激光原理第四章习题解答..

合集下载

激光原理MOOC答案4

激光原理MOOC答案4

激光原理MOOC答案44.1-4.4测验已完成成绩:100.0分下列说法不正确的是:a、对于等距共焦腔,其共汪参数f=l/2,l为腔短b、基模高斯光束在横截面内的场振幅原产按高斯函数所叙述的规律从中心向外光滑地迫降c、高斯光束的等增益面就是以rz为半径的球面d、对于通常平衡球面腔,其共汪参数f=l/2,l为腔短正确答案:d我的答案:d得分:10.0分当透镜的焦距等同于高斯光束入射光在透镜表面上的波面曲率半径的几倍时,透镜对该高斯光束野扇重现转换?a、1/4b、4c、2d、1/2恰当答案:d我的答案:d罚球:10.0分后在何种条件下,可将高斯光束近似处理为几何光学情况?a、物高斯光束须弥座处于透镜物方焦面上b、物高斯光束须弥座处于透镜表面上c、物高斯光束须弥座与透镜距离足够多离正确答案:c我的答案:c得分:10.0分以下观点错误的就是:a、当透镜对高斯光束作自再现变换时,像方腰斑与物方腰斑关于透镜是对称的b、对任意稳定腔,只要适当选择高斯光束的束腰位置及腰斑大小,就可使它成为该腔的本征模c、当反射镜对高斯光束作自再现变换时,此反射镜与高斯光束的波前相匹配d、某腔内存在着高斯光束型的本征模,该腔不一定是稳定腔恰当答案:d我的答案:d罚球:10.0分后关于高斯光束的准直,下列说法正确的是:a、用单个透镜可以将高斯光束转换成平面波b、使用单个透镜,l=f时,像是方收敛角达至极小值c、在l=f的条件下,像是高斯光束的方向性只与f的大小有关d、一个取值的望远镜对高斯光束的电子束倍率仅与望远镜本身的结构参数有关正确答案:b我的答案:b得分:10.0分用单透镜对高斯光束著眼,以下观点不恰当的就是:a、用短焦距透镜可对高斯光束进行聚焦b、取l=0不一定有聚焦作用c、f小于f,任取l值可实现聚焦d、l取无穷大一定有聚焦作用恰当答案:b我的答案:b罚球:10.0分后下列说法不正确的是:a、高斯球面波的为丛藓科扭口藓曲率半径q相等于普通球面波的曲率半径rb、物高斯光束须弥座距透镜足够多离时,可以把高斯光束看作几何光束c、q参数在自由空间的传输满足用户q2=q1+ld、l=f时,也可以把高斯光束看作几何光束正确答案:d我的答案:d得分:10.0分以下观点不恰当的就是:a、用参数w(z)和r(z)可以表征高斯光束b、用q参数来研究高斯光束的传输规律将非常方便c、方形孔径的稳定球面腔中存在拉盖尔-高斯光束d、包含在远场发散角内的功率占高斯基模光束总功率的86.5%恰当答案:c我的答案:c罚球:10.0分后下列说法正确的是:a、高斯光束在其传输轴线附近可以对数看做就是一种光滑球面波b、高斯光束的等增益面的曲率中心随z相同而维持不变c、d、离束腰无限远的等相位面是平面,其曲率中心在无限远处恰当答案:c我的答案:c罚球:10.0分后高斯光束的聚焦和准直中,在f一定时,像方腰斑随l变化的情况正确的说法是:a、当l大于f时,像是方腰斑随l的增大而减小b、当l大于f时,像是方腰斑随l的增大而增大c、当l大于f时,像是方腰斑随l的减小而单调地减小正确答案:b我的答案:b第四章作业已完成成绩:100.0分后高斯光束的等相位面是以r为半径的球面,下面判断不正确的是当z=0时,r(z),说明须弥座所在处的等增益为平面当z=f时,r(z)=2f,且r(z)达到极大值当z→∞时,r(z)→∞,说明距须弥座无穷远处的等增益面亦为平面d、等相位面的球心是不断变化的恰当答案:b我的答案:b罚球:12.5分后下列哪种说法更科学?a、b、m2因子越大,表明激光束空域质量越好c、远场收敛角越大,表明激光束空域质量越不好正确答案:b我的答案:b得分:12.5分用单透镜对高斯光束涌入时,在物高斯光束的腰斑距透镜甚远的情况下,以下观点恰当的就是?a、l愈小,f愈小,聚焦效果愈好b、l愈小,f愈大,聚焦效果愈好c、l愈大,f 愈大,聚焦效果愈好d、l愈大,f愈小,聚焦效果愈好恰当答案:d我的答案:d罚球:12.5分后关于基模高斯光束的说法中不正确的是?a、其曲率中心和曲率随其传输过程不断变化b、其振幅在横截面内维持高斯分布c、高斯光束在其传输轴线附近可以对数看做就是一种光滑球面波d、其强度在横截面内维持高斯分布正确答案:c我的答案:c得分:12.5分以下观点恰当的就是:当入射在球面镜上的高斯光束波前曲率半径等于球面镜的曲率半径2倍时,像高斯光束与物高斯光束完全重合当入射光在球面镜上的高斯光束波前曲率半径刚好等同于球面镜的曲率半径时,像是高斯光束与物高斯光束全然重合当入射在球面镜上的高斯光束波前曲率半径等于球面镜的曲率半径一半时,像是高斯光束与物高斯光束全然重合d、圆形孔径的稳定球面腔中存在着厄米特-高斯光束恰当答案:b我的答案:b罚球:12.5分后以下说法错误的是?a、方形孔径平衡球面腔中存有的高阶高斯光束为厄米特-高斯光束b、基模高斯光束具备最轻的m2值c、用单个透镜可以将高斯光束转换成平面波d、基模高斯光束在横截面内的场振幅原产按高斯函数所叙述的规律从中心向外光滑地迫降正确答案:c我的答案:c得分:12.5分某二氧化碳激光器,波长10.6m,使用平-凹腔,凹面镜的r=2m,腔短l=1m。

北交大激光原理第4章高斯光束部分-final

北交大激光原理第4章高斯光束部分-final

第四章高斯光束理论一、学习要求与重点难点学习要求1.掌握高斯光束的描述参数以及传输特性;2.理解q 参数的引入,掌握q 参数的ABCD 定律;3.掌握薄透镜对高斯光束的变换;4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;5.理解高斯光束的聚焦和准直条件;6.了解谐振腔的模式匹配方法。

重点1.高斯光束的传输特性;2. q 参数的引入;3. q 参数的ABCD 定律;4.薄透镜对高斯光束的变换;5.高斯光束的聚焦和准直条件;6.谐振腔的模式匹配方法。

难点1. q 参数,及其ABCD 定律;2.薄透镜对高斯光束的变换;3.谐振腔的模式匹配。

1等相位面:以R 为半径的球面,R(z) =z [ 莘 -2点的远场发散角, m = lim 2w(z) _2 --- =e zY : z 二 W oW o(或f )及束腰位置―;将两个参数W(z)和R(Z)统一在一个表达式中,便于研究 z、知识点总结振幅分布:按高斯函数从中心向外平滑降落。

光斑半径 w(z)二w 0.:高斯光束特征参数 光斑半径w(z)和等相位面曲率半径:/% =w(z) 1 +⑷(z)丿 R(z)、 -'I :( z = R(z) 1十卜 j 匚 辽w(z)丿.二 W 2(z) 2咼斯光束基本性质远场发散角: 1 1. 九iq 参数,q (z) R(z)兀 w(z)2 q (z )=if+z =q +z =i 孚1高斯光束通过光学系统的传输规律2傍轴光线L 的变换规律器 士C ; D』傍轴球面波的曲率半径R 的变换规律R AR^B .遵从相同的变换规律 CR +D高斯光束q 参数的变换规律q^Aq^B Cq i +DABCD 公式高斯光束q 参数的变换规律 高斯光束的聚焦:只讨论单透镜 高斯光束的准直:一般为双透镜ABCD 公式云誓T 高斯光束的模式匹配:实质是透镜变换,分两种情况已知w 0,w 0,确定透镜焦距F 及透镜距离I ,I' 已知两腔相对位置固定l^ I I '及W o ,W o 确定,F 如何选择高斯光束的自再现变换 )W’o =W o or I'=I高斯光束的自再现变换和稳定球面腔q(I')=q(O )T 2透镜F J U 1+徳J]-丿」I 球面镜R(I)=I 1+@曲[] . 4丿」二w 0即F E R(I)=稳定球面腔、典型问题的分析思路2高斯光束的q 参数在自由空间中的传输规律 q(z) = i —些亠z = q 0亠z1)高斯光束通过单个透镜的变换。

激光原理第四章答案1

激光原理第四章答案1
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 估算,根据 气体的碰撞线宽与气压p的关系近似为
可知,气体压强为 时的碰撞线宽约等于碰撞线宽系数.
再由 和 ,其中
可估算出其值约为
当 时,其气压为
所以,当气压在 附近时以多普勒加宽为主,当气压比 大很多时,以均匀加宽为主。
5.氦氖激光器有下列三种跃迁,即 的632.8nm, 的 和 的 的跃迁。求400K时它们的多普勒线宽,分别用 、 、 为单位表示。由所得结果你能得到什么启示?
(2)在 时间内自发辐射的光子数为:
所以
(3)量子产额为:
无辐射跃迁导致能级2的寿命偏短,可以由
定义一个新的寿命 ,这样
7.二能级的波数分别为 和 ,相应的量子数分别为 和 ,上能级的自发辐射概率 ,测出自发辐射谱线形状如图4.1所示。求
(1)中心频率发射截面 ;
(2)中心频率吸收截面 。
(能级简并度和相应量子数的关系为 ,可设该工作物质的折射率为1.)
解:实验方框图如下:
实验程序以及计算公式如下:
(1)测量小信号中心频率增益系数:移开红宝石棒,微安表读数为 ,放入红宝石棒,微安表的读数为 ,由此得到小信号增益系数为
减小入射光光强,使小信号增益系数最大。然后维持在此光强,微调单色仪鼓轮以改变入射波长(频率),使小信号增益系数最大,此最大增益系数即为小信号中心频率增益系数 。
式中 和 分别为镜 开始移动的时刻和停止移动的时刻; 和 为与 和 相对应的 镜的空间坐标,并且有 。
得证。
3.在激光出现以前, 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K温度下它的605.7nm谱线的相干长度是多少,并与一个单色性 的氦氖激光器比较。

【激光原理】第四章作业答案

【激光原理】第四章作业答案

11.有一平凹氦氖激光器,腔长 0.5米 ,凹镜曲率半径为2米 ,现欲用小孔光阑选出基模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的 3.3倍时,可选出基横模。

)解:已知条件R 1=∞, R 2=2 m, L =0.5 m∵等价的对称共焦腔参数L R R L R L Z L R R L R L Z 2221122121-+-=-+--=)(,)( LR R L R R L R L R L f 2212121-+-+--=))()(( ∴z 1=0 m, z 2=L =0.5 m, m .)(8702≈-=L R L f对于基横模 ∵22001⎪⎪⎭⎫ ⎝⎛+=πωλωωz z )(, πλωf =0≈0.418×10-3 m ∴平面镜的光斑半径ωs1=ω0, 凹面镜的光斑半径L R R s -=2202ωω≈0.481×10-3 m ∴光阑紧靠平面镜的小孔直径为d 1=3.3ωs1≈1.379×10-3 m ,而光阑紧靠凹面镜的小孔直径为d 2=3.3ωs2≈1.587×10-3 m2. 激光工作物质是钕玻璃(发光波长为1.06 μm),其荧光线宽 ΔλF =24 nm ,折射率μ=1.5,能用短腔选单纵模吗?解:相邻两个纵模频率差L cμν2=∆短腔法选单纵模的条件是2F v ∆>∆ν2 ∵F F cλλν∆=∆2≈6.4×1012 HzFv c L ∆<μ=0.31×10-4 m 腔长为几十微米的量级,很难实现高功率的激光输出。

因此不能用短腔法选单纵模。

3.解:mm s f 01.02.060300=⨯=='ωω 5.解:∵L 1紧靠腔的输出镜面∴入射在L 1上的光斑半径ω满足:∴31.1125.220012=⨯=='ωωf f M 7.解:当声频改变ν∆时,衍射光偏转的角度为:νμυλφ∆=∆s; 而高斯光束的远场发散角为:0μπωλθ=; 可分辨光斑数为:1571031050103003360=⨯⨯⋅⋅⨯=⋅⋅∆=∆=-.πυωπνθφsn 8. 请解释调Q 激光器的原理,以及脉冲形成分哪几个阶段。

激光原理第四章答案

激光原理第四章答案

第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。

试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。

由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。

将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。

在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+0cos(2)I E E t v πν=⎡⎤因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。

对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。

激光原理第四章习题解答

激光原理第四章习题解答

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少?解答:根据公式(激光原理P136)cc υυνν-+=110υλν=由以上两个式子联立可得:0λυυλ⨯+-=C C 代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化λL2次。

证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。

在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。

以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 120 显然,光强是以频率cυν⋅2为频率周期变化的。

陈鹤鸣激光原理第四章答案

陈鹤鸣激光原理第四章答案

陈鹤鸣激光原理第四章答案1、36.城市环保建设——洒水车给街道洒水是环保工人的必修内容,是净化空气的主要举措。

洒水过后,路人感觉凉快一些,是因为水蒸发了,属于()[单选题] *A.液化现象放热B.液化现象吸热C.汽化现象放热D.汽化现象吸热(正确答案)2、2.一个力F分解为两个力F1、F2,则F1、F2共同作用的效果与F相同.[判断题] *对(正确答案)错3、考虑空气阻力,在空气中竖直向上抛出的小球,上升时受到的合力大于下降时受到的合力[判断题] *对(正确答案)错答案解析:上升时合力等于重力加上空气阻力,下降时合力等于重力减去空气阻力4、47.夏天刚从冰箱中取出冰棒后,发现以下四种现象:①冰棒上粘着“白粉”;②剥去纸后冰棒会冒出“白雾”;③冰棒放进茶杯后,一会儿杯的外壁就会“出汗”;④冰棒放进嘴里变成“糖水”。

这四种现象形成过程中放热的有()[单选题] *A.①②③(正确答案)B.②③④C.①②④D.①③④5、下列说法中正确的是()[单选题]A. 光的传播速度是3×108m/sB.光在反射时,入射角等于反射角C.凸透镜只对平行光有会聚作用D.一束太阳光可以通过三棱镜分解为不同的色光(正确答案)6、14.在“用托盘天平称物体质量”的实验中,下列操作错误的是()[单选题] *A.使用天平时,应将天平放在水平的桌面上B.称量时左边托盘应放置待称物体,右边托盘放置砝码C.观察到指针指在分度盘的中线处,确定天平已平衡D.天平调平后在称量过程中发现横梁不水平,此时可以通过调节平衡螺母使横梁水平(正确答案)7、88.如图为甲、乙两种物质的m﹣V图像,下列说法中正确的是()[单选题] *A.体积为15cm3的乙物质的质量为30g(正确答案)B.甲的质量一定比乙的质量大C.甲、乙体积相同时,乙的质量是甲的2倍D.甲、乙质量相同时,甲的体积是乙的2倍8、探究物体受到的浮力与液体密度的关系时,需要控制物体体积相同[判断题] *对错(正确答案)答案解析:需要控制物体排开液体的体积相同9、下列说法正确的是()[单选题]A.指南针能够指南北,是由于受到地磁场的作用(正确答案)B.能够自由转动的小磁针静止时,其N极指向地理南极附近C.磁体的磁性越强,能吸引的物质种类就越多D.磁体之间的作用是通过磁场发生的,但磁场并不存在10、15.学习科学知识的价值之一,是主动将所学知识创造性地服务于社会。

激光原理部分课后习题答案

激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e

激光原理答案

激光原理答案

激光原理答案测验1.11、梅曼(TheodoreH.Maiman)于I960年发明了世界上第一台激光器一—红宝石激光器,其波长为694.3nm。

其频率为:A:4.74某10^14(14是上标)HzB:4.32某10人14(14是上标)HzC:3.0某10人14(14是上标)Hz您的回答:B参考答案:Bnull满分:10分得分:10分2、下列说法错误的是:A:光子的某一运动状态只能定域在一个相格中,但不能确定它在相格内部的对应位置B:微观粒子的坐标和动量不能同时准确测定C:微观粒子在相空间对应着一个点您的回答:C参考答案:Cnull满分:10分得分:10分3、为了增大光源的空间相干性,下列说法错误的是:A:采用光学滤波来减小频带宽度B:靠近光源C:缩小光源线度您的回答:B参考答案:Bnull满分:10分得分:10分4、相干光强取决于:A:所有光子的数目B:同一模式内光子的数目C:以上说法都不对您的回答:B参考答案:Bnull满分:10分得分:10分5、中国第一台激光器——红宝石激光器于1961年被发明制造出来。

其波长为A:632.8nmB:694.3nmC:650nm您的回答:B参考答案:Bnull满分:10分得分:10分6、光子的某一运动状态只能定域在一个相格中,这说明了A:光子运动的连续性B:光子运动的不连续性C:以上说法都不对您的回答:参考答案:Bnull满分:10分得分:10分7、3-4在2cm的空腔内存在着带宽(A入)为1某10m、波长为0.5m的自发辐射光。

求此光的频带范围A V°A:120GHzB:3某10八18(18为上标)Hz您的回答:B参考答案:Anull满分:10分得分:0分8、接第7题,在此频带宽度范围内,腔内存在的模式数?A:2某10八18(18为上标)B:8某10八10(10为上标)您的回答:A参考答案:Bnull满分:10分得分:0分9、由两个全反射镜组成的稳定光学谐振腔腔长为L腔内振荡光的中心波长为求该光的波长带宽的近似值。

激光原理第四章答案1

激光原理第四章答案1

第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。

试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。

由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。

将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。

在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=⎡⎤=+因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。

对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。

《激光原理及应用》第四章(后半片为拓展之用)

《激光原理及应用》第四章(后半片为拓展之用)

光 的 基 本
对共焦腔的TEM00模来说,谐振频率的公式可以简化为:ν

q

c 2L
当L的变化为L,的变化为时,引起的频率相对变化为:
技 术
ν ( L )
ν
L
1. 腔长变化的影响
(1) 温度变化:一般选用热膨胀系数小的材料做为谐振腔的的支架
§4.1
激 (2) 机械振动:采取减震措施

' I ()2d a
02eI0xp(12e2xp12(2)d2a1222
)
I0
2
12
D



exp
ห้องสมุดไป่ตู้2a2
12

(4)分析衍射损耗时为了方便,经常引入一个所谓“菲涅尔数”的参量,它定义为
N a2
L



D

exp
2N
技 术
(3)若此时的光强为Iq,则有G(νq, Iq ) G阈,于是振荡达 到稳定,使激光器的内部只剩下q纵模的振荡。这种现
象叫做“纵模的竞争”,竞争的结果总是最靠近谱线
中心频率的那个纵模被保持下来。
§4.1
激 (4)在均匀增宽的稳定态激光器中,当激发比较强时, 光 也可能有比较弱的其他纵模出现,如何解释?这种现 图4-1 均匀增宽型谱线纵模竞争 器 象称为模的“空间竞争”。
§4.1
(1) 把激光器中原子跃迁的中心频率做为参考频率,把激光频率锁定到跃迁的
中心频率上,如兰姆凹陷法。


器 输
(2) 把振荡频率锁定在外界的参考频率上,例如用分子或原子的吸收线作为参
出 考频率,选取的吸收物质的吸收频率必须与激光频率相重合。如饱和吸收法。

激光原理周炳坤-第4章习题答案

激光原理周炳坤-第4章习题答案

第四章 电磁场和物质的共振相互作用习题(缺7)1.解:根据多普勒效应,有ccz z /1/10υυυυ-+=则ccc c cc z z z z /1/1/1/1/0υυλυυυυλ+-=+-== 当c z 1.0=υ时,nm 4.5721≈λ 当c z 4.0=υ时,nm 3.4142≈λ 当c z 8.0=υ时,nm 9.2103≈λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。

试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。

由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。

将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为:这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。

在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)v cνν'=+2(1)(1)(12)vv v c c cνννν'''=+=+≈+因而光屏P 上的总光场为:光强正比于电场振幅的平方,所以P 上面的光强为:它是t 的周期函数,单位时间内的变化次数为:由上式可得在dt 时间内屏上光强亮暗变化的次数为:(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。

对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S :式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。

激光原理——课后习题解答

激光原理——课后习题解答
其中(II)式可以改写为
因为 与 相比很大,这表示粒子在 能级上停留的时间很短,因此可以认为 能级上的粒子数 ,因此有 。这样做实际上是将三能级问题简化为二能级问题来求解。
由(I)式可得:
代入式(V)得:
由于
所以
红宝石对波长为694.3nm的光透明,意思是在能量密度为 的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是 。而要使入射光的能量密度等于出射光的能量密度,必须有 为常数,即 ,这样式(VI)变为:
第四章电磁场和物质的共振相互作用
习题
2.设有一台迈克尔逊干涉仪,其光源波长为 。试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期地变化 次。
证明:如右图所示,光源S发出频率为 的光,从M上反射的光为 ,它被 反射并且透过M,由图中的I所标记;透过M的光记为 ,它被 反射后又被M反射,此光记为II。由于M和 均为固定镜,所以I光的频率不变,仍为 。将 看作光接收器,由于它以速度v运动,故它感受到的光的频率为:
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 为实验测得,其值为
气体的碰撞线宽与气压p的关系近似为
当 时,其气压为
所以,当气压小于 的时候以多普勒加宽为主,当气压高于 的时候,变为以均匀加宽为主。

激光 原理课后习题答案

激光 原理课后习题答案

激光原理复习题第一章电磁波1、麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。

在方程组中是如何表示这一结果?答:每个方程的意义:1)第一个方程为法拉第电磁感应定律,揭示了变化的磁场能产生电场。

2)第二个方程则为Maxwell的位移电流假设。

这组方程描述了电荷和电流激发电磁场、以及变化的电场与变化的磁场互相激发转化的普遍规律。

第二个方程是全电流安培环路定理,描述了变化的电场激发磁场的规律,表示传导电流和位移电流(即变化的电场)都可以产生磁场。

第二个方程意味着磁场只能是由一对磁偶极子激发,不能存在单独的磁荷(至少目前没有发现单极磁荷)3)第三个方程静电场的高斯定理:描述了电荷可以产生电场的性质。

在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。

4)第四个方程是稳恒磁场的高斯定理,也称为磁通连续原理。

2、产生电磁波的典型实验是哪个?基于的基本原理是什么?答:赫兹根据电容器经由电火花隙会产生振荡原理设计的电磁波发生器实验。

(赫兹将一感应线圈的两端接于产生器二铜棒上。

当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。

瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。

有麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。

他将一小段导线弯成圆形,线的两端点间留有小电火花隙。

因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。

所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。

赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。

赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。

华南师范《激光原理》复习整理与部分习题解答

华南师范《激光原理》复习整理与部分习题解答

2 L

2 q
c 2 L c 2 L
纵模间隔: q 1 q
横模记法: TEM mnq :对于轴对称图形,m 表示沿腔镜面直角坐标系方向光场节线数,n 表示垂直方向光场节线数;对于旋转对称图形,m 表示沿辐角向的节线数(按直径数), n 表示沿径向节线圆数(暗环数)。 基模: TEM 00 q 光学谐振腔的损耗: ①几何损耗(选择性损耗,高阶横模的几何损耗比低阶横模大) 举例:腔镜倾斜:
1 L 2m 2D
②衍射损耗(选择性损耗,高阶横模的几何损耗比低阶横模大) 菲涅耳数(衍射光在腔内的最大往返次数,也表示从一面镜子的中心看到另一面镜子上可 划分的菲涅耳半波带数): N
a2 L
5 / 36
《激光原理》复习整理
平均单程衍射损耗因子: d
1 N
③透射损耗(非选择性损耗)/输出损耗:
1 A21
原子在该能级的平均寿命(起始值降到其 1/e): s
受激辐射:①外来光子能量达到 h E2 E1 才能引起受激辐射;②受激辐射所发出的光 子与外来光子的频率、传播方向、偏振方向、相位等性质完全相同。 受激辐射跃迁的爱因斯坦系数: B21 :
1 dn2 dn 1 W21 21 n2 dt dt st n2 W21 B21 v
《激光原理》复习整理
《激光原理》复习整理
序数 (No.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 激光器名称 (Laser name) He-Cd N2 Kr Ar He-Cd Ar Kr Xe Ar-Kr He-Ne 红宝石 Cr Kr Ca、Al、As Ca、As Nd Nd/YAG(掺钕的钇 铝石榴石) He-Ne CO2 H2O HCN

北交大激光原理_第4章_谐振腔部分

北交大激光原理_第4章_谐振腔部分

.第三章光学谐振腔理论一、学习要求与重点难点学习要求1.了解光学谐振腔的构成、分类和模式等基本知识,及其研究方法。

2.理解腔的损耗和无源腔的单模线宽。

3.掌握传播矩阵和光学谐振腔的稳定条件。

4.理解自再现模积分本征方程,了解针对平行平面腔模的数值迭代解法,理解针对球面对称共焦腔模式积分本征方程的近似方法及其解。

5.掌握等价共焦腔方法,掌握谐振腔的模式概念和光束特性。

6.了解非稳腔的模式理论。

重点1.谐振腔的作用,谐振腔的构成和分类,腔和模的联系;2.传播矩阵分析方法;3.光学谐振腔的稳定条件;4.模自再现概念;5.自再现模积分本征方程的建立,及其近似;6.球面对称共焦腔积分本征方程的近似方法,及其解;7.谐振腔的横纵模式和光束特性;8.稳定谐振腔的等价共焦腔。

难点1.传播矩阵的近似;2.非稳腔;3.模自再现概念;4.自再现模积分本征方程的建立5.球面对称共焦腔积分本征方程的近似方法,及其解;6.谐振腔的横纵模式和光束特性;WORD 专业.二、知识点总结,,mnq TEM m n q ⇔⎧⎧⎫→−−−−→⎪⎪→⎪⎨⎬⎪→→→−−−−→⎪⎪⎨⎩⎭⎪⇔--⎪⎩→驻波条件自再现模分立的本征态有限范围的电磁场形成驻波纵模光的频率(振荡频率,空间分布)模式的形成反映腔内光场的分布谐振腔的作用腔和模的联系衍射筛选横模光场横向能量分布腔内存在的电磁场激光模式模式的表示方法:横模指数,纵模指数衍射理论:不同模式按场分布,损耗,谐振频率来区分,理论方法几何光学+干涉仪理12121212()11)12()10101,1A D A D A D g g or g g L L g g R R ⎧⎨⎩+<+>⇒+±<<==⇒=-=-论:忽略镜边缘引起的衍射效应,不同模式按传输方向和谐振频率区分-粗略但简单明了光腔的损耗-光子的平均寿命-无源腔的Q值-无源腔的线宽1-1<稳定腔2(非稳定腔适用任何形式的腔,只要列出往返矩阵就能判断其稳定与否1共轴球面腔的稳定条件:稳定判据=临界腔2只使用于简单的共轴球面镜腔⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩(直腔)1. 谐振腔衍射积分方程推导⎧⎧⎫→−−−−−−→−−−−→→⎨⎬⎨⎩⎭⎩自再现模的概念求解方法引进复常数因子解析解:特殊腔(对称共焦腔)本征函数-振幅和相位分布(等相位面)菲涅尔基尔霍夫积分公式推广到谐振腔自再现模积分方程数值求解(数值迭代法)本征值-模的损耗、相移和谐振频率WORD 专业.⎧⎧22/0000(1)(1)2(,)N 11[4(,1)(,1)]arg (1)2x y L mn mn om on mn mn mn x y c e NR C R C kL m n λπμδγπφγφ+-⎧⎪=⎪→→⎨⎪⎪⎩=-=-→→∆==-+++∆基模:角向长椭球函数;本征函数振幅和相位高阶横模不是很小时,厄密~高斯函数相位分布:反射镜构成等相位面方形镜:对单程损耗:称本征值径向长椭球函数单程相移:共焦谐振频率:谐振条件2=-腔的自再现模2/0000[2(1)]4(,)N arg (21)2mnq r L mn mn mn c q m n L x y c e kL m n λππνμπφγφ-⎧⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋅→=+++⎪⎪⎩⎩⎧⎪=⎪→→⎨⎪⎪⎩→∆==-+++∆q 2基模:超椭球函数;本征函数振幅和相位高阶横模不是很小时,拉盖尔~高斯函数相位分布:反射镜构成等相位面圆形镜:单程损耗:只有精确解能够给出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据P138页的公式4.3.26可知,多普勒加宽:
因此,相干长度为:
根据题中给出的氦氖激光器单色性及氦氖激光器的波长632.8纳米,可根据下述公式得到氦氖激光器的相干长度:
可见,即使以前最好的单色光源,与现在的激光光源相比,相干长度相差2个数量级。说明激光的相干性很好。
(验证过)
4估算CO2气体在300K下的多普勒线宽ΔνD,若碰撞线宽系数α=49MHZ/Pa,讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
(2)由上式可知,在t-t+dt时间内,E2能级自发辐射的光子数为:
则在0-∞的时间内,E2能级自发辐射的光子总数为:
(3)自发辐射光子数与初始时刻能级上的粒子数之比为:
此题有待确认
7根据激光原理4.4节所列红宝石的跃迁几率数据,估算抽运几率 等于多少时红宝石对波长694.3纳米的光透是明的(对红宝石,激光上、下能级的统计权重为 ,且计算中可不考虑光的各种损耗)
证明完毕。(验证过)
3在激光出现以前,Kr86低气压放电灯是最好的单色光源。如果忽略自然加宽和碰撞加宽,试估计在77K温度下它的605.7纳米谱线的相干长度是多少?并与一个单色性Δλ/λ=10-8的He-Ne激光器比较。
解:根据相干长度的定义可知, 。其中分母中的是谱线加宽项。从气体物质的加宽类型看,因为忽略自然和碰撞加宽,所以加宽因素只剩下多普勒加宽的影响。
证明:
对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度 移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下:
解:根据P138页的公式4.3.26可知,多普勒加宽:
因为均匀加宽过渡到非均匀加宽,就是 的过程,据此得到:
,得出
结论:气压P为1.08×103Pa时,是非均匀加宽与均匀加宽的过渡阈值,.当气压远远大于1.08×103Pa的情况下,加宽主要表现为均匀加宽。
(验证过)
5氦氖激光器有下列三种跃迁,即3S2-2P4的632.8纳米,2S2-2P4的1.1523微米和3S2-3P4的3.39微米的跃迁。求400K时他们的多普勒线宽,并对结果进行分析。
解:
(1)根据P11相关内容,考虑到E2的能级寿命不仅仅是自发辐射寿命,还包括无辐射跃迁寿命,因此,E2能级的粒子数变化规律修正为:
,其中的τ与τLeabharlann 、τnr的关系为 ,为E2能级的寿命。
在时刻t,E2能级由于自发和无辐射跃迁而到达下能级的总粒子数为:
由于自发辐射跃迁而跃迁到激光下能级的粒子数为 ,因此由于自发辐射而发射的功率随时间的变化规律可以写成如下形式:
(验证过)
6考虑二能级工作系统,若E2能级的自发辐射寿命为τS,无辐射跃迁寿命为τnr。假设t=0时激光上能级E2的粒子数密度为n2(0),工作物质的体积为V,发射频率为ν,求:
(1)自发辐射功率随时间的变化规律。(2)E2能级的原子在其衰减过程中发出的自发辐射光子数。(3)自发辐射光子数与初始时刻E2能级上的粒子数之比η2。
10略
11短波长(真空紫外、软X射线)谱线的主要加宽是自然加宽。试证明峰值吸收截面为 。
证明:根据P144页吸收截面公式4.4.14可知,在两个能级的统计权重f1=f2的条件下,在自然加宽的情况下,中心频率ν0处吸收截面可表示为:
- -------------------------------------------------1
无多普勒效应的光场:
产生多普勒效应光场:
在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上)
第一次多普勒效应:
第二次多普勒效应:
在观察者处:
观察者感受到的光强:
显然,光强是以频率 为频率周期变化的。
因此,在移动的范围内,光强变化的次数为:
又因为小信号下(粒子数翻转刚刚达到阈值) ,因此 ,且
由此,方程组的第一个式子可以转变为: ,代入1式,得到:
既然对入射光场是透明的,所以上式中激光能级发射和吸收相抵,即激光上能级的粒子数密度变化应该与光场无关,并且小信号时激光上能级的粒子数密度变化率为零,得到
最后得到:
解答完毕。(验证过)
8略
9略
解答:已知红宝石的 , , , ,
分析如下:增益介质对某一频率的光透明,说明介质对外界光场的吸收和增益相等,或者吸收极其微弱,以至于对进入的光场强度不会产生损耗。对于本题中的红宝石激光器,透明的含义应该属于前者。
根据公式:
(激光原理P146-4.4.22)
由上边的第二项和第四项,可以得到:
--------------------------------------1
解:根据P138页的公式4.3.26,可分别求出不同跃迁的谱线加宽情况。
3S2-2P4的632.8纳米的多普勒加宽:
2S2-2P4的1.1523微米的多普勒加宽:
3S2-3P4的3.39微米的多普勒加宽:
由以上各个跃迁的多普勒线宽可见,按照结题结果顺序,线宽是顺次减少,由于题中线宽是用频率进行描述,因此频率线宽越大,则单色性越好。
上式 (P133页公式4.3.9)
又因为 ,把A21和ΔνN的表达式代入1式,得到:
证毕。(验证过)
12已知红宝石的密度为3.98g/cm3,其中Cr2O3所占比例为0.05%(质量比),在波长为694.3nm附近的峰值吸收系数为0.4cm-1,试求其峰值吸收截面(T=300K)。
解:
分析:红宝石激光器的Cr3+是工作物质,因此,所求峰值吸收截面就是求Cr3+的吸收截面。
1静止氖原子的 谱线中心波长为632.8纳米,设氖原子分别以0.1C、O.4C、O.8C的速度向着观察者运动,问其表观中心波长分别变为多少?
解答:
根据公式(激光原理P136)
由以上两个式子联立可得:
代入不同速度,分别得到表观中心波长为:
, ,
解答完毕(验证过)
2设有一台麦克尔逊干涉仪,其光源波长为 ,试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期性的变化 次。
相关文档
最新文档