有理数的分类课件
合集下载
第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)
知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.
《有理数》PPT课件 (共10张PPT)
601 4
133 5.32= 25
150 .25=
?
思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
133 5.32= 25
150 .25=
?
思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
2.有理数PPT课件(华师大版)
形似分数,实质上它不是分数.分数的分子、
2
分母应为整数(分母不为0);
找各类数时,都要注意“0” A.0是最小的偶数 B.-5是质数 C.-5是奇数 D.1是最小的奇数
总结
引入负数后,奇数、偶数的范围扩充了负奇数、 负偶数;质数、合数的范围没有变化;
本例中,因为偶数含负偶数,所以A是错误的; 质数没有负质数,所以B也是错误的;奇数含负 奇数,所以D是错误的.因此选C.
3 已知下列各数:7,-9.25,- 9 ,-301, 4 ,
-3.5,0,2,5
1 2
10
,-7,1.25,-
7
27
,-3,- 3
3
4
.
把它们填入相应的大括号内.
正整数集合:{
…};
正分数集合:{
…} ;
负整数集合:{
…} ;
负分数集合:{
…} ;
正数集合:{
…} ;
负数集合:{
…}.
1. 有理数的分类:对有理数分类时,要注意分类标 准,做到不重复、不遗漏;若按集合分类,则每 个集合最后要加上“…”.
时,除写上题中给定的有限个数之外,必须加上省 略号.
拓展:两个集合的交叉部分即为两个集合的公共部 分,由于两个集合不是按同一标准分类,因此必然 是具有两个集合共同特征的数,如:正数和分数集 合的交叉部分为正分数.
例4 把下列各数填入表示它所在的数集的圈里:
-18,22 ,3.1416,0, 2012,- 3,-0.142 857,
总结
非负有理数一定是有理数,它包含正有理数和0; 不要误认为是除负有理数以外的任何数;
非正整数一定是整数; 找各类数时,要时刻考虑它是否包括“0”.
2
分母应为整数(分母不为0);
找各类数时,都要注意“0” A.0是最小的偶数 B.-5是质数 C.-5是奇数 D.1是最小的奇数
总结
引入负数后,奇数、偶数的范围扩充了负奇数、 负偶数;质数、合数的范围没有变化;
本例中,因为偶数含负偶数,所以A是错误的; 质数没有负质数,所以B也是错误的;奇数含负 奇数,所以D是错误的.因此选C.
3 已知下列各数:7,-9.25,- 9 ,-301, 4 ,
-3.5,0,2,5
1 2
10
,-7,1.25,-
7
27
,-3,- 3
3
4
.
把它们填入相应的大括号内.
正整数集合:{
…};
正分数集合:{
…} ;
负整数集合:{
…} ;
负分数集合:{
…} ;
正数集合:{
…} ;
负数集合:{
…}.
1. 有理数的分类:对有理数分类时,要注意分类标 准,做到不重复、不遗漏;若按集合分类,则每 个集合最后要加上“…”.
时,除写上题中给定的有限个数之外,必须加上省 略号.
拓展:两个集合的交叉部分即为两个集合的公共部 分,由于两个集合不是按同一标准分类,因此必然 是具有两个集合共同特征的数,如:正数和分数集 合的交叉部分为正分数.
例4 把下列各数填入表示它所在的数集的圈里:
-18,22 ,3.1416,0, 2012,- 3,-0.142 857,
总结
非负有理数一定是有理数,它包含正有理数和0; 不要误认为是除负有理数以外的任何数;
非正整数一定是整数; 找各类数时,要时刻考虑它是否包括“0”.
《有理数》PPT课件 北师大版七年级数学
探究新知
知识点 1
用正、负数表示具有相反意义的量
答错
不回答
答对
某班举行知识竞赛,评分标准是答对一题加1分,答错一题扣1分,
不回答得0分;每个队的基本分均为0分.两个代表队答题情况如下表:
答题情况
第一队
第二队
探究新知
如果答对题所得的分用正数表示,那么你能用正负数表
示每个代表队答题得分的情况吗?
答对题的得分
行车?
.
课堂检测
能 力 提 升 题
解:(1)以每日生产400辆自行车为标准,多出的数记作正数,
不足的数记作负数,则有
+5,-7, +10,+9,-13,+6,-3;
(2) 405+393+410+409+387+406+397 =2807(辆),
或400 ×7+5-7+10+9-13+6-3=2807(辆)
(1)并不一定必须将某一种量规定为正,若将其中的一
种量规定为正,则与其意义相反的量即为负.
(2)负数前面的“一”号,表示这个数的性质,是性质符
号,读作“负”号,但正数前面的“+”可以省略.
探究新知
练一练
把下列数分别填在对应的括号内:
2
7
13,-0.5,2.7,123,0,− ,-4,− .
5
4
2
-0.5,2.7,−
2
属于正数的有______
5 个.
连接中考
规定: “→2”表示向右平移2个单位长度,记作+2,则
“←3”表示向左移动3个单位长度,记作( B )
A.+3
七年级数学上册第一章有理数1-2有理数及其大小比较1有理数的概念课件新版新人教版
8. [母题 教材P16习题T1] 把下列各有理数填在相应的集合内:
-100,1,-823
,6,0,+314
,-2.25,-10%,
3 100
,
-18,2 025,-0.01.
正有理数集合:{
1,6,+314
,
3 100
,2025,
…}.
负有理数集合:{-100,-823,-2.25,-10%,-18,-…0.}01.,
6.3%,-3.14,请将它们填入图中相应的集合中.
思路引导:
解:(1)正整数;负整数 (2)如图1.2-1所示.
思路点拨 根据集合交叉部分的意义,重合部分具有两个集合的
所有特征,两个集合中相同的数填在这两个集合圈的公 共部分中;只在一个集合中出现的数填在这个集合圈的 单独的部分中.
易 错 点 对有理数分类不清导致出错
知1-练
1-1.在+4,73,-3. 14 ,0 ,0.5 中,表示正有理数的有
( C)
A. 1个
B. 2 个 C. 3 个 D. 4 个
1-2.下列说法中正确的有( B ) ① 负分数一定是负有理数; ②自然数一定是正数; ③ -π 是负分数; ④ a 一定是正数; ⑤ 0 是整数. A. 1 个 B. 2 个 C. 3 个
负整数和0 1. 符号为负;2. 分数或有限小数或无限循环小数
负数和0 2,4,6,⋯和-2,-4,-6,⋯
知1-讲
特别解读 1.整数可以写作分母为“1”的分数形式. 2. 引入负数后,奇数和偶数的范围也相应地扩大了,奇
数和偶数也可以是负数. 3. 自然数包括0和正整数.
知1-练
例 1 下列各数:-74,1. 010010001,383,0,-π3,-
七年级数学上册 第一章 有理数专题集课件 (新版)新人教版
6.(2015•桂林)桂林冬季里某一天最高气温是7℃,最 低气温是﹣1℃,这一天桂林的温差是( )
A.﹣8℃ B.6℃ C.7℃ D.8℃
7.(2015•毕节市)下列说法正确的是( ) A. 一个数的绝对值一定比0大 B. 一个数的相反数一定比它本身小 C. 绝对值等于它本身的数一定是正数 D. 最小的正整数是1
绝对值是 0.8 。
6. 比较大小:
2 < 2
11 13
7. 若 a 1 ,则 3
(2) > 5 a31 83 或 -4
3
易错题:
1-9.把,下2 34 列,各0数,填 2入13 ,它3属.1于, 的2集01合4,中
2
1 5
,
-0.28,65%,-15, 3
1.正整数的集合 2.负整数的集合 3.正分数的集合 4.负分数的集合
所以a+b的值为-2,-8。
1、 足球循环赛中,可以把进球数记为正数,失 球数记为负数,它们的和叫净胜球数.
(1)红队进4个球,失2个球;蓝队进1个球, 失1个球.红队蓝队的净胜球数各是多少?
(2)红队胜黄队4:1,黄队胜蓝队1:0,蓝 队胜红队1:0,计算各队的净胜球数。
2、粮库3天内进出库的吨数如下(“+”表示进库 “-”表示出库)+6、-2、-5、+4、-2、+1。
2.已知数轴上点A和点B分别表示互为相反数 的两个数a,b(a<b),且点A,B两点之 间的距离是6,求a,b两数。
挑战中考
1.(2015•湘潭)在数轴上表示﹣2的点与表示3的 点之间的距离是( )
A.5 B﹣5 C.1 D.﹣1
2.(2015•东营)|﹣ |的相反数是( )
A.
B . ﹣ C. 3 D. ﹣3
A.﹣8℃ B.6℃ C.7℃ D.8℃
7.(2015•毕节市)下列说法正确的是( ) A. 一个数的绝对值一定比0大 B. 一个数的相反数一定比它本身小 C. 绝对值等于它本身的数一定是正数 D. 最小的正整数是1
绝对值是 0.8 。
6. 比较大小:
2 < 2
11 13
7. 若 a 1 ,则 3
(2) > 5 a31 83 或 -4
3
易错题:
1-9.把,下2 34 列,各0数,填 2入13 ,它3属.1于, 的2集01合4,中
2
1 5
,
-0.28,65%,-15, 3
1.正整数的集合 2.负整数的集合 3.正分数的集合 4.负分数的集合
所以a+b的值为-2,-8。
1、 足球循环赛中,可以把进球数记为正数,失 球数记为负数,它们的和叫净胜球数.
(1)红队进4个球,失2个球;蓝队进1个球, 失1个球.红队蓝队的净胜球数各是多少?
(2)红队胜黄队4:1,黄队胜蓝队1:0,蓝 队胜红队1:0,计算各队的净胜球数。
2、粮库3天内进出库的吨数如下(“+”表示进库 “-”表示出库)+6、-2、-5、+4、-2、+1。
2.已知数轴上点A和点B分别表示互为相反数 的两个数a,b(a<b),且点A,B两点之 间的距离是6,求a,b两数。
挑战中考
1.(2015•湘潭)在数轴上表示﹣2的点与表示3的 点之间的距离是( )
A.5 B﹣5 C.1 D.﹣1
2.(2015•东营)|﹣ |的相反数是( )
A.
B . ﹣ C. 3 D. ﹣3
1.2.1有理数的概念 课件-人教版(2024)数学七年级上册
知2-练
•
-8,+5,0.06,-5.15,0,-0.3,-5%,π,1. 5.
整数集合:{
-8,+5,0,
⋯}.
非正有理数集合:
•
{ -8,-5.15,0,-0.3,-5%,
⋯}.
有理数集合:
•
{-8,+5,0.06,-5.15,0,-0.3,-5%,1.5,
⋯}.
有理数的概念
按形式分
可化为分数
1.2 有理数及其大小比较
1.2.1 有理数的概念
知1-讲
知识点 1 有理数的相关概念
1. 整数:正整数、0、负整数统称为整数,如:-3,-2,
• • •
•
• • •
0,1,2,3,… .
知1-讲
2. 分数:正分数、负分数统称为分数,如3 ,0 .3,-1.2
• • •
• • •
•
5 ,- ,0.2,…
非负数
正数和0
奇数
1,3,5,⋯和-1,-3,-5,⋯
知1-讲
名称
特征
负有理数
负整数和负分数
非负有理数
0、正整数、正分数
负整数
1. 符号为负;2. 整数
非正整数
负整数和0
负分数
1. 符号为负;2. 分数或有限小数或无限循环小数
非正数
负数和0
偶数
2,4,6,⋯和-2,-4,-6,⋯
知1-讲
特别解读
形式的数
有理数
分类
按性质分
集合思想
( C )
A. 1个
14 ,0 ,0.5 中,表示正有理数的有
B. 2 个
C. 3 个
1.1 有理数的引入 课件(共40张PPT)华东师大版(2024)数学七年级上册
感悟新知
2. 用正数、负数表示具有相反意义的量为了更好地区分这些具有相反意义的量,若我们把其中一种意义的量用正数表示,则与它具有相反意义的量就可以用负数表示 .
知1-讲
感悟新知
知1-讲
特别提醒用正数、负数表示具有相反意义的量时,一般地,向指定趋势变化用正数表示,向指定趋势的相反趋势变化用负数表示.
B
感悟新知
知4-讲
知识点
有理数的分类
4
1. 有理数的分类(1) 按定义分类 有理数
感悟新知
知4-讲
(2)按性质分类有理数
知4-讲
感悟新知
特别警示1. 不管按什么标准分类,最终都将有理数分为五类:正整数、 0、负整数、正分数、负分数.2. 正有理数都是正数,但正数不一定都是正有理数.
感悟新知
3. 有理数 整数和分数统称为有理数 .4. 部分常用的数的名称(1) 正整数: 大于 0 的整数; 负整数: 小于 0 的整数 .(2) 正分数: 形如 的数; 负分数: 形如 - 的数 . (m, n 都是正整数, n 不能被 m 整除)(3) 非负数: 正数和 0; 非正数: 负数和 0.
-5,6,45,0
感悟新知知5-讲源自知识点数集51. 定义 把一些数放在一起,就组成一个数的集合,简称数集 .2. 数集的两种常见形式
感悟新知
知5-讲
3. 拓展 两个数集的交叉部分即为两个数集的公共部分,如正数集和分数集的交叉部分为正分数集 .
知5-讲
感悟新知
特别解读若一个数的集合有无数个数,则表示这个数的集合时,除写题中给定的有限个数之外,必须加上省略号.
0 m
知1-练
感悟新知
(3)某地区的平均高度高于海平面 310 m,记作海拔高度+310 m,则海拔高度 -270 m 表示 __________________.
2. 用正数、负数表示具有相反意义的量为了更好地区分这些具有相反意义的量,若我们把其中一种意义的量用正数表示,则与它具有相反意义的量就可以用负数表示 .
知1-讲
感悟新知
知1-讲
特别提醒用正数、负数表示具有相反意义的量时,一般地,向指定趋势变化用正数表示,向指定趋势的相反趋势变化用负数表示.
B
感悟新知
知4-讲
知识点
有理数的分类
4
1. 有理数的分类(1) 按定义分类 有理数
感悟新知
知4-讲
(2)按性质分类有理数
知4-讲
感悟新知
特别警示1. 不管按什么标准分类,最终都将有理数分为五类:正整数、 0、负整数、正分数、负分数.2. 正有理数都是正数,但正数不一定都是正有理数.
感悟新知
3. 有理数 整数和分数统称为有理数 .4. 部分常用的数的名称(1) 正整数: 大于 0 的整数; 负整数: 小于 0 的整数 .(2) 正分数: 形如 的数; 负分数: 形如 - 的数 . (m, n 都是正整数, n 不能被 m 整除)(3) 非负数: 正数和 0; 非正数: 负数和 0.
-5,6,45,0
感悟新知知5-讲源自知识点数集51. 定义 把一些数放在一起,就组成一个数的集合,简称数集 .2. 数集的两种常见形式
感悟新知
知5-讲
3. 拓展 两个数集的交叉部分即为两个数集的公共部分,如正数集和分数集的交叉部分为正分数集 .
知5-讲
感悟新知
特别解读若一个数的集合有无数个数,则表示这个数的集合时,除写题中给定的有限个数之外,必须加上省略号.
0 m
知1-练
感悟新知
(3)某地区的平均高度高于海平面 310 m,记作海拔高度+310 m,则海拔高度 -270 m 表示 __________________.
有理数ppt课件
有理数ppt课件
汇报人:可编辑 2023-12-23
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之 比的数。
详细描述
有理数包括整数和分数,它们都 可以表示为两个整数之比。整数 可以看作分母为1的有理数。
乘方的性质
乘方运算具有一些基本性质,如 $a^{m+n}=a^mtimes a^n$, $(a^m)^n=a^{mn}$等。
有理数的开方运算
开方的定义
开方运算是指求一个数的平方根 或立方根等,表示为根式形式。
例如,$sqrt{16}=4$。
开方的性质
开方运算具有一些基本性质,如 $sqrt[n]{a^n}=a$,
有理数的性质
总结词
有理数具有封闭性、有序性、对称性和稠密性等性质。
详细描述
有理数集是一个封闭的集合,即对于任何两个有理数,都可以通过加、减、乘、除等运算得到另一个有理数。有 理数集是有序的,可以比较大小并建立大小关系。有理数集具有对称性,即对于任意一个有理数,都存在一个相 反数。有理数集是稠密的,即在任意两个不相等的有理数之间,都存在另一个有理数。
02
有理数的运算
加法运算
总结词
有理数加法运算的基本规则
详细描述
有理数的加法运算可以通过将绝对值相加,然后根据同号或异号来决定结果的符 号。例如,两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数; 一个正数和一个负数相加,结果的正负取决于正数的数量。
减法运算
总结词
有理数减法运算的基本规则
汇报人:可编辑 2023-12-23
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之 比的数。
详细描述
有理数包括整数和分数,它们都 可以表示为两个整数之比。整数 可以看作分母为1的有理数。
乘方的性质
乘方运算具有一些基本性质,如 $a^{m+n}=a^mtimes a^n$, $(a^m)^n=a^{mn}$等。
有理数的开方运算
开方的定义
开方运算是指求一个数的平方根 或立方根等,表示为根式形式。
例如,$sqrt{16}=4$。
开方的性质
开方运算具有一些基本性质,如 $sqrt[n]{a^n}=a$,
有理数的性质
总结词
有理数具有封闭性、有序性、对称性和稠密性等性质。
详细描述
有理数集是一个封闭的集合,即对于任何两个有理数,都可以通过加、减、乘、除等运算得到另一个有理数。有 理数集是有序的,可以比较大小并建立大小关系。有理数集具有对称性,即对于任意一个有理数,都存在一个相 反数。有理数集是稠密的,即在任意两个不相等的有理数之间,都存在另一个有理数。
02
有理数的运算
加法运算
总结词
有理数加法运算的基本规则
详细描述
有理数的加法运算可以通过将绝对值相加,然后根据同号或异号来决定结果的符 号。例如,两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数; 一个正数和一个负数相加,结果的正负取决于正数的数量。
减法运算
总结词
有理数减法运算的基本规则
《有理数》数学教学PPT课件(4篇)
什么简便的办法呢?
2000
-500
-1500 0
500 1000 150
0
1000
若单位长度选择上图所示取较大的数时就非常简便
小结
在数轴上取很大(或很小)的数,我们要选适当的单
位长度,并在合适的位置标出。
课堂测试
画出数轴并表示下列有理数:
1.5 ,-2,2 ,-2.5 ,
-2.5 -2
-4 -3 -2
Concise And Concise Do Not Need Too Much Text
前言
学习目标
1.知识与技能:借助数轴理解相反数的概念,会求一个数的相反数,会用相反数的定义进行化简。
2.过程与方法:培养学生分类讨论和数形结合的思想,提高观察、归纳与概括的能力。
3.情感态度价值观:培养学生严谨的治学态度并初步感受数学文化的教育价值,认识对立统一的规律。
-7.5℃
数轴的概念及三要素
一般地,在数学中人们用画图把数“直观化”。通常用一条直线上的点表
示数,这条直线叫做数轴.
它需要满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点;
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表
第一章 有理数
1.2 有理数(1.2.2数轴)
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear,
Concise And Concise Do Not Need Too Much Text
2000
-500
-1500 0
500 1000 150
0
1000
若单位长度选择上图所示取较大的数时就非常简便
小结
在数轴上取很大(或很小)的数,我们要选适当的单
位长度,并在合适的位置标出。
课堂测试
画出数轴并表示下列有理数:
1.5 ,-2,2 ,-2.5 ,
-2.5 -2
-4 -3 -2
Concise And Concise Do Not Need Too Much Text
前言
学习目标
1.知识与技能:借助数轴理解相反数的概念,会求一个数的相反数,会用相反数的定义进行化简。
2.过程与方法:培养学生分类讨论和数形结合的思想,提高观察、归纳与概括的能力。
3.情感态度价值观:培养学生严谨的治学态度并初步感受数学文化的教育价值,认识对立统一的规律。
-7.5℃
数轴的概念及三要素
一般地,在数学中人们用画图把数“直观化”。通常用一条直线上的点表
示数,这条直线叫做数轴.
它需要满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点;
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表
第一章 有理数
1.2 有理数(1.2.2数轴)
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear,
Concise And Concise Do Not Need Too Much Text
人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
182.5,
5, 2
33, 4
17 , 3
负分数: -7.5, 5 , 2
3.25, 3 3 , 4
5.35,
17 , 3
1.分类
3,3.25,7, 2 ,2 3 ,0, 75
1 ,21,3.14,100, 2
2.5,6,1.5, 9 . 11
正整数
有:
;
有理数概念复习
正整数、零、负整数统称为整数 正分数、负分数统称为分数
有限小数,无限循环 小数和百分数都看作 分数,兀是无限不循 环小数.不能化分数)
整数和分数统称为有理数
正有理数能 说成正数吗?
整数 有理数
分数
正整数
0
负整数
正分数 负分数
有理数
正有理数
0
负有理数
正整数 正分数
负整数 负分数
有理数分类的几点注意:
2
7
{
3, 0.65 , 0.6 ...
1 2
,2.1}2;,0.65,0.6 ,
22 7
...
负数集合: 3 ,0 ,4 ,3 0 0 % ...
{
1 ,0,4, ,2.12,300%, 22 ...
2
7
};
3, 1 ,0,4,2.12,0.65,300%,0.6 , 22 ...
4. 下图中的两个圆分别表示正数集合和分数集合,请你在 每个圆中各填入 5 个数,重叠部分要 3 个数;
正数集合 分数集合
5、把下列各数填在相应的集合中:
3, 1 ,0,4, ,2.12,0.65,300%,0.6, 22ຫໍສະໝຸດ 27正数集合:
1 ,4, ,2.12,300%, 22 ...
分 110, 12.91, 12.96, 0, -52 1.1, 122.5, 类 182.5, +75, 305, 18, -7.5, 0.333......
正整数: +10 , 18,29+75, 110,305,1,2,3…
零:
0
负整数: -52, -67, -1,-2,…
正分数: 1.1, 12.91, 12.96,
1. 如15 ,200%,6 9
能约分不成能整数的数_____
3
3
2算.做两分个数整;数的比(如
2 3
,
1 2
等)、有限小数
(如0.2,
0.3 ,1.4 7
-3.14)、无限循环小数(如
等)
都4.是无限不循环小数不是有理数;(无理数)
5. 整分数数中;除但了无正限整不数循和环负小整数数(,如还有__等0__)_.不是分数;
2
7
注分意数:集1,合像:
这种可以先化简成整数的数是整数不是分数;
2,非负整数集合包括正整数和0,也称为自然数集合.
负分数
有:
2.把各数填入它所属的集合内:
15,
1 9
,5
2
, 15
,
13 9
,
0.1, 5.32 , 80 , 123 , 2.33.
正分数集合
负整数集合
正整数集合
负分数集合
以上四个集合能组成有理数集合吗?
3.(1)既是分数又是负数的数是__负__分_数__; (2)既是非负数又是整数的数是非__负__整_数__; (3)非负整数又称为_自__然_数____; (4)非负数包括__正__数____和___0____; (5)非正数包括__负__数____和___0____;