(三年中考真题)九年级数学上册 第二十四章 圆 24.2 点和圆、直线和圆的位置关系同步练习 (新版
中考真题九年级数学上册第二十四章圆24
24.4 弧长和扇形面积一.选择题(共20小题)1.如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π2.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.3.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣4.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.5.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A. 2B.C.πm2D.2πm26.如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)π m2B.40π m2C.(30+5)π m2D.55π m28.若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π9.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣810.如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.π C.2πD.π11.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.212.如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣13.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π14.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10π C.24+4πD.24+5π15.圆锥的底面半径r=3,高h=4,则圆锥的侧面积是()A.12π B.15π C.24π D.30π16.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm217.如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.πB.2πC.4πD.8π18.将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm19.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.1820.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π二.填空题(共10小题)21.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)22.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.23.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)24.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.25.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.26.如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.27.如图,在△ABC中,∠B=30°,∠C=45°,AD是BC边上的高,AB=4cm,分别以B、C 为圆心,以BD、CD为半径画弧,交边AB、AC于点E、F,则图中阴影部分的面积是cm2.28.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.29.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.30.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三.解答题(共5小题)31.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.32.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE 交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).33.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点逆时针旋转度得到的,B1的坐标是;(2)求出线段AC旋转过程中所扫过的面积(结果保留π).34.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E (1)求证:DE=AB;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)35.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.参考答案一.选择题(共20小题)1.B.2.D.3.C.4.A.5.A.6.C.7.A.8.B.9.A.10.A.11.D.12.A.13.C.14.A.15.B.16.C.17.B.18.A.19.C.20.C.二.填空题(共10小题)21.π.22.2π23.12π.24.﹣.25..26.20.27.(2+2﹣π).28.9.29.π.30..三.解答题(共5小题)31.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.32.解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×=π﹣.33.解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为: =,即线段AC旋转过程中所扫过的面积为.34.(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∴扇形ABG的面积==.35.解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.。
依兰县第四中学九年级数学上册第二十四章圆24.2点和圆直线和圆的位置关系24.2.2直线和圆的位置关
在生活中 , 人们常常利用中心投影来形成光影 效果.例如 , 艺人在银幕后 , 用灯光把人物剪影照 射在银幕上 , 形成皮影戏.电影放映机把电影胶片 上的图像投影到银幕上 , 再配以声音 , 就形成了 电影.
随堂练习
请同学们举出一些平行投影和中心投影的例子.
把以下物体与它们的投影用线连接起来 :
问题探究
观察以下图 , 思考以下问题 :
〔1〕
〔2〕
〔3〕
观察以下图 , 思考以下问题 :
〔1〕
〔2〕
〔3〕
观察以下图 , 思考以下问题 :
【素养提升] 16.(14分)如下图 , ⊙O的直径DE=12 cm , 在Rt△ABC中 , ∠ACB= 90° , ∠ABC=30° , BC=12 cm , ⊙O以2 cm/s的速度从左向右移动 , 在 移动过程中 , DE始终在直线BC上 , 设运动的时间为t(s) , 当t=0时 , ⊙O 在△ABC的左侧 , OC=8 cm , 当t为何值时 , △ABC的一边所在的直线与⊙O 相切 ? 解 : 当⊙O与AC在AC的左侧相切时 , t=1 ; 当⊙O与AB在AB左侧相切时 , t=4 ; 当⊙O与AC在AC的右侧相切时 , t=7 ; 当⊙O与AB在AB右侧相切时 , t=16 , ∴t=1 , 4 , 7 , 16时 , ⊙O与△ABC的一边所在直线相切
3.(3分)在平面直角坐标系xOy中 , 以点(-3 , 4)为圆心 , 4为半径的圆( C)
A.与x轴相交 , 与y轴相切
B.与x轴相离 , 与y轴相交
C.与x轴相切 , 与y轴相交
D.与x轴相切 , 与y轴相离
4.(3分)已知⊙O的半径为2 , 直线l上有一点P满足PO=2 ,
九年级数学上册第二十四章圆24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系检测(含解
九年级数学上册第二十四章圆24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系同步检测(含解析)(新版)新人教版的全部内容。
24.2。
1 点和圆的位置关系测试时间:30分钟一、选择题1.(2018广东广州花都期末)☉O的半径为5 cm,点A到圆心O的距离OA=4 cm,则点A与圆O的位置关系为( )A。
点A在圆上B。
点A在圆内 C.点A在圆外D。
无法确定2。
(2018北京门头沟期末)已知△ABC中,AC=3,CB=4,以点C为圆心,r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是( ) A。
r〉3 B。
r≥4 C.3<r≤4D。
3≤r≤43.若等腰直角三角形的外接圆半径的长为2,则等腰直角三角形的直角边长为( )A。
2B。
2—2 C。
2— D.-1二、填空题4。
(2017上海普陀一模)已知点P在半径为5的☉O外,如果设OP=x,那么x的取值范围是.5.(2018江苏徐州睢宁月考)正方形ABCD的边长为2 cm,以A为圆心,2 cm 为半径作☉A,则点B在☉A;点C在☉A;点D在☉A。
6。
我们把两个三角形的外心之间的距离叫做外心距。
如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,BC=DC=3,∴BD=6,如果BC=DC=3,那么△ABC和△ACD的外心距是.三、解答题7.如图,☉O是△ABC的外接圆,AC是直径,过O作OD∥BC交AB于点D。
人教版九年级数学上册 第二十四章 圆 24.2 点和圆、直线和圆的位置关系.docx
初中数学试卷桑水出品人教版九年级数学上册第二十四章圆24.2点和圆、直线和圆的位置关系直线和圆的位置关系同步练习题1.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是( ) A.相离B.相切C.相交D.无法判断2.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是( )3.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离4.⊙O的半径为6,一条弦长63,以3为半径的同心圆与这条弦的位置关系是( ) A.相切 B.相交C.相离 D.相切或相交5. 在Rt△ABC中,∠C=90°,AB=4 cm,BC=2 cm,以C为圆心,r为半径的圆与AB有何种位置关系?(1)r=1.5 cm;(2)r= 3 cm;(3)r=2 cm.6.已知⊙O的直径等于12 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的交点个数为( )A.0个B.1个C.2个D.无法确定7.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( ) A.r<6 B.r=6 C.r>6 D.r≥68.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.59.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是( )A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤510.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x-2与⊙O的位置关系是( )A.相离B.相切C.相交D.以上都有可能11.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为_______.12.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是_______________.13.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=______;(2)当m=2时,d的取值范围是___________.14.如图,∠AOB=45°,点P在OB上,且OP=4.若⊙P与射线OA只有一个公共点,求⊙P的半径r的取值范围.15.如图,P为正比例函数y=32x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).(1)求⊙P与直线x=2相切时点P的坐标;(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.答案:1---4 CBCA5. 解:过点C 作CD⊥AB ,垂足为D ,可求CD = 3.(1)r =1.5 cm 时,相离;(2)r = 3 cm 时,相切;(3)r =2 cm 时,相交6---10 CCBAB11. 412. 相切或相交13. (1) 1 (2) 1<d<314. 解:过点P 作PE⊥OA ,垂足为E.在Rt △OPE 中,∠AOB =45°,∴OE =EP.∵OE 2+EP 2=OP 2,∴2EP 2=16,∵EP>0,∴EP =2 2.当⊙P 与OA 相切时,r =22;当⊙P 与射线OA 相交且只有一个交点时,r>4.∴当r =22或r>4时,⊙P 与射线OA 只有一个公共点15. 解:(1)过点P 作直线x =2的垂线,垂足为A.当点P 在直线x =2的右侧时,AP =x -2=3,∴x =5,∴P(5,152);当点P 在直线x =2的左侧时,PA =2-x =3,∴x =-1,∴P(-1,-32).综上所述,当⊙P 与直线x =2相切时,点P 的坐标为(5,152)或(-1,-32) (2)当-1<x<5时,⊙P 与直线x =2相交;当x<-1或x>5时,⊙P 与直线x =2相离。
人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。
2.三点圆:不在直线上的三个点一个圆。
3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。
考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。
(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。
(3)直线和圆没有公共点时我们说这条直线和圆。
(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。
2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线于过切点的半径。
3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。
4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。
限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。
(三年中考真题)九年级数学上册第二十四章圆24.1圆的有关性质练习新人教版(2021年整理)
(三年中考真题)九年级数学上册第二十四章圆24.1 圆的有关性质同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((三年中考真题)九年级数学上册第二十四章圆24.1 圆的有关性质同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(三年中考真题)九年级数学上册第二十四章圆24.1 圆的有关性质同步练习(新版)新人教版的全部内容。
24。
1 圆的有关性质一.选择题(共20小题)1.(2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm2.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2018•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.4.(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°6.(2018•聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5° C.30°D.35°7.(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°8.(2018•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°9.(2018•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°10.(2017•张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC 的度数是()A.30°B.45°C.55°D.60°11.(2017•哈尔滨)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是( )A.43°B.35°C.34°D.44°12.(2017•潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或213.(2017•黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是()A.3 B.2.5 C.2 D.114.(2017•乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2。
人教版 九年级上册数学 24.2---24.3复习题(含答案)
24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A.与圆有公共点的直线B.垂直于圆的半径的直线C.到圆心的距离等于半径的直线D.经过圆的直径一端的直线2. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为△ABC的外接圆的圆心,将△ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB=30°,⊙O的半径为1 cm,圆心O在直线PB上,OP=3 cm,若⊙O沿BP方向移动,当⊙O与直线PA相切时,圆心O移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).16.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连接PM ,以点P 为圆心,PM 长为半径作⊙P .当⊙P 与正方形ABCD 的边相切时,BP 的长为________.17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.20. 在Rt△ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB,如图①.∵OA=AP,∴OP为⊙A的直径,∴∠OBP=90°,即OB⊥PB,∴PB为⊙O的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D 【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt△ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点, ∴点P 为Rt △ACQ 的外心,故③正确.16. 【答案】3或4 3 [解析] 如图①,当⊙P 与CD 边相切时,设PC =PM =x .在Rt △PBM 中,∵PM2=BM2+BP2,∴x2=42+(8-x)2,∴x=5,∴PC=5,∴BP=BC-PC=8-5=3.如图②,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形,∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.20. 【答案】解:(1)∵AC⊥BC,而AC>4,∴以点A为圆心,4为半径的⊙A与直线BC相离.故答案为相离.(2)BC=AB2-AC2=12.∵BC⊥AC,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D . ∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG .∵点E 是△ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G .∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.24.3正多边形和圆一、选择题1.如图,四边形ABCD 是⊙O 的内接四边形,AB 为⊙0直径,点C 为劣弧BD 的中点,若∠DAB=40°,则∠ABC=( ).A .140°B .40°C .70°D .50° 2.如图,圆O 是△ABC 的外接圆,连接OA 、OC ,∠OAC =20°,则∠ABC 的度数为( )A .140°B .110°C .70°D .40° 3.如图,已知△ABC 为⊙O 的内接三角形,AB >AC .E 为BAC 的中点,过E 作EF ⊥AB 于F .若AF =1,AC =4,∠C =60°,则⊙O 的面积是( )A .8πB .10πC .12πD .18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD与等边△ACE,连接BE、CD,BE的延长线与CD交于点F,下列结论:(1)BE=CD ;(2)AF平分∠EAC ;(3)∠BFD=60°;(4)AF+FD=BF 其中正确的有()A.1个B.2个C.3个D.4个7.正方形ABCD中,对角线AC、BD交于O,Q为CD上任意一点,AQ交BD于M,过M作MN⊥AM交BC于N,连AN、QN.下列结论:①MA=MN;②∠AQD=∠AQN;③S△AQN=1 2 S五边形ABNQD;④QN是以A为圆心,以AB为半径的圆的切线.其中正确的结论有()A.①②③④B.只有①③④C.只有②③④D.只有①②8.如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )A.变大B.先变大后变小C.先变小后变大D.不变9.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.755B.5C5D35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD 内接于⊙O,点E 是弧AB 上的一动点(不与点A 、B 重合),点F 是弧BC 上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且∠EOF=90°,连接GH ,有下列结论:①弧AE=弧BF ;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt △ABC 中,∠BAC =90°,BC =5,AB =3,点D 是线段BC 上一动点,连接AD ,以AD 为边作△ADE ∽△ABC ,点N 是AC 的中点,连接NE ,当线段NE 最短时,线段CD 的长为_____.14.如图,四边形ABCD 内接于⊙O ,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM =MN ;②MP =12BD ;③BN +DQ =NQ ;④+AB BN BM为定值2.一定成立的是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD 是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD 内接于⊙O ,AB =AD ,则∠ACD ∠ACB (填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD 中,AB =BC =2,等边角∠ABC =120°,等补对角线BD 与等边垂直,求CD 的长.19. 定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC 中,AB=2,BC=52,AC=3,D 为平面内一点,以A 、B 、C 、D 四点为顶点构成的四边形为“完美四边形”,若DA ,DC 的长是关于x 的一元二次方程x 2-(m+3)x+14(5m 2-2m+13)=0(其中m 为常数)的两个根,求线段BD 的长度.(3)如图2,在“完美四边形”EFGH 中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH 面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C .①若86PA PB ==,,求AB 的长②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,2AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形;(2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 11312.①②④13.411014.6415.①②③④16.17.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4.19.(1)正方形、矩形;(2)3;(3)49.20.(1)略;(2)43π 21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)AP ≥(2)QAP ∠为定值,QAP ∠=30°;(3)14,0)Q ,24,0)Q ,3(0)Q -,4,0)Q。
人教版 九年级数学上册 24.2 点和圆、直线和圆的位置关系(含答案)
人教版九年级数学24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则☉O的半径为()A.2B.3C.4D.4-2. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定3.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°4.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°.过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A. 25°B. 40°C. 50°D. 65°5. 如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACFC.△ABD D.△ADE6. 已知⊙O的面积为9π cm2,若点O到直线l的距离为π cm,则直线l与⊙O 的位置关系是()A.相交B.相切C.相离D.无法确定7. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个8. 如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4 cm B.3 cm C.2 cm D.1.5 cm9. 如图,在正三角形网格中,△ABC的顶点都在格点上,点P,Q,M是AB与网格线的交点,则△ABC的外心是()A.点P B.点Q C.点M D.点N10. 如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A.2 3 B.3 C.4 D.4- 3二、填空题(本大题共8道小题)11. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.12. 如图,⊙M的圆心在一次函数y=12x+2的图象上运动,半径为1.当⊙M与y轴相切时,点M的坐标为__________.13. 如图,点P在⊙O外,PA,PB分别与⊙O相切于A,B两点,∠P=50°,则∠AOB=________°.14. 如图0,PA ,PB 分别切⊙O 于点A ,B ,PA =6,CD 切⊙O 于点E ,分别交PA ,PB 于C ,D 两点,则△PCD 的周长是________.15. 2019·兴化期中已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).17. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.18. 在Rt △ABC 中,∠C =90°,AC =6,BC =8.若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是______________.三、解答题(本大题共4道小题)19.如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D .E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC ,AC .(1)求证:AC 平分∠DAO . (2)若∠DAO =105°,∠E =30°. ①求∠OCE 的度数.②若⊙O 的半径为22,求线段EF 的长.20. 在平面直角坐标系中,圆心P 的坐标为(-3,4),以r 为半径在坐标平面内作圆:(1)当r 为何值时,⊙P 与坐标轴有1个公共点? (2)当r 为何值时,⊙P 与坐标轴有2个公共点? (3)当r 为何值时,⊙P 与坐标轴有3个公共点? (4)当r 为何值时,⊙P 与坐标轴有4个公共点?21. 如图,在等腰三角形ABC 中,AB =AC.以AC 为直径作⊙O 交BC 于点D ,过点D 作DE ⊥AB ,垂足为E. (1)求证:DE 是⊙O 的切线.(2)若DE =3,∠C =30°,求AD ︵的长.22. 如图,已知⊙P的圆心P 在直线y =2x -1上运动.(1)若⊙P 的半径为2,当⊙P 与x 轴相切时,求点P 的坐标;(2)若⊙P 的半径为2,当⊙P 与y 轴相切时,求点P 的坐标; (3)若⊙P 与x 轴和y 轴都相切,则⊙P 的半径是多少?人教版 九年级数学 24.2 点和圆、直线和圆的位置关系-答案一、选择题(本大题共10道小题)1. 【答案】A [解析]设☉O 与AC 的切点为E ,连接AO ,OE ,∵等边三角形ABC 的边长为8,∴AC=8,∠C=∠BAC=60°.∵圆分别与边AB ,AC 相切,∴∠BAO=∠CAO=∠BAC=30°,∴∠AOC=90°,∴OC=AC=4.∵OE ⊥AC ,∴OE=OC=2,∴☉O 的半径为2.故选A .2. 【答案】B3.【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图4.【答案】B【解析】∵∠A =25°,∠ACB =90°,∴∠ABC =65°.如解图,连接OC .∵OB =O C ,∴∠ABC =∠BCO =65°.∵CD 是⊙的切线,∴OC ⊥CD ,∴∠OCD =90°,∴∠BCD=90°-∠BCO=25°,∴∠D=∠ABC-∠BCD=65°-25°=40°.解图5. 【答案】B6. 【答案】C[解析] 由题意可知,圆的半径为3 cm.∵圆心到直线l的距离为π cm >圆的半径3 cm,∴直线l与⊙O相离.故选C.7. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.8. 【答案】B[解析] 如图,连接OC,并过点O作OF⊥CE于点F.∵△ABC为等边三角形,边长为4 cm,∴△ABC的高为2 3 cm,∴OC= 3 cm.又∵⊙O与BC相切于点C,∠ACB=60°,∴∠OCF=30°.在Rt△OFC中,可得FC=32cm,∴CE=2FC=3 cm.9. 【答案】B[解析] 由题意可知∠BCN=60°,∠ACN=30°,∴∠ACB=∠ACN+∠BCN=90°,∴△ABC是直角三角形,∴△ABC的外心是斜边AB的中点.∵Q是AB的中点,∴△ABC的外心是点Q.10. 【答案】A[解析] 如图,设⊙O与AC的切点为E,连接AO,OE.∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°.∵⊙O分别与边AB,AC相切,∴∠OEC=90°,∠BAO=∠CAO=12∠BAC=30°,∴∠AOC=90°,∴OC=12AC=4.在Rt△OCE中,∠OEC=90°,∠C=60°,∴∠COE=30°,∴CE=12OC=2,∴OE=2 3,∴⊙O的半径为2 3.二、填空题(本大题共8道小题)11. 【答案】219°[解析]连接AB,∵P A,PB是☉O的切线,∴P A=PB.∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°.∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°.12. 【答案】(1,52)或(-1,32) [解析] ∵⊙M 的圆心在一次函数y =12x +2的图象上运动,∴设当⊙M 与y 轴相切时圆心M 的坐标为(x ,12x +2).∵⊙M 的半径为1,∴x =1或x =-1,当x =1时,y =52,当x =-1时,y =32.∴点M 的坐标为(1,52)或(-1,32).13. 【答案】13014. 【答案】12[解析] ∵PA ,PB 分别切⊙O 于A ,B 两点,CD 切⊙O 于点E ,∴PB =PA =6,CA =CE ,DB =DE ,∴△PCD 的周长=PC +CD +PD =PC +CE +DE +PD =PC +CA +DB +PD =PA +PB =12.15. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO <33时,⊙O 与△ABC 的BC 边有且只有两个公共点,(2)如图②所示,当DO =33时, ⊙O 与△ABC 的边有三个公共点;(3)如图③所示,当⊙O 经过△ABC 的顶点A 时,⊙O 与△ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与△ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与△ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与△ABC 的边只有两个公共点. 故答案为0<DO <33或2 33<DO < 3.16. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE=90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.17. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.18. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD =12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.三、解答题(本大题共4道小题)19. 【答案】【思维教练】(1)证明AC是∠DAO的角平分线即证明∠DAC=∠OAC,由圆的性质知OA=OC,得∠OCA=∠OAC,由切线性质得OC⊥CD,即OC∥AD,得∠OCA=∠CAD,即可得证;(2)①△OCE内角和为180°,∠E已知,由(1)OC ∥AD得∠COE=∠DAO,即可求解;②EF=GE-FG,由∠OCE=45°,OC=22,考虑构造直角三角形OGC,求出CG,即FG,GE在Rt△OGE中,OG=CG,∠E=30°,得出GE,从而求出EF.(1)证明:∵直线CD与⊙O相切,∴OC⊥CD.又∵AD⊥CD.∴AD∥OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OAC.∴AC平分∠DAO.(3分)(2)解:①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=45°.(6分)②作OG⊥CE于点G,可得FG=CG.∵OC=22,∠OCE=45°,∴OG=2,∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=2 3.∴EF=GE-FG=23-2.(10分)20. 【答案】解:(1)根据题意,知⊙P和y轴相切,则r=3.(2)根据题意,知⊙P和y轴相交,和x轴相离,则3<r<4.(3)根据题意,知⊙P和x轴相切或经过坐标原点,则r=4或r=5.(4)根据题意,知⊙P和x轴相交且不经过坐标原点,则r>4且r≠5.21. 【答案】解:(1)证明:如图,连接OD.∵OC =OD ,AB =AC ,∴∠1=∠C ,∠C =∠B ,∴∠1=∠B ,∴OD ∥AB.∵DE ⊥AB ,∴OD ⊥DE.又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)连接AD.∵AC 为⊙O 的直径,∴∠ADC =90°.∵AB =AC ,∴∠B =∠C =30°,BD =CD.∴∠AOD =60°.∵DE =3,∴CD =BD =2DE =2 3,∴AD =2,AC =4,∴OC =2,∴AD ︵的长=120180π×2=23π.22. 【答案】解:(1)当⊙P 与x 轴相切时,点P 的纵坐标为2或-2,∴2=2x -1或-2=2x -1,解得x =32或x =-12,∴点P 的坐标为(32,2)或(-12,-2).(2)当⊙P 与y 轴相切时,点P 的横坐标为2或-2,∴y =2×2-1=3或y =2×(-2)-1=-5,∴点P 的坐标为(2,3)或(-2,-5).(3)当⊙P 与x 轴和y 轴都相切时,点P 的横坐标与纵坐标的绝对值相等, 即x =y 或y =-x ,∴x =2x -1,解得x =1,y =1;或-x =2x -1,解得x =13,y =-13.∴点P 的坐标为(1,1)或(13,-13),即⊙P 的半径是1或13.。
九年级.数学 第二十四章 圆 24.2 点和圆、直线和圆的位置关系 24.2.1 点和圆的位置关系
100°
B
CE
F
(2)三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求
证明).
【解】 锐角三角形(和直角三角形)的最小覆盖圆是其外接圆;钝角(dùnjiǎo)三角形
的最小覆盖圆是以其最长边为直径的圆.
12/6/2021
第十三页,共十四页。
内容(nèiróng)总结
24.2 点和圆、直线和圆的位置关系。24.2 点和圆、直线和圆的位置关系。(1)平面 内的点和圆有三种位置关系:①点在__________。(2)设⊙O半径为r,点P到O的距离OP=d,
12/6/2021
第四页,共十四页。
知识点二:三角形的外接圆
例2 小明家的房前有一块矩形(jǔxíng)的空地,空地上有三棵树A,B,C,小明想建 一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图, 不写作法,保留作图痕迹).
在△ABC中,AB=AC=10,BC=12,则△ABC的外接圆的半径(bànjìng)
12/为6/2021
.
第五页,共十四页。
知识点三:反证法
例3 在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,求证(qiúzhèng):AD与 BE不能被点H互相平分.
12/6/2021
第六页,共十四页。
求证:在一个三角形中,如果(rúguǒ)两个角不等,(
A.点M在⊙O上
)
A B.点M在⊙O内
C.点M在⊙O外 D.点M在⊙O右上方
*4.用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设(
)
A.∠A=60° B.∠A<60°
C.∠A≠6D0°
D.∠A≤60°
人教版九年级数学上册《24.2 点和圆、直线和圆的位置关系》练习题(附带参考答案)
人教版九年级数学上册《24.2 点和圆、直线和圆的位置关系》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.点I是△ABC的外心,则点I是△ABC的()A.三条垂直平分线交点B.三条角平分线交点C.三条中线交点D.三条高的交点2.用反证法证明命题“在△ABC中,若AB≠BC,则∠A≠∠C”时,首先应假设()A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C3.如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个4.⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定5.如图,为的直径,与相切于点,交的延长线于点,且.若,则半径长为()A.2 B.3 C.D.6.在△ABC中∠C=90°,AC=4,AB=5,以点C为圆心,R为半径作圆.若⊙C与边AB只有一个公共点,则R的取值范围是()A.R=12B.3⩽R⩽45C.0<R<3或R>4D.3<R⩽4或R=1257.如图,AB切于⊙O点B,延长AO交⊙O于点C,连接BC,若∠A=40°,则∠C=()A.20°B.25°C.40°D.50°8.如图,已知等腰△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E,若CD=4√5,CE=8,则⊙O的半径是()A.92B.5 C.6 D.152二、填空题9.已知A为⊙O外一点,若点A到⊙O上的点的最短距离为2,最长距离为4,则⊙O的半径为.10.⊙O的半径为4,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是.11.已知Rt△ABC中∠C=90°,AC=5,BC=12,则△ABC的外接圆半径是.12.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =°13.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF =3,则△ABC的面积是.三、解答题14.如图,AD,BD是⊙O的弦AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点CD=2,求证:AC是⊙O的切线.15.如图,已知PA,PB分别与⊙O相切于点A,B,C为⊙O上一点.若∠P=70°,求∠C的大小.16.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=28°,求∠C的度数;(2)若AC=2√3,CE=2,求⊙O半径的长.17.如图,已知内接于的延长线交于点,交于点,交的切线于点,且.(1)求证:;(2)求证:平分.参考答案1.A2.D3.D4.A5.B6.D7.B8.B9.110.相交11.13212.6513.614.证明:连接AB∵AD⊥BD,且BD=2AD=8∴AB为直径,AB2=82+42=80∵CD=2,AD=4∴AC2=22+42=20∵CD=2,BD=8∴BC2=102=100∴AC2+AB2=CB2∴∠BAC=90°∴AC是⊙O的切线.15.解:连接OA、OB∵PA,PB分别与⊙O相切于点A,B∴∠OAP=∠OBP=90°∵∠P=70°∴∠AOB=360°-∠OAP-∠OBP-∠P=110°∠AOB=55°.∴∠C= 1216.(1)解:如图,连接OA∵∠ADE=28°∴∠AOC=2∠ADE=56°∵AC切⊙O于点A∴∠OAC=90°∴在△AOC中(2)解:设OA=OE=r在Rt△OAC中,由勾股定理得:OA2+AC2=OC2即r2+(2√3)2=(r+2)2解得:r=2答:⊙O半径的长是2.17.(1)证明:是的切线即.是的直径..即.(2)证明:与都是所对的圆周角..由(1)知平分.。
九年级数学上册《第二十四章点和圆、直线和圆的位置关系》同步练习题附答案(人教版)
九年级数学上册《第二十四章点和圆、直线和圆的位置关系》同步练习题附答案(人教版)一、选择题:1.已知 O 的半径为 5cm ,若点 A 到圆心 O 的距离为 3cm ,则点 A ( )A .在 O 内B .在 O 上C .在 O 外D .与 O 的位置关系无法确定2.在△ABC 中,∠A=90°,AB=3cm ,AC=4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( )A .相交B .相离C .相切D .不能确定3.如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C ,若∠BAO=40o ,则∠OCB 的度数为( )A .40°B .50°C .65°D .75°4.三角形两边的长分别是 8 和 6,第三边的长是方程 x 2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是( )A .4B .5C .6D .85.如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ;连接BC ,若40P ∠=︒,则B ∠等于( )A .20°B .25°C .30°D .40°6.如图,AB 是⊙O 的弦,半径OC 经过AB 的中点D ,CE ∥AB ,点F 在⊙O 上,连接CF ,BF ,下列结论中,不正确的是( )A .∠F= 12AOC ∠B .AB ⊥BFC .CE 是⊙O 的切线D .AC BC = 7.如图,在ABC 中90ACB ∠=︒,AB=5,BC=4.以点A 为圆心,r 为半径作圆,当点C 在A 内且点B在A 外时,r 的值可能是( )A.3 B.4 C.5 D.68.如图,△ABC的边AC经过⊙O的圆心O,BC与⊙O相切于B,D是⊙O上的一点,连接AD,BD,若∠C=50°,则∠ADB的大小为()A.50°B.60°C.70°D.80°二、填空题:9.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8CM,那么△PDE的周长为cm10.如图,圆O内切Rt△ABC,切点分别是D、E、F,则四边形OECF是形.11.如图,△ABC的外接圆的圆心坐标为.12.如图,AD是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AD的延长线于点B.若∠A=32°,则∠B=°.13.一个边长为4㎝的等边三角形 ABC 与⊙ O 等高,如图放置, ⊙ O 与 BC 相切于点 C ,⊙ O 与 AC 相交于点 E ,则 CE 的长为 ㎝.14.如图,⊙O 为锐角ABC 的外接圆,已知18BAO ∠=︒,那么C ∠的度数为 .三、解答题:15.已知PA 、PB 、DE 是⊙O 的切线,切点分别为A 、B 、F ,PO=13cm ,⊙O 的半径为5cm ,求△PDE 的周长.16.如图,平行四边ABCD 中,O 为AB 上的一点,连接OD.OC ,以O 为圆心,OB 为半径画圆,分别交OD ,OC 于点P ,Q .若OB=4,OD=6,∠ADO=∠A ,=2π,判断直线DC 与⊙O 的位置关系,并说明理由.17.如图,在Rt △ABC 中,∠C=Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E.(1)求证:∠A=∠ADE ;(2)若AD=16,DE=10,求BC 的长.18.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C 作CD丄PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.19.如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.(1)求证:AP=AB;(2)若OB=4,AB=3,求线段BP的长.参考答案:1.A 2.A 3.C 4.B 5.B 6.B 7.B 8.C 9.1610.正方11.(6,2)12.2613.314.72°15.解:连接OA,则OA⊥PA.在直角三角形APO中,PO=13cm,OA=5cm根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,切点分别为A、B、F∴PA=PB,DA=DF,EF=EB∴△PDE的周长=2PA=24cm.16.证明:如图,在⊙O中,半径OB=4,设∠POQ为n°,则有2π=8π360n.∴n=90°.∴∠POQ=90°.∵∠ADO=∠A,∴AO=DO=6.∴AB=10.∵四边形ABCD是平行四边形,∴DC=AB=10.∴ CO=8.过点O作OE⊥CD于点E,则OD×OC=OE×CD.∴OE=4.8.∵4.8>4,∴直线DC与⊙O相离.17.(1)证明:连结OD,∵DE是⊙O的切线∴∠ODE=90°∴∠ADE+∠BDO=90°∵∠ACB=90°∴∠A+∠B=90°又∵OD=OB∴∠B=∠BDO∴∠ADE=∠A.(2)解:连结CD,∵∠ADE=∠A∴AE=DE∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线,∴DE=EC∴AE=EC.又∵DE=10∴AC=2DE=20在Rt△ADC中,22201612-= .设BD=x在Rt△BDC中,BC2=x2+122, 在Rt△ABC中,BC2=(x+16)2-202 ∴x2+122=(x+16)2-202,解得x=9∴22+= .1291518.(1)证明:连接OC∵OA=OC∴∠OCA=∠OAC∵AC平分∠PAE∴∠DAC=∠CAO∴∠DAC=∠OCA∴PB∥OC∵CD⊥PA∴CD⊥OC,CO为⊙O半径∴CD为⊙O的切线(2)解:过O作OF⊥AB,垂足为F∴∠OCD=∠CDA=∠OFD=90°∴四边形DCOF为矩形∴OC=FD,OF=CD.∵DC+DA=6设AD=x,则OF=CD=6﹣x∵⊙O的直径为10∴DF=OC=5∴AF=5﹣x在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25化简得x2﹣11x+18=0解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去∴x=2从而AD=2,AF=5﹣2=3∵OF⊥AB,由垂径定理知,F为AB的中点∴AB=2AF=6.19.(1)证明:∵OC=OB∴∠OCB=∠OBC∴AB是⊙O的切线∴OB⊥AB∴∠OBA=90°∴∠ABP+∠OBC=90°∵OC⊥AO∴∠AOC=90°∴∠OCB+∠CPO=90°∵∠APB=∠CPO∴∠APB=∠ABP∴AP=AB(2)解:作OH⊥BC于H.在Rt△OAB中,∵OB=4,AB=3∴2234∵AP=AB=3∴PO=2.在Rt△POC中,22OC OP+5∵12•PC•OH=12•OC•OP∴OH= OC OPPC⋅45∴22OC OH-85∵OH⊥BC∴CH=BH∴165∴PB=BC﹣PC=55﹣555.。
人教版数学九年级上册 第24章 圆 24.2 点和圆、直线和圆的位置关系 同步练习 教师版含答案与解析.doc
人教版数学九年级上册第24章圆24.2 点和圆、直线和圆的位置关系同步练习1.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°【解析】连结OC,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是⊙O的切线,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故选B.【答案】B2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为(B)A.2.3 B.2.4 C.2.5 D.2.63.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D.若OD=2,tan∠OAB=12,则AB的长是()A .4B .2 3C .8D .4 3【解析】如图,连结OC ,∵AB 是小圆的切线,∴OC ⊥AB ,∴∠ACO =90°,∴AB =2A C .在Rt △AOC 中,tan ∠OAB =12=OCAC , ∵OD =OC =2,∴AC =2OC =4,于是AB =2AC =8,故选C . 【答案】C4.如图,已知等腰△ABC ,AB =BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E ,若CD =5,CE =4,则⊙O 的半径是( )A .3B .4C .256D .258 【解析】连结BD ,OD ,已知等腰△ABC ,AB =BC , AB为⊙O 的直径,可知BD 垂直平分AC ,∵O 是AB 的中点,∴OD 为△ABC 中位线,故OD ∥B C .又∵DE 是⊙O 的切线,∴DE ⊥OD ,∴DE ⊥B C .由△DCE ∽△BCD ,得DC 2=BC ·CE ,∴BC =254,由三角形的中位线定理,得OD =12BC =258.故选D .【答案】D5.足球射门,不考虑其他因素,仅考虑射点到球门AB 的张角大小时,张角越大,射门越好.如图的正方形网格中,点A ,B ,C ,D ,E 均在格点上,球员带球沿CD 方向进攻,最好的射点在( )A.点C B.点D或点E C.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【解析】连结EB,AD,DB,AC,CB,作过点A,B,D的圆,可以确定点E在圆上,点C在圆外,根据圆周角及圆外角的性质可以确定∠AEB=∠ADB>∠ACB,所以最好的射点是线段DE(异于端点)上一点,故选C.【答案】C6.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=14A B.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相交于另一点F,且EG∶EF=5∶2.当边AD或BC 所在的直线与⊙O相切时,AB的长是.【解析】边AB所在的直线不会与⊙O相切,边BC所在的直线与⊙O相切时,如图1,过点G作GN⊥AB,垂足为N,图1∴EN=NF.又∵EG∶EF=5∶2,∴EG ∶EN =5∶1.又∵GN =AD =8,∴设EN =x ,则EG =5x ,根据勾股定理,得(5x )2-x 2=64,解得x =4,GE =4 5.设⊙O 的半径为R ,由OE 2=EN 2+ON 2,得R 2=16+(8-R )2,∴R =5,∴OK =NB =5,∴EB =9. 又∵AE =14AB ,∴AB =12.同理,当边AD 所在的直线与⊙O 相切时,如图2,AB =4.故答案为12或4.图2【答案】12或47.如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点P ,直线BF 与AD 的延长线交于点F ,且∠AFB =∠ABC .(1)求证:直线BF 是⊙O 的切线.证明:∵∠AFB =∠ABC ,∠ABC =∠ADC ,∴∠AFB =∠ADC .∴CD ∥BF ,∴∠APD =∠ABF .∵CD ⊥AB ,∴AB ⊥BF ,∴直线BF 是⊙O 的切线. (2)若CD =23,OP =1,求线段BF 的长. 解:连结OD ,∵CD ⊥AB , ∴PD =12CD =3, ∵OP =1,∴OD =2.∵∠PAD =∠BAF ,∠APD =∠ABF =90°, ∴△APD ∽△ABF , ∴AP AB =PD BF ,∴34=3BF ,∴BF =433.8.如图,已知BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,E 为AC 的中点,连结DE .(1)若AD =DB ,OC =5,求切线AC 的长; 解:如图,连结CD ,∵BC 是⊙O 的直径,∴∠BDC=90°,即CD⊥AB.∵AD=DB,∴AC=BC=2OC=10.(2)求证:ED是⊙O的切线.证明:连结OD,∵∠ADC=90°,E为AC的中点,∴DE=EC=12AC,∴∠1=∠2.∵OD=OC,∴∠3=∠4.∵AC切⊙O于点C,∴AC⊥OC,∴∠1+∠3=∠2+∠4=90°,即DE⊥OD,∴DE是⊙O的切线.9. 如图,射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动,经过t秒,以点P为圆心,3 cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).【思路点拨】分三种情况讨论:当⊙P与AB边相切时;当⊙P与AC边相切时;当⊙P与BC边相切时,即当圆心P分别到AB,AC,BC的距离为3时对应的t值即为所求.【解析】∵⊙P的半径为3,∴圆心P从Q点开始运动时,圆会与△ABC的边3次相切,而AM=MB,AC∥QN,∴MN为正三角形ABC的中位线,MN=2.(1)当圆与正三角形AB边相切时,如图1,则PD=3,易得DM=1,PM=2,则QP=2,则t=2;图1(2)当圆与正三角形AC边相切时,如图2,事实上圆的半径刚好等于AC与射线QN之间的距离3,∴AP1=3,则P1M=1,QP1=3.同理NP2=1,QP2=7,而在此之间圆始终与AC边相切,∴3≤t≤7;图2(3)当圆与正三角形BC边相切时,如图3,则PD=3,易得DN=1,PN=2,则QP=8,则t=8.图3综上所述,t=2或3≤t≤7或t=8.【答案】t=2或3≤t≤7或t=8。
三年中考真题九年级数学上册第二十四章圆24.2点和圆直线和圆的位置关系新版新人教版
24.2 点和圆、直线和圆的位置关系一.选择题(共20小题)1.(2018•哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.(2018•眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27° B.32° C.36° D.54°3.(2018•宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.104.(2018•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD 的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.55.(2018•河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.26.(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD 等于()A.40° B.50° C.60° D.80°7.(2018•泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.8.(2018•重庆)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.9.(2018•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.811.(2018•内江)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内切12.(2018•常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°13.(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.14.(2017•台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离15.(2017•莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46° B.47° C.48° D.49°16.(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.517.(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm18.(2016•邵阳)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°19.(2016•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.20.(2016•襄阳)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合二.填空题(共8小题)21.(2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE= °.22.(2018•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.23.(2018•镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.24.(2017•泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.25.(2017•徐州)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= °.26.(2017•上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.27.(2016•泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.28.(2016•徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= °.三.解答题(共8小题)29.(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.30.(2018•北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.31.(2018•昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.32.(2017•资阳)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.33.(2017•南充)如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.34.(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.35.(2016•黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.36.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.参考答案一.选择题(共20小题)1.A.2.A.3.D.4.A.5.B.6.D.7.D.8.B.9.D.10.C.11.C.12.A.13.D.14.C.15.C.16.D.17.D.18.D.19.A.20.D.二.填空题(共8小题)21.60.22..23.40.24.(7,4)或(6,5)或(1,4).25.60.26.8<r<10.27.6.28.125.三.解答题(共8小题)29.(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.30.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.31.(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.32.证明:(1)连接OC,∵∠ACD=60°,∠E=30°,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=∠OCA+∠ACD=90°,∴直线DE与半圆相切;(2)在Rt△OCE中,∠E=30°,∴OE=2OC=OB+BE,∵OC=OB,∴OB=BE,∴OE=2BE=6,∴CE=OE•cosE=.33.解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.34.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.35.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.36.解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.。
人教版九年级数学上册24.2、点和圆、直线和圆的位置关系 同步检测试卷(含答案)
人教版九年级数学上册24.2、点和圆、直线和圆的位置关系 同步检测试卷一、单选题1.已知⊙O 的半径为4,点A 和圆心O 的距离为3,则点A 与⊙O 的位置关系是A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定2.如图,PA 、PB 分别切圆O 于A 、B 两点,C 为劣弧AB 上一点,∠APB=40°,则∠ACB=( ).A .70°B .80°C .110°D .140°3.如图,PA 是⊙O 的切线,A 为切点,PO 的延长线交⊙O 于点B ,若∠B =32°,则∠P 的度数为( )A .24ºB .26ºC .28ºD .32º4.如图,形如的方程的图解是:画,使,,,再226x ax b -=Rt ABC ∆90ACB ︒∠=3BC a =AC b =以B 为圆心,长为半径画弧,分别交边及延长线于点D 、E ,则该方程的一个正根是()BC ABA .的长B .的长C .的长D .的长AE AB ED AD 5.如图,是的一条弦,点C 是上一动点,且,点E ,F 分别是,的AB O O 30ACB ︒∠=AC BC中点,直线与交于G ,H 两点.若的半径为7,则的最大值为(EF O O GE FH +)A .10B .10.5C .11D .11.56.如图,为圆外一点,,分别切圆于、,切圆于点,分别P O PA PB O A B CD O E交、于点、,若,则的周长为( ).PA PB C D 5PA =PCD ∆A .5B .8C .10D .157.如图,在正方形网格中,一条圆弧经过,,三点,那么点在这条圆弧所在圆的(55⨯A B C M).A .内部B .外部C .圆上D .不能确定8.下列语句中,①过三点能作一个圆;②平分弦的直径垂直于弦;③长度相等的弧是等弧;④经过圆心的每一条直线都是圆的对称轴;⑤相等的圆心角所对的弧度数相等.其中正确的个数是()A .1个B .2个C .3个D .4个9.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 为直线y =﹣x +3上的动34点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( )ABC .D.10.如图,AB 是的直径,点D 在AB 的延长线上,DC 切于C ,若,则O O 35A =∠︒等于( )D ∠A .20 °B .30°C .50°D .40°11.已知⊙O 的半径为13,弦AB ∥CD ,AB=24,CD=10,则四边形ACDB 的面积是( )A .119B .289C .77或119D .119或28912.已知点P 是△ABC 的内心,若∠BAP =50°,则∠BPC 的度数为( )A .100°B .110°C .140°D .130°二、填空题13.如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画,P 是上一动O O 点,且P 在第一象限内,过点P 作的切线与x 轴相交于点A ,与y 轴相交于点B .在O上存在点Q ,使得以Q 、O 、A 、P 为顶点的四边形是平行四边形,请写出Q 点的坐标_________.O14.如图,半圆的圆心与坐标原点重合,半圆的半径1,直线的解析式为l 若直线与半圆只有一个交点,则t 的取值范围是________.y x t =+l15.如图,已知A 、B 两点的坐标分别为,P 是外接圆上的一点,且,(0,2)AOB ∆AOP 30︒∠=则点P 的坐标为____________________.16.如图,⊙的半径为,圆心在抛物线上运动,P 2P 2132y x =-当⊙与轴相切时,圆心的坐标为___________.P x P17.如图,AB 是⊙O 的直径,点P 在AB 的延长线上,PC 切⊙O 于点C ,若AB =8,∠CPA =30°,则PC 的长等于________.18.如图,在平面直角坐标系中,已知点A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC =90°,则a 的最小值是_____.19.如图,PC 是⊙O 的直径,PA 切⊙O 于点P ,AO 交⊙O 于点B ;连接BC ,若,则______.32C ∠=︒A ∠=20.如图,两个圆都以为圆心,大圆的弦与小圆相切于点,若,则圆环的面积为______.O AB C 6AB =三、解答题21.如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,与AC 、BC 分别交于点M 、N ,与AB 的另一个交点为E .过点N 作NF ⊥AB ,垂足为F .(1)求证:NF 是⊙O 的切线;(2)若NF=2,DF=1,求弦ED的长.22.已知⊙O,请用无刻度的直尺完成下列作图.(1)如图①,四边形ABCD是⊙O的内接四边形,且AB=AD,画出∠BCD的角平分线;(2)如图②,AB和AD是⊙O的切线,切点分别是B、D,点C在⊙O上,画出∠BCD的角平分线.23.已知AB是⊙O的直径,弦CD⊥AB于点E.(1)如图①,若CD=8,BE=2,求⊙O的半径;AC(2)如图②,点G是上一点,AG的延长线与DC的延长线交于点F,求证:∠AGD=∠FGC.24.如图是的直径,点D 在的延长线上,C 、E 是上的两点,,AB O AB O CE CB =,延长交的延长线于点F .BCD CAE ∠=∠AE BC(1)求证:是的切线;CD O (2)求证:.CE CF =25.如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D , 点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E 、F .(1)试判断直线BC 与OD 的位置关系,并说明理由.(2)若BD =BF =3,求⊙O 的半径.26.如图,,是的切线,,为切点,是的直径,.求的度数.PA PB O A B AC O 25BAC ∠=︒P ∠参考答案1.A2.C3.B4.A5.B6.C7.C8.B9.C10.A11.D12.C13.或(14.或t =11t -≤<15.,-1)或(,2)16.()()22-17.18.419.26°20.9π21.(1)证明略;(2)3.22.(1)略;(2)略.23.(1)5 (2)略24.(1)略;(2)略25.(1)线BC 与⊙O 的位置关系是相切,理由略;(2)⊙O 的半径是3.26.50︒。
初三数学上册(人教版)第二十四章圆24.2知识点总结含同步练习及答案
切线的性质
圆的切线垂直于过切点的半径.
推论1:经过圆心且垂直于切线的直线必经过切点.
推论2:经过切点且垂直于切线的直线必经过圆心.
切线的判定
经过半径的外端并且垂直于这条半径的直线是圆的切线.
切线长定义
经过圆外一点作圆的切线,这点和切点之间的线段长,叫做这点到圆的切线长.
切线长定理
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹
定圆 O 的半径是 4 cm,动圆 P 的半径是 2 cm,动圆 P 在直线 l 上移动,当两圆相切时, OP 的值是( )
A. 2 cm 或 6 cm
B. 2 cm
C. 4 cm
D. 6 cm
解:A.
分析:两圆内切时圆心距等于半径差此时为 2 cm,外切时圆心距等于半径和此时为 6 cm.
已知两圆的半径分别为 7 和 1,圆心距为 10,则其外公切线长和内公切线长分别为(
弧也未必等,故 ② 错.
已知 △ABC 中,∠C = 90∘ ,AC = 2 ,BC = 3 ,AB 的中点为 M, (1)以 C 为圆心, 2 为半径作 ⊙C ,则点 A ,B ,M 与 ⊙C 的位置关系如何? (2)若以 C 为圆心作 ⊙C ,使 A ,B ,M 三点至少有一点在 ⊙C 内,且至少有一点在 ⊙C 外,求 ⊙C 半径 r 的取值范围.
三角形内切圆的半径与三边的关系
设 a,b, c 分别为 △ABC 中 ∠A,∠B,∠C 的对边,面积为 S,则内切圆半径为
r=
S P
,其中
P
=
1 2
(a
+
b 1
+
c).
当
P ∠C = 90∘
九年级数学上册 24.2点和圆直线和圆的位置关系24.2.2直线与圆3三角形的外接圆和内切圆1_1
第24章
24.2.2直线与圆(3)三角形的外接圆和内切圆
三角形的外接圆和内切圆
1、能回忆起三角形的外接圆及外心,内切圆及内心。
2、会画出已知三角形的外接圆和内切圆。
3、运用有关知识解决有关问题。
重点:
外接圆及内切圆的画法;外心和内心。
难点:
知识的综合运用。
一、三角形的外接圆与内切圆的画法:
1、什么是三角形的外接圆与内切圆?
2、如何画出一个三角形的外接圆与内切圆?
1、①经过三角形各顶点的圆叫三角形的外接圆。
②与三角形各边都相切的圆叫三角形的内切圆。
画圆的关键:
1、确定圆心
2、确定半径
三角形的外接圆的圆心是各边垂直平分线的交点;其半径是交点到顶点的距离。
三角形的内切圆的圆心是各内角平分线的交点;其半径是交点到一边的距离。
三角形的外接圆:
A
O
B C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.2 点和圆、直线和圆的位置关系一.选择题(共20小题)1.(xx•哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.(xx•眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27° B.32° C.36° D.54°3.(xx•宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.104.(xx•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.55.(xx•河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.26.(xx•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.(xx•泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.8.(xx•重庆)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB 为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD 的长是()A.2 B.C.D.9.(xx•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(xx•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB 的最小值为()A.3 B.4 C.6 D.811.(xx•内江)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内切12.(xx•常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°13.(xx•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.14.(xx•台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离15.(xx•莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46° B.47° C.48° D.49°16.(xx•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P 是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.517.(xx•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm18.(xx•邵阳)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°19.(xx•衢州)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A.B.C.D.20.(xx•襄阳)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合二.填空题(共8小题)21.(xx•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE= °.22.(xx•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.23.(xx•镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BA D=50°,则∠ACB= °.24.(xx•泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.25.(xx•徐州)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= °.26.(xx•上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.27.(xx•泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.28.(xx•徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= °.三.解答题(共8小题)29.(xx•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.30.(xx•北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.31.(xx•昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.32.(xx•资阳)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.33.(xx•南充)如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E 为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.34.(xx•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.35.(xx•黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.36.(xx•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.参考答案一.选择题(共20小题)1.A.2.A.3.D.4.A.5.B.6.D.7.D.8.B.9.D.10.C.11.C.12.A.13.D.14.C.15.C.16.D.17.D.18.D.19.A.20.D.二.填空题(共8小题)21.60.22..23.40.24.(7,4)或(6,5)或(1,4).25.60.26.8<r<10.27.6.28.125.三.解答题(共8小题)29.(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.30.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.31.(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.32.证明:(1)连接OC,∵∠ACD=60°,∠E=30°,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=∠OCA+∠ACD=90°,∴直线DE与半圆相切;(2)在Rt△OCE中,∠E=30°,∴OE=2OC=OB+BE,∵OC=OB,∴OB=BE,∴OE=2BE=6,∴CE=OE•cosE=.33.解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.34.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.35.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.36.解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.欢迎您的下载,资料仅供参考!。