八年级数学下综合测试卷
2022-2023学年人教版八年级下册数学期末综合检测卷(无答案)
2022-2023学年人教版数学八年级下册期末综合检测卷(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.下列条件不能判定四边形是平行四边形的是( ) A .,B .,C .,D .,2.下列各数组是勾股数的是( )A .1、2、3B .6、8、10C .5、11、13D .2、1.5、2.53.如图所示,在中,对角线交于点O ,下列式子中一定成立的是( )A .B .C .D .4.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如图所示,下列结论正确的是:()A .爷爷比小强先出发20分钟B .小强爬山的速度是爷爷的2倍C .表示的是爷爷爬山的情况,表示的是小强爬山的情况D .山的高度是480米5.如图,中,,于点D ,,,则的长为()A .5B.C .D .26.为调查某班学生每天使用零花钱的情况,小丽随机调查了20名同学,结果如表:ABCD AB CD =AD BC =A C ∠=∠B D ∠=∠AB CD P AD BC=AB CD P B D∠=∠ABCD Y AC BD 、AC BD ⊥OA OC =AC BD =AO OD =1l 2l ABC V 90ACB ∠=︒CD AB ⊥3AC =4BC =CD 52125每天使用零花钱(单位:元) 10 15 20 25 30 人数13655则这20名同学每天使用的零花钱的众数是( ) A .10B .15C .20D .307.若直线y=+n 与y =mx ﹣1相交于点(1,﹣2),则()A .m =,n =﹣B .m =,n =﹣1C .m =﹣1,n =﹣D .m =﹣3,n =﹣8.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=70°,则∠EDC 的大小为( )A .10°B .15°C .20°D .30°9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连结EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .CE ⊥DEC .∠ADB=90°D .BE ⊥AB10.如图,正方形的边长为1,点E 是边AD 上一点,且,点F 是边上一个动点,连接EF ,以为边作菱形,且,连接,点P 为的中点,在点F 从点A 运动到点B 的过程中,点运动所走的路径长为( )A .B .1CD .11.如图,在中,,,平分,对角线相交于点O ,连接,下列结论中正确的有()①;②;③;④;⑤2x1252125232ABCD 14AE AD =AB EF EFGH 60EFG ∠=︒DG DG P 1214ABCD Y 120ABC ∠=︒2BC AB =DE ADC ∠AC BD 、OE 30ADB ∠=︒2AB OE =DE AB =OD CD =ABCD S AB BD=⋅YA .2个B .3个C .4个D .5个12.如图,在菱形中,,,点P 是菱形内部一点,且满足,则的最小值是( )A .B .C .6D .二、填空题(本大题共4小题,每小题2分,共8分)13.把中根号外的移入根号内得 . 14.如图,在菱形中,点P 在对角线上,,垂足为E ,,则点P 到的距离是 .15.如图,在△ABC 中,,分别以点A 、点B为圆心,大于的长为半径画弧交于两点,过这两点的直线交BC 于点D ,连接AD .若cm ,cm ,则△ACD 的周长为 cm .16.如图,在中,,P 为边上一动点,于点E ,于F ,则的最小值为 .ABCD 6AB =120A ∠=︒16PCD ABCDS S =V 菱形PC PD +(a -(1)a -ABCD AC PE AB ⊥5PE =AD 90C ∠=︒12AB 5AB =3AC =ABC V 51213AB AC BC ===,,BC PE AB ⊥PF AC ⊥EF三、解答题(本答题共8小题,共56分)17.计算: (1(2)18.文明其精神,野蛮其体魄.体育课上张老师对全班学生进行了体能测试,从跑步、立定跳远、跳绳三个方面进行了量化考核.小字和小彬的各项成绩如下表(百分制):姓名跑步立定跳远跳绳小宇859590小彬958688若跑步、立定跳远、跳绳的成绩按 确定体能综合成绩,则小宇和小彬谁的体能综合成绩高?请通过计算说明理由.19.要把宣传牌,装订在教室的黑板上面(如图所示).一架梯子(米)靠在宣传牌,底端落在地板E 处,然后移动的梯子使顶端落在宣传牌的B 处,而底端E 向外移到了1米到C 处(米).测量得米.求宣传牌的高度(结果用根号表示).20.如图,在四边形中,,求四边形的面积.()()11-+433::()AB 5AE =()AB A ()AB 1CE =4BM =()AB ABCD 3590AB AD BC CD B ====∠=o ,,ABCD21.如图,在平行四边形中,对角线,交于点,过点交于点,交于点.求证:.22.如图,在矩形ABCD 中, , ,菱形 的三个顶点 分别在矩形 的边 上, , ,求证:四边形为正方形.23.如图,在平面直角坐标系中,函数的图像分别交x 轴,y 轴于A ,B 两点,过点A 的直线交y 轴正半轴于点M ,且BM=2MO .在平面直角坐标系内存在点C ,使得以A ,B ,M ,C 为顶点的四边形是平行四边形,请你画出图形,确定点C的坐标.ABCD AC BD O EF O AD E BC F OE OF =6AD =8DC =EFGH ,,E G H ABCD ,,AB CD DA 2AH =2DG =EFGH xOy 26y x =-+24.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.。
人教版八年级下册数学期末试卷综合测试卷(word含答案)
人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。
华师大版初中数学八下第19章综合测试试题试卷含答案1
第19章综合测试一、选择题(共10小题) 1.下列语句正确的是( ) A .对角线相等的四边形是矩形 B .一组邻边相等的四边形是菱形 C .对角线相等的四边形是正方形D .三个角是直角的四边形是矩形 2.已知矩形ABCD ,下列结论错误的是( )A .AB DC =B .AC BD =C .AC BD ⊥D .180A C ∠+∠=︒3.四边形ABCD 的对角线AC BD 、互相平分,要使它成为矩形,需要添加的条件是( ) A .AB CD =B .AC BD =C .AB BC =D .AC BD ⊥4.如下图,在菱形ABCD 中,AE AF ,分别垂直平分BC CD ,,垂足分别为E F ,,则EAF ∠的度数是( )A .90︒B .60︒C .45︒D .30︒5.已知四边形ABCD ,下列说法正确的是( ) A .当AD BC AB DC =,∥时,四边形ABCD 是平行四边形 B .当AD AB AB DC ==,时,四边形ABCD 是菱形C .当AC BD AC =,与BD 互相平分时,四边形ABCD 是矩形 D .当AC BD AC BD =⊥,时,四边形ABCD 是正方形6.如下图,在矩形ABCD 中,对角线AC BD ,交于点O ,以下说法错误的是( )A .90ABC ︒∠=B .AC BD =C .OA OB =D .OA AB =7.如下图,在菱形ABCD 中,5AB =,对角线6AC =.若过点A 作AE BC ⊥,垂足为E ,则AE 的长为( )A .4B .2.4C .4.8D .58.如下图,四边形ABCD 是菱形,对角线AC BD ,相交于点O DH AB ⊥,于点H ,连接OH ,若20DHO ︒∠=,则ADC ∠的度数是( )A .120︒B .130︒C .140︒D .150︒9.如下图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF BC ∥,分别交AB CD ,于E F ,,连接PB PD 、,若28AE PF ==,,则图中阴影部分的面积为( )A .18B .16C .12D .1010.如下图,矩形ABCD 中,104AB AD ==,,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .143B .103C .4D .1二、填空题(共6小题)11.如下图,小聪把一块含有30︒角的直角三角尺ABC 的两个顶点A C ,放在长方形纸片DEFG 的对边上,若AC 刚好平分BAE ∠,则DAC ∠的度数是________.12.如下图,在菱形ABCD 中,120BAD CE AD ︒∠=⊥,,且CE BC =,连接BE 交对角线AC 于点F ,则EFC ∠=________.13.如下图,在矩形ABCD 中,E F ,分别是AD BC ,的中点,M 是AF 和BE 的交点,N 是CE 和DF 的交点.若四边形EMFN 是正方形,则AB 与BC 之间的数量关系是________.14.如下图所示,直线经过正方形ABCD 的顶点A ,分别过正方形的顶点B D 、作BF a ⊥于点F DE a ⊥,于点E .若53DE BF ==,,则EF 的长为________.15.如下图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若15CAE ︒∠=,则CE =________.16.如下图,在矩形ABCD 中,20cm BC =,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快________s 后,四边形ABPQ 成为矩形.三、解答题(共7小题)17.如下图,在四边形ABCD 中,AB CD AB AD =∥,,对角线AC BD 、交于点O AC ,平分BAD ∠.求证:四边形ABCD 为菱形.18.已知:如下图,AC BD 、相交于点O ,且点O 是AC BD 、的中点,点E 在四边形ABCD 的形外,且90AEC BED ︒∠=∠=.求证:四边形ABCD 是矩形.19.如下图,在矩形ABCD 中,点E F 、在BC 上,且BF CE AE DF =,、相交于点O . 求证:AE DF =.20.如下图,D 是ABC △的边AB 的中点,DE BC CE AB AC ∥,∥,与DE 相交于点F ,连接AB CD ,.(1)求证:AD CE =;(2)当ABC △满足什么条件时,四边形ADCE 是菱形?请说明理由.21.如下图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM DN ,.(1)求证:四边形BMDN 是菱形;(2)若48AB AD ==,,求菱形BMDN 的周长和对角线MN 的长.22.如下图,矩形ABCD ,延长CD 至点E ,使DE CD =,连接AC AE ,,过点C 作CF AE ∥交AD 的延长线于点F ,连接EF .(1)求证:四边形ACFE 是菱形;(2)连接BE 交AD 于点G .当230AB ACB ︒=∠=,时,求BG 的长.23.如下图,在ABC △中,AB AC AD =,是BC 边上的中线,点E 是AD 边上一点,过点B 作BF EC ∥,交AD 的延长线于点F ,连接BE CF ,.(1)求证:BDF CDE△≌△.(2)若12DE BC=,求证:四边形BECF是正方形.第19章综合测试答案解析一、 1.【答案】D【解析】解:A .对角线相等的平行四边形是矩形,故不符合题意; B .由菱形的定义可知:一组邻边相等的平行四边是菱形,故不符合题意; C .对角线相等平分且垂直的四边形是正方形,故不符合题意; D .三个角是直角的四边形是矩形,故符合题意; 故选:D . 2.【答案】C【解析】解:∵四边形ABCD 是矩形,90AB DC AC BD A B C D ︒==∠=∠=∠=∠=∴,,, 180A C ︒∠+∠=∴,只有AB BC =时,AC BD ⊥,∴A 、B 、D 不符合题意,只有C 符合题意,故选:C .3.【答案】B【解析】解:需要添加的条件是AC BD =;理由如下:∵四边形ABCD 的对角线AC BD 、互相平分, ∴四边形ABCD 是平行四边形,AC BD =∵,∴四边形ABCD 是矩形(对角线相等的平行四边形是矩形);故选:B . 4.【答案】B【解析】解:连接AC ,AE ∵垂直平分边BC ,AB AC =∴,又∵四边形ABCD 是菱形,AB BC =∴, AB AC BC ==∴,ABC ∴△是等边三角形,60B ︒∠=∴, 120BCD ︒∠=∴,又AF ∵垂直平分边CD ,∴在四边形AECF 中,36018012060EAF ︒︒︒︒∠=−−=.故选:B . 5.【答案】C【解析】解:∵一组对边平行且相等的四边形是平行四边形,∴A 不正确;∵两组对边分别相等的四边形是平行四边形, ∴B 不正确;∵对角线互相平分且相等的四边形是矩形, ∴C 正确;∵对角线互相垂直平分且相等的四边形是正方形, ∴D 不正确;故选:C . 6.【答案】D【解析】解:∵四边形ABCD 是矩形,90ABC AC BD OA OC OB OD ︒∠====∴,,,, OA OB =∴,故A 、B 、C 正确, 故错误的是D , 故选:D . 7.【答案】C【解析】解:连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,5AB BC CD AD ====∴,122AC BD AO AC BD BO ⊥==∴,,,90AOB ︒∠=∴, 6AC =∵,3AO =∴,4BO ==∴,8DB =∴,∴菱形ABCD 的面积是11682422AC DB ⨯=⨯⨯=,24BC AE =∴, 5BC AB ==∵,244.85AE ==∴, 故选:C .8.【答案】C【解析】解:∵四边形ABCD 是菱形,OB OD AC BD ADC ABC =⊥∠=∠∴,,,DH AB ⊥∵, 12OH OB BD ==∴, 20DHO ︒∠=∵,9070OHB DHO ︒︒∠=−∠=∴, 70ABD OHB ︒∠=∠=∴,2140ADC ABC ABD ︒∠=∠=∠=∴,故选:C . 9.【答案】B【解析】解:作PM AD ⊥于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S =====△△△△△△△△△△,,,,∴,12882DFP PBE S S ==⨯⨯=△△∴, 8816S =+=阴∴,故选:B . 10.【答案】A【解析】解:过点F 作FH CD ⊥,交直线CD 于点Q ,则90EHF ︒∠=,如下图所示:∵四边形ABCD 为矩形,90ADE ︒∠=∴,ADE EHF ∠=∠∴,∵在正方形AEFG 中,90AEF AE EF ︒∠==,,90AED HEF ︒∠+∠=∴, 90HEF EFH ︒∠+∠=∵,AED EFH ∠=∠∴,在ADE △和EHF △中,ADE EHF AED EFH AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE EHF AAS ∴△≌△,4AD EH ==∴,由题意得:2410t t +=+, 解得:143t =, 故选:A .二、11.【答案】150︒【解析】解:AC ∵平分BAE ∠,30CAE BAC ︒∠=∠=∴,180120DAB BAC CAE ︒︒∠=−∠−∠=∴,150DAC DAB BAC ︒∠=∠+∠=∴;故答案为:150︒.12.【答案】105︒【解析】解:∵菱形ABCD 中,120BAD ︒∠=1120602AB BC CD AD BCD ACB ACD BCD ︒︒===∠=∠=∠=∠=∴,,, ACD ∴△是等边三角形CE AD ⊥∵1302ACE ACD ︒∠=∠=∴ 90BCE ACB ACE ︒∠=∠+∠=∴CE BC =∵45E CBE ︒∠=∠=∴1801804530105EFC E ACE ︒︒︒︒︒∠=−∠−∠=−−=∴故答案为:105︒13.【答案】2BC AB =【解析】解:∵四边形ABCD 是矩形,90AB CD ABC DCB ︒=∠=∠=∴,,∵点F 是BC 中点,BF FC =∴,且90ABC DCB AB CD ︒∠=∠==,,()ABF DCF SAS ∴△≌△AFB DFC ∠=∠∴,∵四边形EMFN 是正方形,90AFD ︒∠=∴,90AFB DFC ︒∠+∠=∴,45AFB DFC ︒∠=∠=∴,且90ABF DCF ︒∠=∠=,4545AFB BAF DFC FDC ︒︒∠=∠=∠=∠=∴,,AB BF CD CF ==∴,,2BC AB =∴,故答案为:2BC AB =.14.【答案】8【解析】解:∵四边形ABCD 是正方形,90BAD AB AD ∠=︒=∴,,90BAF EAD ︒∠+∠=∴,BF a DE a ⊥⊥∵,,90AED AFB ︒∠=∠=∴90BAF ABF ︒∠+∠=∴,ABF EAD ∠=∠∴,AFB DEA ∴△≌△,53AF ED AE BF ====∴,,538EF AF AE =+=+=∴,故答案为:815.【答案】4−【解析】解:∵四边形ABCD 是正方形,45ACD ︒∠=∴,30E ACD CAE ︒∠=∠−∠=∴,28AE AD ==∴,DE ==∴4CE DE DC =−=−∴,故答案为:4−.16.【答案】4【解析】解;设最快x 秒,四边形ABPQ 成为矩形,由BP AQ =得3202x x =−.解得4x =,故答案为:4.三、17.【答案】证明:AB CD ∵∥,OAB DCA ∠=∠∴,AC ∵平分BAD ∠.OAB DAC ∠=∠∴,DCA DAC ∠=∠∴,CD AD AB ==∴,AB CD ∵∥,∴四边形ABCD 是平行四边形,AD AB =∵,∴四边形ABCD 是菱形.18.【答案】证明:连接EO ,如下图所示:O ∵是AC BD 、的中点,AO CO BO DO ==∴,,∴四边形ABCD 是平行四边形,在EBD Rt △中,O ∵为BD 中点,12EO BD =∴, 在AEC Rt △中,O ∵为AC 的中点,12EO AC =∴, AC BD =∴,又∵四边形ABCD 是平行四边形,∴平行四边形ABCD 是矩形.19.【答案】证明:∵四边形ABCD 是矩形,90B C AB DC ︒∠=∠==∴,,BF CE =∵,BF EF CE EF +=+∴,即BE CF =,在ABE △和DCF △中,AB DC B C BE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE DCF SAS ∴△≌△,AE DF =∴.20.【答案】(1)证明:DE BC CE AB ∵∥,∥,∴四边形BCED 是平行四边形,BD CE =∴,D ∵是ABC △的边AB 的中点,AD BD =∴,AD CE =∴;(2)解:当ABC △满足ABC △是直角三角形,90ACB ︒∠=时,四边形ADCE 是菱形;理由如下: 由(1)得:AD CE AD CE =∥,,∴四边形ADCE 是平行四边形,90ACB D ∠=︒∵,是ABC △的边AB 的中点,12CD AB AD ==∴, ∴四边形ADCE 是菱形. 21.【答案】(1)证明:∵四边形ABCD 是矩形,90AD BC A OB OD ︒∠==∴∥,,,, MDO NBO DMO BNO ∠=∠∠=∠∴,.MN ∵是BD 的垂直平分线OD OB =∴,在DMO △和BNO △中,MDO NBO DMO BNO OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DMO BNO AAS ∴△≌△,OM ON =∴.OB OD =∵,∴四边形BMDN 是平行四边形.MN BD ⊥∵,∴四边形BMDN 是菱形.(2)解:设MD MB x ==,则8AM x =−.在AMB Rt △中,由勾股定理得:222(8)4x x =−+,解得:5x =.即5MB =,∴菱形BMDN 的周长为5420⨯=.在ABD Rt △中,由勾股定理得:BD ===,BO =∴在BOM Rt △中,由勾股定理得:OM ===,由(1)得:OM ON =,MN =∴.22.【答案】(1)证明:∵四边形ABCD 是矩形,90ADC ︒∠=∴,AF CE ⊥∴,CD DE =∵,AE AC EF CF ==∴,,EAD CAD ∠=∠∴,AE CF ∵∥,EAD AFC ∠=∠∴,CAD CFA ∠=∠∴,AC CF =∴,AE EF AC CF ===∴,∴四边形ACFE 是菱形;(2)解:如下图,∵四边形ABCD 是矩形,90ABC BCE CD AB ︒∠=∠==∴,,2AB CD DE ==∵,,4BC CE ==∴,BE ==∴,90AB CD DE BAE EDG AGB DGE ︒==∠=∠=∠=∠∵,,, ()ABG DEG AAS ∴△≌△,BG EG =∴,12BG BE ==∴23.【答案】(1)证明:AD ∵是BC 边上的中线,AB AC =, BD CD =∴,BF EC ∵∥,DBF DCE ∠=∠∴,BDF CDE ∠=∠∵,()BDF CDE ASA ∴△≌△;(2)证明:BDF CDE ∵△≌△,BF CE DE DF ==∴,,BF CE ∵∥,∴四边形BECF 是平行四边形,AB AC AD =∵,是中线,∴四边形BECF 是菱形,1122DE BC DE DF EF ===∵,,EF BC =∴,∴四边形BECF 是正方形.。
2022年八年级人教版数学下册第二十章【数据的分析】综合测试卷附答案
2022年八年级数学下册第二十章【数据的分析】综合测试卷(满分100分)一、选择题(本大题共6个小题,每小题3分,共18分)1.已知一组数3、6、7、4、7,那么这组数的众数是()A.3B.4C.6D.72.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数3.若一组数据1,3,4,6,m 的平均数为4,则这组数据的中位数和众数分别是()A.4,6B.4,4C.3,6D.3,44.某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有一个数据丢失):日期一二三四五平均气温最高气温1℃2℃﹣2℃0℃1℃则这个被丢失的数据是()A.2℃B.3℃C.4℃D.5℃5.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S 甲2>S 乙2;②S 甲2<S 乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④6.已知:一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据31x ﹣2,32x ﹣2,33x ﹣2,34x ﹣2,35x ﹣2的平均数和方差分别是()A.2,13B.2,1C.4,23D.4,3二、填空题(本大题共6个小题,每小题3分,满分18分)7.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是元.8.若一组数据3,4,x ,6,8的平均数为5,则这组数据的众数是.9.生命在于运动.运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.10.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S 甲22=0.6,则两人射击成绩比较稳定的是(填“甲”或“乙”).=1.4,S乙11.某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是.12.一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是.三、解答题(共64分)13.(4分)有一组数据:5,4,3,6,7,求这组数据的方差.14.(4分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图.请根据相关信息,解答下列问题:(1)求统计的这组数据的平均数、中位数;(2)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?15.(4分)一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条鱼做上标记,然后放回湖里,过了一段时间,待带标记的鱼完全混合于鱼群后,再捕捞了五次,记录如下:第一次捕上90条鱼,其中带标记的有11条;第二次捕上100条鱼,其中带标记的有9条;第:三次捕上120条鱼,其中带标记的有12条;第四次捕上100条鱼,其中带标记的有9条;第五次捕上80条鱼,其中带标记的有8条;池塘里大约有多少条鱼?16.(5分)某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48.(1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.17.(5分)现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G比4G要快190秒,求5G手机的下载速度.18.(6分)车间有20名工人,某一天他们生产的零件个数统计如下表.生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?19.(6分)为隆重纪念中国共产党成立100周年,进一步激发师生的爱党爱国热情,某校开展了四项庆祝活动:A、感党恩•我们诵;B、听党话•我们唱;C、跟党走•我们画;D、学党史•我们写.其中C项活动全体同学参与,预计成绩95<x≤100可获一等奖,成绩90<x≤95可获二等奖,随机抽取50个同学的作品进行打分并对成绩进行整理、分析,得到频数分布直方图如图:收集其中90<x≤100这一组成绩如下:n939298959596919496整理该组数据得下表:组别平均数中位数众数获奖组94.59595根据以上信息,回答下列问题:(1)频数分布直方图中m=;(2)90<x≤100组中n=;(3)已知该校有1200名学生,估计本次活动获一等奖的同学有多少人?20.(7分)某校为了选择一名数学成绩优秀的学生去参加本次全市“数学竞赛”,对在上学期六次数学测试中成绩最优秀的两名同学的数学成绩进行统计分析,列表如下:学生月考一月考二月考三月考四期中期末小明118120114119115116小刚120118120108116120(1)直接写出小刚六次数学测试成绩的中位数和众数;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,你会选择哪一个学生去参加“数学竞赛”?为什么?21.(7分)暑期将至,某校组织学生进行“防溺水”安全知识竞赛,老师从中随机抽取了部分学生的成绩(得分取整数,满分为100分),整理后绘制成如图所示的不完整的扇形统计图和频数分布直方图.其中A组的频数a比B组的频数b小15.请根据以上信息,解答下列问题:(1)本次共抽取名学生,a的值为;(2)在扇形统计图中,n=,E组所占比例为%;(3)补全频数分布直方图;(4)若全校共有1500名学生,请根据抽样调查的结果,估计成绩在80分以上的学生人数.22.(7分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.23.(9分)南康某中学为了抗疫宣传,在七、八年级开展了“防疫知识”大赛.为了解参赛学生的成绩情况,从两个年级中各随机抽取了10名学生的成绩(单位:分),数据如下:七年级:889490948494999499100八年级:84938894939893989799整理数据:按如下分数段整理样本数据:成绩x (分)年级80≤x<8585≤x<9090≤x<9595≤x ≤100七年级1153八年级a144分析数据:统计量年级平均数中位数众数方差七年级93.694b23.6八年级93.7c9320.4根据以上信息,回答下列问题:(1)a=,b=,c=;(2)由统计数据可知,年级选手的成绩比较接近;(3)学校规定,成绩不低于90分的选手可以获奖,若该校七年级有200人参加比赛,请估计有多少人获奖.答案1.D 2.A 3.A 4.C 5.C6.D7.378.49.1.310.乙11.0.312.4.2或4.13.解:5576345=++++=x ,S 2=51×[(5﹣5)2+(4﹣5)2+(3﹣5)2+(6﹣5)2+(7﹣5)2]=2.14.解:(1)观察条形统计图,52.14161411540.2168.1145.1112.150.1=++++⨯+⨯+⨯+⨯+⨯=x ,所以这组数据的平均数是1.52,将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,这组数据的中位数是1.5.(2)在所抽取的样本中,质量为2.0kg 的数量有4只,504=0.08,所以由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.2500×8%=200(只).故质量为2.0kg 的约有200只.15.解:根据题意得:100÷100080100120100908912911=++++++++(条),答:池塘里大约有鱼1000条;16.解:(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10﹣57﹣51﹣45﹣41﹣44﹣46﹣45﹣42﹣48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、84、48、48、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51都出现了最多次数3次,所以众数为51,方差=101[(42﹣48)2+(44﹣48)2+2×(45﹣48)2+(46﹣48)2+(48﹣48)2+3×(51﹣48)2+(57﹣48)2]=18.217.解:(1)80×(1﹣30%﹣25%)=36(万部),答:三月份生产了36万部手机;(2)设5G 手机的下载速度是每秒xMB .则4G 手机的下载速度是每秒(x ﹣95)MB .+190=,解得:x 1=100,x 2=﹣5(不合题意,舍去),经检验,x 1=100是原方程的解,答:5G 手机的下载速度是每秒100MB .18.解:(1)x =201×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);(2)中位数为1221212=+(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.19.解:(1)m =12;(2)n =95;(3)抽取50个同学的作品成绩95<x ≤100的人数为3,∴1200×=72(人),答:估计本次活动获一等奖的同学有72人.(2)乙班同学的方差为:51×[(7﹣8.5)2+2×(10﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2]=1.6,∵甲班5名同学成绩的方差是0.7,0.7<1.6,∴甲班选手的成绩较为稳定.20.解:(1)小刚成绩重新排列为:108、116、118、120、120、120,所以小刚成绩的中位数为=119,众数为120;(2)选择小明参加“数学竞赛”,理由如下:小明成绩的平均数为=117,方差为×[(114﹣117)2+(115﹣117)2+(116﹣117)2+(118﹣117)2+(119﹣117)2+(120﹣117)2]=;小刚成绩的平均数为=117,方差为×[(108﹣117)2+(116﹣117)2+(118﹣117)2+3×(120﹣117)2]=;∵小明与小刚的平均成绩相等,而小明成绩的方差小于小刚,∴小明的成绩稳定,∴选择小明参加“数学竞赛”.21.解:(1)150,a =12;(2)144,4;(3)补全频数分布直方图如图所示:(4)1500×=660(人),答:估计成绩在80分以上的学生人数大约为660人.22.解:(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).23.解:(1)由样本数据知,八年级在80≤x<85段的人数a=1.将八年级10名学生的成绩重新排列为84,88,93,93,93,94,97,98,98,99,所以其中位数c=(93+94)÷2=93.5,七年级94分人数最多,故众数b=94.故答案为1,94,93.5.(2)由表知八年级成绩的方差20.4小于七年级成绩的方差23.6,∴八年级的成绩更稳定,即成绩比较接近.故答案为八.(3)估计七年级的获奖人数为1601035200=+⨯(人).。
人教版八年级数学下册第十八章《平行四边形》综合测试卷(含答案)
人教版八年级数学下册第十八章《平行四边形》综合测试卷一、单选题(共30分)1.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AD =BCB .AB =CDC .AD ∥BC D .∥A =∥C 2.如图,在∥ABCD 中,连接AC ,∥ABC =∥CAD =45°,AB =2,则BC 的长是( )A 2B .2C .2D .43.如图,在长方形ABCD 中无重叠放入面积分别为216cm 和212cm 的两张正方形纸片,则图中空白部分的面积为( )2cmA .1683-B .1283-+C .843-D .423- 4.如图,已知平行四边形ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,则边AB 的长可以是( )A .1B .8C .10D .125.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,4),(1,1),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )A .3B .6C 37D 17 7.如图,菱形ABCD 对角线AC ,BD 交于点O ,15ACB ∠=︒,过点C 作CE AD ⊥交AD 的延长线于点E .若菱形ABCD 的面积为4,则菱形的边长为( )A .22B .2C .2D .48.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .5D .10 9.如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∥ABC 和∥BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:∥EB ∥CF ,CE ∥BF ;∥BE =CE ,BE =BF ;∥BE ∥CF ,CE ∥BE ;∥BE =CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A .1个B .2个C .3个D .4个 10.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当∥CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0)二、填空题(共24分)11.在菱形ABCD 中,∥BAD =72°,点F 是对角线AC 上(不与点A ,C 重合)一动点,当ADF 是等腰三角形时,则∥AFD 的度数为_____.12.如图,在ABC 中,点M 为BC 的中点,AD 平分,BAC ∠且BD AD ⊥于点D ,延长BD 交AC 于点,N 若12,18AB AC ==,则MD =_______________________.13.如图,在Rt ∥ABC 中,∥ABC =90º,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =6,则DE =_____.14.平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,∥AOB 的周长比∥BOC 的周长为8cm ,则AB 的长为_____cm .15.如图,在平行四边形ABCD 中,BF 平分∥ABC ,交AD 于点F ,CE 平分∥BCD ,交AD 于点E ,AB =8,BC =12,则EF 的长为__________.16.如图在Rt △ABC 中,∥ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.如图,在平行四边形ABCD 中,AB =10,AD =6,AC ∥BC .则BD =_____.18.如图所示,在ΔABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF ,给出下列条件:∥BE ∥EC ;∥BF∥EC ;∥AB =AC∥从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____(只填写序号).三、解答题(共66分)19.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点,E F 分别为,OB OD 的中点,连接,AE CF .求证:AE CF .20.如图,∥ABCD 的对角线AC 、BD 交于点O ,E 、F 是对角线AC 上两点,AE =CF .求证:四边形DEBF 是平行四边形.21.如图,将∥ABCD 的边AB 延长至点E ,使BE=AB ,连接DE 、EC 、BD 、DE 交BC 于点O .(1)求证:∥ABD∥∥BEC ;(2)若∥BOD=2∥A ,求证:四边形BECD 是矩形.22.如图,在ABC ∆中,AD 是高,E F 、分别是AB AC 、的中点.(1)EF 与AD 有怎样的位置关系?证明你的结论;(2)若6,4BC AD ==,求四边形AEDF 的面积.23.如图,等边AEF ∆的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且45CEF ∠=. 求证:矩形ABCD 是正方形.24.如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,且BE CF =,连接AE 、BF ,其相交于点G ,将BCF △沿BF 翻折得到BC F '△,延长FC '交BA 延长线于点H .(1)求证:AE BF =;(2)若3AB =,2EC BE =,求BH 的长.25.如图,在▱ABCD 中,AE∥BC ,AF∥CD ,垂足分别为E ,F ,且BE=DF (1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.26.如图,在矩形ABCD 中,AB =15,E 是BC 上的一点,将∥ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将∥ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,且CE =45BE , (1)求AD 的长;(2)求FG 的长27.如图,BD是∥ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∥ABC=60°,∥ACB=45°,CD=6,求菱形BEDF的边长.28.(1)如图1,正方形ABCD中,E为边CD上一点,连接AE,过点A作AF∥AE 交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;(2)如图2,在(1)的条件下,连接AC,过点A作AM∥AC交CB的延长线于M,观察并猜想CE与MF的数量关系,并说明理由;(3)解决问题:王师傅有一块如图所示的板材余料,其中∥A=∥C=90°,AB=AD.王师傅想切一刀后把它拼成正方形.请你帮王师傅在图3中画出剪拼的示意图.参考答案:1.A2.C3.B4.B5.C6.C7.A8.A9.D10.D11.108°或72°12.313.614.1915.416.7517.1318.∥22.(1)EF 垂直平分AD ;(2)6AEDF S 四边形. 24.5.25.S 平行四边形ABCD =24 26.(1)AD = 9;(2)FG =7.5 27.(2)628.(1)AE=AF (2)CE=MF ,。
北师大版初中数学八下第一章综合测试试题试卷含答案
第一章综合测试一、选择题(共10小题,满分30分)1.如图已知100BAC ︒∠=,AB AC =,AB AC 、的垂直平分线分别交BC 于D E 、,则DAE ∠=( )A .40︒B .30︒C .20︒D .10︒2.如图,ABC △中,AB AC =,高BD CE 、相交于点O ,连接AO 并延长交BC 于点F ,则图中全等的直角三角形共有( )A .4对B .5对C .6对D .7对 3.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形 4.Rt ABC △中,9046C B ︒︒∠=∠=,,则A ∠=( ) A .44︒ B .34︒ C .54︒ D .64︒ 5.在ABC △中,若0A B C ∠+∠−∠=,则ABC △是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形6.如图,AC AD BC BD ==,,则( )A .AB 垂直平分CD B .CD 垂直平分ABC .CD 平分ACB ∠D .以上结论均不对7.如图,ABC △中,D 为BC 上一点,ABD △的周长为12cm ,DE 是线段AC 的垂直平分线,5AE =cm ,则ABC △的周长是( )A .17cmB .22cmC .29cmD .32cm8.如图,在ABC △中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,60B ︒∠=,30C ︒∠=,则FAE ∠为( )A .10︒B .15︒C .20︒D .30︒9.如图,AD 是ABC △的角平分线,,DF AB ⊥,垂足分别为点F ,DE DG =,若ADG △和ADE △的面积分别为50和39,则DEF △的面积为( )A .11B .7C .5.5D .3.510.如图,ABC △中,90C ︒∠=,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,若4DC =,则DE =( )A .3B .5C .4D .6二、填空题(共7小题,满分28分)11.若等腰三角形的一个内角为50︒,则这个等腰三角形的顶角为________.12.下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8其中可以作为直角三角形三边长的有________.(把所有你认为正确的序号都写上)13.如图,在ABC △中,90C ∠=︒,AC BC =,BD 平分ABC ∠交AC 于点D ,DE AB ⊥于点E .若AB =10cm ,则ADE △的周长为________cm .14.在ABC △中,AB AC =,AB 的垂直平分线交AC 于D ,交AB 于E ,连接BD ,若40ADE ︒∠=,则ABC ∠=________.15.如图,BD 垂直平分线段AC ,AE BC ⊥,垂足为E ,交BD 于点P ,3cm PE =,则点P 到直线AB 的距离是________cm .16.如图,在ABC △中,点D 是BC 边上一点,12∠=∠,34∠=∠,63BAC ︒∠=,则DAC ∠的度数为________.17.如图,在Rt ABC △中,90C ︒∠=,AD 平分BAC ∠,交BC 于点D ,若103AB CD ==,,则ABC S =△________.三、解答题(共8小题,满分62分)18.如图,ABC △中,90C =∠,4AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D ,求BD 的长.19.如图,已知ABC ∠,求作:(1)ABC ∠的平分线BD (写出作法,并保留作图痕迹);(2)在BD 上任取一点P ,作直线PQ ,使PQ AB ⊥(不写作法,保留作图痕迹).20.如图,ABC △中,D 是BC 上的一点,若10AB =,6BD =,8AD =,17AC =,求ABC △的面积.21.如图所示、AOB △和D CO ∆均为等腰直角三角形,90AOB COD ︒∠=∠=,D 在AB 上.(1)求证:AOC BOD △≌△;(2)若12AD BD ==,,求CD 的长.22.如图,已知ABC △中,AB AC BD CE =,、是高,BD 与CE 相交于点O . (1)求证:OB OC =;(2)若50ABC ︒∠=,求BOC ∠的度数.23.已知锐角ABC △,45ABC AD BC ︒∠=⊥,于D ,BE AC ⊥于E ,交AD 于F . (1)求证:BDF ADC △≌△;(2)若43BD DC ==,,求线段BE 的长度.24.如图,AB BC ⊥,射线CM BC ⊥,且5cm BC =,1cm AB =,点P 是线段BC (不与点B C 、重合)上的动点,过点P 作DP AP ⊥交射线CM 于点D ,连结AD .(1)如图1,若4cm BP =,则CD =________;(2)如图2,若DP 平分ADC ∠,试猜测PB 和PC 的数量关系,并说明理由;(3)若PDC △是等腰三角形,则CD =________cm .(请直接写出答案)25.如图,在ABC △中,20AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,如果点P 在线段BC 上以6厘米/秒的速度由点向点运动,同时点Q 在线段CA 上由C 点向A 点运动.当一个点停止运动时,另一个点也随之停止运动.(1)用含有t 的代数式表示CP ,则CP =________厘米;(2)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,那么当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?第一章综合测试答案解析一、 1.【答案】C【解析】解:100BAC AC AB ︒∠==,,18040B C BAC ︒︒∴∠=∠=−∠=(),DM EN 、分别是边AB 和AC 的垂直平分线, BD AD AE CE ∴==,,4040B BAD C CAE ︒︒∴∠=∠=∠=∠=,, =100404020DAE ︒︒︒︒∴∠−−=.故选C. 2.【答案】D【解析】解:有7对全等三角形: ①BDC CEB △≌△,理由是:AB AC =, ABC ACB ∴∠=∠,BD 和CE 是两腰上的高, 90BDC CEB ︒∴∠=∠=,在BDC △和CEB △中,BDC CEB ACB ABC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BDC CEB AAS ∴△≌△(), BE DC ∴=.②BEO CDO △≌△,理由是:在BEO △和CDO △中,BEO CDO BOE COD BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BEO CDO AAS ∴△≌△(). ③AEO ADO △≌△,理由是: 由BEO CDO △≌△得:EO DO =,在Rt AEO △和Rt ADO △中,AO AO EO OD =⎧⎨=⎩,,Rt Rt AEO ADO HL ∴△≌△(), EAO DAO ∴∠=∠.④ABF ACF △≌△,理由是:在ABF △和ACF △中,AB AC EAO DAO AF AF =⎧⎪∠=∠⎨⎪=⎩,,,⑤BOF COF △≌△,理由是:AB AC BAF CAF =∠=∠,, BF FC AFB AFC ∴=∠=∠,,在BOF △和COF △中,OF OF AFB ADC BF FC =⎧⎪∠=∠⎨⎪=⎩,,,BOF COF SAS ∴△≌△(). ⑥AOB AOC △≌△,理由是:在AOB △和AOC △中,AO AO BAO CAO AB AC =⎧⎪∠=∠⎨⎪=⎩,,,AOB AOC SAS ∴△≌△(). ⑦ABD ACE △≌△,理由是: 在ABD △和ACE △中, ABD ACE SAS ∴△≌△(). 故选:D. 3.【答案】B 【解析】如右图,DE AB DF AC ⊥⊥,,90BED DFC ︒∴∠=∠=,在BDE △和CDF △,BD CD DE DF ==,,DBE DFC HL ∴△≌△(), B C ∴∠=∠, AB AC ∴=,∴这个三角形一定是等腰三角形. 故选B. 4.【答案】A【解析】解:9046904644C B A ︒︒︒︒︒∠=∠=∴∠=−=,,.故选A. 5.【答案】A【解析】解:0A B C ∠+∠−∠=,A B C ∴∠+∠=∠,180A B C ︒∠+∠+∠=,90C ︒∴∠=,ABC ∴△是直角三角形.故选择:A. 6.【答案】A 【解析】解:AC AD BC BD AB AB ===,,,CAB DAB ∴∠=∠,且AC AD =,AB ∴垂直平分CD .故选:A. 7.【答案】B【解析】因为DE 是AC 的垂直平分线,所以AD CD =,AE EC =,而5cm AE =,所以10cm AC =,而ABC C AB BC AC =++△,ABC C AB BD AD AB BD CD AB BC =++=++=+△,所以ABC ABD C C AC =+=△△cm 10c m 12m c 22+=.8.【答案】B【解析】解:在ABC ∆中,60B ︒∠=,30C ︒∠=,180690030BAC ︒︒︒︒∴−−=∠=,AF 平分BAC ∠,11904522CAF BAC ︒︒⨯∴∠=∠==;DE 垂直平分AC , AE CE ∴=,30EAD C ︒∴∠=∠=,453015FAE CAF CAE ︒︒︒∴∠=∠−∠=−=.故选:B. 9.【答案】C【解析】作DM DE =交AC 于M ,作DN AC ⊥于点N ,DE DG =, DM DG ∴=,AD 是ABC △的角平分线,DF AB ⊥, DF DN ∴=,在Rt DEF △和Rt DMN △中,DN DFDM DE ==⎧⎨⎩, Rt Rt DEF DMN HL ∴△≌△(), ADG △和AED △的面积分别为50和39, 503911MDG ADG ADM S S S ∴=−=−=△△△,1152.5112DNM EDF MDG S S S ===⨯=△△△.故选C. 10.【答案】C【解析】解:90C ︒∠=,AD 平分BAC DE AB ∠⊥,于E ,DE DC ∴=, 4DC =,4DE ∴=.故选:C. 二、11.【答案】50︒或80︒ 【解析】如右图所示,ABC △中,AB AC =,有两种情况:①顶角50A ︒∠=; ②当底角是50︒时,AB AC =,50B C ︒∴∠=∠=, 180A B C ︒∠+∠+∠=, 180505080A ︒︒︒︒∴∠=−−=,∴这个等腰三角形的顶角为50︒或80︒. 故答案为50︒或80︒. 12.【答案】①②【解析】解:①22251213+=,能构成直角三角形; ②22272425+=,能构成直角三角形; ③222124+≠,不能构成直角三角形; ④222568+≠,不能构成直角三角形, 所以可以作为直角三角形三边长的有①②, 故答案为:①②. 13.【答案】10 【解析】BD 平分ABC ∠交AC 于D ,DE AB ⊥于E ,90DBE DBC BED C BD BD ︒∴∠=∠∠=∠==,,,BDE BDC AAS ∴△≌△(), DE DC BE BC ∴==,,ADE ∴△的周长10cm DE DA AE DC DA AE CA AE BC AE BE AE AB =++=++=+=+=+==.故答案为:10. 14.【答案】65︒ 【解析】DE 是AB 的垂直平分线,DE AB ∴⊥,90AED ︒∴∠=.又40ADE ︒∠=,50A ︒∴∠=.又AB AC =,18050265ABC ACB ︒︒︒∴∠=∠=−÷=().故答案为65︒. 15.【答案】3【解析】过点P 作PM AB ⊥与点M ,BD 垂直平分线段AC , AB CB ∴=,ABD DBC ∴∠=∠,即BD 为角平分线,又PM AB PE CB ⊥⊥,,3PM PE ∴==.16.【答案】24︒【解析】设12x ∠=∠=,则43122x ∠=∠=∠+∠=,63DAC ︒∠=, 63DAC x ︒∴∠=−,在ABC △中,有263180x x ︒︒++=,39x ︒=,°°6324DAC x ∴∠=−=,故答案为:24︒. 17.【答案】15 【解析】解:作DE AB ⊥于E ,90C ︒∠=, DC AC ∴⊥,AD 平分BAC DC AC DE A ∠⊥⊥,,, DE CD ∴=, 103AB CD ==,,∴111031522ABDSAB DE =⨯⨯=⨯⨯=. 故答案为15. 三、18.【答案】(1)如图直线MN 即为所求.(2)5BD =【解析】(2)MN 垂直平分线段AB ,DA DB ∴=,设DA DB x ==,在Rt ACD △中,222AD AC CD =+,()22248x x ∴=+−,解得5x =, 5BD ∴=.19.【答案】解:(1)如下图所示,作法:①以B 点为圆心,任意长为半径画弧分别交BA BC 、于M N 、点; ②再以M N 、为圆心,以大于它们之间的距离的二分之一为半径画弧,两弧在ABC ∠内相交于E ,则BD 为所作;(2)如下图,PQ 为所作.20.【答案】解:2222226810BD AD AB +=+==,ABD ∴△是直角三角形,AD BC ∴⊥,在Rt ACD △中,15CD ===,()111 21884222ABC BC AD BD CD S AD ∴==+=⨯⨯=△, 因此ABC △的面积为84.答:ABC △的面积是84.21.【答案】解:(1)证明:如右图,1903︒∠=−∠,2903︒∠=−∠,12∴∠=∠.又OC OD =,OA OE =,AOC BOD ∴△≌△.(2)由AOC BOD △≌△有:2AC BD ==,45CAO BOD ︒∠=∠=,90CAB ︒∴∠=,故CD =22.【答案】解:(1)证明:AB AC =,ABC ACB ∴∠=∠,BD CE 、是ABC △的两条高线,DBC ECB ∴∠=∠,OB OC ∴=.(2)50ABC AB AC ︒∠==,,18025080A ︒︒︒∴∠=−⨯=,18080100BOC ︒︒︒∴∠=−=.23.【答案】解:(1)证明:45AD BC ABC ︒⊥∠=,, 45ABC BAD ︒∴∠=∠=,AD BD ∴=,DA BC BE AC ⊥⊥,,9090C DAC C CBE ︒︒∴∠+∠=∠+∠=,,CBE DAC ∴∠=∠,且90AD BD ADC ADB ︒=∠=∠,=,BDF ADC ASA ∴△≌△(). (2)BDF ADC △≌△,43AD BD CD DF BF AC ∴=====,,,5BF ∴=,5AC ∴=,11 22ABCBC A S AD C BE =⨯⨯=⨯⨯, 745BE =∴⨯⨯, 285BE ∴=. 24.【答案】(1)4cm (2)PB PC =,理由:如图2,延长线段AP DC 、交于点E , DP 平分ADC ∠,ADP EDP =∴∠∠.DP AP ⊥,90DPA DPE ︒∴∠==∠,在DPA △和DPE △中,ADP EDP DP DP DPA DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩DPA DPE ASA ∴△≌△(), PA PE ∴=.AB BP CM CP ⊥⊥,,ABP ECP Rt ∴∠=∠=∠.在APB △和EPC △中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩APB EPC AAS ∴△≌△(), PB PC ∴=.(3)4【解析】(1)5cm 4cm BC BP ==,,1cm PC ∴=,AB PC ∴=,DP AP ⊥,90APD ︒=∴∠,90APB CPD ︒∴∠=∠+,90APB CPD ︒∠=∠+,90APB BAP ︒∠=+∠, BAP CPD =∴∠∠,在ABP △和PCD △中,B CBAP CPD AB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,ABP PCD ∴△≌△,4cm BP CD =∴=.(3)PDC △是等腰三角形,PCD ∴△为等腰直角三角形,即45DPC ︒∠=, 又DP AP ⊥,45APB ︒∴∠=,1cm BP AB ∴==,4cm PC BC BP ∴=−=,4cm CD CP ∴==.25.【答案】(1)166t −(2)当1t =时,616BP CQ ==⨯=(厘米), 20AB =厘米,点D 为AB 的中点,10BD ∴=厘米.又PC BC BP =−,16BC ∴=厘米,16610PC ∴=−=(厘米),PC BD =在BPD △和CQP △中,BD PC B C BP CQ =∠=∠=,,,BPD CQP SAS ∴△≌△()(3)P Q v v ≠BP CQ ∴≠又BPD CPQ △≌△,B C ∠=∠,8cm BP PC ∴==,10cm CQ BD ==, ∴点P ,点Q 运动的时间4863t =÷=(秒),107.543Q CQv t ∴===(厘米/秒).【解析】(1)6BP t =,则166PC BC BP t =−=−.。
八年级数学下册各单元测试卷
八年级数学下册各单元测试卷第16章二次根式单元综合检测(一)一、选择题(每小题4分,共28分)1.若式子$\sqrt{x-1}-\sqrt{1-x}$在实数范围内有意义,则$x$的取值范围是(。
)。
A。
$x>1$。
B。
$x<1$。
C。
$x\geq 1$。
D。
$x\leq 1$2.计算$\sqrt{2}-\sqrt{8}+\sqrt{32}=$(。
)。
A。
$2$。
B。
$-2$。
C。
$2\sqrt{2}$。
D。
$-2\sqrt{2}$3.下面计算正确的是(。
)。
A。
$\sqrt{3}+\sqrt{3}=2\sqrt{3}$。
B。
$\sqrt{3}\div\sqrt{3}=3$C。
$\sqrt{3}+\sqrt{5}$。
D。
$\sqrt{3}-\sqrt{5}$4.计算:$\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$的值为(。
)。
A。
$\dfrac{\sqrt{6}+\sqrt{2}}{5}$。
B。
$\dfrac{-\sqrt{6}+\sqrt{2}}{5}$C。
$\dfrac{\sqrt{6}-\sqrt{2}}{5}$。
D。
$\dfrac{-\sqrt{6}-\sqrt{2}}{5}$5.计算:$5-\dfrac{1}{\sqrt{3}-1}$的值为(。
)。
A。
$-2\sqrt{3}+7$。
B。
$2\sqrt{3}+7$C。
$-2\sqrt{3}-7$。
D。
$2\sqrt{3}-7$6.设实数$a,b$在数轴上对应的位置如图所示,化简$\sqrt{a^2+b^2-2ab}+\sqrt{a^2+b^2+2ab}$的结果是(。
)。
A。
$2a+b$。
B。
$-2a+b$C。
$-b$。
D。
$2a+2b$7.已知$a+b=2\sqrt{2}$,$ab=2$,则$(a+1)(b-1)$的值为(。
)。
A。
$-2$。
B。
$3$C。
$3-2\sqrt{2}$。
八年级下册数学期末试卷综合测试(Word版含答案)(1)
八年级下册数学期末试卷综合测试(Word 版含答案)(1)一、选择题1.如果二次根式2x -有意义,那么x 的取值范围是( )A .2x >B .2x ≥C .2x ≠D .2x ≤ 2.若ABC 的三边a 、b 、c 满足条件222()()0a b a b c -⋅+-=,则ABC 为( ) A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形3.下列能判定一个四边形是平行四边形的是( )A .对角线相等,且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.小君周一至周五的支出分别是(单位:元):7,10,14,7,12则这组数据的平均数是( )A .7B .10C .11D .11.55.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .25B .5C .35D .2 6.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若∠1=129°,则∠2的度数为( )A .49°B .50°C .51°D .52°7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A.3 B.4 C.5 D.68.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A.1个B.2个C.3个D.4个二、填空题9.使式子32xx-+有意义的x的取值范围是______.10.已知菱形的两条对角线长分别为4cm和6cm,则这个菱形的面积为______cm2.11.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.12.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为_______.13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB=AC ;②AB=BC ;③AC=BC 中,选择一个作为已知条件,则能使四边形ADCE 为菱形的是__(填序号).15.如图,已知点A ,B ,C ,D 的坐标分别为()2,2-,()2,1-,()3,1,()3,2.线段AD 、AB 、BC 组成的图形为图形G ,点P 沿D A B C →→→移动,设点P 移动的距离为S ,直线l :y x b =-+过点P ,且在点P 移动过程中,直线l 随P 运动而运动,当l 过点C 时,S 的值为__________;若直线l 与图形G 有一个交点,直接写出b 的取值范围是__________.16.如图,矩形ABCD 中,6,8AB BC ==,点E 是BC 边上一点,连接AE ,把ABE △沿AE 折叠,使点B 落在点F 处,当CEF △为直角三角形时,CF 的长为________.三、解答题17.计算:(1)2+818(212273-2324 18.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈、尺是长度单位,1丈=10尺,1尺=13米),这段话翻译城现代汉语,即为:如图,有一个水池,水面是一个边长为一丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是多少米?请你用所学知识解答这个问题.19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;(2)在图2中画出一个以AB为一边,面积为6的□ABEF,使点E、F均在小正方形的顶点上,并直接写出□ABEF周长.20.如图,已知点E是ABCD中BC边的中点,连接AE并延长交DC的延长线于点F,连接AC,BF,AF BC=.(1)求证:四边形ABFC为矩形;(2)若AFD∆是等边三角形,且边长为6,求四边形ABFC的面积.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.互联网时代,一部手机就可搞定午餐是新零售时代的重要表现形式,打包是最早出现的外卖形式,虽然古老,却延续至今,随着电话、手机、网络的普及,外卖行业得到迅速的发展.某知名外卖平台招聘外卖骑手,并提供了如下两种日工资方案:方案一:每日底薪50元,每完成一单外卖业务再提成3元;方案二:每日底薪80元,外卖业务的前30单没有提成,超过30单的部分,每完成一单提成5元.设骑手每日完成的外卖业务量为x单(x为正整数),方案一、方案二中骑手的日工资分别为y1、y2(单位:元).(1)分别写出y1、y2关于x的函数关系式;(2)若小强是该外卖平台的一名骑手,从日工资收入的角度考虑,他应该选择哪种日工资方案?并说明理由.23.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA 的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10.(1)点C的坐标是(,),直线BC的表达式是;(2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标;(3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由;25.综合与实践:如图1,在正方形ABCD中,连接对角线AC,点O是AC的中点,点E 是线段OA上任意一点(不与点A,O重合),连接DE,BE.过点E作EF DE⊥交直线BC于点F.(1)试猜想线段DE与EF的数量关系,并说明理由;CE CD CF之间的数量关系,并说明理由;(2)试猜想线段,,(3)如图2,当E在线段CO上时(不与点C,O重合),EF交BC延长线于点F,保持CE CD CF之间的数量关系.其余条件不变,直接写出线段,,【参考答案】一、选择题1.B解析:B【分析】x-≥,据此解题.x-202【详解】x-≥,x-202∴≥,x2故选:B.本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.2.C解析:C【详解】解析:∵222()()0a b a b c -+-=,∴a b =或222+=a b c .当只有a b =成立时,是等腰三角形.当只有222+=a b c 成立时,是直角三角形.当a b =,222+=a b c 同时成立时,是等腰直角三角形.答案:C题型解法:此类题型首先根据题意化简式子,找出隐含条件,然后根据三边的关系判断三角形的形状.当三角形的三边满足勾股定理时,即可判断为直角三角形.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.【详解】解:A 、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;B 、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;C 、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;D 、一组对边平行且相等的四边形是平行四边形,正确,符合题意.故选D .【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.B解析:B【解析】【分析】用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可.【详解】解:(7+10+14+7+12)÷5=50÷5=10(元),故选:B .【点睛】此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法. 5.B【分析】连接AC 、CF ,如图,根据正方形的性质得∠ACD =45°,∠FCG =45°,AC =2,CF =32,则∠ACF =90°,再利用勾股定理计算出AF =25,然后根据直角三角形斜边上的中线求CH 的长.【详解】连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴∠ACD =45°,FCG =45°,AC =2BC =2,CF =2CE =32,∴∠ACF =45°+45°=90°,在Rt △ACF 中,AF =()()22232=25+,∵H 是AF 的中点,∴CH =12AF =5 .故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.6.C解析:C【解析】【分析】根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∠A +∠B +∠C =180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.【详解】解:根据翻折的性质可知,∠DOE =∠A ,∠HOG =∠B ,∠EOF =∠C ,又∵∠A +∠B +∠C =180°,∴∠DOE +∠HOG +∠EOF =180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C .【点睛】本题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中'''C D AB C ED AEB C A =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.A解析:A【分析】根据函数图像上的特殊点以及函数图像自身的实际意义进行判断即可.【详解】解:由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,①错;从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1小时,②对;汽车用9小时走了280千米,平均速度为:280÷9≠30米/时,③错.汽车自出发后6小时至9小时,图象是直线形式,说明是在匀速前进,④错. 故答案为A.【点睛】本题考查由函数图象的实际意义,理解函数图像所反映的运动过程是解答本题的关键.二、填空题9.3x ≤且2x ≠-【解析】【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 10.12【解析】【分析】根据菱形的面积计算公式计算即可;【详解】解:由已知得,菱形的面积等于两对角线乘积的一半即:4×6÷2=12cm 2.故答案为:12.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.11.A解析:4【解析】【详解】解:解如图所示:在Rt ∆ABC 中,BC=3,AC=5,由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52,解得x=4故答案为:4.【点睛】本题考查勾股定理.12.A解析:35°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB,代入∠OAB=∠DAB ﹣∠OAD求出即可.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°,故答案为:35°.【点睛】本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB的度数是解此题的关键.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:②【解析】【分析】根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE 是菱形.【详解】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.15.1或11 或【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S=1;②点P 位于点C 时,S=11;求出l 过临界点D 、E 、B 即求出直线与图形有一个交点时b 的取值范围.【详解解析:1或11 45b <≤或1b =-【分析】l 过点C 、点P 的位置有两种情况:①点P 位于点E 时,S =1;②点P 位于点C 时,S =11;求出l 过临界点D 、E 、B 即求出直线l 与图形G 有一个交点时b 的取值范围.【详解】解:∵点A 、B 、C 、D 的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD =BC =5,AB =1当直线l 过点C (3,1)时,1=-3+b ,即b =4∴直线的解析式为y =-x +4.∴42y x y =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩,即直线1与AD 的交点E 为(2,2) ∴DE =1.∴如图:当l 过点C 时,点P 位于点E 或点C①当l 过点C 时,点P 位于点E 时,S =DE =1;②当l 过点C 时,点P 位于点C 时,S =AD +AB +BC =5+1+5=11..∴当1过点C 时,S 的值为1或11;当直线l 过点D 时,b =5;当直线1过点C 时,b =4;当直线1过点B 时,将B (-2,1)代入y =-x +b 得1=2+b ,即b =-1∴当45b <≤或1b =-时,直线l 与图形G 有一个交点.故填1或11,45b <≤或1b =-.【点睛】本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键.16.4或【分析】当为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A 、F 、C 共线,即沿折叠,使点解析:4或【分析】当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,先利用勾股定理计算出10AC =,根据折叠的性质得90AFE B ∠=∠=︒,而当CEF △为直角三角形时,只能得到90EFC ∠=︒,所以点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,则,6EB EF AB AF ===,可计算出CF ;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,根据勾股定理计算出CF .【详解】解:当CEF △为直角三角形时,有两种情况:①当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt ABC 中,6,8AB BC ==,∴10AC =,∵B 沿AE 折叠,使点B 落在点F 处,∴90AFE B ∠=∠=︒,当CEF △为直角三角形时,只能得到90EFC ∠=︒,∴点A 、F 、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴,6EB EF AB AF ===,∴1064CF =-=;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴6,862BE AB CE ===-=,∴CF =综上所述,CF 的长为4或故答案为:4或【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.三、解答题17.(1)4-;(2)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)解析:(1)422)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可; (2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)2+81828818162232=42232=42==+(212273-23241227224333=2-3+4=3=⨯【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则.18.4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,米答:水池里水的深度是4米.【点睛】本题考查解析:4米【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,1∴⨯=米1243答:水池里水的深度是4米.【点睛】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.19.(1)见解析;(2)见解析;周长为4+2.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)解析:(1)见解析;(2)见解析;周长为.【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)如图1,将AB 绕点A 逆时针旋转90︒得AD ,将AB 绕点B 顺时针旋转90︒得BC ,连接DC ,正方形ABCD 即为所求.(2)如图2所示,2AF BE ==∴S ▱ABEF 236=⨯= 由题意可知:221310AB =+=平行四边形ABEF 即为所求.周长为2()2(210)410AB BE +=⨯=+【点睛】本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题.20.(1)见解析;(2)四边形的面积.【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形ABFC 的面积93=【分析】(1)利用平行四边形的性质先证明ABE FCE ∆≅∆,可得,AB FC =再证明四边形ABFC 是平行四边形,从而可得结论;(2)先求解6AF DF ==,132CF DF ==,再利用勾股定理求解2233AC AF CF -=而可得答案.【详解】(1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,BAE CFE ∴∠=∠,点E 是ABCD 中BC 边的中点,BE CE ∴=,AEB FEC ∠=∠,()ABE FCE AAS ∴∆≅∆,,AB FC ∴=//AB FC ,∴四边形ABFC 是平行四边形,又AF BC =,∴平行四边形ABFC 为矩形;(2)解:由(1)得:四边形ABFC 为矩形,90ACF ∴∠=︒, AFD 是等边三角形,6AF DF ∴==,132CF DF ==,AC ∴∴四边形ABFC 的面积3AC CF =⨯==.【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21.(1)﹣i ,1,;(2)﹣i ﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i ,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i ,1,20221i i i--;(2)﹣i ﹣6;(325.【解析】【分析】(1)根据题目所给条件可得i 3=i 2•i ,i 4=i 2•i 2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a +bi =4+3i ,求出a 、b ,即可得出答案.【详解】(1)i 3=i 2•i =﹣1×i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,设S =i +i 2+i 3+…+i 2021,iS =i 2+i 3+…+i 2021+i 2022,∴(1﹣i )S =i ﹣i 2022,∴S =20221i i i--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a+bi=2543i-=25(43)(43)(43)ii i+-+=10075169i++=4+3i,∴a=4,b=3,x,0)到点A(0,4),B(24,3)的最小距离,∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,∴A'B25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0解析:(1)y1=50+3x;当0<x<30且n为整数时,y2=80;当x≥30时且n为整数时,y2=5x-70;(2)见解析【分析】(1)根据题意,可以写出y1,y2关于x的函数解析式;(2)在0<x<30范围内,令y1=y2,求x的值,可得y1>y2时x的取值范围,在x≥30时,令y1=y2可得x的值,即可得y1>y2时可得x的取值范围.【详解】解:(1)由题意得:y1=50+3x,当0<x<30且x为整数时,y2=80,当x≥30时且x为整数时,y2=80+5(x-30)=5x-70;(2)当0<x<30且x为整数时,当50+3x=80时,解得x=10,即10<x<30时,y1>y2,0<x<10时,y1<y2,当x≥30且x为整数时,50+3x=5x-70时,解得x=60,即x>60时,y2>y1,30≤x<60时,y2<y1,∴从日工资收入的角度考虑,①当0<x<10或x>60时,y2>y1,他应该选择方案二;②当10<x<60时,y1>y2,他应该选择方案一;③当x=10或x=60时,y1=y2,他选择两个方案均可.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三解析:(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,,于是得到,,可求出点B的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三种情况:①当时,②当时,③当时分别讨论计算即可.【详解】解:如图1,过C作于E,过B作于F,四边形是平行四边形,,,,C的坐标分别为,,,,,;(2)设点P运动秒时,四边形是平行四边形,由题意得:,点D是的中点,,四边形是平行四边形,,即,,当秒时,四边形是平行四边形;(3)如图2,①当时,过作于E,则,,,又,C的坐标分别为,,∴,即有,当点P与点C重合时,,;②当时,过作于G,则,,;③当时,过作于F,则,,,;综上所述:当是等腰三角形时,点P的坐标为,,,,.【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.24.(1),;(2)或;(3)存在,或或【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx+b ,解二元一次方程组可求y =﹣x+4;(2)当D 点在E解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,19(,0)3或31(,0)3-或1(,0)3- 【解析】【分析】(1)由△ABC 面积为10,可得AC =5,即可求C 点坐标,再将点B 与C 代入y =kx +b ,解二元一次方程组可求y =﹣43x +4; (2)当D 点在E 上方时,过点D 作MN ⊥y 轴,过E 、F 分别作ME 、FN 垂直与x 轴,与MN 交于点M 、N ,由△EDF 是等腰直角三角形,可证得△MED ≌△NDF (AAS ),设D(0,y ),F (m ,﹣43m +4),E (﹣1,2),由ME =y ﹣2,MD =1,DN =y ﹣2,NF =1,得到m =y ﹣2,y =1+(﹣43m +4)=5﹣43m ,求出D (0,237);当点D 在点E 下方时,过点D 作PQ ⊥y 轴,过P 、Q 分别作PE 、FQ 垂直与x 轴,与PQ 交于点P 、Q ,同理可证△PED ≌△QDF (AAS ),设D (0,y ),F (m ,﹣43m +4),得到PE =2﹣y ,PD =1,DQ =2﹣y ,QF =1,所以m =2﹣y ,1=﹣43m +4﹣y ,求得D (0,﹣1); (3)连接OG ,由S △ABG =S △ABO ,可得OG ∥AB ,求出AB 的解析式为y =2x +4,所以OG 的解析式为y =2x ,可求出G (65 ,125),进而能求出AG 的解析式为y =34x +32,设M (t ,34t +32),N (n ,0),①当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34),求得N (﹣13,0);②当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0),求得N (﹣313,0);③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34),求得N (193,0). 【详解】解:(1)∵△ABC 面积为10, ∴12×AC ×OB =12×AC ×4=10,∴AC =5,∵A (﹣2,0),∴C(3,0),将点B与C代入y=kx+b,可得4 30bk b=⎧⎨+=⎩,∴434kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+4,故答案为(3,0),y=﹣43x+4;(2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠MDE+∠NDF=∠MDE+∠MED=90°,∴∠NDF=∠MED,∴△MED≌△NDF(AAS),∴ME=DN,MD=FN,设D(0,y),F(m,﹣43m+4),∵E是AB的中点,∴E(﹣1,2),∴ME=y﹣2,MD=1,∴DN=y﹣2,NF=1,∴m=y﹣2,y=1+(﹣43m+4)=5﹣43m,∴m=97,∴D(0,237);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ 交于点P、Q,∵△EDF是等腰直角三角形,∴∠EDF=90°,ED=DF,∵∠PDE+∠QDF=∠PDE+∠PED=90°,∴∠QDF=∠PED,∴△PED≌△QDF(AAS),∴PE=DQ,PD=FQ,设D(0,y),F(m,﹣43m+4)∵E是AB的中点,∴E(﹣1,2),∴PE=2﹣y,PD=1,∴DQ=2﹣y,QF=1,∴m=2﹣y,1=﹣43m+4﹣y,∴m=3,∴D(0,﹣1);综上所述:D点坐标为(0,﹣1)或(0,237);(3)连接OG,∵S△ABG=S△ABO,∴OG∥AB,设AB的解析式为y=kx+b,将点A(﹣2,0),B(0,4)代入,得420bk b=⎧⎨-+=⎩,解得24k b =⎧⎨=⎩, ∴y =2x +4,∴OG 的解析式为y =2x ,∴2x =﹣43x +4, ∴x =65, ∴G (65 ,125), 设AG 的解析式为y =k 1x +b 1,将点A 、G 代入可得11112061255k b k b -+=⎧⎪⎨+=⎪⎩, 解得113422k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴y =34x +32, ∵点M 为直线AG 上动点,点N 在x 轴上,则可设M (t ,34t +32),N (n ,0), 当BC 、MN 分别为对角线时,BC 的中点为(32,2),MN 的中点为(2t n +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =﹣13, ∴N (﹣13,0); 当BM 、CN 分别为对角线时,BM 的中点为(2t ,38t +114),CN 的中点为(32n +,0), ∴322n t +=,38t +114=0, ∴t =﹣223,n =﹣313, ∴N (﹣313,0); ③当BN 、CM 分别为对角线时,BN 的中点为(2n ,2),CM 的中点为(32t +,38t +34), ∴322t n +=,38t +34=2, ∴t =103,n =193, ∴N (193,0); 综上所述:以点B ,C ,M ,N 为顶点的四边形为平行四边形时,N 点坐标为19(,0)3或31(,0)3-或1(,0)3-. 【点睛】本题考查一次函数的综合应用,(2)中注意D 点的位置有两种情况,避免丢解,同时解题时要构造K 字型全等,将D 点、F 点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解.25.(1),理由见解析;(2),理由见解析;(3),理由见解析【分析】(1)先根据正方形的性质可证得,由此可得,,再根据同角的补角相等证得,等量代换可得,由此可得,再等量代换即可得证;(2)过点E解析:(1)DE EF =,理由见解析;(2CD CF =+,理由见解析;(3)CD CF =-,理由见解析【分析】(1)先根据正方形的性质可证得BCE DCE ≌,由此可得CBE CDE ∠=∠,BE DE =,再根据同角的补角相等证得CDE EFB ∠=∠,等量代换可得CBE EFB ∠=∠,由此可得BE EF =,再等量代换即可得证;(2)过点E 作EG EC ⊥交CB 的延长线于点G ,先证明EG EC =,利用勾股定理可得CG ,再证明EGF ECB △≌△,由此可得GF CB CD ==,最后再等量代换即可得证;(3)仿照(1)和(2CD CF =-.【详解】解:(1)DE EF =,理由如下:∵四边形ABCD 是正方形,∴BC CD AD ==,90BCD ADC ∠=∠=︒, ∴180452ADC DAC DCA ︒-∠∠=∠==︒, ∴45BCE BCD DCA ∠=∠-∠=︒,∴BCE DCE ∠=∠,在BCE 与DCE 中,BC DC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩∴()BCE DCE SAS ≌,∴CBE CDE ∠=∠,BE DE =,∵EF DE ⊥,∴90FED ∠=︒,∵360EFC BCD CDE FED ∠+∠+∠+∠=︒,∴180CDE EFC ∠+∠=︒,∵180EFC EFB ∠+∠=︒,∴CDE EFB ∠=∠,∴CBE EFB ∠=∠,∴BE EF =,∴DE EF =;(2)2CE CD CF =+,理由如下:如图,过点E 作EG EC ⊥交CB 的延长线于点G ,∴90CEG ∠=︒,由(1)知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒, ∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,在EGF △与ECB 中,EGF ECB EFG EBC EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =+=+, ∴2CE CD CF =+;(32CE CD CF =-,理由如下:如图,过点E 作EG EC ⊥交BC 于点G ,设CD 与EF 的交点为点P ,∴90CEG ∠=︒,由(1)可知:45BCE ∠=︒,∴45EGC BCE ∠=∠=︒,∴EG EC =,∴在Rt GEC △中,222CG CE EG CE +,∵EF DE ⊥,∴90FED ∠=︒,∴90CDE EPD ∠+∠=︒,∵18090DCF BCD ∠=︒-∠=︒,∴90CFE CPF ∠+∠=︒,又∵EPD CPF ∠=∠,∴CDE CFE ∠=∠,由(1)可知:CBE CDE ∠=∠,∴CBE CFE ∠=∠,在EGF △与ECB 中,EGF ECB EFG EBC EG EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EGF ECB AAS △≌△,∴GF CB CD ==,又∵CG GF CF CD CF =-=-, ∴2CE CD CF =-.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的判定与性质以及勾股定理的应用,作出正确的辅助线并能灵活运用相关图形的性质是解决本题的关键.。
精品解析2022年人教版八年级数学下册第十八章-平行四边形综合测试试题(含答案及详细解析)
人教版八年级数学下册第十八章-平行四边形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知直线:l y x =,点P 在直线l 上,点(2A ,点(2B +,若APB △是直角三角形,则点P 的个数有( )A .1个B .2个C .3个D .4个2、如图,四边形ABCD 是平行四边形,下列结论中错误的是( )A .当▱ABCD 是矩形时,∠ABC =90°B .当▱ABCD 是菱形时,AC ⊥BD C .当▱ABCD 是正方形时,AC =BD D .当▱ABCD 是菱形时,AB =AC3、如图所示,在矩形ABCD 中,已知AE ⊥BD 于E ,∠DBC =30°,BE =1cm ,则AE 的长为( )A.3cm B.2cm C.D4、ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm5、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.4856、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.107、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A .25°B .20°C .15°D .10°8、平行四边形ABCD 中,60A ∠=︒,则C ∠的度数是( )A .30B .60︒C .90︒D .120︒9、如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,BD =12,则△DOE 的周长是( )A .12B .15C .18D .2410、如图,在四边形ABCD 中,AD BC ∥,6BC =,BDC ∆面积为21,AB 的垂直平分线MN 分别交,AB AC 于点,M N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为( )A .5B .6C .7D .8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,正方形ABCD 的面积为6,△CDE 是等边三角形,点E 在正方形ABCD 内,在对角线BD 上有一动点K ,则KA +KE 的最小值为 _____________.2、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若2OE ,则菱形的周长为__________.3、点D、E分别是△ABC边AB、AC的中点,已知BC=12,则DE=_____4、判断:(1)菱形的对角线互相垂直且相等____( )____(2)菱形的对角线把菱形分成四个全等的直角三角形____( )____5、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH 翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD是平行四边形,AD=4,AB=5,点A的坐标为(-2,0),求点B、C、D的坐标.2、如图,在Rt △ABC 中,∠ACB =90°.(1)作AB 的垂直平分线l ,交AB 于点D ,连接CD ,分别作∠ADC ,∠BDC 的平分线,交AC ,BC 于点E ,F (尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF 是矩形.3、如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .4、如图,在平行四边形ABCD 中,8cm AB =,16cm BC =.30B ∠=︒.点P 在BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点D 向点A 运动,速度为每秒1cm .当点P 运动到点C 时,点P ,Q 同时停止运动.连接PQ ,设运动时间为t 秒.(1)当t为何值时,四边形ABPO为平行四边形?(2)设四边形ABPQ的面积为y,求y与t之间的函数关系式.∠的度数.(3)当t为何值时,四边形ABPQ的面积是四边形ABCD的面积的四分之三?求出此时PQD(4)连接AP,是否存在某一时刻t,使ABP△为等腰三角形?若存在,请求出此刻t的值;若不存在,请说明理由.5、如图,已知正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF DE⊥,垂足为点F,BF与CD交于点G.(1)求证:CG CE=;(2)若BE=DG=BG的长.---------参考答案-----------一、单选题1、C【解析】【分析】分别讨论90APB∠=︒三种情况,求出P点坐标即可得出答案.PAB∠=︒,90PBA∠=︒,90【详解】如图,当90PAB ∠=︒时,点A 与点P 横坐标相同,(22,0)A -2x ∴=y x =中得:2y =1(2P ∴,当90PBA ∠=︒时,点B 与点P 横坐标相同,(22,0)B +,2x ∴=代入y x =中得:2y =2(2P ∴,当90APB ∠=︒时,取AB 中点为点C ,过点P 作PM AB ⊥交于点M ,设(,)P a a ,OM a ∴=,PM a =,(22,0)A -,(2B +,2(2AB ∴=+=12AC PC AB ∴==22OC OA AC ∴=+==,2CM a ∴=-,在Rt PMC 中,222(2)a a +-=,解得:1a =,(1,1)P ∴,P ∴点有3个.故选:C .【点睛】本题考查直角三角形的性质与平面直角坐标系,掌握分类讨论的思想是解题的关键.2、D【解析】【分析】由矩形的四个角是直角可判断A ,由菱形的对角线互相垂直可判断B ,由正方形的对角线相等可判断C ,由菱形的四条边相等可判断D ,从而可得答案.【详解】解:当▱ABCD 是矩形时,∠ABC =90°,正确,故A 不符合题意;当▱ABCD 是菱形时,AC ⊥BD ,正确,故B 不符合题意;当▱ABCD 是正方形时,AC =BD ,正确,故C 不符合题意;当▱ABCD 是菱形时,AB =BC ,故D 符合题意;【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.3、D【解析】【分析】根据矩形和直角三角形的性质求出∠BAE=30°,再根据直角三角形的性质计算即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,cm),∴AE故选:D.【点睛】本题考查了矩形的性质,含30度角的直角三角形的性质,熟记各图形的性质并准确识图是解题的关键.4、C【解析】根据平行四边形的性质,可得AB =CD ,BC =AD ,然后设3cm,5cm AB x BC x == ,可得到()23532x x += ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,BC =AD ,∵AB :BC =3:5,∴可设3cm,5cm AB x BC x == ,∵ABCD 的周长为32cm ,∴()232AB BC += ,即()23532x x += ,解得:2x = ,∴6cm,10cm AB BC == .故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键.5、B【解析】【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.6、A【解析】【分析】由菱形的性质可得OA =OC =3,OB =OD =4,AO ⊥BO ,由勾股定理求出AB .【详解】解:∵四边形ABCD 是菱形,AC =6,BD =8,∴OA =OC =3,OB =OD =4,AO ⊥BO ,在Rt△AOB中,由勾股定理得:5AB=,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.7、D【解析】【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折叠可得∠DB C′=∠DBC=50°,∴∠2=∠DB C′−∠DBA=50°−40°=10°,故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA 的度数.8、B【解析】【分析】根据平行四边形对角相等,即可求出C∠的度数.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴A C∠=∠,∴60A∠=︒,∴60∠=°.C故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.9、B【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是BC,所以易求△DOE的周长.△BCD的中位线,可得OE=12【详解】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12CD,∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选:B.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.10、C【解析】【分析】连接AQ,过点D作DH BC⊥,根据垂直平分线的性质得到PA PB=,再根据PB PQ AP PQ AQ+=+≥计算即可;【详解】连接AQ,过点D作DH BC⊥,∵6BC=,BDC∆面积为21,∴1212BC DH =, ∴7DH =,∵MN 垂直平分AB ,∴PA PB =,∴PB PQ AP PQ AQ +=+≥,∴当AQ 的值最小时,PB PQ +的值最小,根据垂线段最短可知,当AQ BC ⊥时,AQ 的值最小, ∵AD BC ∥,∴7AQ DH ==,∴PB PQ +的值最小值为7;故选C .【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键.二、填空题1【解析】【分析】根据正方形的性质可知C 、A 关于BD 对称,推出CK =AK ,推出EK +AK ≥CE ,根据等边三角形性质推出CE =CD ,根据正方形面积公式求出CD 即可.【详解】解:∵四边形ABCD 是正方形,∴C 、A 关于BD 对称,即C 关于BD 的对称点是A ,如图,连接CK ,则CK =AK ,∴EK+CK≥CE,∵△CDE是等边三角形,∴CE=CD,∵正方形ABCD的面积为6,∴CD,∴KA+KE【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+KE的最小值是CE.2、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.3、6【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=12,BC=6,∴DE=12故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.4、× √【解析】【分析】根据菱形的性质,即可求解.【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形.故答案为:(1)×;(2)√【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.5、8【解析】【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.【详解】解:延长CF与AB交于点M,∵FG⊥CD,AB∥CD,∴CM ⊥AB ,∵∠B =45°,BC =AD =8,∴CM由折叠知GF =AD =8,∵CG =4,∴MF =CM -CF =CM -(GF -CG )-4,∵∠EFC =∠A =180°-∠B =135°,∴∠MFE =45°,∴EF ()故答案为:【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.三、解答题1、(3,0)B 、(5,C 、(0,D【分析】根据5AB =,(2,0)A -即可求得点B ,勾股定理求得OD 即可求得点D ,再根据平行四边形的性质可得C 点坐标.【详解】解:ABCD 是平行四边形,∴CD x ∥轴,5CD AB ==,由题意可得,2OA =,90AOD ∠=︒,∴OD =,即(0,D ,∵(2,0)A -,5AB =,∴(3,0)B ,∵(0,D ,5CD AB ==,CD x ∥轴,∴(5,C ,∴(3,0)B 、(5,C 、(0,D .【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==, DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠, EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、见解析【分析】根据菱形的性质可得AB =BC =CD =AD ,∠A =∠C ,再由BE =BF ,可推出AE =CF ,即可利用SAS 证明△ADE ≌△CDF 得到DE =DF ,则∠DEF =∠DFE .【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠A =∠C ,∵BE =BF ,∴AB -BE =BC -BF ,即AE =CF ,∴△ADE ≌△CDF (SAS ),∴DE =DF ,∴∠DEF =∠DFE .【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.4、(1)163;(2)y =S 四边形ABPQ =2t +32(0<t ≤8);(3)t =8,75PQD ∠=;(4)当t =4或ABP △为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ =BP 建立方程求解即可;(2)先构造直角三角形,求出AE ,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形ABCD中,8cmAB=,16cmBC=,由运动知,AQ=16−t,BP=2t,∵四边形ABPQ为平行四边形,∴AQ=BP,∴16−t=2t∴t=163,即:t=163s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,∴AE=4,由运动知,BP=2t,DQ=t,∵四边形ABCD是平行四边形,∴AD=BC=16,∴AQ=16−t,∴y=S四边形ABPQ=12(BP+AQ)•AE=12(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,∵BC=16,∴S四边形ABCD=16×4=64,由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),∵四边形ABPQ的面积是四边形ABCD的面积的四分之三∴2t+32=34×64,∴t=8;如图,当t=8时,点P和点C重合,DQ=8,∵CD=AB=8,∴DP=DQ,∴∠DQC=∠DPQ,∴∠D=∠B=30°,∴∠DQP=75°;(4)①当AB=BP时,BP=8,即2t=8,t=4;②当AP=BP时,如图,∵∠B=30°,过P作PM垂直于AB,垂足为点M,∴BM=4,22242BPBP⎛⎫+=⎪⎝⎭,解得:BP,∴2t,∴t③当AB=A P时,同(2)的方法得,BP=∴2t=∴t=所以,当t=4或ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.5、(1)见解析;(2)BG=【分析】(1)由正方形的性质可得BC DC=,BCG DCE∠=∠,由E∠的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE;CG BC,进而勾股定理即可求得BG的(2)证明正方形的性质可得BC DC=,结合已知条件即可求得,长【详解】(1)∵BF⊥DE∴∠BFE=90°∵四边形ABCD是正方形∴∠DCE=90°BC DC=,BCG DCE∴∠=∠∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵BC DC=,且BE=DG=∴CE CG=∵CG=CE∴CG BC=在Rt BCG中,BG=【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.。
人教版八年级数学下册第十七章勾股定理综合测试题(一)
C5米3米2013-2014学年度第二学期八年级数学试卷(二)(第十七章:勾股定理)一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.满足下列条件的三角形中,不是直角三角形的是( )A.、三内角之比为1∶2∶3B.、三边长的平方之比为1∶2∶3C.、三边长之比为3∶4∶5 D 、.三内角之比为3∶4∶52. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 A 、4 cm B 、8 cmC 、10 cmD 、12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25B 、14C 、7D 、7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) A 、13 B 、8 C 、25 D 、645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)6. 在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ). A .16π B .12π C .10π D .8π7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A 、 25 B 、 12.5 C 、 9 D 、 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A 、 等边三角形B 、 钝角三角形C 、 直角三角形D 、 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). A 、0a 元 B 、600a 元 C 、1200a 元 D 、1500a 元10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A 、12B 、7C 、5D 、13二、填一填,要相信自己的能力!(每小题3分,共18分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要_____米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14.如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是________.(第14题) (第15题) (第16题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.三、做一做,要注意认真审题呀!(5大题,17—20题每题10分,21题12分,共52分)17. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.密 封 线 内 不 得 答 题C18、 如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?19.如图,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论.20. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?21、去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,为了方便A 、B 两地师生的交往,学校准备在相距2km 的A 、B 两地之间修筑一条笔直公路(即图中的线段AB ),经测量,在A 地的北偏东60°方向、B 地的西偏北45°方向C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)ABC DL。
浙教版数学八年级下册 第三章数据分析初步 综合能力测试(解析版)
第三章综合能力测试卷(时间120分钟满分120分)一.选择题(每小题3分,共36分)1.(2019•兴业县一模)某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有一个数据丢失):日期一二三四五平均气温最高气温1℃2℃﹣2℃0℃1℃则这个被丢失的数据是()A.2℃B.3℃C.4℃D.5℃2.(2019•邵阳县模拟)如果两组数据x1,x2、……x n;y1,y2……y n的平均数分别为和,那么新的一组数据2x1+y1,2x2+y2……2x n+y n的平均数是()A.2B.2C.2+D.3.(2019•临沂)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天) 1 2 1 3最高气温(℃)22 26 28 29则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃4.(2019•天宁区校级二模)在一次射击训练中,一小组的成绩如表:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数为()A.5 B.6 C.4 D.75.(2019•工业园区校级二模)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.406.(2019•陆良县一模)如表所示是某位运动员近6次的比赛成绩(单位:分钟):第几次 1 2 3 4 5 6比赛成绩40 50 35 20 25 10则这组成绩的中位数和平均数分别为()A.25.25,30 B.30,85 C.27.5,85 D.30,30 7.(2019•深圳模拟)若一组数据3,4,x,6,7的众数是3,则这组数据的中位数为()A.3 B.4 C.6 D.78.(2019•河南模拟)在第37届中国洛阳文化节期间,某手工刺绣服装店老板某天销售了10件同款的女装上衣,销售尺码统计如下表:尺码/cm155 160 165 170 175销量/件 1 4 2 2 1则这10件上衣尺码的平均数和众数分别为()A.160,164 B.160,4 C.164,160 D.164,4 9.(2019•梧州)某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是9310.(2019•烟台)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变11.(2018•宝山区二模)下列说法正确的是()A.一组数据的中位数一定等于该组数据中的某个数据B.一组数据的平均数和中位数一定不相等C.一组数据的众数可以有几个D.一组数据的方差一定大于这组数据的标准差12.(2018•静安区二模)已知两组数据:a1,a2,a3,a4,a5和a1﹣1,a2﹣1,a3﹣1,a4﹣1,a5﹣1,下列判断中错误的是()A.平均数不相等,方差相等B.中位数不相等,标准差相等C.平均数相等,标准差不相等D.中位数不相等,方差相等二.填空题(每小题4分,共24分)13.(2019•瓯海区二模)若数据x1,x2,x3,x4,x5的平均数为2,则数据x1+1,x2﹣1,x3+2,x4﹣2,x5+5的平均数为.14.(2019•泰顺县模拟)某中学进行“优秀班级”评比,将品徳操行,纪律,卫生评比三项按4:3:3的比例确定班级成绩,若九(1)班这三项的成绩分别为90分,83分,87分,则九(1)班的最终成绩是分15.(2019•银川校级三模)在一次信息技术考试中,某兴趣小组9名同学的成绩(单位:分)分别是:7,10,9,8,10,7,9,9,8,则这组数据的中位数是.16.(2019•百色二模)如图所示是小明在某条道路所统计的某个时段来往车辆的车速情况,则众数是.17.(2019•山西模拟)体育课上,各小组同学进行踢毽子比赛活动,第一小组五名同学单位时间踢.这组数据的方差是.毽子的个数分别为103,102,98,100,9719.(8分)(2019秋•奈曼旗期末)下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题.五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近?姓名王芳刘兵张昕李聪江文成绩89 84﹣1 +2 0 ﹣2与全班平均分之差20.(8分)(2019秋•锡山区期末)某校九年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评定为“优秀”,下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张70 90 80小王60 75若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.(1)请计算小张的期末评价成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(10分)(2019春•长春期末)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如图所示的统计图.(1)把统计图补充完整;(2)直接写出这组数据的中位数.22.(12分)(2019秋•滨海县期末)小明本学期4次数学考试成绩如下表如示:成绩类别第一次月考第二次月考期中期末成绩分138 142 140 138 (1)小明4次考试成绩的中位数为分,众数为分;(2)学校规定:两次月考的平均成绩作为平时成绩,求小明本学期的平时成绩;(3)如果本学期的总评成绩按照平时成绩占20%、期中成绩占30%、期末成绩占50%计算,那么小明本学期的数学总评成绩是多少分?23.(10分)(2018•荆州)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85 b c22.8八(2)a85 85 19.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.24.(12分)(2019•南通)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.11 7 6 92.5% 20%二班 6.85 4.28 8 8 85% 10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?第三章综合能力测试卷参考答案与试题解析一.选择题1.(2019•兴业县一模)某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有一个数据丢失):日期一二三四五平均气温最高气温1℃2℃﹣2℃0℃1℃则这个被丢失的数据是()A.2℃B.3℃C.4℃D.5℃【分析】设出丢失的数据为x℃,根据从星期一到星期五的五个数据相加的等于平均气温,列出关于x的方程,求出方程的解得到x的值,即为被丢失的数据.【解答】解:设丢失的数据为x℃,根据题意列得:(1+2﹣2+0+x)=1,解得:x=4,则这个被丢失的数据是4℃.故选:C.2.(2019•邵阳县模拟)如果两组数据x1,x2、……x n;y1,y2……y n的平均数分别为和,那么新的一组数据2x1+y1,2x2+y2……2x n+y n的平均数是()A.2B.2C.2+D.【分析】均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:由已知,(x1+x2+…+x n)=n,(y1+y2+…+y n)=n,新的一组数据2x1+y1,2x2+y2……2x n+y n的平均数为(2x1+y1,2x2+y2……2x n+y n)÷n=[2(x1+x2+…+x n)+(y1+y2+…+y n)]÷n=()÷n=2+故选:C.3.(2019•临沂)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天) 1 2 1 3最高气温(℃)22 26 28 29则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【分析】由加权平均数公式即可得出结果.【解答】解:这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.4.(2019•天宁区校级二模)在一次射击训练中,一小组的成绩如表:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数为()A.5 B.6 C.4 D.7【分析】若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数.【解答】解:设成绩为8环的人数为x人,,解得x=5,经检验,x=5时原分式方程的根,故选:A.5.(2019•工业园区校级二模)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.40【分析】先将这组数据从小到大重新排列,再根据中位数的概念求解可得.【解答】解:将这组数据从小到大重新排列为35、38、40、42、44、45、45、47,所以这组数据的中位数为=43,故选:B.6.(2019•陆良县一模)如表所示是某位运动员近6次的比赛成绩(单位:分钟):第几次 1 2 3 4 5 6比赛成绩40 50 35 20 25 10则这组成绩的中位数和平均数分别为()A.25.25,30 B.30,85 C.27.5,85 D.30,30【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按从大到小的顺序排列是:10,20,25,35,40,50故这组数据的中位数是:(25+35)÷2=30;平均数=(10+20+25+35+40+50)÷6=30.故选:D.7.(2019•深圳模拟)若一组数据3,4,x,6,7的众数是3,则这组数据的中位数为()A.3 B.4 C.6 D.7【分析】根据众数的意义求出x的值,再根据中位数的意义,从小到大排序后,找出处在第3位的数即可.【解答】解:一组数据3,4,x,6,7的众数是3,因此x=3,将一组数据3,4,3,6,7排序后处在第3位的数是4,因此中位数是4.故选:B.8.(2019•河南模拟)在第37届中国洛阳文化节期间,某手工刺绣服装店老板某天销售了10件同款的女装上衣,销售尺码统计如下表:尺码/cm155 160 165 170 175销量/件 1 4 2 2 1则这10件上衣尺码的平均数和众数分别为()A.160,164 B.160,4 C.164,160 D.164,4【分析】根据平均数、众数的概念直接求解【解答】解:平均数=(155+160×4+165×2+170×2+175×1)÷10=164;众数是一组数据中出现次数最多的数据,所以众数是160;故选:C.9.(2019•梧州)某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是93【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论.【解答】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,∴众数是108,中位数为=105,平均数为=101,方差为[(82﹣101)2+(96﹣101)2+(102﹣101)2+(108﹣101)2+(108﹣101)2+(110﹣101)2]≈94.3≠93;故选:D.10.(2019•烟台)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【分析】根据平均数,方差的定义计算即可.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.11.(2018•宝山区二模)下列说法正确的是()A.一组数据的中位数一定等于该组数据中的某个数据B.一组数据的平均数和中位数一定不相等C.一组数据的众数可以有几个D.一组数据的方差一定大于这组数据的标准差【分析】根据中位数、众数、平均数和方差的概念对各选项进行判断,选出正确答案即可.【解答】解:A、一组数据的中位数不一定等于该组数据中的某个数据,故本选项错误;B、一组数据的平均数和众数不一定相等,故本选项错误;C、一组数据的众数可以有几个,这种说法是正确的,故本选项正确.D、一组数据的方差不一定大于这组数据的标准差,故本选项错误;故选:C.12.(2018•静安区二模)已知两组数据:a1,a2,a3,a4,a5和a1﹣1,a2﹣1,a3﹣1,a4﹣1,a5﹣1,下列判断中错误的是()A.平均数不相等,方差相等B.中位数不相等,标准差相等C.平均数相等,标准差不相等D.中位数不相等,方差相等【分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.【解答】解;因为两组数据:a1,a2,a3,a4,a5和a1﹣1,a2﹣1,a3﹣1,a4﹣1,a5﹣1,它们的平均数不同,方差相等,中位数不同,标准差相等,故选:C.二.填空题13.(2019•瓯海区二模)若数据x1,x2,x3,x4,x5的平均数为2,则数据x1+1,x2﹣1,x3+2,x4﹣2,x5+5的平均数为 3 .【分析】根据平均数的定义先求出x1,x2,x3,x4,x5的和,从而求出数据x1+1,x2﹣1,x3+2,x4﹣2,x5+5的和,然后根据平均数的定义即可求解.【解答】解:∵数据x1,x2,x3,x4,x5的平均数为2,∴x1+x2+x3+x4+x5=10,∴x1+1,x2﹣1,x3+2,x4﹣2,x5+5=x1+x2+x3+x4+x5+1﹣1+2﹣2+5=15,∴数据x1+1,x2﹣1,x3+2,x4﹣2,x5+5的平均数是15÷5=3;故答案为:3.14.(2019•泰顺县模拟)某中学进行“优秀班级”评比,将品徳操行,纪律,卫生评比三项按4:3:3的比例确定班级成绩,若九(1)班这三项的成绩分别为90分,83分,87分,则九(1)班的最终成绩是87 分【分析】根据加权平均数的定义列式计算可得.【解答】解:九(1)班的最终成绩是=87(分),故答案为:87.15.(2019•银川校级三模)在一次信息技术考试中,某兴趣小组9名同学的成绩(单位:分)分别是:7,10,9,8,10,7,9,9,8,则这组数据的中位数是9 .【分析】将这9个数从小到大排序后处在第5位的数为9,因此中位数是9.【解答】解:将这9个数从小到大排序得:7,7,8,8,9,9,9,10,10,处在第5位的是9,因此中位数是9,故答案为:9.16.(2019•百色二模)如图所示是小明在某条道路所统计的某个时段来往车辆的车速情况,则众数是52 .【分析】车速52千米/时的车辆为8辆为最多,所以众数为52.【解答】解:车速52千米/时的车辆为8辆为最多,所以众数为52.故答案为52.17.(2019•山西模拟)体育课上,各小组同学进行踢毽子比赛活动,第一小组五名同学单位时间踢毽子的个数分别为103,102,98,100,97.这组数据的方差是 5.2 .【分析】先求这组数据的平均数,再代入方差公式计算即可.【解答】解:这组数据的平均数是:(103+102+98+100+97)=100,方差是:[(103﹣100)2+(102﹣100)2+(98﹣100)2+(100﹣100)2+(97﹣100)2]=5.2.故答案为5.2.18.(2019•中原区校级模拟)已知样本数据:98,99,100,101,102.则它们的标准差是.【分析】先求出数据的平均数,再求出方差,最后求出标准差即可.【解答】解:=100+[(98﹣100)+(99﹣100)+(100﹣100)+(101﹣100)+(102﹣100)]=100,S2=[(98﹣100)2+(99﹣100)2+(100﹣100)2+(101﹣100)2+(102﹣100)2]=2,所以标准差是,故答案为:.三.解答题19.(2019秋•奈曼旗期末)下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题.五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近?姓名王芳刘兵张昕李聪江文成绩89 84﹣1 +2 0 ﹣2与全班平均分之差【分析】由表格中数据可得出,平均分为90分,把表格完成,可以得出分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.【解答】解:完成表格得姓名王芳刘兵张昕李聪江文成绩89 92 90 84 88与全班平﹣1 +2 0 ﹣6 ﹣2均分之差故答案为分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近.20.(2019秋•锡山区期末)某校九年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评定为“优秀”,下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张70 90 80小王60 75 85若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.(1)请计算小张的期末评价成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)小张的期末评价成绩为=81(分);(2)设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.故答案为:85.21.(2019春•长春期末)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如图所示的统计图.(1)把统计图补充完整;(2)直接写出这组数据的中位数.【分析】(1)求得捐款金额为30元的学生人数,把统计图补充完整即可.(2)根据中位数的定义解答;【解答】解:(1)捐款金额为30元的学生人数=50﹣6﹣15﹣19﹣2=8(人),把统计图补充完整如图所示;(2)数据总数为50,所以中位数是第25、26位数的平均数,即(20+20)÷2=20,22.(2019秋•滨海县期末)小明本学期4次数学考试成绩如下表如示:成绩类别第一次月考第二次月考期中期末成绩分138 142 140 138 (1)小明4次考试成绩的中位数为139 分,众数为138 分;(2)学校规定:两次月考的平均成绩作为平时成绩,求小明本学期的平时成绩;(3)如果本学期的总评成绩按照平时成绩占20%、期中成绩占30%、期末成绩占50%计算,那么小明本学期的数学总评成绩是多少分?【分析】(1)将数据重新排列,再根据中位数和众数的概念求解可得;(2)利用算术平均数的概念求解可得;(3)利用加权平均数的概念求解可得.【解答】解:(1)把这些成绩重新排列为138、138、140、142,则这4次考试成绩的中位数为=139(分),众数为138分,故答案为:139分,138分;(2)平时成绩为:(138+142)÷2=140(分),答:小明的平时成绩为140分;(3)根据题意得:140×20%+140×30%+138×50%=139(分),答小明本学期的数学总评成绩为139分.23.(2018•荆州)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85 b c22.8八(2)a85 85 19.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.【分析】(1)根据平均数、中位数、众数的概念解答即可;(2)根据它们的方差,从而可以解答本题.【解答】解:(1)a=,b=85,c=85,(2)∵22.8>19.2,∴八(2)班前5名同学的成绩较好,24.(2019•南通)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.11 7 6 92.5% 20%二班 6.85 4.28 8 8 85% 10%根据图表信息,回答问题:(1)用方差推断,二班的成绩波动较大;用优秀率和合格率推断,一班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?【分析】(1)从方差上看,二班的方差较大,二班波动较大,合格率、优秀率一班都比二班高,(2)平均分会受极端值的影响,众数、中位数则是反映一组数据的集中趋势和平均水平,因此用众数、中位数进行分析比较客观.【解答】解:(1)从方差看,二班成绩波动较大,从众数、中位数上看,一班的成绩较好,故答案为:二,一.(2)乙同学的说法较合理,众数和中位数是反映一组数据集中发展趋势和集中水平,由于二班的众数、中位数都比一班的要好.。
八年级数学下册期末试卷综合测试卷(word含答案)
八年级数学下册期末试卷综合测试卷(word 含答案)一、选择题1.2a +在实数范围内有意义,实数a 的取值范围是( ) A .a >0 B .a >1 C .a ≥﹣2 D .a >﹣1 2.以下列各组数为边长,不能构成直角三角形的是( )A .1,2,3B .5,12,13C .3,4,5D .1,2,53.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,ABC ADC ∠=∠ B .AB DC =,AD BC = C .OA OC =,OB OD =D .//AD BC ,AB CD =4.某次竞赛每个学生的综合成绩得分(x )与该学生对应的评价等次如表. 综合成绩(x )=预赛成绩×30%+决赛成绩×70% x ≥90 80≤x <90 评价等次优秀良好小华同学预赛成绩为80,综合成绩位于良好等次,他决赛的成绩可能为( )A .71B .79C .87D .955.如图所示,正方形ABCD 的边长为4,点E 为线段BC 上一动点,连结AE ,将AE 绕点E 顺时针旋转90°至EF ,连结BF ,取BF 的中点M ,若点E 从点B 运动至点C ,则点M 经过的路径长为( )A .2B .22C .23D .46.如图,在Rt △ABC 中,C ∠=90°,沿着过点B 的一条直线BE 折叠△ABC ,使点C 恰好落在AB 的中点D 处,则A ∠的度数为( )A .30°B .45°C .60°D .75°7.如图,在Rt ABC △中,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,连接DE ,CF .若1CF =,则DE 的长度为( )A .1B .2C .3D .48.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8二、填空题9.△ABC 的三条边长a 、b 、c 满足8c =,460a b -+-=,则△ABC ____直角三角形(填“是”或“不是”)10.菱形的周长为12cm ,它的一个内角为60︒,则菱形的面积为______()2cm .11.在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则AB =______.12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,已知5OD =,6AD =,则该矩形的周长是______.13.设一次函数y =kx +3. 若当x =2时,y =-1,则k =___________ 14.若矩形的边长分别为2和4,则它的对角线长是__. 15.如图,CD 是直线3y x =上的一条动线段,且2CD =,点()23,1A ,连接AC 、AD ,则ACD ∆周长的最小值是_______.16.如图,在菱形 ABCD 中,对角线 AC , BD 交于点O ,过点 A 作 AH ⊥ BC 于点 H ,已知 BD=8,S 菱形ABCD =24,则 AH =_______.三、解答题17.计算:(1)0131|2|8(2020)()3π--+-+-+-;(2)11(124)(320.5)83---; (3)(212)(4818)-⨯+; (4)22()()a b a b ++-.18.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端6尺远,问折断处离地面的高度是多少尺?19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图1中画一个面积为4的菱形;(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.20.请在横线上添加一个合适的条件,并写出证明过程:如图,平行四边形ABCD 对角线上有两点E ,F ,AE =CF , ,连接EB ,ED ,FB ,FD .求证:四边形EBFD 为菱形.21.学习了二次根式的乘除后,老师给同学们出了这样一道题:已知a =13,求2221a a a a -+-的值.刘峰想了想,很快就算出来了,下面是他的解题过程:解:∵()()()2221211111a a a a a a a a a a a--+-===---, 又∵a =13,∴13a=, ∴原式=3.你认为刘峰的解法对吗?如果对,请你给他一句鼓励的话;如果不对,请找出错误的原因,并改正.22.小明爸爸为了让小明上学更近,决定在学校附近租套房子居住.现有甲、乙两家出租房屋,甲家已经装修好,每月租金为2500元;乙家未装修,每月租金为1800元,但需要支付装修费14000元.设租用时间为x 个月,所需租金为y 元.(1)请分别写出租用甲、乙两家房屋的租金x 甲、x 乙与租用时间x 之间的函数关系; (2)试判断租用哪家房屋更合算,并说明理由.23.如图1,在平面直角坐标系xOy 中,直线l 1:y =x +6交x 轴于点A ,交y 轴于点B ,经过点B 的直线l 2:y =kx +b 交x 轴于点C ,且l 2与l 1关于y 轴对称. (1)求直线l 2的函数表达式;(2)点D ,E 分别是线段AB ,AC 上的点,将线段DE 绕点D 逆时针α度后得到线段DF . ①如图2,当点D 的坐标为(﹣2,m ),α=45°,且点F 恰好落在线段BC 上时,求线段AE 的长;②如图3,当点D 的坐标为(﹣1,n ),α=90°,且点E 恰好和原点O 重合时,在直线y =3﹣13上是否存在一点G ,使得∠DGF =∠DGO ?若存在,直接写出点G 的坐标;若不存在,请说明理由.24.如图1,矩形OABC 在平面直角坐标系中的位置如图所示,点A ,C 分别在x 轴,y 轴上,点B的坐标为()8,4,点P,Q同时以相同的速度分别从点O,B出发,在边OA,BC 上运动,连接,OQ BP,当点P到达A点时,运动停止.(1)求证:在运动过程中,四边形OPBQ是平行四边形.(2)如图2,在运动过程中,是否存在四边形OPBQ是菱形的情况?若存在,求出此时直线PQ的解析式;若不存在,请说明理由.(3)如图3,在(2)的情况下,直线PQ上是否存在一点D,使得PBD△是直角三角形?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.25.如图,平行四边形ABCD中,连接对角线BD,∠ABD=30°,E为平行四边形外部一点,连接AE、BE、DE,若AE=BE,∠DAE=60°.(1)如图1,若∠C=45°,BC=2,求AB的长;(2)求证:DE=BC;(3)如图2,若∠BCD=15°,连接CE,延长CB与DE交于点F,连接AF,直接写出(AFBF)2的值.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件即可求出a的取值范围.【详解】解:由题意可知:a+2≥0,∴a≥-2.故选:C.【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.A解析:A 【分析】分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论. 【详解】解:A 、由于222123+≠,不能作为直角三角形的三边长,符合题意;B 、由于22251213+=,能作为直角三角形的三边长,不符合题意;C 、由于222345+=,能作为直角三角形的三边长,不符合题意;D 、由于22212+=,能作为直角三角形的三边长,不符合题意.故选:A . 【点睛】本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形”.3.D解析:D 【解析】 【分析】根据平行四边形的判定定理逐项判断即可. 【详解】A 、由//AB DC ,得180ABC ACD ∠+∠=︒,又ABC ADC ∠=∠,得180ADC ACD ∠+∠=︒,得//AD BC ,可得到四边形ABCD 是平行四边形,故A 选项不符合题意B 、由AB DC =,AD BC =,可得到四边形ABCD 是平行四边形,故B 选项不符合题意; C 、由OA OC =,OB OD =,可得到四边形ABCD 是平行四边形,故C 选项不符合题意; D 、由//AD BC ,AB CD =,不可得到四边形ABCD 是平行四边形,故D 选项符合题意. 故选:D . 【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用.4.C解析:C 【解析】 【分析】设他决赛的成绩为x 分,根据综合成绩所处位次得出80≤80×30%+70%x <90,解之求出x 的范围即可得出答案. 【详解】解:设他决赛的成绩为x 分,根据题意,得:80≤80×30%+70%x <90, 解得80≤x <9427,∴各选项中符合此范围要求的只有87, 故选:C . 【点睛】本题主要考查加权平均数,解题的关键是根据加权平均数的定义及综合成绩位次列出关于x 的不等式组.5.B解析:B 【分析】已知EF ⊥AE ,当E 点在线段BC 上运动到两端时,正好是M 点运动的两个端点,由此可以判断M 点的运动轨迹是BC 、CD 中点的连线长. 【详解】解:取BC 、CD 的中点G 、H ,连接GH ,连接BD ∴GH 为△BCD 的中位线,即12GH BD =∵将AE 绕点E 顺时针旋转90°至EF , ∴EF ⊥AE ,当E 点在B 处时,M 点在BC 的中点G 处,当E 点在C 点处时,M 点在CD 中点处, ∴点M 经过的路径长为GH 的长, ∵正方形ABCD 的边长为4, ∴2242BD BC CD =+= ∴1222GH BD ==, 故选B .【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M 点的运动轨迹.6.A解析:A 【解析】 【分析】根据题意可知∠CBE =∠DBE ,DE ⊥AB ,点D 为AB 的中点,∠EAD =∠DBE ,根据三角形内角和定理列出算式,计算得到答案. 【详解】解:由题意可知∠CBE =∠DBE , ∵DE ⊥AB ,点D 为AB 的中点, ∴EA =EB , ∴∠EAD =∠DBE , ∴∠CBE =∠DBE =∠EAD , ∴∠CBE +∠DBE +∠EAD =90°, ∴∠A =30°, 故选:A . 【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°.7.A解析:A 【解析】 【分析】根据直角三角形斜边上的中线等于斜边的一半,可得AB 的长,根据三角形中位线定理可得DE 的长. 【详解】依题意,90ACB ∠=︒,D ,E ,F 分别是AC ,BC ,AB 的中点,1CF =,22AB CF ∴==, 112DE AB ==. 故选A . 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线定理,掌握以上定理是解题的关键.8.B解析:B 【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值. 【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t ,则 2.71.5v svt s =⎧⎨=⎩ 解得,t =1.8∴a =3.2+1.8=5(小时), 故选B .【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.二、填空题 9.A解析:不是 【解析】 【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可. 【详解】 解:∵460a b -+-=,∴40a -=,60b -=, ∴4,6a b ==, 则22246528+=≠, ∴222a b c +≠,∴△ABC 不是直角三角形, 故答案为:不是. 【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.10.A 解析:932【解析】 【分析】由菱形的性质和已知条件得出3AB BC CD DA cm ====,AC BD ⊥由含30°角的直角三角形的性质得1322BO AB cm ==,由勾股定理求出OA ,可得BD ,AC 的长度,由菱形的面积公式可求解. 【详解】 如图所示:、∵AB = BC = CD = DA ,130?2BAO BAD ∠=∠=,AC BD ⊥,12OA AC BO DO ==, ∵菱形的周长为12cm , ∴3AB BC CD DA cm ====, ∴1322BO AB cm ==,∴m OA == ∴2AC OA ==,23BD BO cm == ∴菱形ABCD 的面积212AC BD ⨯=.【点睛】本题考查了菱形的性质、含30° 角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.5【解析】 【分析】根据勾股定理222AB AC BC =+即可求得AB 的长度. 【详解】在直角ABC 中,90C ∠=︒, ∴根据勾股定理222AB AC BC =+, ∴5AB =, 故答案为:5. 【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.12.B解析:28 【分析】先求出BD ,再根据勾股定理求出AB ,即可求矩形的周长. 【详解】解:∵四边形ABCD 是矩形, ∴∠BAD=90°,OD =OB =5,即BD =10, ∴8AB =,矩形的周长为()28628⨯+=,故答案为:28.【点睛】本题考查了矩形的性质和勾股定理,解题关键是熟练运用勾股定理求出矩形的边长. 13.-2【分析】把x=2时,y=-1代入一次函数y =kx +3,解得k 的值即可.【详解】解:把x=2时,y=-1代入一次函数y =kx +3得-1=2k +3,解得k =-2.故答案为:-2.【点睛】本题考查待定系数法求一次函数解析式.一般函数解析式中有几个常量不知道,就需要代入几个函数上的点就可以求出函数解析式.14.A【分析】根据矩形的性质得出∠ABC =90°,AC =BD ,根据勾股定理求出AC 即可.【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,AC =BD ,在Rt △ABC 中,AB =2,BC =4,由勾股定理得:AC ∴BD AC ==故答案为【点睛】本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.15.+2.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,解析:.【分析】过点A 作AB ⊥CD ,垂足为点B ,当点B 为CD 的中点时,△ACD 的周长最小,利用等腰三角形的性质,勾股定理计算即可.【详解】过点A作AB⊥CD,垂足为点B,当点B为CD的中点时,△ACD的周长最小,如图,延长BA交x轴与点E,过点A作AF⊥x轴,垂足为点F,设点M(3,3)是直线33y x=上一个点,则OM=223+(3)=23,∴∠MOF=30°,∴∠BEF=60°,∠EAF=30°,∵A(2+3,1),∴OF=2+3,AF=1,设AE=2n,则EF=n,根据勾股定理,得2241n n=+,∴EF=33,AE=233,∴OE=OF+EF=2+433,∴BE=12OE=1+233,∴BA=BE-AE=1+233-233=1,∵CB=BD,AB⊥CD,CD=2,∴AC=AD22BC BA+CB=BD=1,∴AC=AD22112+=∴△ACD的周长最小值为2.故答案为:22.【点睛】本题考查了正比例函数的解析式,勾股定理,直角三角形中30°角的性质,等腰三角形的判定和性质,两点间的距离公式,准确确定最小值的情形,并灵活运用勾股定理求解是解题的关键.16.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4, 解析:245【分析】根据菱形面积=对角线积的一半可求AC ,再根据勾股定理求出BC ,然后由菱形的面积即可得出结果.【详解】解:∵四边形ABCD 是菱形,BD =8,∴AO =CO ,AC ⊥BD ,OB=OD=4,∴S 菱形ABCD =12×AC×BD =24,∴AC =6,∴OC =12AC =3,∴BC5,∵S 菱形ABCD =BC×AH =24,∴AH =245, 故答案为:245. 【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC 是解题的关键.三、解答题17.(1);(2);(3);(4).【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可; (2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根解析:(14;(23)18--4)22a b +.【分析】(1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可;(2)先化成最简二次根式,再合并即可;(3)先化成最简二次根式,再计算乘法即可;(4)根据完全平方公式展开,再合并即可.【详解】解:(1)011|(2020)()3π--+-213=+-4=;(2)-4(32=-=-=(3)⨯(=⨯=624=--18=--(4)22+a b a b =++-22a b =+.【点睛】本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确各自的计算方法,仔细认真化简,会合并同类项.18.折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB=10-x ,BC=6,解析:折断处离地面的高度有3.2尺.【分析】根据题意画出图形,设折断处离地面的高度为x 尺,再利用勾股定理列出方程求解即可.【详解】解:如图,设折断处离地面的高度为x 尺,则AB =10-x ,BC =6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.解得:x=3.2.答:折断处离地面的高度有3.2尺.【点睛】本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;解析:(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;(2)如图2所示:其四边形是边长为无理数的矩形.【点睛】本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.20.,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于解析:AB BC =,见解析【分析】根据题意和图形,可以在空格处填一个条件,注意填写的条件不唯一,只要可以证明结论成立即可,然后根据菱形的判定方法证明即可.【详解】补充条件:AB =BC ,证明:连接BD 交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC ,∵AE =CF ,∴OE =OF ,∴四边形EBFD 是平行四边形,∵AB =BC ,∴∠BAE =∠BCF ,在△BAE 和△BCF 中,BA BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△BCF (SAS ),∴BE =BF ,∴平行四边形EBFD 是菱形,即四边形EBFD 为菱形.故答案为:AB =BC .【点睛】本题考查菱形的判定、平行四边形的性质、全等三角形的判定与性质,利用数形结合的思想解答是解答本题的关键.21.答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,原因是:错误地运用了=这个公式,正确解法是:∵a==<1,∴a﹣1<0,∴====解析:答案见解析.【解析】【分析】直接利用二次根式的性质化简进而得出答案.【详解】刘峰的解法错误,(0)(0)a aa a⎧⎨-<⎩这个公式,正确解法是:∵a1,∴a﹣1<0,∴=|1|(1)aa a--=1(1)aa a--=﹣1a,∴【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22.(1),;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于解析:(1)2500y x=甲,180014000y x=+乙;(2)当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算【分析】(1)租金等于每月费用乘以租用月数.(2)租金等于每月费用乘以租用月数,有装修费的再加上装修费即可.【详解】(1)根据题意,租用甲家房屋:2500y x =甲;租用乙家房屋:180014000y x =+乙;(2)①由题意,可知:2500180014000x x =+,解得:20x ,即当租用20个月时,两家租金相同.②由2500180014000x x >+,解得:20x >;即当租用时间超过20个月时,租乙家的房屋更合算.③由2500180014000x x <+,解得:20x <,即当租用时间少于20个月时,租甲家的房屋更合算.综上所述,当租期超过20个月时,租乙家房屋更合算;当租期等于20个月时,租甲家、乙家都可以;当租期低于20个月,租甲家房屋更合算.【点睛】本题考查一次函数的具体应用,根据题意找出等量关系是解题关键.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①4+②1(2G ,3-或2(2,3G 或3(2G ,3 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得: 26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒, AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆,22(62)442HF AD ∴=-++=AE HD =, 又6OA OB OC ===,90AOB COB ∠=∠=︒, ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,24BH ∴=, 62AB =62442422AE HD AB BH AD ∴==+-=-+ ②将(1,)D n -代入6y x =+中,得:165n =-+=, (1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒, FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=, (4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠, 设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =2132x = 1213(2G ∴313); 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°, ∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a -,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴+-+-+--=+,解得:122a a ==,2(2,313)G ∴-;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =, 33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+,联立方程组213333y x y ⎧=-+⎪⎨⎪=⎩,解得:23x y ⎧=⎪⎨⎪=⎩3(2G ∴,3; 综上所述,符合条件的G的坐标为1(2G,3或2(2,3G或3(2G,3.【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1)证明见解析;(2)存在,;(3)存在,或.【解析】【分析】(1)说明出后,再利用矩形的性质得到,即可完成求证;(2)先设,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等 解析:(1)证明见解析;(2)存在,210y x =-+;(3)存在,()4,2D 或()0,10D .【解析】【分析】(1)说明出BQ OP =后,再利用矩形的性质得到//BQ OP ,即可完成求证;(2)先设=BQ OP x =,依次表示各点坐标与相应线段长,再利用菱形的判定,令一组邻边相等建立关于x 的方程,解方程后,则各点坐标得以确定,然后利用待定系数法即可求出直线PQ 的解析式;(3)先设出D 点坐标,再分别表示出2BP 、2PD 、2BD ,利用勾股定理的逆定理分类讨论求解即可.【详解】解:(1)证:∵点P ,Q 同时以相同的速度分别从点O ,B 出发,∴BQ OP =,又∵矩形OABC ,∴//BQ OP ,∴四边形OPBQ 是平行四边形.(2)存在;理由:∵矩形OABC 且点B 的坐标为()8,4,∴8OA CB ==,4OC AB ==;设=BQ OP x =∴8AP x =-,∴()2222284BP AP AB x =+=-+, 当四边形OPBQ 是菱形时,则=BP OP ,∴()22284x x =-+, 解得:=5x ,∴8=3CQ BC BQ x =-=-,∴()5,0P ,()3,4Q ,设直线PQ 的解析式为:y kx b =+;∴5034k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线PQ 的解析式为:210y x =-+;(3)由(2)知=5BP OP =,设(),210D m m -+,∴()()22225210550125PD m m m m =-+-+=-+, ()()2222=82104540100BD m m m m -+-+-=-+, 当222=BD BP PD +时,2225401005550125m m m m -+=+-+,解得:5m =,此时2100m -+=,∴()5,0D ,此时D 点与P 点重合,不合题意,故舍去;当222=BP BD PD +时,2225540100550125m m m m =-++-+,解得:14m =,25m =(舍去),此时,2102m -+=,∴()4,2D ;当222=PD BD BP +时,2225501255401005m m m m -+=-++,解得:0m =,此时,21010m -+=,∴()0,10D ;综上可得:()4,2D 或()0,10D .【点睛】本题综合考查了矩形的性质、待定系数法求一次函数解析式、平行四边形的判定定理、菱形的判定定理、勾股定理及其逆定理等内容,同时涉及到了解一元二次方程等知识,本题综合性较强,要求学生具备一定的综合分析能力和计算能力,本题蕴含了分类讨论和数形结合的思想方法等.25.(1);(2)证明见解析;(3)【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解.(2)过点E 作EF ⊥AB 于F ,过点解析:(1)62+;(2)证明见解析;(3)43-【分析】(1)过点D 作DF ⊥AB 于F ,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF 和BF 的长即可求解. (2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,先证明△GAD ≌△FAE ,再证明三角形ADE 时等边三角形,即可得到答案;(3)过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,可证明∠BDN =∠DBN =45°,∠FDN =30°,以及EF =BF ,设FN =m ,根据勾股定理,用含m 的式子分别表示出2AF 和2BF ,即可得出结果.【详解】解:(1)如图,过点D 作DF ⊥AB 于F ,∴∠AFD =∠BFD =90°∵四边形ABCD 是平行四边形,∠C =45°,BC =2∴∠A =∠C =45°,AD =BC =2∴AF =DF ,∵∠DBA =30°,∴BD =2DF ,在直角三角形AFD 中,222AF DF AD +=,∴224AF =,∴2AF DF ==,∴222BD DF ==,在直角三角形DFB 中,226BF BD DF =-=,∴62AB AF BF =+=+;(2)过点E 作EF ⊥AB 于F ,过点A 作AG ⊥BD 交BD 延长线于G ,∵AE =BE ,∴12A FB A BF ==, ∵∠G =90°,∠DBA =30°,∴12AG AB =,∠DAB =60° ∴AG AF =,∵∠DAE =60°,∴∠GAD =∠FAE =60°-∠DAF ,∵∠G =∠AFE =90°,∴△GAD ≌△FAE (ASA ),∴AD =AE ,∴三角形ADE 时等边三角形,∴AD =DE ,∴DE =BC ;(3)如图,过点A 作AP ⊥DE 于P ,过点D 作DN ⊥BF 于点N ,则∠APE =∠APF =∠DNF =∠DNB =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠ABF =∠C =15°,∠DFB =∠ADF =60°,∴∠DBN =∠ABF +∠ABD =45°,∠FDN =30°,∴∠BDN =∠DBN =45°,∴∠EBD =∠EDB =∠FDN +∠BDN =75°,∴∠FEB =180°-75°-75°=30°,∴∠FBE =∠DFB -∠FEB =60°-30°=30°=∠FEB ,∴EF =BF ,设FN =m ,DF =2m , ∴223BN DN DF FN m ==-=, ∴3EF BF m m ==+,33AE DE m m ==, ∴1332m m PE PD DE +=== ∴3332m m m m PF m +-== ∵2AE DE PE ==,∴22223AP AE PE PE =-=, ∴(22222231043AF AP PF PE PF m =+=+=+, ∵()(222343BF m m m ==+, ∴()()22222104343423m AF AF BF BF m +⎛⎫=== ⎪⎝⎭+【点睛】本题主要考查了等腰三角形的性质,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行四边形的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。
初中八年级数学下册期中综合测试卷含参考答案
11.不改变分式的值,使分子、分母的第一项系数都是正数,则
x y ________ . xy
A
D
2
12.化简:
6a
b
3
=________;
8a
1 x1
1 =___________. x1
13.已知 1 - 1 =5,则 2a+3ab 2b 的值是
.
ab
a 2ab b
14.正方形的对角线为 4,则它的边长 AB= .
B.
函数的图象只在第一象限
C .当 x< 0 时,必有 y< 0
D.
点( -2 , -3 )不在此函数的图象上 RTCrpUDGiT
9.在 函 数 y
k
( k> 0) 的 图 象 上 有 三 点
A 1( x 1,
y1 ) 、 A 2( x2 ,
y2) 、 A 3( x 3,
y3 ),
已 知 x1
x
<x2<0<x3, 则 下 列 各 式 中 , 正 确 的 是 (
C 偏离欲到达地点 B 相距 50 米,
结果他在水中实际游的路程比河的宽度多
10 米,求该河的宽度 AB 为多少米? dvzfvkwMI1
BC
A
25.( 6 分)如图,一个梯子 AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动后停在 DE 的位置上,测得 BD 长为 0.5 米,求梯子顶端 A 下落了多少米? rqyn14ZNXI A E
k
图象上一点,且矩形
x
ABOC
的面积为 3,则这个反比例函数解析式为
.
第 20 题图
三、解答题 (共 70 分)
八年级下册数学期末试卷综合测试卷(word含答案)(1)
八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。
人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)
(2)当﹣4<x<1时,化简 ﹣2 .
21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?
22.综合题
(1)试比较 与 的大小;
(2)你能比较 与 的大小吗?其中k为正整数.
A. B. C. D.
2.若式子 在实数范围内有意义,则x的取值范围是( )
A. x>1 B. x<1 C. x≥1 D. x≤1
3.下列变形中,正确的是( )
A.(2 )2=2×3=6 B.
C. D.
4.下列组合哪个不是勾股数()
A.30,40,50 B.7,24,25 C.5,12,13 D.1,2,3
【解析】【分析】(1)先根据二次根式有意义的条件可得x的值,进一步得到y的值,代入 得到它的平方根;
(2)由于﹣4<x<1,根据完全平方公式和二次根式的性质得到 ﹣2 =|x+4|﹣2|x﹣1|,再去绝对值化简即可.
21.【答案】解:不对.
理由:如图,依题意可知
AB=25(米),AO=24(米),∠O=90°,
22.【答案】(1)解: ,
,
故 <
(2)解: ,
,
故 <
【考点】二次根式的性质与化简,二次根式的乘除法
【解析】【分析】(1)比较两个二次根式的大小,用分母有理化的法则先将其化为最简二次根式,再比较大小即可;(2)方法同(1).
23.【答案】解:如图,AB=28 ,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,
5.下列二次根式中,与 是同类二次根式的是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下综合测试卷(1)
一、选择题(每题3分,共30分)
1. 某市有7万名学生参加中考,要想了解这7万名学生的数学考试成绩,从中抽取了1000名考生的数学成绩进行分析,以下说法正确的是( ) (A) 这1000名考生是总体的一个样本 (B) 每名考生是个体
(C) 7万名考生是总体 (D) 7万名考生的数学成绩是总体
2.甲、乙两班学生参加了同一次数学考试,班级的均分和方差如下:,180,240,80,8022====乙甲乙甲S S x x 则成
绩较为整齐的是( ) (A )甲班 (B )乙班 (C )两班一样 (D )无法确定
3.某地区100个家庭收入按从高到低是5800,……,10000元各不相同,在输入计算时,把最大的数错误地输成100000元,则依据错误的数据算出的平均数比实际平均数多( )
(A )900元(B )942元(C )90000元(D )9000元
4.下列命题: (1)相等的角是对顶角. (2) 同位角相等 (3) 直角三角形的两个锐角互余. (4) 若两条线段不相交,则两条线段平行. 其中正确的命题个数有( ) (A) 1个 (B) 2个 (C) 3个 (D) 4个
5. 下列语句不是命题的是 ( ) (A)三角形的三个内角和是180°
(B)角是几何图形 (C) 对顶角相等吗? (D) 两个锐角的和是一个直角
6. 下列图形一定相似的是( )
(A)两个矩形 (B)两个等腰梯形
(C)有一个内角相等的两个菱形 (D)对应边成比例的两个四边形
7. 如图,ΔABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP=∠B ;②
∠APC=∠ACB ;③AC 2=AP •AB ;④AB •CP=AP •CB ,能满足ΔAPC 与ΔACB 相似的
条件是( ) (A)①②③ (B)①③④ (C)②③④ (D)①②④
8. 如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) (A)AC AE AB AD = (B)FB EA CF CE = (C)BD AD BC DE = (D)CB CF AB EF = 9. 如图,在平行四边形ABCD 中,O 1、O 2、O 3分别是对角线BD 上的三点,且BO 1=O 1O 2=O 2O 3=O 3D ,连接AO 1并延长交BC 于点E ,连接EO 3并延长交AD 于点F ,则AF :DF 等于( ) (A)19:2 (B)9:1 (C)8:1 (D) 7:1
10.某公司在布置联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条。
如图所示:在RT △ABC 中,AC=30cm,BC=40cm.依此裁下宽度为1cm 的纸条,若使裁得的纸条的长都不小于5cm ,则能裁得的纸条的张数 ( )
(A) 24 (B) 25 (C) 26 (D) 27
二、填空题(共37分)
11. 一个样本的方差是 []
21022212)20()20()20(101-++-+-=x x x S ,则样本的个数为 ,样本的平均数是 .
12. 把命题“等角的补角相等”写成“如果……,那么……”的形式 .
13.某中学初二年级共有400名学生,为了了解这些学生的视力情况,从中随机抽取了50名学生进行测试,若视力为1.0的一组有10人,则该组的频率为 ;若视力为0.8的一组频率为0.3,则该组有 人;根据上述抽样调查可估计该中学初二年级视力为1.0的学生有 人.
14.若322=-y y x , 则_____=y x ;若9
810z y x ==, 则______=+++z y z y x ; 15. 已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为 。
16. 若b a c a c b c b a k 222-=-=-=
,且a +b +c ≠0,则k 的值为
.
D。