顶角、角平分线的性质、三角形的外角,解题的关键是掌握相关的性质,灵活运用.22.观察下列结论:(1)如图①,在正三角形ABC 中,点M ,N 是AB ,BC 上的点,且AM =BN ,则AN =CM ,∠NOC =60°;(2)如图2,在正方形ABCD 中,点M ,N 是AB ,BC 上的点,且AM =BN ,则AN =DM ,∠NOD =90°;(3)如图③,在正五边形ABCDE 中点M ,N 是AB ,BC 上的点,且AM =BN ,则AN =EM ,∠NOE =108°;…根据以上规律,在正n 边形A 1A 2A 3A 4…A n 中,对相邻的三边实施同样的操作过程,即点M ,N 是A 1A 2,A 2A 3上的点,且A 1M =A 2N ,A 1N 与A n M 相交于O .也会有类似的结论,你的结论是__.【答案】(1)见解析;(2)见解析;(3)A 1N =A n M ,∠NOA n =(2)180n n-⨯︒. 【分析】 (1)根据三角形全等的证明方法,可以得到ABN ACM SAS △≌△(),AN CM =,再根据NOC ∠是AOC △的外角,从而求得60NOC BAC ∠=∠=︒;(2)同(1)证明ABN ADM SAS △≌△(),AN DM =,再根据NOD ∠是AOD △的外角,从而求得90NOC BAD ∠=∠=︒;(3)同(1)证明ABN AEM SAS △≌△(),AN EM =,再根据NOE ∠是AOE △的外角,从而求得108NOC BAE ∠=∠=︒;通过观察规律,可以发现A 1N =A n M 并且21(2)180n n n NOA A A A n-⨯︒∠=∠=. 【详解】解∵(1)如图①,在正三角形ABC 中,点M ,N 是AB ,BC 上的点,且AM =BN ,在△ABN 和△ACM 中,AB AC B CAM BN AM =⎧⎪∠=∠⎨⎪=⎩,∴△ABN ≌△ACM (SAS ),∴∠BAN =∠ACM ,AN =CM ,∴∠NOC =∠OAC +∠ACM =∠OAC +∠BAN =∠BAC =60°.则AN =CM ,(32)180603NOC BAC -⨯︒∠=∠==︒; (2)如图2,在正方形ABCD 中,点M ,N 是AB ,BC 上的点,且AM =BN , 同理:△ABN ≌△ADM (SAS ),∴∠BAN =∠ADM ,AN =DM ,∴∠NOD =90°则AN =DM ,(42)180904NOD -⨯︒∠==︒; (3)同理:如图③,在正五边形ABCDE 中点M ,N 是AB ,BC 上的点,且AM =BN , 则AN =EM ,(52)1801085NOE -⨯︒∠==︒; …根据以上规律,在正n 边形A 1A 2A 3A 4…A n 中,对相邻的三边实施同样的操作过程,即点M ,N 是A 1A 2,A 2A 3上的点,且A 1M =A 2N ,A 1N 与A n M 相交于O .也有类似的结论是A 1N =A n M ,∠NOA n =(2)180n n -⨯︒. 故答案为:A 1N =A n M ,∠NOA n =(2)180n n-⨯︒. 【点睛】此题考查三角形全等的证明和外角的性质,通过观察证明所给例子找出规律是解决本题的关键.23.如图,在△ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于试卷第19页,共77页点F ,若BF =AC ,CD =3,BD =8,则线段AF 的长度为__.【答案】5【分析】先证明=ADC ==BDF ,再根据全等三角形的性质可得FD =CD =3,AD =BD =8,即可算出AF 的长.【详解】解:=AD 是BC 边上的高,BE 是AC 边上的高,==ADC ==BDF ==AEB =90°,==DAC +=C =90°,=C +=DBF =90°,==DAC ==DBF ,在=ADC 和=BDF 中,∵ADC BDF DAC DBF AC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,==ADC ==BDF (AAS ),=CD =FD =3,AD =BD =8,=AF =AD ﹣FD =8﹣3=5,故填:5.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,解题关键是掌握全等三角形的判定和性质.24.如图,在ABC 和ADE 中,BAC DAE ∠=∠,BC DE =,请你添加一个条件____,使ABC ADE △≌△(填一个即可).【答案】B D ∠=∠等【分析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等,据此解答即可.【详解】解:∵BAC DAE ∠=∠,BC =DE ,∴添加B D ∠=∠,可根据AAS 证明ABC ADE △≌△;或C E ∠=∠,可根据AAS 证明ABC ADE △≌△;故答案为:B D ∠=∠等【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目.25.如图,△ABC ≌△DBE ,△ABC 的周长为30,AB =9,BE =8,则AC 的长是__.【答案】13【分析】根据全等三角形的性质求出BC ,根据三角形的周长公式计算,得到答案.【详解】解:∵△ABC ≌△DBE ,BE =8,∴BC =BE =8,∵△ABC 的周长为30,∴AB +AC +BC =30,∴AC =30﹣AB ﹣BC =13,故答案为:13.【点睛】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的性质.26.请观察下图中的6组图案,其中是全等形的是__________.【答案】(1)(4)(5)(6).【分析】根据全等的性质:能够完全重合的两个图形叫做全等形,结合所给图形进行判断即可.【详解】解:(1)(5)是由其中一个图形旋转一定角度得到另一个图形的,(4)是将其中一个图形翻折后得到另一个图形的,(6)是将其中一个图形旋转180°再平移得到的,(2)(3)形状相同,但大小不等.故答案是:(1)(4)(5)(6).【点睛】本题考查了全等图形的知识,解答本题的关键是掌握全等图形的定义.27.如图,在ABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG =130°,则∠DGF=_____°.【答案】25【分析】根据角平分线的定义得到∠EBG=∠CBG,根据平行线的性质得到∠EGB=∠CBG,等量代换得到∠EBG=∠EGB,再根据三角形的内角和定理和对顶角的性质于是得到结论.【详解】解:∵EF∥BC,∴∠EGB=∠CBG,∵BD平分∠ABC,∴∠EBG=∠CBG,∴∠EBG=∠EGB,∵∠BEG=130°,∴∠EGB=1801302︒︒-=25°,∴∠DGF=∠EGB=25°.故答案为:25.【点睛】本题考查了角平分线的定义,平行线的性质,三角形的内角和定理,熟练掌握这些性质是解题的关键.试卷第21页,共77页28.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是_______________ .【答案】∠A=∠E【分析】要判定△ABC≌△EDF,已知AD=BE,AC=EF,则AB=DE,AC=EF,具备了两组边对应相等,故添加∠A=∠E,利用SAS可证全等.【详解】解:增加一个条件:∠A=∠E,∵AD=BE,∴AB=DE,在△ABC和△FDE中,AB DEA E AC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EDF(SAS).故答案为:∠A=∠E(答案不唯一).【点睛】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.29.两个形状相同的图形,称为全等图形.__(判断对错).【答案】错【分析】能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断得出即可.【详解】根据全等形的概念可知:能够完全重合的两个图形称为全等图形.且全等图形的大小,形状都相同,则两个形状相同的图形,称为全等图形,错误.故答案为:错.试卷第23页,共77页【点睛】本题考查了全等形的概念和性质,正确把握全等图形的性质是解题关键.30.补充一个条件,使推理完整,在DEF ∆和MNP ∆中,D M ∠=∠,____,DF MP =,()DEF MNP AAS ∴∆≅∆【答案】E N ∠=∠【分析】根据AAS 补充条件即可得到答案.【详解】解:补充:E N ∠=∠,理由如下:在DEF ∆和MNP ∆中,D M ∠=∠,E N ∠=∠,DF MP =,()DEF MNP AAS ∴∆≅∆.故答案为:E N ∠=∠【点睛】本题考查的是三角形全等的判定方法,掌握利用AAS 判定三角形全等是解题的关键. 31.如图,填空:(填SSS 、SAS 、ASA 或)AAS(1)已知BD CE =,CD BE =,利用__可以判定BCD CBE ∆≅∆;(2)已知AD AE =,ADB AEC ∠=∠,利用___可以判定ABD ACE ∆≅∆;(3)已知OE OD ,OB OC =,利用___可以判定BOE COD ∆≅∆;(4)已知BEC CDB ∠=∠,BCE CBD ∠=∠,利用___可以判定BCE CBD ∆≅∆.【答案】SSS ASA SAS AAS【分析】(1)根据已知BD CE =,CD BE =,且由图可知BC 为公共边,即可据SSS 判定BCD CBE ≅;(2)已知AD AE =,ADB AEC ∠=∠,且由图可知A ∠为公共角,利用ASA 可以判定ABD ACE ≅;(3)已知OE OD ,OB OC =,且由图可知∠BOE 、COD ∠为对顶角相等,利用SAS 可以判定BOE COD ≅;(4)已知BEC CDB ∠=∠,BCE CBD ∠=∠,且由图可知BC 为公共边,利用AAS 可以判定BCE CBD ≅.【详解】解:(1)BD CE =,CD BE =,BC 为公共边,()BCD CBE SSS ∴≅;(2)AD AE =,ADB AEC ∠=∠,A ∠为公共角,()ABD ACE ASA ∴≅;(3)OE OD =,OB OC =,BOE COD ∠=∠(对顶角相等),()BOE COD SAS ∴≅;(4)BEC CDB ∠=∠,BCE CBD ∠=∠,BC 为公共边,()BCE CBD AAS ∴≅.故答案为:(1)SSS ;(2)ASA ;(3)SAS ;(4)AAS .【点睛】本题考查了全等三角形的判定,熟记全等三角形的判定方法找到全等三角形的对应边、对应角是解题的关键.32.如图,AB DB =,BC BE =,欲证ABE DBC ∆≅∆,则需增加的条件是__.【答案】AE DC =【分析】根据已知条件有两条边对应相等,于是可添加条件第三边对应相等或添加它们的夹角相等,均可得欲证的结论.【详解】条件是AE DC =,理由是:在ABE ∆和DBC ∆中,AB BD AE DC BE BC =⎧⎪=⎨⎪=⎩,()ABE DBC SSS ∴∆≅∆,试卷第25页,共77页故答案为:AE DC =.【点睛】本题考查了判定三角形全等所需的条件,熟练掌握三角形全等判定的方法是解决本题的关键.33.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则∠__≅∠___.【答案】ACD AED【分析】根据角平分线定理得到CD DE =,利用直角三角形HL 定理证明即可.【详解】证明: AD 平分BAC ∠,CAD EAD ∴∠=∠,又 DE AB ⊥,90C =∠AED C ∴∠=∠,在Rt ADC 和Rt AED △中,{CAD EADC AED AD AD∠=∠∠=∠=,()Rt ACD Rt AED AAS ≅.故答案为:ACD ;AED .【点睛】本题考查角平分线性质定理、直角三角形判定定理,能够根据定理推导出相关的条件是解题的关键.34.判断正误:正确的写“正确”,错误的写“错误”.(1)面积相等的两个三角形全等.__(2)两边对应相等的两个三角形全等.___(3)一边一角对应相等的两个三角形全等.___(4)三边对应相等的两个三角形全等.___(5)两边和它们的夹角对应相等的两个三角形全等.__(6)两边和一角对应相等的两个三角形全等.___【答案】错误 错误 错误 正确 正确 错误【分析】根据三角形全等的判定方法即可作出正确或错误的判断.【详解】(1)面积相等的两个三角形不一定全等;故原命题错误;(2)两边对应相等的两个三角形不一定全等.故原命题错误;(3)一边一角对应相等的两个三角形不一定全等.故原命题错误;(4)三边对应相等的两个三角形一定全等.故原命题正确;(5)两边和它们的夹角对应相等的两个三角形一定全等. 故原命题正确;(6)两边和一角对应相等的两个三角形不一定全等.故原命题错误;故答案分别是:错误;错误;错误;正确;正确;错误.【点睛】本题考查了三角形全等的判定,准确把握判定两个三角形全等的条件是本题的关键. 35.如图,要测量水池宽AB ,可从点A 出发在地面上画一条线段AC ,使AC AB ⊥,再从点C 观测,在BA 的延长线上测得一点D ,使ACD ACB ∠=∠,这时量得120m AD =,则水池宽AB 的长度是__m .【答案】120【分析】利用全等三角形的性质解决问题即可.【详解】AC BD ,90CAD CAB ∴∠=∠=︒,CA CA =,ACD ACB ∠=∠,()ACD ACB ASA ∴∆≅∆,120AB AD m ∴==,故答案为120.【点睛】本题考查全等三角形的应用,解题关键是理解题意,正确寻找全等三角形解决问题. 36.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是__.【答案】ASA【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故答案为:ASA.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.37.如图,有6个条形方格图,在由实线围成的图形中,全等图形有:(1)与__;(2)与__.【答案】(6)(3)(5)【分析】利用全等图形的概念可得答案.【详解】解:(1)与(6)是全等图形,(2)与(3)(5)是全等图形,故答案为:(6),(3)(5).试卷第27页,共77页【点睛】本题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形. 38.如图,用直尺和圆规作一个角等于已知角,能得出的依据是__.【答案】SSS【分析】根据作一个角等于已知角的作法和步骤解答.【详解】在ODC ∆和△O D C '''中,OD O D OC O C DC D C =''⎧⎪=''⎨⎪=''⎩,ODC ∴∆≅△()O D C SSS ''',故答案为:SSS .【点睛】本题考查尺规作图的应用,熟练掌握用直尺和圆规作一个角等于已知角的方法和步骤是解题关键.39.如图所示,已知AOB ∠,求作射线OC ,使OC 平分AOB ∠,作法的合理顺序是__.(将①②③重新排列)①作射线OC ;②以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;③分别以D 、E 为圆心,大于12DE 的长为半径作弧,在AOB ∠内,两弧交于点C .【答案】②③①【分析】根据角平分线的作法求解.【详解】试卷第29页,共77页作法:(1)以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;(2)分别以D 、E 为圆心,大于12DE 的长为半径作弧,在AOB ∠内,两弧交于点C , (3)作射线OC ,所以OC 就是所求作的AOB ∠的平分线.故题中的作法应重新排列为:②③①.故答案为:②③①.【点睛】本题考查尺规作图的应用,熟练掌握角平分线的作法是解题关键.40.如图,BD 、BE 分别是ABC 的高线和角平分线,点F 在CA 的延长线上,FH BE⊥交BD 于点G ,交BC 于点H .下列结论:①DBE F ∠=∠;②1()2F BAC C ∠=∠-∠;③2FGD ABE C ∠=∠+∠;④1()2BEF BAF C ∠=∠+∠.其中正确的为__________.【答案】①②④【分析】①根据BD ⊥FD ,FH ⊥BE 和∠FGD =∠BGH ,证明结论正确.④根据角平分线的定义和三角形外角的性质证明结论正确.③利用②的结论得出∠FGD =∠FEB ,从而证明错误的.②根据角平分线的定义和三角形外角的性质证明结论正确.【详解】解:∵BD ⊥FD ,∴∠FGD +∠F =90°,∵FH ⊥BE ,∴∠BGH +∠DBE =90°,∵∠FGD =∠BGH ,∴∠DBE =∠F ,故①正确;∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∠BEF =∠CBE +∠C ,∴2∠BEF =∠ABC +2∠C ,∠BAF =∠ABC +∠C ,∴2∠BEF =∠BAF +∠C ,即∠BEF =12(∠BAF +∠C ),故④正确;∵∠AEB =∠EBC +∠C ,∵∠ABE =∠CBE ,∴∠AEB =∠ABE +∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD =∠FEB ,∴∠FGD =∠CBE +∠C =∠ABE +∠C ,故③错误,∵∠ABD =90°-∠BAC ,∠DBE =∠ABE -∠ABD =∠ABE -90°+∠BAC =∠CBD -∠DBE -90°+∠BAC ,∠CBD =90°-∠C ,∴∠DBE =∠BAC -∠C -∠DBE ,∵∠DBE =∠F ,∴∠F =∠BAC -∠C -∠DBE ,∴∠F =12(∠BAC -∠C );故②正确;故答案为:①②④.【点睛】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.41.如图,已知在四边形ABCD 中,12AB =厘米,8BC =厘米,14CD =厘米,B C ∠=∠,点E 为线段AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为___________厘米/秒时,能够使BPE 与以C ,P ,Q 三点所构成的三角形全等.试卷第31页,共77页【答案】3或92【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q 的运动速度.【详解】解:设点P 运动的时间为t 秒,则BP =3t ,CP =8﹣3t ,∵∠B =∠C ,∴①当BE =CP =6,BP =CQ 时,△BPE 与△CQP 全等,此时,6=8﹣3t ,解得t 23=, ∴BP =CQ =2,此时,点Q 的运动速度为223÷=3厘米/秒; ②当BE =CQ =6,BP =CP 时,△BPE 与△CQP 全等,此时,3t =8﹣3t ,解得t 43=, ∴点Q 的运动速度为64932÷=厘米/秒; 故答案为:3或92. 【点睛】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.42.如图,90DEB DFB ∠=∠=︒,根据角平分线的性质填空:若ABD DBC ∠=∠,则DE =__,若EDB BDF ∠=∠,则BF =__.【答案】DF BE【分析】根据角平分线的性质可证明BDE BDF △≌△,利用全等三角形的性质作答即可. 【详解】ABD DBC ∠=∠,90DEB DFB ∠=∠=︒,DE AB ⊥∴,DF BC ⊥,DE DF ∴=;在BDE 和BDF 中,DEB DFB EDB FDB BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE BDF AAS ∴△≌△,BF BE ∴=.故答案为:DF ;BE .【点睛】本题主要考查了角平分线的性质,全等三角形的性质和判定,熟练运用角平分线的性质证全等是解题的关键.43.判断正误:到角两边距离不相等的一点一定不在角平分线上.__【答案】√【分析】根据角平分线判定即可判断出来.【详解】解:到角的两边的距离相等的点在角的平分线上,∴到角两边距离不相等的一点一定不在角平分线上,是正确的.故答案为:√.【点睛】本题考察了角平分线判定,属于基础题型.试卷第33页,共77页44.判断正误:P 为AOB ∠内一点,C 在OA 上,D 在OB 上,若PC PD =,则OP 平分AOB ∠.__.【答案】⨯【分析】根据题意举反例画图即可.【详解】解:如图,符合题干中的所有条件,但很明显OP 没有平分AOB ∠.故答案:⨯.【点睛】本题主要考查了角平分线的性质.角平分线上的点到角两边的距离相等.注意:点的直线的距离是垂线段的长度.45.判断正误:三角形三条角平分线交于一点,且这一点到三顶点的距离相等__.【答案】⨯【分析】根据三角形角平分线的性质分析,即可得到答案.【详解】由角平分线性质可知:三角形的三条角平分线交于一点,这点到三角形的三边的距离相等;故答案为:⨯.【点睛】本题考查了三角形角平分线的知识;解题的关键是熟练掌握三角形角平分线的性质,从而完成求解.46.如图所示,ΔBKC ≌ΔBKE ≌ΔDKC , BE 与KD 交于点G , KE 与CD 交于点P , BE 与CD 交于点A ,∠BKC =134°,∠E = 22° ,则∠KPD =__________.。
苏科版七年级数学下册全等三角形单元测试卷
苏科版七年级数学下册全等三角形单元测试卷一、选择题(共10小题;共50分)1. 如图,小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案A. B.C. D.2. 如图,,,于点,于点,,,则的长为3. 下列说法错误的是A. 能够完全重合的两个图形叫做全等图形B. 面积相等的两个三角形是全等图形C. 全等图形的形状和大小都一样D. 平移、旋转前后的图形是全等图形4. 如图所示,工人师傅做了一个长方形窗框,,,,分别是四条边的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在A. ,两点之间B. ,两点之间C. ,两点之间D. ,两点之间5. 如图,线段与相交于点,连接,,,若,,则下列结论中不正确的是A. B.C. D.6. 下列叙述:①能够完全重合的两个图形一定是全等图形;②全等图形的面积一定相等;③两个周长相等的图形一定是全等图形.其中正确的个数是A. B. C. D.7. 下列事例应用了三角形稳定性的有①人们通常会在栅栏门上斜着钉上一根木条;②新植的树木,常用一些粗木与之成角度地支撑起来,防止倾斜;③四边形模具.A. 个B. 个C. 个D. 个8. 如图,已知,,分别为,上的点,,则下列结论不一定成立的是A. B. C. D.9. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设和是全等(合同)三角形,且点与点对应,点与点对应,点与点对应,当沿周界及,环绕时,若运动方向相同,则称它们是真正合同三角形(如图①所示);若运动方向相反,则称它们是镜面合同三角形(如图②所示).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻折.下列各组合同三角形中,是镜面合同三角形的是A. B.C. D.10. 如图,工人师傅做了一个长方形窗框,,,,分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在A. ,两点之间B. ,两点之间C. ,两点之间D. ,两点之间二、填空题(共6小题;共30分)11. 如图,,,,,则,度.12. 空调安装在墙上时,一般都会象如图所示的方法固定在墙上,这种方法应用的数学知识是.13. 如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是利用了 .14. 如图,为边上一点,,那么与的位置关系是.15. 如图所示,,,为上任意一点,图中有对三角形全等,它们分别是,使用的判定定理分别是.16. 如图,点,,,在同一条直线上,,,,,则的长为.三、解答题(共8小题;共104分)17. 用直线将下列图形中的全等图形连起来.18. 如图,小明家有一个由六条钢管连接而成的钢架,为使这一钢架稳固,他计划用三条钢管连接使它不变形.请你帮小明解决这个问题.(画图说明,要求用三种不同方法)19. 有一块三角形板材,如图,根据实际生产需要,工人师傅要把平分开,现在他手边只有一把直尺和一根细绳,你能帮工人师傅想个办法吗?说明你的理由.20. 为使五边形木架(用根木条钉成)不变形,哥哥准备如图①那样再钉上两根木条,弟弟准备如图②那样再钉上两根木条,哪种方法能使木架不变形?为什么?21. 如图,点,,,在同一条直线上,且,若,,求证:.22. 如图①,将一张长方形纸片沿一条对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如图②的形式,使点,,,在同一条直线上.(1)求证:;(2)若,,请在图中找出除外的一对全等三角形,并说明理由.23. 如图,在由边长为的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度地裁剪出十个与它完全一样的燕尾形工件,问这个网格的长至少为多少(接缝处不计)?24. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个边形()木架在同一平面内不变形,至少还要再钉上几根木条?答案第一部分1. B2. A 【解析】,,,.,.在和中,,,,,,.3. B 【解析】三角形的面积相等时,三角形的形状不一定相同,所以两图形不一定全等.4. B 【解析】若这根木条钉在,两点之间,或,两点之间,或,两点之间都能构成三角形,根据三角形的稳定性,可使窗框稳固,但若这根木条钉在,两点之间,则不能构成三角形,不能使窗框稳固.5. C【解析】A.根据可以证明,故本选项正确;B.根据全等三角形的对应角相等,得,故本选项正确;C. 和显然不是对应边,故本选项错误;D.根据全等三角形的对应角相等得,故本选项正确.6. C 【解析】①②正确.7. B 【解析】①人们通常会在栅栏门上斜着钉上一根木条,利用了三角形的稳定性,②新植的树木,常用一些粗木与之成角度地支撑起来,防止倾斜,利用了三角形的稳定性,③对于四边形模具,四边形不具有稳定性.故应用了三角形稳定性的有个.8. D 【解析】因为,,,所以,所以,,故A,C正确,不符合题意.因为,,所以,故B正确,不符合题意.9. B 【解析】解题的关键是准确理解题目中新概念的意义和性质.易知要使B中两个三角形重合,必须将其中一个进行翻折.10. B第二部分11. ,12. 三角形稳定性13. 三角形的稳定性14. 垂直平分15. ,与,与,与,,,(或)16.第三部分17. ①与⑨,③与⑧,④与⑩,⑤与⑦.18. 如图所示.19. 如图,用一定长度的绳子在和上分别截取和,使得,再取适当长度(不小于长)的绳子,将其对折,得绳子的中点,把绳子确定的两个端点分别固定在,两点,拽住绳子的中点,向外拉直和,确定出使的点在板材上的位置,过,两点画射线,则平分.理由:在和中,所以.所以.20. 两种方法都能使木架不变形.在图①中,,,的形状和大小不变.在图②中,,的形状和大小不变,故点相对,的位置也不变.21. 证明,,且,,,,即,在和中,,.22. (1)由题意得,故,又,.又,,,.(2).理由如下:由,得,,,,即.在和中,.23. 如图,后面画出的图形与第一个图形完全一样,画第二个图形时,需往右用个格,画第三个图形时,需要再往右用个格,画第四个图形时,需要再往右用个格,,画第十个图形时,网格的长为.这个网格的长至少为.24. 根据三角形的稳定性,要使六边形木架不变形,至少再钉上根木条;要使一个边形木架不变形,至少再钉上根木条.。
全等三角形章节测试
全等三角形单元测验题一、填空题:(每小题4分)1.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.2、如图,某人把一块三角形的玻璃打碎成了三块,现在你要到玻璃店去配一块完全一样的玻璃,则应带哪块玻璃去__________(填上玻璃序号)。
第1题3.把两根钢条AA ’、BB ’的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳),如图, 若得AB=5厘米,则槽宽A'B'为 米.OEA'BABCADABB'第3题 第4题 第5题4.如图,∠A=∠D ,AB=CD ,则△ ≌△ ,根据是 . 5.如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 ;若利用“HL ”证明△ABC ≌△ABD ,则需要加条件 .6.△ABC ≌△DEF ,且△ABC 的周长为12,若AB=3,EF=4,则AC= . 7.到一个角两边距离相等的点在 .D8.如图,在ΔAOC 与ΔBOC 中,若∠1=∠2,加上条件 ,则有ΔAOC ≌ΔBOC 。
DFDDBA 第8题 第9题 第10题9.如图,AE=BF ,AD ∥BC ,AD=BC ,则有ΔADF ≌ ,且DF= 。
10.如图,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,要证明ΔABC ≌ΔDEF , 还需添加的条件是 。
(只需填一个) 二、选择题(每小题3分)11.根据下列条件,能判定△ABC ≌△DEF 的是 . A. AB=DE ,BC=EF ,∠A=∠D B. ∠A=∠D ,∠C=∠F ,AC=EF C. ∠B=∠E ,∠A=∠D ,AC=EF D. AB=DE ,BC=EF ,∠B=∠E12.如图△ABE ≌△ACD ,AB=AC ,BE=CD ,∠B=50°, ∠AEC=120°,则∠DAC 的度数等于 A 、120° B 、70° C 、60° D 、50° 13.如图,已知△ABD 和△ACE 都是等边三角形, 那么△ADC ≌△ABE 的根据是 . A.边边边 B.边角边 C.角边角 D.角角边B14.具有下列条件的两个三角形,可以证明它们全等的是 .A.两角相等,且其对应角所对的边也相等B.两角相等,且有一边也相等C.一边相等,且这边上的高也相等D.两边相等,且其中一条对应边的对角相等15、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC= °A、80°B、70°C、60°D、50°16.在△ABC和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件组不能保证△ABC≌A'B'C'的是 .A.①②③B.①②⑤ B.②④⑤ D.①③⑤三、解答题:(每小题7分)17.如图,△ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。
北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套
全等三角形一.填空题(每题3分,共30分)1。
如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______、2。
如图,△ABD ≌△ACE ,且∠BAD 和∠CAE ,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边_________.3、 已知:如图,△ABC ≌△FED ,且BC=DE 、则∠A=__________,A D=_______.4、 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______。
5、 已知:如图,△ABE ≌△ACD ,∠B=∠C,则∠AEB=_______,AE=________。
6.已知:如图 , AC ⊥BC 于 C , DE ⊥AC 于 E , AD ⊥AB 于 A , BC=AE 。
若AB=5 , 则AD=___________.7。
已知:△ABC ≌△A ’B ’C', △A'B ’C ’的周长为12cm ,则△ABC 的周长为、 8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________。
4321E D BA9。
如图,∠1=∠2,由AAS 判定△ABD ≌△ACD,则需添加的条件是____________、10。
如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC'为________度、二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是 ( )A 、三条边对应相等B 、两边和一角对应相等C 、两角的其中一角的对边对应相等D 、两角和它们的夹边对应相等12、 如果两个三角形全等,则不正确的是 ( )A B CD 12AA'BC C'A、它们的最小角相等B、它们的对应外角相等C、它们是直角三角形D、它们的最长边相等13、如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A、AB=ACB、∠BAE=∠CADC、BE=DCD、AD=DE14、图中全等的三角形是( )A、Ⅰ和ⅡB、Ⅱ和ⅣC、Ⅱ和ⅢD、Ⅰ和Ⅲ15、下列说法中不正确的是( )A、全等三角形的对应高相等B、全等三角形的面积相等C、全等三角形的周长相等D、周长相等的两个三角形全等16、 AD=AE , AB=AC , BE、CD交于F ,则图中相等的角共有(除去∠DFE=∠BFC) ( )A、5对B、4对C、3对D、2对CEDBOA17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是( )A、70°B、 85°C、 65°D、以上都不对18、已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF、则不正确的等式是 ( )A、AC=DF B 、AD=BE C、DF=EF D、BC=EF19。
北师大版七年级数学下册第四章 三角形 章节测试(含答案)
第四章 全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm ,4cm ,5cmC.3cm ,4cm ,8cmD.4.2cm ,2.8cm ,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB =CD ,那么下列结论中, 不正确的是……………………… ( ) A.AC =CEB.∠BAC =∠CDEC.∠ACB =∠ECDD.∠B =∠D5.下列条件中,不能判定三角形全等的是…………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB = A ′B ′, ∠B =∠B ′要保证△ABC ≌△A ′B ′C ′, 可补充的条件是……( )A.∠B +∠A =900B.AC = A ′C ′C.BC =B ′C ′D. ∠A +∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB = A ′B ′,∠B =∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( ) A. BC =B ′C ′ B. AC = A ′C ′ C. ∠C =∠C ′ D. ∠A =∠A ′ 9.如图,已知AE =CF ,BE =DF .要证△ABE ≌△CDF ,还需添加的一个条件是………( )(A ) (B ) (C )(D )第3题图B DE第4题ABDCEA.∠BAC =∠ACDB.∠ABE =∠CDFC.∠DAC =∠BCAD.∠AEB =∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B =∠C B.∠EDB =∠FDC C.∠ADE =∠ADF D. ∠ADB =∠ADC 11.如图AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB ,AC 上一点,若∠B =∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD =AE B.AB =ACC.BE =CDD.∠AEB =∠ADC 二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF ,点B 和点E , 点A 和点D 是对应顶点, 则AB = ,CB = , ∠C = ,∠CAB = . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( )∴AB =DC ( )16.如图,已知AO =OB ,OC =OD ,AD 和BC 相交于点E , 则图中全等三角形有 对.17.在△ABC 和△DEF 中,AB =4, ∠A =350, ∠B =700,DE =4, ∠D = , ∠E 根据 判定△ABC ≌△DEF .ABC D F E 第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEFABD CO第15题OABD第16题CE第18题A D18.如图,在△ABC和△DEF中AB=DC( BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是.20.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明理由.第19题B CAE CDAB CED第20题DCAB23.(本题6分)如图,已知BD =CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB =DC ,AD =BC ,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B =∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形ABC12DB D图①画法1画法2画法3画法426.(本题8分)如图,△ABC 中,AD 垂直平分BC ,H 是AD 上一点,连接BH ,CH .(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ACBH D参考答案一、细心选一选:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案D B B C D C C B D C D D二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FE D. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等16.4 17.350, AAS18.AC,CA,公共边,SSS19.∠A=∠D20.8三、耐心答一答(本题有六小题,共40分)21.图略22.AB=AC23.略24.略25.画法1 画法2 画法3 画法426.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD(4)4对,∠BHD=∠CHD, ∠ABD=∠ACD,∠HBD=∠HCD, ∠BDA=∠CDA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年七年级(下) 全等三角形 章节测试
一、细心选一选(每小题3分,共36分)
1.下列说法正确的是……………………………………( )
A.周长相等的两个三角形全等
B.面积相等的两个三角形全等
C.三个角对应相等的两个三角形全等
D.三条边对应相等的两个三角形全等
2.下列各组线段能组成三角形的是……………………( )
A.3cm ,3cm ,6cm
B.7cm,4cm,5cm
C.3cm,4cm,8cm
D.4.2cm,2.8cm,7cm
3.下列图形中,与已知图形全等的是……………………( )
4.如图,已知△ABC ≌△CDE,其中
AB=CD,那么下列结论中, 不正确的是………………………
( ) A.AC=CE B.∠BAC=∠
CDE C.∠ACB=∠ECD D.∠B=∠D
5.下列条件中,不能判定三角形全等的是……………………………………
( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等
6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形…………………
(A) (B) (C)
(D)
第3题图
D
E
第4题
( )
A.1对
B.2对
C.3对
D.4对
7.在△ABC 和△A ′B ′C ′中,已知AB= A ′B ′
,∠B=∠B ′要保证△ABC ≌△A ′B ′C ′,可
补
充
的
条
件
是………………………………………………………………………………………………( )
A.∠B+∠A=900
B.AC= A ′C ′
C.BC=B ′C ′
D. ∠A+∠A ′=900
8.已知在△ABC 和△A ′B ′C ′中,AB= A ′B ′
,∠B=∠B ′,补充下面一个条件,不能说明
△
ABC
≌
△
A
′
B
′
C
′
的
是……………………………………………………………………………………( )
A. BC=B ′C ′
B. AC= A ′C ′
C. ∠C=∠C ′
D. ∠A=∠A ′
9.如图,已知AE=CF,BE=DF.要证△ABE ≌△CDF,还需添加的一个条件是………( ) A.∠BAC=∠ACD B.∠ABE=∠CDF C.∠DAC=∠BCA D.∠AEB=∠CFD
10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B=∠C B.∠EDB=∠FDC C.∠ADE=∠ADF D. ∠ADB=∠ADC 11.如图AC 与BD 相交于点O ,已知AB=CD,AD=BC,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对
12.如图,D 、E 分别是AB,AC 上一点,若∠B=∠C ,则在下列条件中,
无法判定△ABE ≌△ACD 是………………………………( ) A.AD=AE B.AB=AC
C.BE=CD
D.∠AEB=∠ADC
A B C D
F E
第9题
A
A A
A
A 第10题
A B
C
D
O
第11题
A
B
C
E
第12题
D
二、专心填一填:(每小题3分,共24分)
13.如图,△ABC ≌△DEF,点B 和点E, 点A 和点D 是对应顶点, 则AB= ,CB= , ∠C= ,∠CAB= . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .
15.如图已知AC 与BD 相交于点O ,AO=CO,BO=DO,则AB=CD 请说明理由. 解:在△AOB 和△COD 中
(BO DO(AO CO ==⎧⎪⎨
⎪⎩
已知)(对顶角相等
已知) ∴△AOB ≌△COD ( ) ∴AB=DC ( )
16.如图,已知AO=OB,OC=OD,AD 和BC 相交于点E , 则图中全等三角形有 对.
17.在△ABC 和△DEF 中,AB=4, ∠A=350, ∠B=700,DE=4, ∠D= , ∠E=700
,
根据 判定△ABC ≌△DEF.
18.如图,在△ABC 和△DEF 中AB=DC(BC=DA(=⎧
⎪⎨⎪
⎩
已知)
已知)
()
∴△ABC ≌△DEF( )
19.如图∠B=∠DEF,AB=DE,要证明△ABC ≌△DEF ,
(1)若以“ASA ”为依据,需添加的条件是 ; (2)若以“SAS ”为依据,需添加的条件是 .
20.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D, 交AC 于E,若△EBC 的周长为21cm,则BC= cm.
第13题
A
B
C D
E
F
A B
D
C
O
第15题
O
A
B
D
第16题
C
E
第19题
B C
A E
C
D
第18题
A
D
A
B C
E D
第20题
三、耐心答一答:(本题有6小题,共40分)
21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,
∠B=∠β,BC=a.
22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明
理由.
23.(本题6分)如图,已知BD=CD,∠1=∠2.
说出△ABD≌△ACD的理由.
C
A
B
A
B C
1 2
D
24.(本题8分)如图,已知AB=DC ,AD=BC,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B=∠D
25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图
①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形
26.(本题8分)如图,△ABC 中,AD 垂直平分BC,H 是AD 上一点,
连接BH,CH.
(1)AD 平分∠BAC 吗?为什么?
(2)你能找出几堆相等的角?请把他么写出来(不需写理由)
D
图①
画法1
画法2
画法3
画法4
A
C
B
H
D
一、细心选一选:(每小题3分,共36分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B B C D C C B D C D D
二、专心填一填(每小题3分,共24分)
13.DE,FE,∠F, ∠FED. 14.3第三边相等,这两边的夹角相等
15. ∠AOB=∠COD,SAS,全等三角形的对应边相等 16.4 17.350, AAS 18.AC,CA,公共边,SSS 19.∠A=∠D 20.8
三、耐心答一答(本题有六小题,共40分)
21.图略 22.AB=AC 23.略 24.略
25.
画法1 画法2 画法3 画法4
26.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD (4)4对,∠BHD=∠CHD, ∠ABD=∠ACD, ∠HBD=∠HCD, ∠BDA=∠CDA
lP ~22206 56BE 嚾1A31052 794C 祌8T23099 5A3B 娻22122 566A 噪32922 809A 肚32476 7EDC 络C。