四年级数学 数阵图
小学四年级逻辑思维学习—数阵图与幻方
小学四年级逻辑思维学习—数阵图与幻方”知识定位一、什么是数阵图?在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察上面两个图:右图(1)中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右图(2)就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从如何来填好数阵图开始。
如何填好数阵图?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.二、什么是幻方?同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:三、如何解决幻方问题?幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.知识梳理987653421987654321(一)封闭型数阵问题(二)辐射型数阵(三)其它类型的数阵图(四)幻方例题精讲【试题来源】【题目】将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题目】小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?【题目】图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题目】小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?【题目】海豚是很聪明的动物,它能将1~9填入右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于小、中、大圆周上,你能做到吗?【题目】在下图中的10个○内填入0~9这10个数字,使得循环式成立:【题目】请在图中的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,最下面的数是20.+=====----20【题目】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.【题目】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.【题目】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3【题目】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.【题目】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.【题目】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.【题目】在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.习题演练【题目】将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
四年级数学思维能力拓展专题突破系列(二十)数阵图讲义(含答案)
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(1)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的概念。
2、灵活应用数阵图的求解方法。
例题1:把1~5这五个数分别填在右图中的方格中,使得横行三数之和与竖列三数之和都等于9?例题2:将1~7这七个自然数填入右图的七个○内,使得每条线上的三个数之和都等于10。
例题3:将 10~20填入右图的○内,其中15已填好,使得每条边上的三个数字之和都相等。
例题4:下把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等。
(即是该课程的课后测试)练习1:如图,将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12或10。
练习2:如图将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
练习3:如图,将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)练习4:如图,将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。
练习5:如图,将1~11这十一个数分别填入图的○里,使每条直线上的三个数之和相等,并且尽可能大。
练习1:解析:练习2:解析:练习3:解析:练习4:解析:练习5:解析:中心数是重叠数,并且重叠4次。
所以每条直线上的三数之和等于[(1+2+…+11)+重叠数×4]÷5=(66+重叠数×4)÷5。
为使上式能整除,重叠数只能是1,6或11。
显然,重叠数越大,每条直线上的三数之和越大。
所以重叠数是11,每条直线上的三数之和是22。
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(2)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握幻方的概念。
2、求解幻方的方法。
例题1:请你将1~9这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等。
【机构秘籍思维导引】数学四年级第4讲数阵图初步(教师版+学生版,含详细解析)全国通用
第4讲数阵图初步内容概述各种较为基本的数阵图问题,了解重数的概念,并以此进行分析;学会分析特殊位置上的数值;某些情况下还需要考虑对称性。
典型问题兴趣篇1. 在图4-1中的三个圆圈内填入三个不同的自然数,使得三角形每条边上的三个数之和都等于11.【答案】:【分析与解】:先如下图将空白处标上字母:根据题意:a=11-2-5=4;b=11-4-1=6;c=11-2-6=3.2. 请分别将1,2,4,6这四个数填在图4-2中的各空白区域内,使得每个圆圈里四个数之和都等于15.【答案】:【分析与解】:如下图,先将空白区域标上字母根据题意:上面圆内四个数之和等于15,可得a+d=15-5-7=3=1+2;同理,b+d=15-5-3=7=1+6;c+d=15-7-3=5=1+4。
由于d属于三个圆的公共部分,经对比发现可得:d=1;a=2;b=6;c=4.3. 如图4-3所示,请在三个空白圆圈内填入三个数,使得每条直线上三个数之和都相等。
【答案】:【分析与解】:如下图:因为8+9+a=b+a+7可得b=10;那么每条线的和=8+3+10=21;那么a=21-8-9=4;c=21-8-7=6.4. 把1至8分别填入图4-4的八个方格内,使得各列上两个数之和都相等,各行四个数之【答案】:1 7 6 48 2 3 5【分析与解】:因为1+2+3+……+8=36;所以每行的和等于36÷2=18;每列的和=36÷4=9;从列入手,可将1~8这八个数分为和等于9的四组:1+8=2+7=3+6=4+5。
再调整使行和等于18:我们发现1+4=2+3;8+5=6+7.经过调整可得答案。
5. 把1至12分别填入图4-5的圆圈内,使图中三个小三角形三条边上的六个数之和相等。
【答案】:【分析与解】:经过观察发现,此图是个具有对称性的图案;若使三个小三角形的三边之和相等;只需要使得图中每条边上的两个数之和相等即可。
因此可将1~12对称性地分为六组如下:1+12=2+11=3+10=4+9=5+8=6+7.6. 在如图4-6所示的3×3方格表内填入1、2、3这三个数字各三次,使得每行每列以及两条对角线上的三个数字之和都相等。
四年级数学趣的数阵图课件
1
猴博士考考你
把3到7这5个数分别填入到“T”和“十” 字形的方格内,使横、竖两行的3个数的和 相等。
3 3
和猴博士一起玩个数学游戏好吗?
第一关 把1、2、3、4、5、6、7这7个数字填入图中 的 里,使每条线上的 里的3个数的和相等。
6 1 3 7 2
4
5
第二关 将1、2、3、4、5、6填入到下面的小圆圈里, 使每个大圆圈上4个数的和都是16,你能办到吗?
有趣的数阵图
四年级上学期 《数学探究 我快乐》第51页~54页
金坛市金城镇中心小学
丁国新
让猴博士告诉你
将一些数按照一定的规律排列而成的图 形,通常叫做数阵图。
例1 在下面的三角形数阵图的 里, 填入适当的数,使三边上3个 里的数的和 是12。
5
1
3 2
4
6
猴博士考考你
在正方形数阵图中的 里填入适当的 数,使每条线上的3个数的和等于21。
1
5
2
4
6
3
猴博士送你一句数学家名言:
数学好玩!
陈省身
谢谢各位!
; /kxiantu/ k线理论
ath18cwb
蹭过来,谁知 吩咐的是:“我身子如此,不得向诸长辈和姐妹们问安,你且替我去请安、问好、道声惭愧。”请安问好,是露脸的事啊, 光明正大可去菊花会上了,还不用偷溜的!乐韵喜出望外,当即答应下来——话说回来了,表 一向身子太弱,几乎所有的亲族活动都不参 加,也不屑得跟人面子上交代交代,今儿怎么开窍了?乐韵有些疑惑。“对了,替我给诸长辈与姐妹们带些礼物去罢!”宝音道,“你看 带些什么去好?”带点见面礼,哪怕是一朵花一根草呢,接受方出于情面,就要对乐韵有所赏赐了!带个见面礼是好的!乐韵果然拼命动 脑袋的想,临急临忙拿些什么去呢?自家人原不用太贵重,表 屋里也没什么好东西,每个人都送过来太难办……对了!重阳菊花会,就送 花儿罢!乐韵嘻嘻笑道:“ 屋后那两株芙蓉开得倒好,不如乐韵剪一篮子,送去给奶奶姑娘们添妆如何?”芙蓉?宝音微微一怔,想起来, 应该说的是表 屋后木芙蓉树,算起来,现在倒正在着花时候,攒上一篮子没问题,统总拎过去,谁爱拿就拿,做个整团儿人情,可不比给 每人准备礼物来得便当。乐韵在这方面,果然有急智。她点头道:“便是这样罢!”洛月注目宝音,分明想问,那两株木芙蓉,是 心爱之 物,平常都舍不得让人接近的,今儿怎么舍得让人剪了去?真要是韩玉笙在,听了乐韵建议,准气得咳血,不准动花儿分毫,宝音却想花 开无非要谢的,竟不如往合适的地方去,因此轻轻易易便准了。乐韵只怕宝音反悔,忙着道:“那姑娘快休息要紧!乐韵自会照料得。” 兴冲冲往门外去,宝音冷不丁又丢出来一句:“午前必要回还!”乐韵想想,她的午饭按例还在表 屋里开,菊花会那边有头有脸的人都在, 要蹭也不太好蹭,可不要回来吃饭么?这条却使得的,便应了,去掇个竹匾,寻个花剪,挎个三腿小圆凳往后头去。且喜两棵树都生得不 高,踩上凳子,就够到了下头的枝干,咔嚓咔嚓剪起来。这树一株大红、一株粉白。洛月剪完了一色,又去剪另一色,猛抬头看见邱妈妈 拢着手、虎着脸瞪着自己。乐韵一时头皮有些发麻,叫了声“邱妈妈”,辩解道:“这次可是姑娘叫我剪的,您也看见了!”邱妈妈哼了 一声,走开。临走丢下一句话:“仔细摔断你的腿!”乐韵呆了会儿,恨恨举手,“咔叭”又剪下去。这一篮子鲜洁丰丽芙蓉花朵挎去菊 花宴上,众人们反应多半是:“哟,今儿笙妹妹怎么想着我们?”各各拣了几朵,就席面上多多少少也给了乐韵一些儿赏,乐韵勾留至近 午,一向相熟的丫头筱筱过来问她:“你留在这儿吃么?听说今儿中午有九品羹,还有芋大嫂拿手的鲜虾蛋卷,连我们下头人都有份!” 乐韵还未回答,筱筱又“哦”了一声:“不过我是跟着我们四姑娘,才有
数阵图
数阵图
一、数阵图定义及分类:
定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.
数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.
二、解题方法:
解决数阵类问题可以采取从局部到整体再到局部的方法入手:
第一步:区分数阵图中的普通点(或方格)和关键点(或方格);
第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;
第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.
简单数阵图
一、辐射型数阵图
从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和
数和+中心数×重复次数=公共的和×线数
数和:指所有要填的数字加起来的和
中心数:指中间那数字,即重复计算那数字
重复次数:中心数多算的次数,一般比线数少1
公共的和:指每条直线上几个数的和
线数:指算公共和的线条数
二、封闭型数阵图
多边形的每条边放同样多的数,使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字,公共的和
数和+重叠数的和=公共的和×边数
数和、公共的和跟辐射型数阵图一样的意思
重叠数的和:指数阵图顶角重复算的数全加起来的和
边数:指封闭图形的边数。
四年级下数学奥数-有趣的数阵图 全国通用( 17 张)
4
6
B3
5
C1
2~9填入左下图的八个○中,使得每条边上的三个数之和都等 于18。
4 A
5
9 B
四条边数字总和: 4×18=72
2-9九数之和:
6
2 2+3+4+5+6+7+8+9=44
A+B+C+D=72-44=28
C
3
D 故只能选,
8
7
4+9+8+7=28
将1~8这八个数分别填入右图的○里,使每条边上的三个数之 和都等于15。
6 31 5 4 72
将1-6这六个数字填入下图的圆圈中,使每个大 圆圈上4个数字之和为14。
3
1
2
4
6
5
把2~7这六个数填入右上图的○里,使每个圆 圈上的四个数之和都等于18。
将1、2、3、4、5、6填在下图中,使每条边上三个数之和等于9。
A:(48-45)÷3=1
练 1-9一数练之:和将:11~+27+入3+下4图+5的+6○+7内=,28使得每条边上的三个数字之6和都等于12。 4
横行、竖行五数和:24+24=48
7
8
9
四条线数之和: 12×4=48 1-9数之和:
1+2+3+4+5+6+7+8+9=45 A:(48-45)÷3=1 剩下的数字平均分成四组, 每组数字之和12-1=11 所以应为: 2+9、3+8、4+7、5+6。
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
四年级下册数学试题-奥数专题讲练:6 数阵图 精英篇(解析版)全国通用
第六讲数阵图数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.分析:设每个圆内的数字之和为k,则五个圆内的数字之和是5k,它等于1—9的和,再加上两两重叠处的四个数之和. 1+2+…+8+9=45,而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,5k≤45+30=75且5k≥45+10=55,即11≤k ≤15.当k=11,13,14时可得四种填法(见下图),k=12,15时无解.教学目标想挑战吗?2008年奥运会快要到了,下图是大家都熟悉的奥林匹克的五环标志,你能把1—9分别填入五个圆相互分割的九个部分,并且使每个圆环内的数字之和都相等吗?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:三角形每条边之和等于1~6的和吗?为什么?不等于,因为三条边上所有数相加的过程中三个角上的数都被重复加了一次,也就是说三个角上的数是重复数,三个重复数的和可求为:3k-(1+2+…+5+6)=3k-21.(3)强调分组法与试验法:知道了三个数的和,通过分组可以知道k的取值范围,进一步采用试验法,将它们一一进行试验,选择正确的结果.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.专题精讲[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.61453 2分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.【例2】(★★★)小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个三角形三个顶点和为20,相应三角形上的三个数只能是4,6,10,我们逐一试验,答案如右上图.[巩固一]将数0,1,2,…,9分别填人其中的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等,你能做到吗?561937248152876349分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[巩固二]有八个点如图分布,这八个点互相之间形成若干矩形和正方形,如何在这八个点上填上1到8之间的一个数,使得每个点上的数都不同,并且,所有矩形(包括正方形)的顶点上数的和相等?65437281分析:每一个矩形或正方形都包括两组对顶点,八个顶点中正好有四组对顶点,只要保证每组对顶点上【例3】(★★★)如下图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[巩固]1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使5尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6.于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.【例4】(★★★)图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6810471151296分析:由等量关系容易得到第一行的数与对应列的最底行的数的差相等,最右边列的两个数中至少有一个数大于等于12,而9个连续自然数包含6,因此最大的数最大只能是14,所以从最右边列开始尝试,容易得出答案,如右上图.[巩固]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组被重复计算三次,一组被重复计算两次,一组被重复计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,如右上图.(二)辐射型数阵【例5】 (★★★)小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?16141713181219112010151614171318121911201015分析:将五条边上的和相加,得数一定是5的倍数,其中中间的数被重复计算了5次,而10+11+12+……20=165,所以中间的数必须是5的倍数,才能使在中间的数多被计算了4次后,总和仍能被5整除.所以中间的数只能是10、15、20,填法见右上图.亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。
小学数学 《数阵图》练习题(含答案)
小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。
小学数学《数阵图》练习题
小学数学《数阵图》练习题基础班1.如图(1),将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
解答:2.如图(2),将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
解答:3.如图(3),将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)解答:4.如图(4),将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。
解答:5. 把1~8这八个数字分别填入右图中的圆圈内,使每个圆圈上与每条直线上四个数之和都相等,给出一种具体的填法.解答:提高班2.如图(1),将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
解答:2.如图(2),将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
解答:3.如图(3),将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)解答:4.如图(4),将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。
解答:5.(十一届“迎春杯”决赛)如图,九个小正方形内各有一个两位数,而且每行、每列及两条对角线上的三个整数的和相等.那么X=____.解答:x=12(22+26)=24.6. 把1~8这八个数字分别填入右图中的圆圈内,使每个圆圈上与每条直线上四个数之和都相等,给出一种具体的填法.解答:精英班习题三3.如图(1),将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
解答:2.如图(2),将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
解答:3.如图(3),将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)解答:4.如图(4),将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。
第3讲-数阵图初步-高思数学_4年级上-第3讲-数阵图初步(彩色)
在一棵小松树上挂满小礼物,缀上彩带,点上彩灯或蜡烛,就成了圣诞树.在美丽的几何图形中按照巧妙的规律点缀上一些数字,就成了数阵图.数阵图就是将一些数按照一定规律排列而成的图形,有时也简称数阵.数阵图种类繁多,奇妙无穷.它是一座真正的数字迷宫,对于喜欢探究数字规律的人有着极大的吸引力,连大数学家欧拉对它都有着浓厚的兴趣.让我们来欣赏这些美妙的数阵图吧.将1~9这九个数字分别填入右图中的圆圈内,使得图中所有三角形(共七个)的三个顶点上的数之和都等于15.现在已经填好了其中三个,请你在图中填出剩下的数.例题1569分析 你能找到图中的七个三角形吗?已知每个三角形的三个顶点上数之和都是15,根据这个条件我们最先能填出哪个位置上的数呢?练习1.在图中的四个圆圈内填入合适的自然数,使得正方形每条边上的三个数之和都等于20 分析 每边上的三个数之和并不知道,也不能直接算出.但由于每边上的和是相等的,我们可以比较其中两个和.如右图所示,根据上边三个数之和与右边三个数之和相等,你能判断出右下角应该填哪个数吗?练习2.在图中九个圆圈中分别填入九个不同的自然数,使得图中六条直线上的三个数之和相等.现在已经填入五个数,请将其补充完整.俗话说,“射人先射马,擒贼先擒王”.在很多数阵图中,都有一些位置是关键的位置,有一些数是关键的数,分析这些关键的位置和关键的数往往是解决问题的突破口.不同的自然数,使得正方形每条边上的三个数之和相等.现在已经填好了五个数,那么每条边上各数之和应该是多少?并将其补充完整.例题2分析 观察中间两个圆圈,各有6条线段与这两个圆圈直接相连.你能判断出这两个圆圈中可以填哪些数吗?练习3.把2、3、4、5、6、8、9、15、17、32这十个数填入下图的圆圈中,使得除第一行之外的每个圆圈中的数都等于它上面的两个数之和.这一讲的最后,我们介绍一个新的概念:重(chóng )数.重数就是该位置上的数被计算的次数.先看一个简单的数阵图:在这个数阵图中,中间方格是最特殊的.横行的三个方格中有它,竖列的三个方格中也有它.如果我们把横行的和与竖列的和相加,那么中间方格就被计算了两次,这时我们就说这个方格的“重数”是2.下面我们就来看看与重数有关的问题.图的八个圆圈内,使得任意两个有线段直接相连的圆圈内的数字之差都不等于分析 七个方框中的数之和是123456728++++++=,而把三条直线上的三个和加在一起却是8111534++=,这是因为不是每个方框都恰好被计算了一次.你能看出在和34中每个方框都被计算了几次吗?由此能确定哪些方框中的数呢?练习4.把这七个数填入右图中的方框中,使得每条直线上的三个数之和都相等.分析 哪个位置最特殊?你能算出这个特殊位置上的数是多少吗?练习5.把1~8这八个数填入下面“十一”图形的八个空格内,使得每一条直线上的三个个数填入右图的七个方框里,每个数只填一次.使得三条直线上的三个数之和恰好分别是圆上的三个数的乘积最大是多少?边“六一”图形的十一个空格内,使得每一条直线上的所有数之和都相等.例题5数之和都相等.一般来说,数阵图按照图形结构可以划分为三类:封闭型数阵图、辐射型数阵图和复合型数阵图.比如例题1、2、3中的图是封闭型数阵图,例题5中的图是辐射型数阵图,例题4中的图是复合型数阵图.但万变不离其宗,无论是哪一种数阵图,填数的方法和技巧都是一样的.当然,数阵图并不局限于以上几种,同学们不妨发挥想象力,尝试画出各种几何图形,并点缀上合适的数,构造出属于你自己的数阵图吧!本一、如果数阵图中有若干个相等的和,可以把其中某几个和累加在一起,或者比较有公共部分的两个相等的和.二、重数分析法.三、从关键的位置和关键的数入手分析.作业1.在图中的四个圆圈内填入合适的自然数,使得正方形每条边上的三个数之和都等于14.中一个是圆圈内的数加起来都等于2.把1~12这十二个数分别填入六角星图案的十二个圆圈中,使得每条线段上的四个数之和相等.现在如图已经填好了八个数,请把数阵图补全.3.在右图的四块空白区域中分别填上2、4、6、8这四个数,使得每个大圆内四个数之和都等于14.4.如图,把1~9这九个数填入九个方格内,使得这四条旋臂上三个数的和分别是8、13、16、17.那么心形边界上的四个数字的乘积最小是多少?5.把1~8这八个数填入右边的圆圈内,使得每条线段上的数之和都相等.135。
四年级数学思维能力拓展专题突破系列(二十)数阵图
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(1)温馨提示:该文档包含本课程的讲义和课后测试题,课后测试题即每一部分内容对应的“课后练习”。
1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的概念。
2、灵活应用数阵图的求解方法。
例题1:把1~5这五个数分别填在右图中的方格中,使得横行三数之和与竖列三数之和都等于9?例题2:将1~7这七个自然数填入右图的七个○内,使得每条线上的三个数之和都等于10。
例题3:将 10~20填入右图的○内,其中15已填好,使得每条边上的三个数字之和都相等。
例题4:下把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等。
(即是该课程的课后测试)练习1:如图,将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12或10。
练习2:如图将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
练习3:如图,将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)练习4:如图,将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。
练习5:如图,将1~11这十一个数分别填入图的○里,使每条直线上的三个数之和相等,并且尽可能大。
练习1:解析:练习2:解析:练习3:解析:练习4:解析:练习5:解析:中心数是重叠数,并且重叠4次。
所以每条直线上的三数之和等于[(1+2+…+11)+重叠数×4]÷5=(66+重叠数×4)÷5。
为使上式能整除,重叠数只能是1,6或11。
显然,重叠数越大,每条直线上的三数之和越大。
所以重叠数是11,每条直线上的三数之和是22。
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(2)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握幻方的概念。
数阵图(二)(含详细解析)
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()例题精讲知识点拨教学目标5-1-3-2.数阵图由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3)(1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】17 89411215【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图【难度】3星【题型】填空【解析】为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k (A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2C+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
4年级-6-幻方和数阵图
传说在五千年前,大禹治水的时代,人们在黄河中发现一只大龟,龟背上有一些奇怪的图案,经过破译,人们将龟背上的神奇的图案译成了如下图这样的数阵图,也称做幻方。
幻方和数阵是我国文化遗产之一,早在公元前4世纪就有“河图”、“洛书”的传说与记载。
到了宋朝,杨辉对幻方已有较详细的记述,并探索出一些编制方法。
明朝程大位、清朝张潮等人,创制了绚丽多彩的幻方与数阵图式,其中九宫图是最简单的三阶幻方。
将三阶幻方推广,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,通常被称为“数阵图”。
幻方是特殊的数阵图。
大约在15世纪初,幻方传到国外,引起了欧洲很多数学家的兴趣,发现许多新成果。
人们发现幻方不仅仅是一种数字游戏,而且与实验方案的设计及一些高深数学分支有关,幻方已成为数阵图中最重要的课题,是数学研究中的一个重要分支。
数阵图大致分三种:封闭型数阵图、开放型数阵图和复合型数阵图。
幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。
这个相等的和叫“幻和”。
要求在n 行n 列的方格里,既不重复又不遗漏地填上n ×n 个连续的自然数。
这些自然数所组成的一列数有极强的规律性,按顺序排列后,每一项都比它前面的一项大1,即它们构成了差相等的数列,是等差数列。
因此在解答这类问题时,常用的知识有: 1.等差数列的求和公式总和=(首项+末项)×项数÷2 2.数字的奇偶性 奇数±奇数=偶数偶数±偶数=偶数知识梳理奇数±偶数=奇数可简记为:同性为偶,异性为奇(注:同性是同奇或同偶,异性是指一奇一偶)。
数阵图【例1】★如图所示,在三个圆圈中各填入一个自然数,使每条线段两端的两个数之和均为奇数。
请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。
【例2】★小蜗牛不小心爬到一个三角形数阵图中,必须将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11才能通过这个数阵图,你能帮它吗?614532【小试牛刀】把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13.典型例题【例3】★把1~7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等。
四年级下册数学试题-奥数专题讲练:6 数阵图 提高篇(解析版)全国通用
第六讲数阵图数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.答案(右图):分析:因为每个角都属于两面,所以四面的武器的威力系数之和,等于所有武器的威力系数之和,再加上四个角的武器威力系数.推知四个角的武器威力系数应尽量大.因为1+2+…+10=55,当四个角的威力系数为10,9,8,7时,55+10+9+8+7=89,89不是4倍数,所以四个角只能是10,9,8,6,由此可得每一面的威力系数应是(55+10+9+8+6)÷4=22.分配如下图:教学目标想挑战吗?有座一长方形城堡,四周有10个掩体(如下图).守城的士兵有10件武器,各种武器的威力系数如下表.为了使每一面武器威力系数都相同,并且尽量大,应如何在10个掩体中配备武器?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和. 第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.专题精讲[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a 和b 被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s ,当a+b=1,4,7……时,65+a+b 可以被3整除,因为要取最小值,所以a+b 的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例4】 (★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?561937248152876349分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例5】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3191113751713分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.6 35412762534175243716(1)(2)(3)分析:设中心○内填a,由于三条线上的数字和相加应是3的倍数,其中a一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a一定是3的倍数.而28÷3—9余1,那么2a÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1)(2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。
四年级数学数阵图讲解(一)
四年级数学数阵图讲解(一)我们在三年级已经学习过辐射型和封闭型数阵.其解题的关键在于“重叠数”。
本讲和下一讲.我们学习三阶方阵.就是将九个数按照某种要求排列成三行三列的数阵图.解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
例1把1~9这九个数字填写在右图正方形的九个方格中.使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数字之和是45.正好是三个横行数字之和.所以每一横行的数字之和等于45÷3=15。
也就是说.每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中.三个不同的数相加等于15的有:9+5+1.9+4+2.8+6+1.8+5+2.8+4+3.7+6+2.7+5+3.6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中.又在一个竖列中.还在两对角线上.所以它应同时出现在上述的四个算式中.只有5符合条件.因此应将5填在中心方格中。
同理.四个角上的数既在一个横行中.又在一个竖列中.还在一条对角线上.所以它应同时出现在上述的三个算式中.符合条件的有2.4.6.8.因此应将2.4.6.8填在四个角的方格中.同时应保证对角线两数的和相等。
经试验.有下面八种不同填法:上面的八个图.都可以通过一个图的旋转和翻转得到。
例如.第一行的后三个图.依次由第一个图顺时针旋转90°.180°.270°得到。
又如.第二行的各图.都是由它上面的图沿竖轴翻转得到。
所以.这八个图本质上是相同的.可以看作是一种填法。
例1中的数阵图.我国古代称为“纵横图”、“九宫算”。
一般地.将九个不同的数填在3×3(三行三列)的方格中.如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等.那么这样的图称为三阶幻方。
小学数学数阵图
解题过程
边和X3 = a+b+c+d+e+f+g+2c 14X3 = 1+2+3+4+5+6+7+2c 42 = 28+2c 14 = 2c c= 7
2020/12/9
例1 (★★)
将1~7这七 个数字, 分别填入 2 图中各个 ○内,使 每条线段 上的三个 ○内数的 和都等于 14。
1
6
7
5
4
3
先填入边和,直线上微调,满足圆圈。
【超常大挑战】(★★★★★)
a ,b ,c ,d ,e, f, g ,h ,I ,处分别填入1至9, 如果每个圆环所填的数的和都相等, 那么这个相等的和最大是多少?最少是多少?
a+e+i+c+g+2(b+d+f+h)=和×5 45+b+d+f+h=和×5 b+d+f+h最大时为6,7,8,9 此时和为15 b+d+f+h最小时为1,2,3,4 和为11 当和为15时无解,和为14有解 最大为14,最小为11
行 业 PPT模 板 : /hangye/ PPT素 材 下 载 : /sucai/ PPT图 表 下 载 : /tubiao/ PPT教 程 : /powerpoint/ Excel教 程 : /excel/ PPT课 件 下 载 : /kejian/ 试 卷 下 载 : /shiti/
圈和X2=数字和+a+b 圈和X2=36+a+b 圈和等于21 a+b=6 则a 和b有两种可能1,5和2,4
第10讲 数阵图(二)
第10讲数阵图和幻方(二)幻方问题的研究在我国已流传了两千多年,它是具有独特形式的填数字问题。
传说公元前二千多年,在大禹治水的时候,在黄河支流洛水浮起一只大乌龟,它的背上有个奇特的图案,(如图1),后来人们把它称之为“洛书”、相传在我国远古的时代,有一匹龙马游于黄河,马背上负有一幅奇的图案,这就是所谓的“河图”,实际上它是由九个数字排成一定的格式(如图2),图中有一个非常有趣的性质:它的横、竖、对角线上的每三个数字之和都是15。
一般地,在n×n(n行n列)的方格内,不重不漏填上n×n个连续自然数,并且每行、每列、每条对角线上n个自然数的和都相等,则称它为n阶幻方。
这个和叫做幻和,n叫做阶。
幻方又叫魔方,九宫算或纵横图。
魔方:我国的纵横图通过东南亚国家,印度、阿拉伯传到西方。
由于纵横图具有十分奇幻的特性,西方把纵横图叫作Magic Square,翻译成中文就是“幻方”或“魔方”。
九宫算:所谓九宫,就是将一个正方形用两组与边平行的分割线,每组两条,分割成的九个小正方格。
每个小方格分别填入从1到9这九个自然数中的其中一个,不同的方格填入的数不同,使得三横行中每一横行三个数的和(叫行和),三纵列中每一纵列三个数的和(叫列和),两条对角线中每一条对角线上三个数的和(叫对角和)都相相等,这样得到的图就叫九宫(算)图。
纵横图:长期以来,纵横图一直被看作是一种数字游戏。
一直到南宋时期的数学家杨辉,才真正把它作为一个数学问题而加以深入的研究。
杨辉在他的《续古摘奇算法》一书中,不仅搜集到了大量的各种类型的纵横图,而且对其中的部分纵横图还给出了如何构造的规则和方法,从而开创了这一组合数学研究的新领域。
解决幻方问题的关键是确定中心数和顶点数。
(定中间数,填四角数,算其余数)三阶幻方:就是将九个连续自然数填入3×3(三行三列)的方格内,使每行每列、每条对角线的和相等,这叫做三阶幻方。
奇数阶幻方:“罗伯法”“楼贝法”西欧在十六,十七世纪时,构造幻方非常盛行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级数学讲义第二讲数阵图
`1、将1~9九个数字填在图内九个方格里,每格填一个数字,使每一横行、每一纵行和两条对角线上的三个数之和相等。
2、将1、2、
3、
4、
5、6六个数字填入图中的小圆圈
内,使每个大圆上的四个数字和都是16.
3、将1~9九个数字分别填入图中的小圆圈内,使三
角形每边上四个数之和是17.
4、把1~10这十个数,分别填在呼的○内,使五边形每
条边上的三个数的和都是14.
5、将1、2、3、4、5、
6、
7、
8、9恰当的填入圈里,使每个大圆圈上的四个数相加的等于17。
6、用0~8制一个三阶幻方
7、请你把1~7填入图中的小圆圈内,使每条线上三个
数的和与每个圆上三个数的和都是12.
8、将1~6这六个数填入图中的六个○中,使得四条直
线上三个数之和或二个数之和都等于10.
9、将1~10这十个数,分别填入图中的○中,使每条线段上四个数的和都相等,可以怎么填?(至少填两种)。