《全等三角形》数学教学设计
华师大版数学八年级上册第13章《全等三角形》教学设计
华师大版数学八年级上册第13章《全等三角形》教学设计一. 教材分析华师大版数学八年级上册第13章《全等三角形》是学生在学习了平面几何基本概念、三角形、四边形等知识后,进一步研究全等三角形的性质和判定方法。
全等三角形是几何中的重要概念,是解决几何问题的基础。
本章内容主要包括全等三角形的定义、性质、判定方法以及全等三角形的应用。
通过本章的学习,使学生掌握全等三角形的性质和判定方法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何基本概念、三角形、四边形等知识,具备一定的逻辑思维能力和空间想象能力。
但全等三角形的学习对于学生来说是一个新的挑战,因为全等三角形的性质和判定方法较为抽象,需要学生能够理解和运用。
此外,学生对于实际问题的解决能力也有待提高。
三. 教学目标1.理解全等三角形的定义和性质,掌握全等三角形的判定方法。
2.能够运用全等三角形的性质和判定方法解决实际问题。
3.培养学生的逻辑思维能力、空间想象能力和解决实际问题的能力。
四. 教学重难点1.全等三角形的定义和性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索全等三角形的性质和判定方法。
2.运用多媒体辅助教学,直观展示全等三角形的性质和判定方法。
3.采用小组合作学习,培养学生团队合作精神。
4.注重实践操作,让学生在动手实践中掌握全等三角形的性质和判定方法。
六. 教学准备1.多媒体教学设备。
2.全等三角形的教学课件。
3.全等三角形的练习题。
4.三角板、直尺、圆规等绘图工具。
七. 教学过程1.导入(5分钟)利用多媒体展示全等三角形的图片,引导学生思考:什么是全等三角形?全等三角形有哪些性质?2.呈现(10分钟)讲解全等三角形的定义和性质,通过示例演示全等三角形的判定方法。
3.操练(10分钟)学生分组讨论,运用全等三角形的性质和判定方法解决实际问题。
全等三角形教案(教学设计)
全等三角形【教学目标】1.知识技能:(1)了解全等形及全等三角形的概念。
(2)理解掌握全等三角形的性质。
(3)能够准确辩认全等三角形的对应元素。
2.过程与方法:(1)在图形变换以用操作的过程中发展空间观念,培养几何直觉。
(2)在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3.情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
【教学重难点】1.全等三角形的性质。
2.找全等三角形的对应边、对应角。
【教学过程】引入新课:师:同学们好。
十一单元的学习我们认识了三角形,掌握三角形的边,角的关系,角平分线等。
这节课我们开始学习全等三角形。
出示学习目标。
新知介绍。
一、提出问题,创设情境。
师:下列的图形有什么特点。
(1)(2)(3)生:这几个图形是两两完全重合的。
师:那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。
移动或折叠后可以得到完全重合的图形。
板书:形状与大小都完全相同的两个图形就是全等形。
师:请观察下面两组图形,它们是不是全等图形有?为什么,与同伴进行交流。
(1)形状相同,但大小不同。
(2)大小相同,但形状不同。
生:全等图形的特征:全等图形的形状和大小都相同。
师:全等形包括规则图形和不规则图形全等。
二、获取概念。
学生自己动手(同桌两名同学配合):取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。
能够完全重合的两个三角形,叫全等三角形。
(1)“全等”用符号“≌”来表示,读作“全等于”。
(2)记作:△ABC≌△DEF,读作:△ABC全等于△DEF。
(3)互相重合的顶点叫做对应顶点。
A D;B E;C F。
(4)互相重合的边叫做对应边。
AB与DE;BC与EF;AC与DF。
(5)互相重合的角叫做对应角。
人教版八年级上册数学教学设计《12.1 全等三角形》
人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。
本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。
二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。
但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。
因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.培养学生对几何图形的认识和理解,提高学生的空间想象力。
3.培养学生运用全等三角形的知识解决实际问题的能力。
四. 教学重难点1.全等三角形的概念及其性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。
2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
3.运用多媒体辅助教学,提高学生的空间想象力。
4.采用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.准备相关教学课件和教学素材。
2.设计具有代表性的例题和练习题。
3.准备全等三角形的模型或图片,用于直观展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。
2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。
通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。
同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。
12.1 全等三角形 教学设计
12.1 全等三角形教学设计教学目标1.知道全等形和全等三角形的概念及性质,能够准确辨认全等三角形的对应元素。
2.在图形变换以及操作的过程中发展学生的空间观念,培养学生的几何直觉.3.经历观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.教学重点探究全等三角形的性质.教学难点掌握两个全等形的对应边,对应角.教学过程一、导入新课1.观察下面各组图形,说说他们有什么共同特点.二、推进新课归纳总结:全等形的定义:能够完全重合的两个图形叫做全等形.全等形的性质:如果两个图形全等,它们的形状和大小一定都相等.2.下面哪些图形是全等形?(1) (2) (3) (4) (5) (6)(7) (8) (9) (10) (11) (12)解:(2)和(7)、(3)和(9)、(5)和(12)、(6)和(10)3.全等三角形:能够完全重合的两个三角形叫_全等三角形__.全等三角形的对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.其中点A和_点D_,点B和_点E_,点C和_点F_是对应顶点.AB和_DE_,BC和_EF_,AC和__DF_是对应边.∠A和_∠D__,∠B和_∠E_,∠C和_∠F_是对应角.全等的表示方法:“全等”用符号“≌”表示,读作“全等于”.注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.找一找下列全等图形的对应元素.解:点A和点D,点B和点E,点C和点F是对应顶点.AB和DE,BC和EF,AC和DF是对应边.∠A和∠D,∠B和∠1,∠2和_∠F是对应角.5.思考:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?归纳总结:一个图形经过平移、翻折、旋转后,_位置_变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.全等三角形的性质:全等三角形的对应边相等,对应角相等.用几何语言表述:∵△ABC ≌△DEF,∴AB =DE,BC =EF,AC =DF(全等三角形的对应边相等),∠A =∠D,∠B =∠E,∠C =∠F(全等三角形的对应角相等).例已知:如图,△ABC ≌△DEF.(1)若DF =10 cm,则AC 的长为__10cm_;(2)若∠A =100°,则∠D 的度数为_100°_;(3)若∠A =100°,∠B =30°,求∠F 的度数.解:∵∠A =100°,∠B =30°,∴∠C =180°-∠A -∠B =50°.∵△DEF ≌△ABC ,∴∠F =∠C =50°(全等三角形的对应角相等).三、当堂练习1.判断题:(1)全等三角形的对应边相等,对应角相等.(√)(2)全等三角形的周长相等,面积也相等.(√)(3)面积相等的三角形是全等三角形.(×)(4)周长相等的三角形是全等三角形.(×)2.说出图中两个全等三角形的对应边、对应角。
《全等三角形》教学设计
《全等三角形》教学设计教学目标1.知识与水平理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质,能够利用性质解决简单的问题.在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径.3.情感、态度与价值观培养学生的识图水平、归纳总结水平和应用意识.内容分析教材从实际生活中重合的图片入手,导入全等三角形的概念及表示方法,然后着重探讨如何找全等三角形中对应边、对应角、对应顶点,并得出其中的一些规律。
最后得出全等三角形的性质,并使用三角形性质解答问题。
学情分析八年级学生绝大局部学生的数学成绩良好,一小局部学习有障碍。
他们有初步的图形概念,尤其是三角形的初步知识,也有图形重合的概念。
他们有一定的自主、探究学习水平和初步的抽象思维、概括水平,喜欢小组合作学习,喜欢动手操作,操作的教学活动效果较好。
教学重点(1)全等三角形以及相关概念.(2)探索全等三角形的性质.教学难点不同情况下的三角形全等的图形归纳.课前准备(1)教师自制的多媒体课件;(2)教师准备能够重合的图片;(3)每位同学准备两块全等的三角板、一张纸;(4)上课环境为多媒体大屏幕环境;教学过程一、创设情境、激发兴趣教师出示几组图片,学生观察并寻找形状大小相同的图形(1)(2)(3)动手操作:把一张白纸对折,然后任意撕一个图形,观察这两个图形有什么关系?你怎么知道的?归纳全等形的概念:全等形:能够完全重合的两个图形叫做全等形.动手操作:制作一个和自己手里的三角形能够完全重合的三角形。
定义全等三角形:全等三角形:能够完全重合的两个三角形叫做全等三角形.二、主体探究、合作交流1.全等三角形的对应元素及表示(1)△ABC与△DEF重合(电脑演示重合过程)这时,点A与点D重合.点B与点E重合.我们把这样互相重合的一对点叫做对应顶点;AB边与DE边重合,这样互相重合的边就叫做对应边;∠A与∠D 重合,它们就是对应角.△ABC与△DEF全等,我们把它记作:“△ABC≌△DEF”.读作“△ABC全等于△DEF”.注意:记两个三角形全等时,通常把对应顶点的字母写在对应的位置上.问题你能找出其他的对应点、对应边和对应角吗?(点C与点F是对应点,BC边与EF边是对应边,CA边与FD边也是对应边.∠B与∠E是对应角,∠C与∠F也是对应角.)(2)用两块全等的三角板重合放在桌面上,让其中一块绕一个顶点旋转,你能画出几种不同的位置关系,画出图形并说出对应元素.学生活动:学生小组合作,动手操作,一块三角板绕一个顶点旋转,画出以下四种位置关系,加深对全等三角形概念的理解以及动手操作水平的培养.不管哪种图形,点A与点A是对应顶点,点B与点E是对应顶点,点C与点D是对应顶点;AB边与AE边是对应边,AC边与AD边、DE边与CB边也是对应边;∠BAC与∠EAD是对应角,∠B与∠E,∠C与∠D是对应角.2.全等三角形的性质拿一张纸对折后,剪成两个全等的三角形,△ABC和△ECD,把这两个三角形一起放在以下图中△ABC的位置上,试一试,假如其中一个三角形不动,怎样移动另一个三角形,能够得到以下图中的各图形,从中你能得到什么启发?学生活动:经过观察、操作能够发现,能够经过平移、翻折、旋转得到,变化前后对应角、对应边不变.教师活动:组织学生观察、归纳,引导学生归纳全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.三、拓展创新、应用提升问题1如图,△ABC≌△AEC,∠B=30°,∠ACB=85°.求出△AEC各内角的度数.(学生根据全等三角形的性质独立解决.)解:在△ABC中,已知∠ACB=85°,∠B=30°,根据三角形的内角和等于180°,可得:∠BAC=65°.因为△ABC≌△AEC,所以∠EAC=∠BAC=65°,∠E=∠B=30°,∠ACE=∠ACB=85.答:△AEC的内角的度数分别为65°、30°、85°.问题2如图是一个等边三角形,你能利用折纸的方法把它分成两个全等的三角形吗?你能把它分成三个,四个全等的三角形吗?学生活动:学生小组讨论,经过讨论交流自己的方法。
全等三角形》优秀教学设计
全等三角形》优秀教学设计本章的教学策略主要是探究式教学和合作研究。
通过引导学生自主探索,让学生从实践中掌握三角形全等的条件和判定方法,培养学生的推理能力和表达能力。
同时,采用合作研究的方式,让学生在小组内相互协作,共同解决问题,提高学生的合作意识和团队精神。
四、教学过程设计:1.导入新知识:通过引导学生观察、比较、归纳等方式,引出三角形全等的概念和判定条件。
2.探究三角形全等的条件:通过实例分析和操作演示,让学生自主发现三角形全等的条件,并掌握“边边边”判定方法。
3.练与巩固:通过练题和小组合作探究,巩固学生对三角形全等的理解和应用能力。
4.拓展与应用:通过引导学生运用三角形全等的知识,解决实际问题,拓展学生的思维和应用能力。
五、教学评价方法:本章的教学评价主要采用自我评价和小组评价相结合的方式。
学生在研究过程中,应不断反思自己的研究情况,及时纠正错误,形成自我评价的意识。
同时,小组评价也是重要的评价方式,通过小组内部的互相评价,让学生认识到合作研究的重要性,提高学生的合作意识和团队精神。
三角形全等的判定是几何学中重要的内容之一。
在教学中,我们可以通过分析“性质与判定”的关系,猜测将性质中的条件选取部分能否更简捷方便地判断两个三角形全等。
通过作图、剪图、放图、比较图、画图等活动,我们可以得到三角形全等的判定条件,即三个基本事实的归纳。
然后,我们可以运用基本事实证明相等的线段或相等的角的应用。
在教学中,我们要引导学生真正通过动手操作、相互比较、逐渐发现结论,概括结论,让学生在经历知识发生发展的过程中,发现内容的本质特征,书写严谨的证明格式,用精准的数学语言概括其特征,得到三角形全等的判定方法。
在课前准备阶段,我们可以通过提问学生平行线的性质与判定有什么关系,以及满足什么条件的两个三角形全等,来引导学生思考和准备新知识的研究。
同时,我们还可以通过情境创设,如庆祝国庆节制作三角形彩旗,来激发学生的兴趣和注意力,为新课的探究做最好的准备。
全等三角形数学教案
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
苏科版数学八年级上册1.2《全等三角形》教学设计
苏科版数学八年级上册1.2《全等三角形》教学设计一. 教材分析《全等三角形》是苏科版数学八年级上册的教学内容。
本节课主要让学生掌握全等三角形的概念、性质及判定方法。
教材通过引入生活中的实例,引导学生探索全等三角形的性质和判定方法,培养学生的观察能力、思考能力和动手操作能力。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,并具备了一定的观察、操作和推理能力。
但部分学生可能对全等三角形的概念和判定方法理解不透彻,容易与相似三角形混淆。
因此,在教学过程中,教师需要关注学生的学习差异,针对性地进行讲解和辅导。
三. 教学目标1.理解全等三角形的概念,掌握全等三角形的性质。
2.学会用SSS、SAS、ASA、AAS四种方法判定两个三角形全等。
3.能够运用全等三角形的性质和判定方法解决实际问题。
4.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.全等三角形的概念及判定方法。
2.不同判定方法之间的联系和运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.动手操作法:让学生动手剪拼三角形,加深对全等三角形性质的理解。
3.推理教学法:引导学生运用逻辑推理证明三角形全等。
4.小组合作法:鼓励学生分组讨论,共同探索全等三角形的判定方法。
六. 教学准备1.教学课件:制作全等三角形的相关课件,便于引导学生直观地认识和理解全等三角形。
2.教学素材:准备一些三角形图形,用于学生的动手操作和练习。
3.教学视频:收集一些与全等三角形相关的实例视频,用于导入和新课讲解。
七. 教学过程1.导入(5分钟)播放一段关于全等三角形的实例视频,引导学生关注全等三角形在现实生活中的应用。
提出问题:“为什么说这两个三角形是全等的?”激发学生的思考和兴趣。
2.呈现(10分钟)教师展示一组全等的三角形,引导学生观察并总结全等三角形的性质。
学生通过观察,发现全等三角形对应边和对应角相等。
华师大版数学八年级上册《全等三角形》教学设计
华师大版数学八年级上册《全等三角形》教学设计一. 教材分析华师大版数学八年级上册《全等三角形》是初中的重要知识点,主要让学生了解全等三角形的概念、性质及判定。
本节内容是在学生已经掌握了三角形的基本知识的基础上进行学习的,为后续学习相似三角形、解三角形等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于图形的认识有一定的基础。
但是,对于全等三角形的概念和判定方法,学生可能初次接触,需要通过实例理解和掌握。
同时,学生可能对实际问题中的全等三角形判断感到困惑,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:使学生了解全等三角形的概念、性质和判定方法,能够运用全等三角形的知识解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的科学精神。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过观察、操作、思考、交流等活动,掌握全等三角形的知识。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、剪刀、胶水等。
2.学具:学生用书、练习册、草稿纸、剪刀、胶水等。
七. 教学过程1. 导入(5分钟)教师通过多媒体展示两个形状、大小完全相同的三角形,引导学生观察并提问:“这两个三角形是什么关系?”学生可能回答“相等”、“一样”等,教师引导学生用“全等”这个词来描述。
教师总结:全等三角形是指形状、大小完全相同的三角形。
2. 呈现(10分钟)教师通过PPT展示全等三角形的性质和判定方法,引导学生观察、思考并总结。
性质:全等三角形的对应边相等,对应角相等。
判定方法:SSS(三边判定)、SAS(两边及夹角判定)、ASA(两角及夹边判定)、AAS(两角及非夹边判定)。
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
三角形全等的判定教案 三角形全等的判定教学设计
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
沪科版八年级上册数学第14章《全等三角形》教学设计
沪科版八年级上册数学第14章《全等三角形》教学设计一. 教材分析《全等三角形》是沪科版八年级上册数学第14章的内容,本章主要让学生了解全等三角形的概念,掌握全等三角形的性质和判定方法,以及会运用全等三角形解决一些实际问题。
全等三角形是几何中的一个重要概念,也是后续学习的基础。
二. 学情分析八年级的学生已经学习了三角形的性质,对图形的变换有一定的了解,但全等三角形是一个全新的概念,需要学生进行一定的转换和拓展。
学生在学习过程中可能对全等三角形的判定方法理解起来有一定的困难,需要通过大量的实例来加深理解。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.能够运用全等三角形解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.全等三角形的概念及判定方法。
2.全等三角形的性质。
3.运用全等三角形解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探索全等三角形的性质和判定方法。
2.利用多媒体辅助教学,展示图形变换过程,增强学生的空间想象能力。
3.采用案例分析法,让学生通过分析实例,加深对全等三角形概念的理解。
4.小组讨论,培养学生的合作精神和交流能力。
六. 教学准备1.多媒体教学设备。
2.全等三角形的案例资料。
3.练习题。
七. 教学过程1.导入(5分钟)通过提问方式复习三角形的相关知识,引出全等三角形的概念。
2.呈现(10分钟)利用多媒体展示全等三角形的实例,让学生观察并思考:如何判断两个三角形全等?3.操练(10分钟)让学生分组讨论,每组找出几个全等的三角形,并说明判定方法。
教师巡回指导,给予反馈。
4.巩固(10分钟)教师选取一些判断题,让学生判断两个三角形是否全等。
答案正确的学生可以获得小奖品。
5.拓展(10分钟)让学生运用全等三角形的知识解决一些实际问题,如在平面几何中,如何证明两个三角形全等?6.小结(5分钟)教师总结全等三角形的概念、性质和判定方法,强调重点知识点。
人教版八年级上册12.1全等三角形教学设计
2.指出学生在课堂练习中的常见错误,提醒他们在以后的学习中注意避免。
3.鼓励学生提出对本节课知识的疑问,及时解答,确保他们对全等三角形知识的掌握。
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定条件(SSS、SAS、ASA),能够准确识别和绘制全等三角形。
人教版八年级上册12.1全等三角形教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法,能够准确地识别和绘制全等三角形。
-学生能够回忆起之前学过的等腰三角形、等边三角形等特殊三角形的性质,为新学习的全等三角形判定打下基础。
-通过直观演示和实际操作,让学生掌握SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)全等三角形的判定定理,并能够运用这些定理解决具体问题。
1.采用生动的语言和形象的比喻,帮助学生理解抽象的几何概念。
2.使用教具、多媒体等教学资源,增强学生的直观感受。
3.通过与学生互动,及时解答学生的疑问,确保学生对新知识的掌握。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论,让学生在合作中深入探讨全等三角形的性质和判定方法。我会给出几个具有代表性的问题,引导学生思考:
2.学会运用全等三角形的性质和判定方法解决实际问题,如计算三角形面积、证明线段或角相等。
3.掌握全等变换(平移、旋转、翻转)的基本操作,能够运用这些变换创造全等图形。
(二)过程与方法
1.通过观察、分析和归纳,培养学生逻辑思维能力。
2.设计探究活动,让学生在实践过程中掌握全等三角形的判定方法。
3.通过小组合作,培养学生的团队协作能力和沟通能力。
人教版八年级上数学教学设计《第12章全等三角形》
人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。
通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。
教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。
二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。
但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。
同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法以及在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。
3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。
4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。
六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。
2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。
3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。
《全等三角形》教学设计
《全等三角形》教学设计教学设计:全等三角形一、教学目标1. 知识目标:学生能够了解全等三角形的定义、性质以及判定全等三角形的方法;2. 能力目标:培养学生的逻辑思维能力和问题解决能力;3. 情感目标:激发学生对几何知识的兴趣,培养学生的数学学习兴趣和学习动力。
二、教学重点难点1. 教学重点:全等三角形的定义、性质以及判定方法;2. 教学难点:全等三角形的判定方法及其应用。
四、教学过程1. 导入:通过一个具体的生活例子引入全等三角形的概念,引发学生对全等三角形的兴趣。
2. 提出问题:通过提出问题的方式,引导学生思考全等三角形的性质和判定方法。
3. 学习新知识:介绍全等三角形的定义和性质,让学生理解全等三角形的概念。
4. 深化理解:通过实例演示,让学生了解全等三角形的判定方法。
5. 拓展应用:通过实际问题,引导学生应用全等三角形的知识解决问题。
6. 练习巩固:布置一些练习题,巩固学生对全等三角形的理解和运用能力。
7. 总结提高:总结全等三角形的知识点,强调全等三角形在实际生活中的应用,并提出下节课的预习内容。
五、教学手段1. 教师讲解2. 多媒体教学3. 实例演示4. 学生讨论5. 课堂练习六、教学评价1. 课堂表现评价:观察学生在课堂上的积极参与情况和答题情况。
2. 作业评价:批改学生的作业,了解学生对全等三角形知识的掌握情况。
3. 能力评价:通过课堂练习和课后练习,评估学生运用全等三角形知识解决问题的能力。
七、教学反思通过本次教学设计,希望能够让学生对全等三角形的概念和性质有所了解,并能够掌握全等三角形的判定方法和应用。
在教学过程中,需要注重引导学生思考和讨论,培养学生的逻辑思维能力和问题解决能力。
也要关注学生的学习情况,及时调整教学策略,确保教学效果。
人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计
人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。
本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。
本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。
教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。
为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。
这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。
本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。
通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。
《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。
通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。
教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。
数学全等三角形教学设计教案
数学全等三角形教学设计教案经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。
全等三角形是几何中全等之一。
下面是整理的数学全等三角形教学设计教案【最新3篇】,倘若对您有一些参考与帮忙,请共享给最好的伙伴。
数学全等三角形教案篇一一、教学目标【学问与技能】把握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。
能运用全等三角形的条件,解决简单的推理证明问题。
【过程与方法】经过探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。
【情感、态度与价值观】在探究归纳论证的过程中,体会数学的严谨性,体验成功的欢乐。
二、教学重难点【教学重点】“角角边”三角形全等的探究。
【教学难点】将三角形“角边角”全等条件转化成“角角边”全等条件。
三、教学过程(一)引入新课利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)(四)小结作业提问:今日有什么收获?还有什么疑问?课后作业:书后相关练习题。
数学全等三角形教案篇二全等三角形课题:全等三角形教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、本领目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析本领;(2)通过找出全等三角形的对应元素,培育同学的识图本领。
3、情感目标:(1)通过感受全等三角形的对应美激发同学酷爱科学勇于探究的精神;(2)通过自主学习的进展体验取得数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么巧妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》数学教学设计
《全等三角形》数学教学设计
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
教学重点
全等三角形的性质.
教学难点
找全等三角形的对应边、对应角.
教学过程
Ⅰ.提出问题,创设情境
1、问题:你能发现这两个三角形有什么美妙的关系吗?
这两个三角形是完全重合的.
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.
3.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.
形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.
概括全等形的准确定义:能够完全重合的`两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.
Ⅱ.导入新课
将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
议一议:各图中的两个三角形全等吗?
不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.
(注意强调书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.
问题:△OCA≌△OBD,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,•所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C, 指出其他的对应边和对应角.
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
解:对应角为∠BAE和∠CAD.
对应边为AB与AC、AE与AD、BE与CD.
[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)
借鉴例2的方法,可以发现∠A=∠A, 在两个三角形中∠A的对边
分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB•与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB 与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
做法二:沿A与BC、DE交点O的连线将△ABC 翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
Ⅲ.课堂练习
课本练习1.
Ⅳ.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
Ⅴ.作业
课本习题1
课后作业:《新课堂》
板书设计
13.1全等三角形
一、概念
二、全等三角形的性质
三、性质应用
例1运动角度看问题)
例2根据位置来推理)
例3:(根据位置和运动角度两种办法来推理)
四、小结:找对应元素的方法
运动法:翻折、旋转、平移.。