2013年湖南省高考数学试卷及答案(理科)
2013年湖南高考理科数学卷及答案
绝密★启用前2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i (1i)z =+(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法3.在锐角中ABC △,角A ,B 所对的边长分别为a ,b .若2sin a B =,则角A 等于( )A .π12B .π6C .π4D .π34.若变量x ,y 满足约束条件2,1,1,y x x y y ⎧⎪+⎨⎪-⎩≤≤≥,则2x y +的最大值是( )A .52-B .0C .53D .525.函数()2ln f x x =的图象与函数2()45g x x x =-+的图象的交点个数为( )A .3B .2C .1D .06.已知a ,b 是单位向量,0=a b .若向量c 满足||1--=c a b ,则||c 的取值范围是( ) A.1] B.2] C.1]D.2]+7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不.可能..等于( )A .1BCD8.在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过ABC △的中心,则AP 等于( ) A .2 B .1 C .83D .43二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在平面直角坐标系xOy 中,若l :,x t y t a =⎧⎨=-⎩(t 为参数)过椭圆C :3cos ,2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右顶点,则常数a 的值为 . 10.已知,,a b c ∈R ,236a b c ++=,则22249a b c ++的最小值为 .11.如图,的O 中,弦AB ,CD 相交于点P ,2PA PB ==,1PD =,则圆心O 到弦CD 的距离为 .(二)必做题(12~16题)12.若20d 9Tx x =⎰,则常数T 的值为 .13.执行如图所示的程序框图,如果输入1a =,2b =,则输出的a 的值为 .14.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点,P 是C 上一点.若126PF PF a +=,且12PF F △的最小内角为30,则C 的离心率为 . 15.设n S 为数列{}n a 的前n 项和,1(1)2n n n n S a =--,*n ∈N ,则 (1)3a = . (2)12100S S S +++= .16.设函数()xxxf x a b c =+-,其中0c a >>,0c b >>.(1)记集合{(,,),,}M a b c a b c a b =不能构成一个三角形的三条边长,且=,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为 .(2)若a ,b ,c 是ABC △的三条边长,则下列结论正确的是 .(写出所有正确结论的序号)①(,1)x ∀∈-∞,()0f x >;②x ∃∈R ,使x a ,x b ,x c 不能构成一个三角形的三条边长; ③若ABC △为钝角三角形,则(1,2)x ∃∈,使()0f x =.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数ππ()sin()cos()6f x x x =-+-,2()2sin 2xg x =.(Ⅰ)若α是第一象限角,且()f α,求()g α的值;(Ⅱ)求使()()f x g x ≥成立的x 的取值集合.18.(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作这里,两株作物“相近”是指它们之间的直线距离不超过1米.(Ⅰ)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (Ⅱ)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.19.(本小题满分12分)--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________如图,在直棱柱1111ABCD A B C D -中,AD BC ∥,90BAD ∠=,AC BD ⊥,1BC =,13AD AA ==.(Ⅰ)证明:1AC B D ⊥;(Ⅱ)求直线11B C 与平面1ACD 所成角的正弦值.20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径称为M 到N 的一条“L 路径”.如图所示的路径123MM M M N 与路径1MN N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20)A ,(10,0)B -,(14,0)C 处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(Ⅰ)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明); (Ⅱ)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区.请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小.21.(本小题满分13分) 过抛物线E :22(0)x py p =>的焦点F 作斜率分别为1k ,2k 的两条不同的直线1l ,2l ,且122k k +=.1l 与E 相交于点A ,B ,2l 与E 相交于点C ,D .以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(Ⅰ)若10k >,20k >,证明:22FM FN P <;(Ⅱ)若点M 到直线l,求抛物线E 的方程.21.(本小题满分13分)已知0a >,函数()||2x af x x a-=+. (Ⅰ)记()f x 在区间[0,4]上的最大值为()g a ,求()g a 的表达式;(Ⅱ)是否存在a ,使函数()y f x =在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求a 的取值范围;若不存在,请说明理由.2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案解析【解析】i(1i)1z=+=-【提示】利用复数乘法的运算法则及复数的几何意义求解【考点】复数乘法的运算法则,复数集与复平面上的点对应关系2sina B【提示】给出三角形中的边角关系,运用正弦定理求解未知角【考点】正弦定理33⎝⎭333【解析】2()g x x=一直角坐标系内画出函数()f x与()g x有2个不同的交点在位置P'时最远,而21PO=-,21P O'=+,故选A.【提示】令OA a=,OB b=,OD a b=+,OC c=,作出图象,根据图象可求出||c的最2。
2013年湖南高考理科数学试题及答案(word版)
绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数)i 1(i z +⋅=(i 为虚数单位)在复平面上对应的点位于 【 B 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 【 D 】 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法3. 在锐角中ABC ∆,角A, B 所对的边长分别为,a b . 若b 3B sin a 2=,则角A 等于 A .12π B .6π C .4π D .3π【 D 】 4. 若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则y 2x +的最大值是 【 C 】A .5-2B .0C .53D .525. 函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 【 B 】 A .3 B .2 C .1 D .06. 已知b ,a 是单位向量,0b a =⋅. 若向量c 满足1|b a c |=--,则|c |的取值范围是 A .]12,12[+- B .]22,12[+-C .]12,1[+ D . ]22,1[+ 【 A 】7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 BC.2 D.2【 C 】 8. 在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的重心,则AP 等于A .2B .1C .83D .43【 D 】二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分) 9. 在平面直角坐标系xoy 中,若直线⎩⎨⎧-==a t y ,t x :l (t 为参数) 过椭圆⎩⎨⎧ϕ=ϕ=sin 2y cos 3x :C (ϕ为参数) 的右顶点,则常数a 的值为 . 答案: 310. 已知R c ,b ,a ∈,6c 3b 2a =++,则222c 9b 4a ++的最小值为 . 答案: 1211. 如图2O 中, 弦AB, CD 相交于点 P ,2PB PA ==,1PD =,则圆心O 到弦CD 的距 离为 . 答案: 23(二) 必做题(12-16题) 12. 若9dx x T2=⎰,则常数T 的值为 . 答案: 313. 执行如图3所示的程序框图,如果输入2b ,1a ==,则输出的a 的值为 .答案: 914.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若a 6|PF ||PF |21=+,且12PF F ∆的最小内角为30,则C 的离心率为 .答案:315.设n S 为数列{}n a 的前n 项和,1(1),,2nn n n S a n N *=--∈则 (1)3a =_____;(2)12100S S S ++⋅⋅⋅+=___________. 答案: (1) 161-; (2) )121(31100-16.设函数(),0,0.x x x f x a b c c a c b =+->>>>其中(1)记集合c ,b ,a |)c ,b ,a {(M =不能构成三角形的三条边长,且}b a =,则(,,)abcM ∈所对应的()f x 的零点的取值集合为______________.(2)若c ,b ,a 是ABC ∆的三条边长,则下列结论正确的是 .(写出所有正确结论的序号)① ()(),1,0;x f x ∀∈-∞>② R x ∈∃,使x x x c ,b ,a 不能构成一个三角形的三条边长; ③ 若ABC ∆为钝角三角形,则)2,1(x ∈∃使0)x (f =. 答案:(1) }1x 0|x {≤< (2)① ② ③三、解答题:本大题共6小题,共75分。
2013年高考湖南数学理科试卷及详细解答(wodr清晰版)
2013年高考湖南数学理科详解数学(理工类)本试卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、 复数()i i z +∙=1(i 为虚数单位),在复平面上对应的点位于A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解析:选B 。
考察了复数的概念和运算以及复数在坐标系中的几何意义。
2、某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽查100名学生进行调查,则宜采取的抽样方法是 A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法解析:选D 。
考察了分层抽样的概念。
3、在锐角ABC ∆中,角B A ,所对的边长分别为b a ,,若b B a 3sin 2=,则角A 等于 A .12π B. 6π C. 4π D. 3π解析:选D 。
考察了解三角形中的边角关系,求角所以我们把边化成角,根据三角函数的值反求角度。
4、若变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤112y y x xy ,则y x 2+的最大值是A .25-B. 0C. 35D.25解析:选C 。
考察了线性规划问题,根据数型结合求解最大值。
5、函数()x x f ln 2=的图象函数()542+-=x x x g 的图象的交点个数为 A .3 B. 2 C. 1 D. 0解析:选B 。
考察了函数交点问题,即函数零点问题,针对零点问题,我们有如下方法解决:图像法,零点存在法,特殊值法及求导考察单调性法。
6、已知b a ,是单位向量,0=⋅b a ,若向量c 满足1=--b a c ,则c 的取值范围是 A .[]12,12+- B. []22,12+- C. []12,1+ D. []22,1+解析:选A 。
考察了向量的运算,尤其是向量的几何意义,向量与圆的关系。
【精校】2013年普通高等学校招生全国统一考试(湖南卷)理数-含答案
绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷) 数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法 3.在锐角中,角所对的边长分别为.若A .B .C .D . 4.若变量满足约束条件,A .B .C .D .5.函数的图像与函数的图像的交点个数为A .3B .2C .1D .06. 已知是单位向量,.若向量满足A .B .C .D . 7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A . BC .D .()()1z ii i =+g 为虚数单位ABC ∆,A B ,a b 2sin ,a B A =则角等于12π6π4π3π,x y 211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩2x y +则的最大值是5-205352()2ln f x x =()245g x x x =-+,a b 0a b •=c 1,c a b c --=则的取值范围是⎤⎦⎤⎦1⎡⎤⎣⎦1⎡⎤⎣⎦1228.在等腰三角形中,点是边上异于的一点,光线从点出发,经反射后又回到原点(如图).若光线经过的中心,则等于A .B .C .D .二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系中,若直线右顶点,则常数 .10.已知 .11.如图2,在半径为的中,弦.(一) 必做题(12-16题) 12.若 .13.执行如图3所示的程序框图,如果输入.14.设是双曲线的两个焦点,P 是C 上一点,若且的最小内角为,则C 的离心率为___。
2013年高考理科数学试卷及答案(湖南卷)(Word版)
2013年普通高等学校招生全国统一考试数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 复数z=i ·(1+i )(i 为虚数单位)在复平面上对应的点位于 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A. 抽签法B. 随机数法C. 系统抽样法D. 分层抽样法3. 在锐角ABC ∆中,角A ,B 所对的边长分别为a ,b 。
若b B a 3sin 2=,则角A 等于( ) A. 12π B. 6π C. 4π D. 3π 4. 若变量x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤,1,1,2y y x x y 则y x 2+的最大值是( )A. 25-B. 0C. 35D. 25 5. 函数()x x f ln 2=的图象与函数()542+-=x x x g 的图象的交点个数为( )A. 3B. 2C. 1D. 06. 已知a ,b 是单位同量,a ·b =0。
若向量c 满足1=--b a c ,则的取值范围是( )A. [12-,12+]B. [12-,22+]C. [1, 12+]D. [1, 22+]7. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( ) A. 1 B. 2 C. 212- D. 212+ 8. 在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图1)。
若光线QR 经过ABC ∆的重心,则AP 等于( )A. 2B. 1C. 38D. 34 二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分。
2013年湖南省高考数学试卷(理科)附送答案
2013年湖南省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法3.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.4.(5分)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0 C.D.5.(5分)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.06.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.7.(5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1 B.C.D.8.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.10.(5分)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为.11.(5分)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.12.(5分)若x2dx=9,则常数T的值为.13.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为.15.(5分)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.16.(5分)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为.(2)若a,b,c是△ABC的三条边长,则下列结论正确的是.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.19.(12分)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.20.(13分)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N 的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x 轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.21.(13分)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(Ⅰ)若k1>0,k2>0,证明:;(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.22.(13分)已知a>0,函数.(Ⅰ)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(Ⅱ)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖南)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数z,根据复数与复平面内点的对应关系可得答案.【解答】解:z=i•(1+i)=﹣1+i,故复数z对应的点为(﹣1,1),在复平面的第二象限,故选B.2.(5分)(2013•湖南)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:总体由男生和女生组成,比例为500:500=1:1,所抽取的比例也是1:1.故拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样法.故选:D.3.(5分)(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.【分析】利用正弦定理可求得sinA,结合题意可求得角A.【解答】解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.4.(5分)(2013•湖南)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0 C.D.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x=,y=时,x+2y取得最大值为.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(﹣,﹣1),B(,),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点B时,目标函数z达到最大值∴z=F(,)=最大值故选:C5.(5分)(2013•湖南)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.0【分析】本题考查的知识点是指数函数的图象,要求函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案.【解答】解:在同一坐标系下,画出函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象如图:由图可知,两个函数图象共有2个交点故选B.6.(5分)(2013•湖南)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.【分析】令,,,作出图象,根据图象可求出的最大值、最小值.【解答】解:令,,,如图所示:则,又,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时达到最值,最大值为+1,最小值为﹣1,所以的取值范围为[﹣1,+1].故选A.7.(5分)(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1 B.C.D.【分析】求出满足条件的该正方体的正视图的面积的范围为即可得出.【解答】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.8.(5分)(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.【分析】建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P的坐标,进而可得AP的值.【解答】解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k==,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=故选D二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.(2013•湖南)在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为3.【分析】直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.【解答】解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.10.(5分)(2013•湖南)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为12.【分析】根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化简得a2+4b2+9c2≥12,由此可得当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12.【解答】解:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=时等号成立由此可得:当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12故答案为:1211.(5分)(2013•湖南)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.【分析】首先利用相交弦定理求出CD的长,再利用勾股定理求出圆心O到弦CD 的距离,注意计算的正确率.【解答】解:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为,则圆心O到弦CD的距离为d===.故答案为:.12.(5分)(2013•湖南)若x2dx=9,则常数T的值为3.【分析】利用微积分基本定理即可求得.【解答】解:==9,解得T=3,故答案为:3.13.(5分)(2013•湖南)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为9.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加a值,并判断满足a>8时输出a的值.【解答】解:程序在运行过程中各变量的聚会如下表示:是否继续循环 a b循环前/1 2第一圈是 3 2第二圈是 5 2第三圈是7 2第四圈是9 2第五圈否故最终输出的a值为9.故答案为:9.14.(5分)(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C 的离心率为.【分析】利用双曲线的定义求出|PF1|,|F1F2|,|PF2|,然后利用最小内角为30°结合余弦定理,求出双曲线的离心率.【解答】解:因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|+|PF2|=6a,不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|﹣|PF2|=2a所以|F1F2|=2c,|PF1|=4a,|PF2|=2a,∵△PF1F2的最小内角∠PF1F2=30°,由余弦定理,∴|PF2|2=|F1F2|2+|PF1|2﹣2|F1F2||PF1|cos∠PF1F2,即4a2=4c2+16a2﹣2×2c×4a×,∴c2﹣2ca+3a2=0,∴c=a所以e==.故答案为:.15.(5分)(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n ∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.【分析】(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.【解答】解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.16.(5分)(2013•湖南)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为{x|0<x≤1} .(2)若a,b,c是△ABC的三条边长,则下列结论正确的是①②③.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.【分析】(1)由集合M中的元素满足的条件,得到c≥a+b=2a,求得的范围,解出函数f(x)=a x+b x﹣c x的零点,利用不等式可得零点x的取值集合;(2)对于①,把函数式f(x)=a x+b x﹣c x变形为,利用指数函数的单调性即可证得结论成立;对于②,利用取特值法说明命题是正确的;对于③,由△ABC为钝角三角形说明f(2)<0,又f(1)>0,由零点的存在性定理可得命题③正确.【解答】解:(1)因为c>a,由a,b,c不能构成一个三角形的三条边长得c≥a+b=2a,所以,则.令f(x)=a x+b x﹣c x=.得,所以.又∵>1,则ln>0,所以x=>0,所以0<x≤1.故答案为{x|0<x≤1};(2)①因为,又,所以对∀x∈(﹣∞,1),.所以命题①正确;②令x=﹣1,a=2,b=4,c=5.则a x=,b x=,c x=.不能构成一个三角形的三条边长.所以命题②正确;③若三角形为钝角三角形,则a2+b2﹣c2<0.f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0.所以∃x∈(1,2),使f(x)=0.所以命题③正确.故答案为①②③.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖南)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.【分析】(1)利用两角和差的三角公式化简函数f(x)的解析式,可得f(α)的解析式,再根据f(α)=,求得cosα的值,从而求得g(α)=2sin2=1﹣cosα的值.(2)由不等式可得sin(x+)≥,解不等式2kπ+≤x+≤2kπ+,k ∈z,求得x的取值集合.【解答】解:(1)∵f(x)=sinx﹣cosx+cosx+sinx=sinx,所以f(α)=sinα=,所以sinα=.又α∈(0,),所以cosα=,所以g(α)=2sin2=1﹣cosα=.(2)由f(x)≥g(x)得sinx≥1﹣cosx,所以sinx+cosx=sin(x+)≥.解2kπ+≤x+≤2kπ+,k∈z,求得2kπ≤x≤2kπ+,k∈z,所以x的取值范围为〔2kπ,2kπ+〕k∈z.18.(12分)(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P (X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y51484542P数学期望为E(Y)=51×+48×+45×+42×=4619.(12分)(2013•湖南)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.【分析】(I)根据直棱柱性质,得BB1⊥平面ABCD,从而AC⊥BB1,结合BB1∩BD=B,证出AC⊥平面BB1D,从而得到AC⊥B1D;(II)根据题意得AD∥B1C1,可得直线B1C1与平面ACD1所成的角即为直线AD与平面ACD1所成的角.连接A1D,利用线面垂直的性质与判定证出AD1⊥平面A1B1D,从而可得AD1⊥B1D.由AC⊥B1D,可得B1D⊥平面ACD1,从而得到∠ADB1与AD与平面ACD1所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△AB1D中算出B1D=,可得cos∠ADB1=,由此即可得出直线B1C1与平面ACD1所成的角的正弦值.【解答】解:(I)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵AC⊥BD,BB1、BD是平面BB1D内的相交直线∴AC⊥平面BB1D,∵B1D⊂平面BB1D,∴AC⊥B1D;(II)∵AD∥BC,B1C1∥BC,∴AD∥B1C1,由此可得:直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ),连接A1D,∵直棱柱ABCD﹣A1B1C1D1中,∠BAD=∠B1A1D1=90°,∴B1A1⊥平面A1D1DA,结合AD1⊂平面A1D1DA,得B1A1⊥AD1又∵AD=AA1=3,∴四边形A1D1DA是正方形,可得AD1⊥A1D∵B1A1、A1D是平面A1B1D内的相交直线,∴AD1⊥平面A1B1D,可得AD1⊥B1D,由(I)知AC⊥B1D,结合AD1∩AC=A可得B1D⊥平面ACD1,从而得到∠ADB1=90°﹣θ,∵在直角梯形ABCD中,AC⊥BD,∴∠BAC=∠ADB,从而得到Rt△ABC∽Rt△DAB 因此,,可得AB==连接AB1,可得△AB1D是直角三角形,∴B1D2=B1B2+BD2=B1B2+AB2+BD2=21,B1D=在Rt△AB1D中,cos∠ADB1===,即cos(90°﹣θ)=sinθ=,可得直线B1C1与平面ACD1所成的角的正弦值为.20.(13分)(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x 轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.【分析】(I)根据“L路径”的定义,可得点P到居民区A的“L路径”长度最小值;(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值,分类讨论,利用绝对值的几何意义,即可求得点P的坐标.【解答】解:设点P的坐标为(x,y),则(I)点P到居民区A的“L路径”长度最小值为|x﹣3|+|y﹣20|,y∈[0,+∞);(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值①当y≥1时,d=|x+10|+|x﹣14|+|x﹣3|+2|y|+|y﹣20|∵d1(x)=|x+10|+|x﹣14|+|x﹣3|≥|x+10|+|x﹣14|≥24∴当且仅当x=3时,d1(x)=|x+10|+|x﹣14|+|x﹣3|的最小值为24∵d2(y)=2|y|+|y﹣20|≥21∴当且仅当y=1时,d2(y)=2|y|+|y﹣20|的最小值为21∴点P的坐标为(3,1)时,点P到三个居民区的“L路径”长度之和的最小,且最小值为45;②当0≤y≤1时,由于“L路径”不能进入保护区,∴d=|x+10|+|x﹣14|+|x﹣3|+1+|1﹣y|+|y|+|y﹣20|此时d1(x)=|x+10|+|x﹣14|+|x﹣3|,d2(y)=1+|1﹣y|+|y|+|y﹣20|=22﹣y ≥21由①知d1(x)=|x+10|+|x﹣14|+|x﹣3|≥24,∴d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.21.(13分)(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(Ⅰ)若k1>0,k2>0,证明:;(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.【分析】(Ⅰ)由抛物线方程求出抛物线的焦点坐标,写出两条直线的方程,由两条直线方程和抛物线方程联立求出圆M和圆N的圆心M和N的坐标,求出向量和的坐标,求出数量积后转化为关于k1和k2的表达式,利用基本不等式放缩后可证得结论;(Ⅱ)利用抛物线的定义求出圆M和圆N的直径,结合(Ⅰ)中求出的圆M和圆N的圆心的坐标,写出两圆的方程,作差后得到两圆的公共弦所在直线方程,由点到直线的距离公式求出点M到直线l的距离,利用k1+k2=2转化为含有一个未知量的代数式,配方后求出最小值,由最小值等于求出p的值,则抛物线E的方程可求.【解答】解:(I)由题意,抛物线E的焦点为,直线l1的方程为.由,得.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,.所以点M的坐标为,.同理可得点N的坐标为,.于是.由题设k1+k2=2,k1>0,k2>0,k1≠k2,所以0<.故.(Ⅱ)由抛物线的定义得,,所以,从而圆M的半径.故圆M的方程为,化简得.同理可得圆N的方程为于是圆M,圆N的公共弦所在的直线l的方程为.又k2﹣k1≠0,k1+k2=2,则l的方程为x+2y=0.因为p>0,所以点M到直线l的距离为=.故当时,d取最小值.由题设,解得p=8.故所求抛物线E的方程为x2=16y.22.(13分)(2013•湖南)已知a>0,函数.(Ⅰ)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(Ⅱ)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.【分析】(I)利用绝对值的几何意义,分类讨论,结合导数确定函数的单调性,从而可得g(a)的表达式;(II)利用曲线y=f(x)在两点处的切线互相垂直,建立方程,从而可转化为集合的运算,即可求得结论.【解答】解:(I)当0≤x≤a时,;当x>a时,∴当0≤x≤a时,,f(x)在(0,a)上单调递减;当x>a时,,f(x)在(a,+∞)上单调递增.①若a≥4,则f(x)在(0,4)上单调递减,g(a)=f(0)=②若0<a<4,则f(x)在(0,a)上单调递减,在(a,4)上单调递增∴g(a)=max{f(0),f(4)}∵f(0)﹣f(4)==∴当0<a≤1时,g(a)=f(4)=;当1<a<4时,g(a)=f(0)=,综上所述,g(a)=;(II)由(I)知,当a≥4时,f(x)在(0,4)上单调递减,故不满足要求;当0<a<4时,f(x)在(0,a)上单调递减,在(a,4)上单调递增,若存在x1,x2∈(0,4)(x1<x2),使曲线y=f(x)在两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且f′(x1)f′(x2)=﹣1∴•=﹣1∴①∵x1∈(0,a),x2∈(a,4),∴x1+2a∈(2a,3a),∈(,1)∴①成立等价于A=(2a,3a)与B=(,1)的交集非空∵,∴当且仅当0<2a<1,即时,A∩B≠∅综上所述,存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是(0,).。
2013湖南理科高考试题(含解析与答案)
2013年普通高等学校夏季招生全国统一考试数学理工农医类(湖南卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖南,理1)复数z=i·(1+i)(i为虚数单位)在复平面上对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:z=i+i2=-1+i,对应点为(-1,1),故在第二象限,选B.2.(2013湖南,理2)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是().A.抽签法B.随机数法C.系统抽样法D.分层抽样法答案:D解析:看男、女学生在学习兴趣与业余爱好是否存在明显差异,应当分层抽取,故宜采用分层抽样.3.(2013湖南,理3)在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B,则角A等于().A.π12B.π6C.π4D.π3答案:D解析:由2a sin B得2sin A sin BB,故sin A,故A=π3或2π3.又△ABC为锐角三角形,故A=π3 .4.(2013湖南,理4)若变量x,y满足约束条件2,1,1.y xx yy≤⎧⎪+≤⎨⎪≥-⎩则x+2y的最大值是().A.52-B.0 C.53D.52答案:C解析:约束条件表示的可行域为如图阴影部分.令x+2y=d,即122dy x=-+,由线性规划知识可得最优点为12,33⎛⎫⎪⎝⎭,所以d max =145333+=. 5.(2013湖南,理5)函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( ).A .3B .2C .1D .0 答案:B解析:设f (x )与g (x )图象的交点坐标为(x ,y ),则y =2ln x ,y =x 2-4x +5,联立得2ln x =x 2-4x +5,令h (x )=x 2-4x +5-2ln x (x >0),由h ′(x )=2x -4-2x=0得x 1=1x 2=1舍).当h ′(x )<0时,即x ∈(0,1时,h (x )单调递减;当h ′(x )>0,即x ∈(1+∞)时,h (x )单调递增.又∵h (1)=2>0,h (2)=1-2ln 2<0,h (4)=5-2ln 4>0, ∴h (x )与x 轴必有两个交点,故答案为B .6.(2013湖南,理6)已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( ).A .11]B .12]C .[11]D .[12] 答案:A解析:由题意,不妨令a =(0,1),b =(1,0),c =(x ,y ),由|c -a -b |=1得(x -1)2+(y -1)2=1,|c |可看做(x ,y )到原点的距离,而点(x ,y )在以(1,1)为圆心,以1为半径的圆上.如图所示,当点(x ,y )在位置P 时到原点的距离最近,在位置P ′时最远,而PO 1,P ′O 1,故选A .7.(2013湖南,理7)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ).A .1BCD 答案:C解析:θ,如图所示.故正视图的面积为S θ(0≤θ≤π4),∴1≤S而1<12,故面积不可能等于12. 8.(2013湖南,理8)在等腰直角三角形ABC 中,AB =AC =4,点P 为边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P .若光线QR 经过△ABC 的重心,则AP 等于( ).A .2B .1C .83 D .43答案:D解析:以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示.则A (0,0),B (4,0),C (0,4).设△ABC 的重心为D ,则D 点坐标为44,33⎛⎫⎪⎝⎭. 设P 点坐标为(m,0),则P 点关于y 轴的对称点P 1为(-m,0),因为直线BC 方程为x +y-4=0,所以P 点关于BC 的对称点P 2为(4,4-m ),根据光线反射原理,P 1,P 2均在QR 所在直线上,∴12PD P D k k =, 即4443344433m m -+=+-, 解得,m =43或m =0.当m =0时,P 点与A 点重合,故舍去. ∴m =43. 二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9.(2013湖南,理9)在平面直角坐标系xOy 中,若直线l :,x t y t a=⎧⎨=-⎩(t 为参数)过椭圆C :3cos ,2sin x y ϕϕ=⎧⎨=⎩(φ为参数)的右顶点,则常数a 的值为__________.答案:3解析:由题意知在直角坐标系下,直线l 的方程为y =x -a ,椭圆的方程为22194x y +=,所以其右顶点为(3,0).由题意知0=3-a ,解得a =3.10.(2013湖南,理10)已知a ,b ,c ∈R ,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为__________.答案:12解析:由柯西不等式得(12+12+12)(a 2+4b 2+9c 2)≥(a +2b +3c )2,即a 2+4b 2+9c 2≥12,当a =2b =3c =2时等号成立,所以a 2+4b 2+9c 2的最小值为12. 11.(2013湖南,理11)如图,在半径为7的 O 中,弦AB ,CD 相交于点P ,P A =PB =2,PD =1,则圆心O 到弦CD 的距离为__________.解析:如图所示,取CD 中点E ,连结OE ,OC .由圆内相交弦定理知PD ·PC =P A ·PB ,所以PC =4,CD =5,则CE =52,OC所以O 到CD 距离为OE =(二)必做题(12~16题) 12.(2013湖南,理12)若0T⎰x 2d x =9,则常数T 的值为__________.答案:3 解析:∵313x '⎛⎫⎪⎝⎭=x 2, ∴T ⎰x 2d x =13x 30|T =13T 3-0=9,∴T =3.13.(2013湖南,理13)执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为__________.答案:9解析:输入a =1,b =2,不满足a >8,故a =3; a =3不满足a >8,故a =5; a =5不满足a >8,故a =7;a =7不满足a >8,故a =9,满足a >8,终止循环.输出a =9.14.(2013湖南,理14)设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的两个焦点,P是C 上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为__________.解析:不妨设|PF 1|>|PF 2|,由1212||||6,||||2PF PF a PF PF a +=⎧⎨-=⎩可得12||4,||2.PF a PF a =⎧⎨=⎩∵2a <2c ,∴∠PF 1F 2=30°,∴cos 30°=222242224c a a a()+()-()⨯⨯,整理得,c 2+3a 2-=0,即e 2-+3=0,∴e =15.(2013湖南,理15)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则 (1)a 3=__________;(2)S 1+S 2+…+S 100=__________. 答案:(1)116-(2)10011132⎛⎫- ⎪⎝⎭16.(2013湖南,理16)设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.(1)记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为__________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是__________.(写出所有正确结论的序号)①∀x ∈(-∞,1),f (x )>0;②∃x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则∃x ∈(1,2),使f (x )=0. 答案:(1){x |0<x ≤1} (2)①②③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(2013湖南,理17)(本小题满分12分)已知函数ππ()sin cos 63f x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,g (x )=22sin2x.(1)若α是第一象限角,且f (α)=5,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解:ππ()sin cos 63f x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭x -12cos x +12cos x xx ,g (x )=22sin 2x =1-cos x .(1)由f (α)=5得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1 =41155-=.(2)f (x )≥g (x )x ≥1-cos x x +cos x ≥1.于是π1sin 62x ⎛⎫+≥ ⎪⎝⎭. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为2π|2π2π,3x k x k k ⎧⎫≤≤+∈⎨⎬⎩⎭Z .18.(2013湖南,理18)(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.解:(1)所种作物总株数N =1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12.从三角形地块的内部和边界上分别随机选取一株的不同结果有11312C C =36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8种.故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为82369=. (2)先求从所种作物中随机选取的一株作物的年收获量Y 的分布列. 因为P (Y =51)=P (X =1),P (Y =48)=P (X =2),P (Y =45)=P (X =3),P (Y =42)=P (X =4), 所以只需求出P (X =k )(k =1,2,3,4)即可.记n k 为其“相近”作物恰有k 株的作物株数(k =1,2,3,4),则 n 1=2,n 2=4,n 3=6,n 4=3. 由P (X =k )=kn N得 P (X =1)=215,P (X =2)=415,P (X =3)=62155=,P (X =4)=31155=. 故所求的分布列为所求的数学期望为 E (Y )=51×215+48×415+45×25+42×15=346490425+++=46. 19.(2013湖南,理19)(本小题满分12分)如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.解法1:(1)如图,因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BB 1. 又AC ⊥BD ,所以AC ⊥平面BB 1D . 而B 1D ⊂平面BB 1D ,所以AC ⊥B 1D .(2)因为B 1C 1∥AD ,所以直线B 1C 1与平面ACD 1所成的角等于直线AD 与平面ACD 1所成的角(记为θ).如图,连结A 1D ,因为棱柱ABCD -A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BAD =90°,所以A 1B 1⊥平面ADD 1A 1.从而A 1B 1⊥AD 1.又AD =AA 1=3,所以四边形ADD 1A 1是正方形,于是A 1D ⊥AD 1. 故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D .由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面ACD 1.故∠ADB 1=90°-θ.在直角梯形ABCD 中,因为AC ⊥BD ,所以∠BAC =∠ADB .从而Rt △ABC ∽Rt △DAB ,故AB BCDA AB=.即AB=连结AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 12+BD 2=BB 12+AB 2+AD 2=21, 即B 1D在Rt △AB 1D 中,cos ∠ADB 1=17AD B D ==,即cos(90°-θ)=7. 从而sin θ=7. 即直线B 1C 1与平面ACD 1所成角的正弦值为7. 解法2:(1)易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为:A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而1B D=(-t,3,-3),AC =(t,1,0),BD =(-t,3,0).因为AC ⊥BD ,所以AC ·BD=-t 2+3+0=0.解得t =t =舍去). 于是1B D=(3,-3),AC =1,0).因为AC ·1B D =-3+3+0=0,所以AC ⊥1B D ,即AC ⊥B 1D .(2)由(1)知,1AD =(0,3,3),AC =1,0),11B C=(0,1,0). 设n =(x ,y ,z )是平面ACD 1的一个法向量,则10,0,AC AD ⎧⋅=⎪⎨⋅=⎪⎩n n即0,330.y y z +=+=⎪⎩ 令x =1,则n =(1,.设直线B 1C 1与平面ACD 1所成角为θ,则sin θ=|cos 〈n ,11B C 〉|=1111B C B C ⋅⋅n n7=. 即直线B 1C 1与平面ACD 1. 20.(2013湖南,理20)(本小题满分13分)在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径称为M 到N 的一条“L 路径”.如图所示的路径MM 1M 2M 3N 与路径MN 1N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点A (3,20),B (-10,0),C (14,0)处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(1)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明):(2)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小.解:设点P 的坐标为(x ,y ).(1)点P 到居民区A 的“L 路径”长度最小值为 |x -3|+|y -20|,x ∈R ,y ∈[0,+∞). (2)由题意知,点P 到三个居民区的“L 路径”长度之和的最小值为点P 分别到三个居民区的“L 路径”长度最小值之和(记为d )的最小值.①当y ≥1时,d =|x +10|+|x -14|+|x -3|+2|y |+|y -20|, 因为d 1(x )=|x +10|+|x -14|+|x -3|≥|x +10|+|x -14|,(*) 当且仅当x =3时,不等式(*)中的等号成立, 又因为|x +10|+|x -14|≥24,(**)当且仅当x ∈[-10,14]时,不等式(**)中的等号成立. 所以d 1(x )≥24,当且仅当x =3时,等号成立.d 2(y )=2y +|y -20|≥21,当且仅当y =1时,等号成立.故点P 的坐标为(3,1)时,P 到三个居民区的“L 路径”长度之和最小,且最小值为45. ②当0≤y ≤1时,由于“L 路径”不能进入保护区,所以d =|x +10|+|x -14|+|x -3|+1+|1-y |+|y |+|y -20|, 此时,d 1(x )=|x +10|+|x -14|+|x -3|, d 2(y )=1+|1-y |+|y |+|y -20|=22-y ≥21.由①知,d 1(x )≥24,故d 1(x )+d 2(y )≥45,当且仅当x =3,y =1时等号成立.综上所述,在点P (3,1)处修建文化中心,可使该文化中心到三个居民区的“L 路径”长度之和最小.21.(2013湖南,理21)(本小题满分13分)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM ·FN<2p 2;(2)若点M 到直线l的距离的最小值为5,求抛物线E 的方程.解:(1)由题意,抛物线E 的焦点为F 0,2p ⎛⎫⎪⎝⎭,直线l 1的方程为y =k 1x +2p ,由12,22p y k x x py⎧=+⎪⎨⎪=⎩得x 2-2pk 1x -p 2=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1,x 2是上述方程的两个实数根. 从而x 1+x 2=2pk 1,y 1+y 2=k 1(x 1+x 2)+p =2pk 12+p .所以点M 的坐标为211,2p pk pk ⎛⎫+ ⎪⎝⎭,FM =(pk 1,pk 12).同理可得点N 的坐标为222,2p pk pk ⎛⎫+ ⎪⎝⎭,FN =(pk 2,pk 22).于是FM ·FN=p 2(k 1k 2+k 12k 22).由题设,k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<2122k k +⎛⎫ ⎪⎝⎭=1.故FM ·FN<p 2(1+12)=2p 2.(2)由抛物线的定义得|F A |=y 1+2p ,|FB |=y 2+2p, 所以|AB |=y 1+y 2+p =2pk 12+2p .从而圆M 的半径r 1=pk 12+p , 故圆M 的方程为(x -pk 1)2+2212p y pk ⎛⎫-- ⎪⎝⎭=(pk 12+p )2.化简得x 2+y 2-2pk 1x -p (2k 12+1)y -34p 2=0.同理可得圆N 的方程为 x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0. 于是圆M ,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x +(k 22-k 12)y =0. 又k 2-k 1≠0,k 1+k 2=2,则l 的方程为x +2y =0. 因为p >0,所以点M 到直线l 的距离2d =22117248p k ⎡⎤⎛⎫++⎢⎥ ⎪⎝⎭故当k 1=14-时,d.=p =8. 故所求的抛物线E 的方程为x 2=16y . 22.(2013湖南,理22)(本小题满分13分)已知a >0,函数f (x )=2x a x a -+. (1)记f (x )在区间[0,4]上的最大值为g (a ),求g (a )的表达式;(2)是否存在a ,使函数y =f (x )在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求a 的取值范围;若不存在,请说明理由.解:(1)当0≤x ≤a 时,f (x )=2a x x a -+; 当x >a 时,f (x )=2x a x a-+. 因此,当x ∈(0,a )时,f ′(x )=232a x a -(+)<0,f (x )在(0,a )上单调递减; 当x ∈(a ,+∞)时,f ′(x )=232a x a (+)>0,f (x )在(a ,+∞)上单调递增. ①若a ≥4,则f (x )在(0,4)上单调递减,g (a )=f (0)=12. ②若0<a <4,则f (x )在(0,a )上单调递减,在(a,4)上单调递增.所以g (a )=max{f (0),f (4)}.而f (0)-f (4)=1412422a a a a---=++, 故当0<a ≤1时,g (a )=f (4)=442a a-+; 当1<a <4时,g (a )=f (0)=12. 综上所述,g (a )=4,01,421, 1.2a a a a -⎧<≤⎪⎪+⎨⎪>⎪⎩(2)由(1)知,当a ≥4时,f (x )在(0,4)上单调递减,故不满足要求.当0<a <4时,f (x )在(0,a )上单调递减,在(a,4)上单调递增.若存在x 1,x 2∈(0,4)(x 1<x 2),使曲线y =f (x )在(x 1,f (x 1)),(x 2,f (x 2))两点处的切线互相垂直,则x 1∈(0,a ),x 2∈(a,4),且f ′(x 1)·f ′(x 2)=-1, 即221233122a a x a x a -⋅=-(+)(+). 亦即x 1+2a =232a x a +.(*)由x1∈(0,a),x2∈(a,4)得x1+2a∈(2a,3a),23 2 ax a +∈3,142aa⎛⎫ ⎪+⎝⎭.故(*)成立等价于集合A={x|2a<x<3a}与集合B=3142ax xa⎧⎫<<⎨⎪+⎩⎭的交集非空.因为342aa+<3a,所以当且仅当0<2a<1,即0<a<12时,A∩B≠∅.综上所述,存在a使函数f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是1 0,2⎛⎫ ⎪⎝⎭.。
2013年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科) word解析版
⎨ ⎩绝 密 ★ 启 用 前 2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共 5 页,时量 120 分钟,满分 150 分。
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数 z = i (1+ i )(i 为虚数单位)在复平面上对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】 B【解析】 z = i·(1+i) = i – 1,所以对应点(-1,1).选 B2.某学校有男、女学生各 500 名.为了解男女学生在学习兴趣与业余爱好方面是否存在显 著差异,拟从全体学生中抽取 100 名学生进行调查,则宜采用的抽样方法是 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法【答案】 D【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。
选 D3.在锐角中∆ABC ,角 A , B 所对的边长分别为a , b .若2a sin B = 3b ,则角A 等于A . πB . πC . πD . π12 6 4 3【答案】 Dπ π 【解析】 由2asinB = 3b 得 : 2sinA ⋅ sinB = ⋅ sinB ⇒ sinA =,A < 2 ⇒ A = 2 。
选 D 3⎧ y ≤ 2x4.若变量 x , y 满足约束条件⎪x + y ≤ 1, 则x + 2 y 的最大值是⎪ y ≥ -1 A . - 5 2 【答案】 C B . 0 C . 5 3 D . 521 2 5【解析】 区域为三角形,直线 u = x + 2y 经过三角形顶点( , 3 )时,u = 3 最大。
选 C35.函数 f (x ) = 2 ln x 的图像与函数 g (x ) = x 2 - 4x + 5的图像的交点个数为 A .3B .2C .1D .0【答案】 B【解析】 二次函数 g (x ) = x 2- 4x + 5的图像开口向上,在 x 轴上方,对称轴为 x=2,g(2) = 1;f(2) =2ln2=ln4>1.所以 g(2) < f(2), 从图像上可知交点个数为 2 。
2013年湖南省高考数学试卷及答案(理科)
2013年湖南省高考数学试卷及答案(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卡上.1.(5分)i是虚数单位,复数=()3.(5分)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()C4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、5.(5分)若在区域内任取一点P,则点P恰好在单位圆x2+y2=1内的概率为().C D..7.(5分)下列命题正确的有①用相关指数R2来刻画回归效果越小,说明模型的拟合效果越好;②命题p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x2﹣x﹣1≤0”;③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则;8.(5分)在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“理想距离”为:d(P,Q)=|x1﹣x2|+|y1﹣y2|;若C(x,y)到点A(2,3)、B(8,8)的“理想距离”相等,其中实数x、y满足0≤x≤8、0≤y≤8,则所有满C二、填空题:本大题共8小题,考生作答7小题,每小题0分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)(二)必做题(12~16题)9.计算的值等于_________.10.(5分)如图,点A,B,C是圆O上的点,且,,则圆O的面积等于_________.11.(5分)若曲线C的极坐标方程为ρcos2θ=2sinθ,则曲线C的普通方程为_________.12.(5分)看图程序运行后的输出结果s=_________.13.(5分)已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p 是q的_________条件.14.(5分)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文.现在加密密钥为y=log a(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.若接受方接到密文为“4”,则解密后得明文为_________.15.(5分)已知a,b,c成等差数列,则直线ax﹣by+c=0被曲线x2+y2﹣2x﹣2y=0截得的弦长的最小值为_________.16.(5分)已知x,y∈N*,且1+2+3+4+…+y=1+9+92++…+9x﹣1,当x=2时,y=_________;若把y表示成x的函数,其解析式是y=_________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知,设ω>0,,,若f(x)图象中相邻的两条对称轴间的距离等于.(1)求ω的值;(2)在△ABC中,a,b,c分别为角A,B,C的对边,.当f(A)=1时,求b,c的值.18.(12分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.(Ⅰ)求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.20.(13分)京广高铁于2012年12月26日全线开通运营,G808次列车在平直的铁轨上匀速行驶,由于遇到紧急情况,紧急刹车时列车行驶的路程S(t)(单位:m)和时间t(单位:s)的关系为:.(1)求从开始紧急刹车至列车完全停止所经过的时间;(2)求列车正常行驶的速度;(3)求紧急刹车后列车加速度绝对值的最大值.21.(13分)已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)对于抛物线上任意一点Q,点P(a,0)都满足|PQ|≥|a|,求a的取值范围.22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.∴,∴)∵=∴)由题设时,∵,由。
2013年湖南省高考数学试卷(理科)及解析
2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖南)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖南)某校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样解答:解:总体由男生和女生组成,比例为500:500=1:1,所抽取的比例也是1:1.故拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样法.故选D3.(5分)(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.4.(5分)(2013•湖南)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0C.D.5.(5分)(2013•湖南)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3B.2C.1D.06.(5分)(2013•湖南)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.点评:本题考查平面向量的数量积运算,根据题意作出图象,数形结合是解决本题的有力工具.7.(5分)(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1B.C.D.8.(5分)(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P 出发,经BC,CA反射后又回到点P(如图1),若光线QR经过△ABC的重心,则AP等于()A.2B.1C.D.考点:与直线关于点、直线对称的直线方程.专题:直线与圆.分析:建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P 的坐标,进而可得AP的值.解答:解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k==,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=故选D点评:本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.(2013•湖南)在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为3.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.10.(5分)(2013•湖南)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为12.考点:柯西不等式;柯西不等式的几何意义.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化简得a2+4b2+9c2≥12,由此可得当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12.解答:解:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=时等号成立由此可得:当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12故答案为:12点评:本题给出等式a+2b+3c=6,求式子a2+4b2+9c2的最小值.着重考查了运用柯西不等式求最值与柯西不等式的等号成立的条件等知识,属于中档题.11.(5分)(2013•湖南)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.考点:圆內接多边形的性质与判定;与圆有关的比例线段.专题:计算题.分析:首先利用相交弦定理求出CD的长,再利用勾股定理求出圆心O到弦CD的距离,注意计算的正确率.解答:解:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为,则圆心O到弦CD的距离为d===故答案为:.点评:此题主要考查了相交弦定理,垂径定理,勾股定理等知识,题目有一定综合性,是中考中热点问题.12.(5分)(2013•湖南)若,则常数T的值为3.考点:定积分.专题:计算题.分析:利用微积分基本定理即可求得.解答:解:==9,解得T=3,故答案为:3.点评:本题考查定积分、微积分基本定理,属基础题.13.(5分)(2013•湖南)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为9.考点:程序框图.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加a值,并判断满足a>8时输出a的值.解答:解:程序在运行过程中各变量的聚会如下表示:是否继续循环 a b循环前/1 2第一圈是 3 2第二圈是 5 2第三圈是7 2第四圈是9 2第五圈否故最终输出的a值为9.故答案为:9.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.14.(5分)(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2=30°的最小内角为30°,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线的定义求出|PF1|,|F1F2|,|PF2|,然后利用最小内角为30°结合余弦定理,求出双曲线的离心率.解答:解:因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|+|PF2|=6a,不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|﹣|PF2|=2a所以|F1F2|=2c,|PF1|=4a,|PF2|=2a,∵△PF1F2的最小内角∠PF1F2=30°,由余弦定理,∴|PF2|2=|F1F2|2+|PF1|2﹣2|F1F2||PF1|cos∠PF1F2,即4a2=4c2+16a2﹣2c×4a×,∴c2﹣2ca+3a2=0,∴c= a所以e==.故答案为:.点评:本题考查双曲线的定义,双曲线的离心率的求法,考查计算能力.15.(5分)(2013•湖南)设S n为数列{a n}的前n项和,,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.考点:数列的求和;数列的函数特性.专题:等差数列与等比数列.分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.解答:解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.16.(5分)(2013•湖南)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为{x|0<x≤1}.(2)若a,b,c是△ABC的三条边长,则下列结论正确的是①②③.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.考点:命题的真假判断与应用;函数的零点;进行简单的合情推理.专题:阅读型.分析:(1)由集合M中的元素满足的条件,得到c≥a+b=2a,求得的范围,解出函数f(x)=a x+b x﹣c x的零点,利用不等式可得零点x的取值集合;(2)对于①,把函数式f(x)=a x+b x﹣c x变形为,利用指数函数的单调性即可证得结论成立;对于②,利用取特值法说明命题是正确的;对于③,由△ABC为钝角三角形说明f(2)<0,又f(1)>0,由零点的存在性定理可得命题③正确.解答:解:(1)因为c>a,由c≥a+b=2a,所以,则.令f(x)=a x+b x﹣c x=.得,所以.所以0<x≤1.故答案为{x|0<x≤1};(2)因为,又,所以对∀x∈(﹣∞,1),.所以命题①正确;令x=1,a=b=1,c=2.则a x=b x=1,c x=2.不能构成一个三角形的三条边长.所以命题②正确;若三角形为钝角三角形,则a2+b2﹣c2<0.f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0.所以∃x∈(1,2),使f(x)=0.所以命题③正确.故答案为①②③.点评:本题考查了命题真假的判断与应用,考查了函数零点的判断方法,训练了特值化思想方法,解答此题的关键是对题意的正确理解,此题是中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖南)已知函数,.(I)若α是第一象限角,且,求g(α)的值;(II)求使f(x)≥g(x)成立的x的取值集合.考点:两角和与差的正弦函数;两角和与差的余弦函数;二倍角的余弦;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(I)根据两角和与差的三角函数公式化简,得f(x)=sinx,结合解出sinα=,利用同角三角函数的基本关系算出cosα=.由二倍角的余弦公式进行降次,可得g(x)=1﹣cosx,即可算出g(α)=1﹣cosα=;(II)f(x)≥g(x),即sinx≥1﹣cosx,移项采用辅助角公式化简整理,得2sin(x+)≥1,再根据正弦函数的图象与性质,即可求出使f(x)≥g(x)成立的x的取值集合.解答:解::∵sin(x﹣)=sinxcos﹣cosxsin=sinx﹣cosxcos(x﹣)=cosxcos+sinxsin=cosx+sinx∴=(sinx﹣cosx)+(cosx+sinx)=sinx而=1﹣cosx(I)∵,∴sinα=,解之得sinα=∵α是第一象限角,∴cosα==因此,g(α)==1﹣cosα=,(II)f(x)≥g(x),即sinx≥1﹣cosx移项,得sinx+cosx≥1,化简得2sin(x+)≥1∴sin(x+)≥,可得+2kπ≤x+≤+2kπ(k∈Z)解之得2kπ≤x≤+2kπ(k∈Z)因此,使f(x)≥g(x)成立的x的取值集合为{x|2kπ≤x≤+2kπ(k∈Z)}点评:本题给出含有三角函数的两个函数f(x)、g(x),求特殊函数值并讨论使f(x)≥g(x)成立的x的取值集合.着重考查了三角恒等变换、同角三角函数的基本关系和三角函数的图象与性质等知识,属于中档题.18.(12分)(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:概率与统计.分析:(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.解答:解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E(Y)=51×+48×+45×+42×=46点评:本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.19.(12分)(2013•湖南)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(I)证明:AC⊥B1D;(II)求直线B1C1与平面ACD1所成的角的正弦值.考点:直线与平面所成的角;直线与平面垂直的性质.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(I)根据直棱柱性质,得BB1⊥平面ABCD,从而AC⊥BB1,结合BB1∩BD=B,证出AC⊥平面BB1D,从而得到AC⊥B1D;(II)根据题意得AD∥B1C1,可得直线B1C1与平面ACD1所成的角即为直线AD与平面ACD1所成的角.连接A1D,利用线面垂直的性质与判定证出AD1⊥平面A1B1D,从而可得AD1⊥B1D.由AC⊥B1D,可得B1D⊥平面ACD,从而得到∠ADB1与AD与平面ACD1所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△AB1D中算出B1D=,可得cos∠ADB1=,由此即可得出直线B1C1与平面ACD1所成的角的正弦值.解答:解:解:(I)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵AC⊥BD,BB1、BD是平面BB1D内的相交直线∴AC⊥平面BB1D,∵B1D⊂平面BB1D,∴AC⊥B1D;(II)∵AD∥BC,B1C1∥BC,∴AD∥B1C1,由此可得直线B1C1与平面ACD1所成的角,等于直线AD与平面ACD1所成的角(记为θ)连接A1D,∵直棱柱ABCD﹣A1B1C1D1中,∠BAD=∠B1A1D1=90°,∴B1A1⊥平面A1D1DA,结合AD1⊂平面A1D1DA,得B1A1⊥AD1又∵AD=AA1=3,∴四边形A1D1DA是正方形,可得AD1⊥A1D∵B1A1、A1D是平面A1B1D内的相交直线,∴AD1⊥平面A1B1D,可得AD1⊥B1D,由(I)知AC⊥B1D,结合AD1∩AC=A可得B1D⊥平面ACD,从而得到∠ADB1=90°﹣θ,∵在直角梯形ABCD中,AC⊥BD,∴∠BAC=∠ADB,从而得到Rt△ABC∽Rt△DAB因此,,可得AB==连接AB1,可得△AB1D是直角三角形,∴B1D2=B1B2+BD2=B1B2+AB2+BD2=21,B1D=在Rt△AB1D中,cos∠ADB1===,即cos(90°﹣θ)=sinθ=,可得直线B1C1与平面ACD1所成的角的正弦值为.点评:本题给出直四棱柱,求证异面直线垂直并求直线与平面所成角的正弦之值,着重考查了直四棱柱的性质、线面垂直的判定与性质和直线与平面所成角的定义等知知识,属于中档题.20.(13分)(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.考点:根据实际问题选择函数类型;绝对值三角不等式.专题:应用题;不等式的解法及应用.分析:(I)根据“L路径”的定义,可得点P到居民区A的“L路径”长度最小值;(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值,分类讨论,利用绝对值的几何意义,即可求得点P的坐标.解答:解:设点P的坐标为(x,y),则(I)点P到居民区A的“L路径”长度最小值为|x﹣3|+|y﹣20|,y∈[0,+∞);(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值①当y≥1时,d=|x+10|+|x﹣14|+|x﹣3|+2|y|+|y﹣20|∵d1(x)=|x+10|+|x﹣14|+|x﹣3|≥|x+10|+|x﹣14|≥24∴当且仅当x=3时,d1(x)=|x+10|+|x﹣14|+|x﹣3|的最小值为24∵d2(y)=2|y|+|y﹣20|≥21∴当且仅当y=1时,d2(y)=2|y|+|y﹣20|的最小值为21∴点P的坐标为(3,1)时,点P到三个居民区的“L路径”长度之和的最小,且最小值为45;②当0≤y≤1时,由于“L路径”不能进入保护区,∴d=|x+10|+|x﹣14|+|x﹣3|+1+|1﹣y|+|y|+|y﹣20|此时d1(x)=|x+10|+|x﹣14|+|x﹣3|,d2(y)=1+|1﹣y|+|y|+|y﹣20|=22﹣y≥21由①知d1(x)=|x+10|+|x﹣14|+|x﹣3|≥24,∴d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.点评:本题考查新定义,考查分类讨论的数学思想,考查学生建模的能力,同时考查学生的理解能力,属于难题.21.(13分)(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(I)若k1>0,k2>0,证明:;(II)若点M到直线l的距离的最小值为,求抛物线E的方程.考点:直线与圆锥曲线的关系;平面向量数量积的运算;抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由抛物线方程求出抛物线的焦点坐标,写出两条直线的方程,由两条直线方程和抛物线方程联立求出圆M和圆N的圆心M和N的坐标,求出向量和的坐标,求出数量积后转化为关于k1和k2的表达式,利用基本不等式放缩后可证得结论;(Ⅱ)利用抛物线的定义求出圆M和圆N的直径,结合(Ⅰ)中求出的圆M和圆N的圆心的坐标,写出两圆的方程,作差后得到两圆的公共弦所在直线方程,由点到直线的距离公式求出点M到直线l的距离,利用k1+k2=2转化为含有一个未知量的代数式,配方后求出最小值,由最小值等于求出p的值,则抛物线E的方程可求.解答:解:(I)由题意,抛物线E的焦点为,直线l1的方程为.由,得.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,.所以点M的坐标为,.同理可得点N的坐标为,.于是.由题设k1+k2=2,k1>0,k2>0,k1≠k2,所以0<.故.(Ⅱ)由抛物线的定义得,,所以,从而圆M的半径.故圆M的方程为,化简得.同理可得圆N的方程为于是圆M,圆N的公共弦所在的直线l的方程为.又k2﹣k1≠0,k1+k2=2,则l的方程为x+2y=0.因为p>0,所以点M到直线l的距离为=.故当时,d取最小值.由题设,解得p=8.故所求抛物线E的方程为x2=16y.点评:本题考查了抛物线的标准方程,考查了平面向量数量积的运算,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.22.(13分)(2013•湖南)已知a>0,函数.(I)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(II)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(I)利用绝对值的几何意义,分类讨论,结合导数确定函数的单调性,从而可得g(a)的表达式;(II)利用曲线y=f(x)在两点处的切线互相垂直,建立方程,从而可转化为集合的运算,即可求得结论.解答:解:(I)当0≤x≤a时,;当x>a时,∴当0≤x≤a时,,f(x)在(0,a)上单调递减;当x>a时,,f(x)在(a,+∞)上单调递增.①若a≥4,则f(x)在(0,4)上单调递减,g(a)=f(0)=②若0<a<4,则f(x)在(0,a)上单调递减,在(a,4)上单调递增∴g(a)max={f(0),f(4)}∵f(0)﹣f(4)==∴当0<a≤1时,g(a)=f(4)=;当1<a<4时,g(a)=f(0)=,综上所述,g(a)=;(II)由(I)知,当a≥4时,f(x)在(0,4)上单调递减,故不满足要求;当0<a<4时,f(x)在(0,a)上单调递减,在(a,4)上单调递增,若存在x1,x2∈(0,4)(x1<x2),使曲线y=f(x)在两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且f′(x1)f′(x2)=﹣1∴•=﹣1∴①∵x1∈(0,a),x2∈(a,4),∴x1+2a∈(2a,3a),∈(,1)∴①成立等价于A=(2a,3a)与B=(,1)的交集非空∵,∴当且仅当0<2a<1,即时,A∩B≠∅综上所述,存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a 的取值范围是(0,).点评:本题考查导数知识的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,正确分类是关键.。
2013年高考真题——理科数学(湖南卷)解析版 Word版含答案
绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】 B【解析】 z = i ·(1+i) = i – 1,所以对应点(-1,1).选B 选B2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法【答案】 D 【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。
选D3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12πB .6πC .4πD .3π【答案】 D【解析】 3=A 223=sinA sinB 3 = sinB 2sinA :得b 3=2asinB 由ππ⇒<⇒⋅⋅A , 选D4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .52【答案】 C【解析】 区域为三角形,直线u = x + 2y 经过三角形顶点最大时,35)32,31(=u 选C5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2) =2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2选B6. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦【答案】 A 【解析】向量之差的向量与即一个模为单位c 2.1|c -)b a (||b a -c |,2|b a |向量,是b ,a =+=-=+∴的模为1,可以在单位圆中解得12||1-2+≤≤。
2013高考数学年湖南卷(理)
2013湖南卷(理)一、选择题1.复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限答案 B解析 ∵z =i +i 2=-1+i , ∴z 对应的点在第二象限.2.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法答案 D解析 总体(100名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.3.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( ) A.π12B.π6C.π4D.π3答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.4.若变量x ,y 满足约束条件{ y ≤2x , x +y ≤1, y ≥-1,则x +2y 的最大值是( ) A .-52B .0C.53D.52答案 C解析 画出可行域如图.设z =x +2y ,当直线y =-12x +z 2过点M ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53.5.函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( ) A .3B .2C .1D .0答案 B解析 画出两个函数f (x ),g (x )的图象,由图知f (x ),g (x )的图象的交点个数为2.6.已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1] B .[2-1,2+2] C .[1,2+1]D .[1,2+2]答案 A解析 由已知得|a +b |2=|a |2+|b |2+2a ·b =2, |a +b |-1≤|c |≤|a +b |+1, ∴2-1≤|c |≤2+1.7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A .1B. 2C.2-12D.2+12答案 C解析 由俯视图知正方体的底面水平放置,其正视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.8.在等腰三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过△ABC 的重心,则AP 等于( ) A .2 B .1 C.83D.43答案 D解析 建立如图所示的坐标系, 则重心G ⎝⎛⎭⎫43,43, 设直线RQ 方程为 y -43=k ⎝⎛⎭⎫x -43, 则R ⎝⎛⎭⎫0,43(1-k ),Q ⎝ ⎛⎭⎪⎫4k +83k +3,8k +43k +3. ∴直线PR :y -43(1-k )=-kx 可得P ⎝⎛⎭⎫4-4k 3k ,0. 设n =(-1,-1),则〈QR →,n 〉=〈QP →,n 〉, 可得k =12,故P ⎝⎛⎭⎫43,0. 二、填空题9.在平面直角坐标系xOy 中,若l :{ x =t , y =t -a (t 为参数)过椭圆C :{ x =3cos φ, y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.答案 3解析 椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则0=3-a ,∴a =3. 10.已知a ,b ,c ∈R ,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________. 答案 12解析 ∵(x +y +z )2=x 2+y 2+z 2+2xy +2yz +2zx ≤3(x 2+y 2+z 2),∴a 2+4b 2+9c 2≥13(a +2b +3c )2=363=12.∴a 2+4b 2+9c 2的最小值为12.11.如图,在半径为7的⊙O 中,弦AB ,CD 相交于点P ,P A =PB =2,PD =1,则圆心O 到弦CD 的距离为________.答案32解析 在⊙O 中,P A ·PB =PC ·PD , ∴2×2=PC ×1,∴PC =4,∴CD =5. ∴圆心O 到CD 的距离为(7)2-⎝⎛⎭⎫522=34=32. 12.若ʃT 0x 2d x =9,则常数T 的值为________.答案 3解析 ʃT 0x 2d x =13x 3| T 0=13×T 3=9. ∴T 3=27,∴T =3.13.执行如图所示的程序框图,如果输入a =1,b =2,则输出a 的值为________.答案 9解析 输入a =1,b =2,执行第一次循环a =3;第二次循环a =5;第三次循环a =7;第四次循环a =9.循环终止,输出a =9.14.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________. 答案3解析 不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a , 又∵|PF 1|+|PF 2|=6a , ∴|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°, ∴∠PF 2F 1=90°,∴|F 1F 2|=23a , ∴双曲线C 的离心率e =23a 2a= 3.15.设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________;(2)S 1+S 2+…+S 100=________. 答案 (1)-116 (2)13⎝⎛⎭⎫12100-1 解析 (1)∵S n =(-1)n a n -12n .n =3时,a 1+a 2+a 3=-a 3-18①n =4时,a 1+a 2+a 3+a 4=a 4-116,∴a 1+a 2+a 3=-116.②由①②知a 3=-116.(2)n >1时,S n -1=(-1)n -1a n -1-⎝⎛⎭⎫12n -1, ∴a n =(-1)n a n +(-1)n a n -1+⎝⎛⎭⎫12n . 当n 为奇数时,a n =⎝⎛⎭⎫12n +1-12a n -1; 当n 为偶数时,a n -1=-⎝⎛⎭⎫12n .故a n =⎩⎨⎧-⎝⎛⎭⎫12n +1,n 为奇数, ⎝⎛⎭⎫12n ,n 为偶数. ∴S n =⎩⎨⎧-12n 1,n 为奇数, 0,n 为偶数.∴S 1+S 2+…+S 100=-⎝⎛⎭⎫122+124+126+…+12100 =-14⎝⎛⎭⎫1-121001-14=-13⎝⎛⎭⎫1-12100=13⎝⎛⎭⎫12100-1. 16.设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.(1)记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为________.(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是____________.(写出所有正确结论的序号) ①∀x ∈(-∞,1),f (x )>0;②∃x ∈R ,使xa x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则∃x ∈(1,2),使f (x )=0.答案 (1){x |0<x ≤1} (2)①②③解析 (1)令f (x )=0得2a x =c x ,∴⎝⎛⎭⎫a c x =12, ∵y =⎝⎛⎭⎫a c x 为减函数,且c ≥2a ,即a c ≤12, ∴0<x ≤1.(2)由已知φ(x )=⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x 为减函数, 若f (x )≤0,即a x +b x ≤c x 时,⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x ≤1. 又φ(1)=a c +bc >1,∴x >1.这就证明了①的逆否命题成立, ∴①成立,②③举出一特例即可. 三、解答题17.已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335.求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解 f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x , 即3sin x +cos x ≥1.于是sin ⎝⎛⎭⎫x +π6≥12. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }. 18.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.解 (1)所种作物总株数N =1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12.从三角形地块的内部和边界上分别随机选取一株的不同结果有C 13C 112=36(种),选取的两株作物恰好“相近”的不同结果有3+3+2=8(种).故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为836=29.(2)先求从所种作物中随机选取一株作物的年收获量Y 的分布列. 因为P (Y =51)=P (X =1),P (Y =48)=P (X =2), P (Y =45)=P (X =3),P (Y =42)=P (X =4), 所以只需求出P (X =k )(k =1,2,3,4)即可.记n k 为其“相近”作物恰有k 株的作物株数(k =1,2,3,4), 则n 1=2,n 2=4,n 3=6,n 4=3. 由P (X =k )=n kN得P (X =1)=215,P (X =2)=415,P (X =3)=615=25,P (X =4)=315=15.故所求的分布列为所求的数学期望为E (Y )=51×215+48×415+45×25+42×15=46.19.如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.方法一 (1)证明 如图,因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BB 1.又AC ⊥BD ,所以AC ⊥平面BB 1D , 而B 1D ⊂平面BB 1D ,所以AC ⊥B 1D .(2)解 因为B 1C 1∥AD ,所以直线B 1C 1与平面ACD 1所成的角等于直线AD 与平面ACD 1所成的角(记为θ).如图,连结A 1D ,因为棱柱ABCD -A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BAD =90°, 所以A 1B 1⊥平面ADD 1A 1,从而A 1B 1⊥AD 1. 又AD =AA 1=3,所以四边形ADD 1A 1是正方形. 于是A 1D ⊥AD 1,故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D . 由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面ACD 1. 故∠ADB 1=90°-θ, 在直角梯形ABCD 中,因为AC ⊥BD ,所以∠BAC =∠ADB .从而Rt △ABC ∽Rt △DAB ,故AB DA =BCAB ,即AB =DA ·BC = 3.连结AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+BD 2=BB 21+AB 2+AD 2=21,即B 1D =21.在Rt △AB 1D 中,cos ∠ADB 1=AD B 1D =321=217, 即cos(90°-θ)=217.从而sin θ=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217.方法二 (1)证明 易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为:A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0). 因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0, 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0), 因为AC →·B 1D →=-3+3+0=0, 所以AC →⊥B 1D →,即AC ⊥B 1D .(2)解 由(1)知,AD 1→=(0,3,3),AC →=(3,1,0), B 1C 1→=(0,1,0).设n =(x ,y ,z )是平面ACD 1的一个法向量,则{n ·AC →=0, n ·AD 1→=0,即{ 3x +y =0, 3y +3z =0, 令x =1,则n =(1,-3,3).设直线B 1C 1与平面ACD 1所成角为θ,则 sin θ=|cos 〈n ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪n ·B 1C 1→|n |·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217.20.在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”.如图所示的路径MM 1M 2M 3N 与路径MN 1N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点A (3,20),B (-10,0),C (14,0)处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心. (1)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(2)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小. 解 设点P 的坐标为(x ,y ).(1)点P 到居民区A 的“L 路径”长度最小值为|x -3|+|y -20|,x ∈R ,y ∈[0,+∞). (2)由题意知,点P 到三个居民区的“L 路径”长度之和的最小值为点P 分别到三个居民区的“L 路径”长度最小值之和(记为d )的最小值. ①当y ≥1时,d =|x +10|+|x -14|+|x -3|+2|y |+|y -20|. 因为d 1(x )=|x +10|+|x -14|+|x -3|≥|x +10|+|x -14|,(*) 当且仅当x =3时,不等式(*)中的等号成立. 又因为|x +10|+|x -14|≥24,(**)当且仅当x ∈[-10,14]时,不等式(**)中的等号成立. 所以d 1(x )≥24,当且仅当x =3时,等号成立. d 2(y )=2|y |+|y -20|≥21,当且仅当y =1时,等号成立.故点P 的坐标为(3,1)时,P 到三个居民区的“L 路径”长度之和最小,且最小值为45. ②当0≤y ≤1时,由于“L 路径”不能进入保护区,所以 d =|x +10|+|x -14|+|x -3|+1+|1-y |+|y |+|y -20|. 此时,d 1(x )=|x +10|+|x -14|+|x -3|. d 2(y )=1+|1-y |+|y |+|y -20|=22-y ≥21.由①知,d 1(x )≥24,故d 1(x )+d 2(y )≥45,当且仅当x =3,y =1时等号成立.综上所述,在点P (3,1)处修建文化中心,可使该文化中心到三个居民区的“L 路径”长度之和最小.21.过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同的直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D .以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在的直线记为l .(1)若k 1>0,k 2>0,证明:FM →·FN →<2p 2;(2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程. (1)证明 由题意,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2,直线l 1的方程为y =k 1x +p 2. 由⎩⎨⎧y =k 1x +p 2, x 2=2py 得x 2-2pk 1x -p 2=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1、x 2是上述方程的两个实数根.从而x 1+x 2=2pk 1,y 1+y 2=k 1(x 1+x 2)+p =2pk 21+p .所以点M 的坐标为(pk 1,pk 21+p 2),FM →=(pk 1,pk 21). 同理可得点N 的坐标为(pk 2,pk 22+p 2),FN →=(pk 2,pk 22). 于是FM →·FN →=p 2(k 1k 2+k 21k 22).由题设,有k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<⎝⎛⎭⎫k 1+k 222=1.故FM →·FN →<p 2(1+12)=2p 2.(2)解 由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2, 所以|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为(x -pk 1)2+(y -pk 21-p 2)2=(pk 21+p )2. 化简得x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0. 同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0. 于是圆M ,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0.又k 2-k 1≠0,k 1+k 2=2,则l 的方程为x +2y =0.因为p >0,所以点M 到直线l 的距离d =|2pk 21+pk 1+p |5=p |2k 21+k 1+1|5=p [2(k 1+14)2+78]5. 故当k 1=-14时,d 取最小值7p 85. 由题设,得7p 85=755,解得p =8. 故所求的抛物线E 的方程为x 2=16y .22.已知a >0,函数f (x )=⎪⎪⎪⎪⎪⎪x -a x +2a . (1)记f (x )在区间[0,4]上的最大值为g (a ),求g (a )的表达式;(2)是否存在a ,使函数y =f (x )在区间(0,4)内的图象上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由.解 (1)当0≤x ≤a 时,f (x )=a -x x +2a; 当x >a 时,f (x )=x -a x +2a.因此, 当x ∈(0,a )时,f ′(x )=-3a (x +2a )2<0,f (x )在(0,a )上单调递减; 当x ∈(a ,+∞)时,f ′(x )=3a (x +2a )2>0,f (x )在(a ,+∞)上单调递增. ①若a ≥4,则f (x )在(0,4)上单调递减,g (a )=f (0)=12. ②若0<a <4,则f (x )在(0,a )上单调递减,在(a,4)上单调递增.所以g (a )=max{f (0),f (4)}.而f (0)-f (4)=12-4-a 4+2a =a -12+a, 故当0<a ≤1时,g (a )=f (4)=4-a 4+2a ; 当1<a <4时,g (a )=f (0)=12. 综上所述,g (a )=⎩⎨⎧4-a 4+2a ,0<a ≤1, 12,a >1. (2)由(1)知,当a ≥4时,f (x )在(0,4)上单调递减,故不满足要求.当0<a <4时,f (x )在(0,a )上单调递减,在(a,4)上单调递增.若存在x 1,x 2∈(0,4)(x 1<x 2),使曲线y =f (x )在(x 1,f (x 1)),(x 2,f (x 2))两点处的切线互相垂直. 则x 1∈(0,a ),x 2∈(a,4),且f ′(x 1)·f ′(x 2)=-1.即-3a (x 1+2a )2·3a (x 2+2a )2=-1. 亦即x 1+2a =3a x 2+2a .(*) 由x 1∈(0,a ),x 2∈(a,4)得x 1+2a ∈(2a,3a ),3a x 2+2a ∈⎝⎛⎭⎫3a 4+2a ,1. 故(*)成立等价于集合A ={x |2a <x <3a }与集合B =⎩⎨⎧⎭⎬⎫x |3a 4+2a <x <1的交集非空. 因为3a 4+2a<3a ,所以当且仅当0<2a <1,即0<a <12时,A ∩B ≠∅. 综上所述,存在a 使函数f (x )在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a 的取值范围是⎝⎛⎭⎫0,12.。
2013年湖南高考数学试题及答案(理科)
2013年湖南高考数学试题及答案 (理科)一、选择题 1. 复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 1.B [解析] 由题z =i·(1+i)=i +i 2=-1+i ,在复平面上对应的点坐标为(-1,1),即位于第二象限,选B.2. 某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法2.D [解析] 根据抽样方法的特点可知,应选用分层抽样法. 3. 在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π33.D [解析] 由正弦定理可得2sin A sin B =3sin B ,又sin B ≠0,所以可得sin A =32,又A 为锐角,故A =π3,选D.4. 若变量x ,y 满足结束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53 D.524.C [解析] 根据题意,画出x ,y 满足的可行域,如图,可知在点C ⎝⎛⎭⎫13,23处x +2y 取最大值为53. 5., 函数f (x )=2ln x 的图像与函数g (x )=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f (x )=2ln x ,g (x )=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:x 1 2 4 f (x )=2ln x 0 2ln 2=ln 4>1ln 42<5 g (x )=x 2-4x +5215可知它们有2个交点,选B.6. 已知,是单位向量,=0,若向量满足|--|=1,则||的取值范围是( ) A .[2-1,2+1] B .[2-1,2+2] C .[1,2+1] D .1,2+2 6.A [解析] 由题可知·=0,则⊥,又||=||=1,且|--|=1,不妨令=(x ,y ),=(1,0),=(0,1),则(x -1)2+(y -1)2=1,又||=x 2+y 2,故根据几何关系可知||max =12+12+1=1+2,||min =12+12-1=2-1,故选A.7. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A .1 B. 2 C.2-12 D.2+127.C [解析] 由题可知,该正方体的俯视图恰好是正方形,则正视图最大值应是正方体的对角面,最小值为正方形,故面积范围为[1,2],因2-12∉[1,2],故选C. 8. 在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图1-1所示),若光线QR 经过△ABC 的重心,则AP 等于( )图1-1A .2B .1 C.83 D.438.D [解析] 不妨设AP =m (0≤m ≤4),建立坐标系,设AB 为x 轴,AC 为y 轴,则A (0,0),B (4,0),C (0,4),Q (x Q ,y Q ),R (0,y R ),P (m ,0),可知△ABC 的重心为G ⎝⎛⎭⎫43,43,根据反射性质,可知P 关于y 轴的对称点P 1(-m ,0)在直线QR 上,P 关于x +y =4的对称点P 2(4,4-m )在直线RQ 上,则QR 的方程为y -04-m =x +m 4+m ,将G ⎝⎛⎭⎫43,43代入可得3m 2-4m =0,即m =43或m =0(舍),选D.9. 在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.9.3 [解析] 将参数方程化为普通方程可得,直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,即y =x -a ,椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ,即x 29+y 24=1,可知其右顶点为(3,0),代入直线方程可得a =3.10. 已知a ,b ,c ∈,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________.10.12 [解析] 因a +2b +3c =6,由柯西不等式可知(a 2+4b 2+9c 2)(12+12+12)≥(a +2b +3c )2,可知a 2+4b 2+9c 2≥363=12,即最小值为12.图1-311. 如图1-2所示,在半径为7的⊙O 中,弦AB ,CD 相交于点P .P A =PB =2,PD =1,则圆心O 到弦CD 的距离为________.11.32[解析] 由相交弦定理可知P A ·PB =PC ·PD ,得PC =4,故弦CD =5,又半径r =7,记圆心O 到直线CD 的距离为d ,则d 2+⎝⎛⎭⎫522=7,即d 2=34,故d =32. 12. 若⎠⎛0T x 2d x =9,则常数T 的值为________.12.3 [解析] 由积分运算公式可得⎠⎛0T x 2d x =⎪⎪13x 3T 0=13T 3=9,解得T =3.13. 执行如图1-3所示的程序框图,如果输入a =1,b =2,则输出的a 的值为________.图1-313.9 [解析] 根据程序框图所给流程依次可得,a =1,b =2,①a =3,②a =5,③a =7,④a =9,满足条件输出a =9.14. 设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.14.3 [解析] 若最小角为∠F 1PF 2,由对称性设|PF 1|>|PF 2|,由|PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a ,得|PF 1|=4a ,|PF 2|=2a ,此时|PF 2|<|F 1F 2|,故∠F 1PF 2不可能为最小角.由双曲线对称性,不妨记最小角为∠PF 1F 2=30°,则|PF 1|>|PF 2|,由|PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a ,得|PF 1|=4a ,|PF 2|=2a ,由余弦定理可得4a 2=16a 2+4c 2-2×4a ×2c ×cos 30°,即3a 2-2 3ac +c 2=0,解得c =3a ,即e =ca= 3.15., 设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈*,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.15.(1)-116 (2)13⎝⎛⎭⎫12100-1 [解析] (1)因S n =(-1)n a n -12n ,则S 3=-a 3-18,S 4=a 4-116,解得a 3=-116.(2)当n 为偶数时,S n =a n -12n ,当n 为奇数时,S n =-a n -12n ,可得当n 为奇数时a n =-12n +1,又S 1+S 2+…+S 100=⎝⎛⎭⎫-a 1-12+⎝⎛⎭⎫a 2-122+…+⎝⎛⎭⎫-a 99-1299+⎝⎛⎭⎫a 100-12100 =-a 1+a 2+…-a 99+a 100-⎝⎛⎭⎫12+122+…+1299+12100 =S 100-2(a 1+a 3+…+a 99)-⎝⎛⎭⎫1-12100 =S 101-a 101-2⎝⎛⎭⎫-122-124-…-12100-⎝⎛⎭⎫1-12100 =-12102-⎝⎛⎭⎫-12102+2×122⎣⎡⎦⎤1-⎝⎛⎭⎫122501-122-⎝⎛⎭⎫1-12100 =-13⎝⎛⎭⎫1-12100=13⎝⎛⎭⎫12100-1. 16.,, 设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.(1)记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①∀x ∈(-∞,1),f (x )>0;②∃x ∈,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则∃x ∈(1,2),使f (x )=0.16.(1){x |0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f (x )=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c >a >0,c >b >0,故a +b =2a <c ,令f (x )=2a x -c x =0,即f (x )=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x |0<x ≤1}.(2)因f (x )=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c >a >0,c >b >0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b >c ,故对∀x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f (x )=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n <1,即a n +b n <c n,故②正确;对于③,因f (1)=a +b -c >0,f (2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,∃x ∈(1,2),使f (x )=0,故③正确.故填①②③.17. 已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=3 35,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 17.解:f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x .g (x )=2sin 2x2=1-cos x .(1)由f (α)=3 35得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈,即2k π≤x ≤2k π+2π3,k ∈故使f (x )≥g (x ) 成立的x 的取值集合为18. 某人在如图1-4所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物,根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.图1-418.解:(1)所种作物总株数N =1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有C 13C 112=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8种.故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为836=29. (2)先求从所种作物中随机选取的一株作物的年收获量Y 的分布列. 因为P (Y =51)=P (X =1),P (Y =48)=P (X =2),P (Y =45)=P (X =3),P (Y =42)=P (X =4).所以只需求出P (X =k )(k =1,2,3,4)即可. 记n k 为其“相近”作物恰有k 株的作物株数(k =1,2,3,4), 则n 1=2,n 2=4,n 3=6,n 4=3. 由P (X =k )=n kN得P (X =1)=215,P (X =2)=415,P (X =3)=615=25,P (X =4)=315=15.故所求的分布列为Y 51 48 45 42 P2154152515所求的数学期望为E (Y )=51×215+48×415+45×25+42×15=34+64+90+425=46.19. 如图1-4所示,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.图1-419.解:方法一(1)证明:如图所示,因为BB1⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BB1.又AC⊥BD,所以AC⊥平面BB1D,而B1D⊂平面BB1D,所以AC⊥B1D.(2)因为B1C1∥AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ).如图所示,联结A1D,因为棱柱ABCD-A1B1C1D1是直棱柱,且∠B1A1D1=∠BAD=90°,所以A1B1⊥平面ADD1A1,从而A1B1⊥AD1.又AD=AA1=3,所以四边形ADD1A1是正方形,于是A1D⊥AD1,故AD1⊥平面A1B1D,于是AD1⊥B1D.由(1)知,AC⊥B1D,所以B1D⊥平面ACD1.故∠ADB1=90°-θ.在直角梯形ABCD中,因为AC⊥BD,所以∠BAC=∠ADB,从而Rt△ABC∽Rt△DAB,故ABDA=BCAB,即AB=DA·BC= 3.联结AB1,易知△AB1D是直角三角形,且B1D2=BB21+BD2=BB21+AB2+AD2=21,即B1D=21.在Rt△AB1D中,cos∠ADB1=ADB1D=321=217,即cos(90°-θ)=217,从而sin θ=217.即直线B1C1与平面ACD1所成角的正弦值为21 7.方法二(1)证明:易知,AB,AD,AA1两两垂直,如图所示,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).从而B 1D →=(-t ,3,-3),AC →=(t ,1,0),BD →=(-t ,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0,解得t =3或t =-3(舍去). 于是B 1D →=(-3,3,-3),AC →=(3,1,0). 因为AC →·B 1D →=-3+3+0=0, 所以AC →⊥B 1D →,即AC ⊥B 1D .(2)由(1)知,AD →1=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0). 设=(x ,y ,z )是平面ACD 1的一个法向量,则⎩⎪⎨⎪⎧·AC →=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0.令x =1,则=(1,-3,3).设直线B 1C 1与平面ACD 1所成角为θ,则 sin θ=|cos 〈,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪·B 1C 1→|n |·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 20. 在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径称为M 到N 的一条“L 路径”.如图1-5所示的路径MM 1M 2M 3N 与路径MN 1N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点A (3,20),B (-10,0),C (14,0)处,现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(1)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(2)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小.图1-520.解:设点P 的坐标为(x ,y ).(1)点P 到居民区A 的“L 路径”长度最小值为 |x -3|+|y -20|,x ∈,y ∈[0,+∞).(2)由题意知,点P 到三个居民区的“L 路径”长度之和的最小值为点P 分别到三个居民区的“L 路径”长度最小值之和(记为d )的最小值.①当y ≥1时,d =|x +10|+|x -14|+|x -3|+2|y |+|y -20|. 因为d 1(x )=|x +10|+|x -14|+|x -3|≥|x +10|+|x -14|.(*) 当且仅当x =3时,不等式(*)中的等号成立. 又因为|x +10|+|x -14|≥24.(**)当且仅当x ∈[-10,14]时,不等式(**)中的等号成立. 所以d 1(x )≥24,当且仅当x =3时,等号成立.d 2(y )=2y +|y -20|≥21,当且仅当y =1时,等号成立.故点P 的坐标为(3,1)时,P 到三个居民区的“L 路径”长度之和最小,且最小值为45. ②当0≤y ≤1时,由于“L 路径”不能进入保护区,所以 d =|x +10|+|x -14|+|x -3|+1+|1-y |+|y |+|y -20|. 此时,d 1(x )=|x +10|+|x -14|+|x -3|, d 2(y )=1+|1-y |+|y |+|y -20|=22-y ≥21. 由①知,d 1(x )≥24,故d 1(x )+d 2(y )≥45, 当且仅当x =3,y =1时等号成立.综上所述,在点P (3,1)处修建文化中心,可使该文化中心到三个居民区的“L 路径”长度之和最小.21. 过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2.l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D 以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM →·FN →<2p 2;(2)若点M 到直线l 的距离的最小值为7 55,求抛物线E 的方程.21.解:(1)证明:由题意,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2,直线l 1的方程为y =k 1x +p 2. 由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py得x 2-2pk 1x -p 2=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1.y 1+y 2=k 1(x 1+x 2)+p =2pk 21+p .所以点M 的坐标为⎝⎛⎭⎫pk 1,pk 21+p 2,FM →=(pk 1,pk 21). 同理可得点N 的坐标为⎝⎛⎭⎫pk 2,pk 22+p 2,FN →=(pk 2,pk 22).于是FM →·FN →=p 2(k 1k 2+k 21k 22). 由题设,k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<⎝⎛⎭⎫k 1+k 222=1. 故FM →·FN →<p 2(1+12)=2p 2.(2)由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2,所以|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为(x -pk 1)2+⎝⎛⎭⎫y -pk 21-p 22=(pk 21+p )2. 化简得x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0. 同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0.于是圆M ,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0. 又 k 2-k 1≠0,k 1+k 2=2,则l 的方程为x +2y =0. 因为p >0,所以点M 到直线l 的距离d =|2pk 21+pk 1+p |5=p |2k 21+k 1+1|5=p 2⎝⎛⎭⎫k 1+142+785.故当k 1=-14时,d 取最小值7p8 5.由题设7p 8 5=7 55,解得p =8.故所求的抛物线E 的方程为x 2=16y . 22. 已知a >0,函数f (x )=x -ax +2a. (1)记f (x )在区间[0,4]上的最大值为g (a ),求g (a )的表达式;(2)是否存在a ,使函数y =f (x )在区间(0,4)内的图像上存在两点,在该两点处的切线互相垂直?若存在,求a 的取值范围;若不存在,请说明理由.22.解:(1)当0≤x ≤a 时,f (x )=a -x x +2a ;当x >a 时,f (x )=x -ax +2a .因此,当x ∈(0,a )时,f ′(x )=-3a(x +2a )2<0,f (x )在(0,a )上单调递减;当x ∈(a ,+∞)时,f ′(x )=3a(x +2a )2>0,f (x )在(a ,+∞)上单调递增.①若a ≥4,则f (x )在[0,4]上单调递减,g (a )=f (0)=12.②若0<a <4,则f (x )在[0,a ]上单调递减,在(a ,4]上单调递增,所以g (a )=max{f (0),f (4)},而f (0)-f (4)=12-4-a 4+2a =a -12+a ,故当0<a ≤1时,g (a )=f (4)=4-a 4+2a ;当1<a <4时,g (a )=f (0)=12.综上所述,g (a )=⎩⎨⎧4-a4+2a,0<a ≤1,12,a >1.(2)由(1)知,当a ≥4时,f (x )在(0,4)上单调递减,故不满足要求. 当0<a <4时,f (x )在(0,a )上单调递减,在(a ,4)上单调递增,若存在x 1,x 2∈(0,4)(x 1<x 2),使曲线y =f (x )在(x 1,f (x 1)),(x 2,f (x 2))两点处的切线互相垂直,则x 1∈(0,a ),x 2∈(a ,4),且f ′(x 1)·f ′(x 2)=-1,即-3a (x 1+2a )2·3a(x 2+2a )2=-1, 亦即x 1+2a =3ax 2+2a.(*)由x 1∈(0,a ),x 2∈(a ,4)得x 1+2a ∈(2a ,3a ),3a x 2+2a ∈3a4+2a,1.11 故(*)成立等价于集合A ={x |2a <x <3a }与集合B =x⎪⎪⎪ )3a 4+2a<x <1的交集非空. 因为3a 4+2a<3a ,所以当且仅当0<2a <1,即0<a <12时,A ∩B ≠∅. 综上所述,存在a 使函数f (x )在区间(0,4)内的图像上存在两点,在该两点处的切线互相垂直,且a 的取值范围是.。
2013年高考理科数学(湖南卷)
2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z = i ·(1+i)(i 为虚数单位)在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12πB .6πC .4πD .3π4.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2 B .0 C .53 D .525.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .06. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是 A.⎤⎦ B.⎤⎦C.1⎡⎤⎣⎦ D.1⎡⎤⎣⎦7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 BCD8.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等A .2B .1C .83 D .43二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为 .10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 .11.如图2的⊙O 中,弦,,2,AB CD P PA PB ==相交于点1PD O =,则圆心到弦CD 的距离为 .必做题(12-16题) 12.若209,Tx dx T =⎰则常数的值为 .13.执行如图3所示的程序框图,如果输入1,2,a b a ==则输出的的值为 .14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为___。
2013湖南理科高考数学卷(含答案)
2013年湖南省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卡上.1.(5分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i2.(5分)若M={直线},N={抛物线},则M∩N的元素个数是()A.0B.1C.2D.不能确定3.(5分)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()A.π+2 B.C.2π+2 D.24.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、组织委员和宣传委员,并且要求乙是上届组织委员不能连任原职,则换届后不同的任职结果有()A.16种B.18种C.20种D.22种5.(5分)若在区域内任取一点P,则点P恰好在单位圆x2+y2=1内的概率为()A.B.C.D.6.(5分)设直线l的方程为:x+ysinθ﹣2013=0(θ∈R),则直线l的倾斜角α的范围是()A.[0,π)B.C.D.7.(5分)下列命题正确的有①用相关指数R2来刻画回归效果越小,说明模型的拟合效果越好;②命题p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x2﹣x﹣1≤0”;③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则;④回归直线一定过样本中心().()A.1个B.2个C.3个D.4个8.(5分)在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“理想距离”为:d(P,Q)=|x1﹣x2|+|y1﹣y2|;若C(x,y)到点A(2,3)、B(8,8)的“理想距离”相等,其中实数x、y满足0≤x≤8、0≤y≤8,则所有满足条件的点C的轨迹的长度之和是()A.3+B.C.10 D.5二、填空题:本大题共8小题,考生作答7小题,每小题0分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)(二)必做题(12~16题)9.计算的值等于_________.10.(5分)如图,点A,B,C是圆O上的点,且,,则圆O的面积等于_________.11.(5分)若曲线C的极坐标方程为ρcos2θ=2sinθ,则曲线C的普通方程为_________.12.(5分)看图程序运行后的输出结果s=_________.13.(5分)已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p 是q的_________条件.14.(5分)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文.现在加密密钥为y=log a(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.若接受方接到密文为“4”,则解密后得明文为_________.15.(5分)已知a,b,c成等差数列,则直线ax﹣by+c=0被曲线x2+y2﹣2x﹣2y=0截得的弦长的最小值为_________.16.(5分)已知x,y∈N*,且1+2+3+4+…+y=1+9+92++…+9x﹣1,当x=2时,y=_________;若把y表示成x的函数,其解析式是y=_________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知,设ω>0,,,若f(x)图象中相邻的两条对称轴间的距离等于.(1)求ω的值;(2)在△ABC中,a,b,c分别为角A,B,C的对边,.当f(A)=1时,求b,c的值.18.(12分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.(Ⅰ)求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.20.(13分)京广高铁于2012年12月26日全线开通运营,G808次列车在平直的铁轨上匀速行驶,由于遇到紧急情况,紧急刹车时列车行驶的路程S(t)(单位:m)和时间t(单位:s)的关系为:.(1)求从开始紧急刹车至列车完全停止所经过的时间;(2)求列车正常行驶的速度;(3)求紧急刹车后列车加速度绝对值的最大值.21.(13分)已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)对于抛物线上任意一点Q,点P(a,0)都满足|PQ|≥|a|,求a的取值范围.22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卡上.1.(5分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i考点:复数代数形式的乘除运算.专题:计算题.分析:要求两个复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母上进行复数的乘法运算,最后结果要化简成最简形式.解答:解:复数===2﹣i故选B.点评:本题考查复数的代数形式的乘除运算,是一个基础题,这种题目运算量不大,解题应用的原理也比较简单,是一个送分题目.2.(5分)若M={直线},N={抛物线},则M∩N的元素个数是()A.0B.1C.2D.不能确定考点:函数的零点.专题:函数的性质及应用.分析:根据两个集合的意义,两个集合的交集的定义,求得M∩N的元素个数.解答:解:由于M={直线},表示所有直线构成的集合,N={抛物线},表示所有的抛物线构成的集合,故M∩N=∅,故M∩N的元素个数是0,故选A.点评:本题主要考查两个集合的交集的定义和求法,集合的表示方法,属于基础题.3.(5分)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()A.π+2 B.C.2π+2 D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图知,几何体是一个组合体,包括一个三棱柱和半个圆柱,再利用体积公式,即可得到结论.解答:解:由三视图知,几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是斜边为2的等腰直角三角形,高是2,圆柱的底面半径是1,高是2,所以该几何体的体积为=π+2故选A.点评:本题考查由三视图还原几何体的直观图,考查几何体体积的计算,属于基础题.4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、组织委员和宣传委员,并且要求乙是上届组织委员不能连任原职,则换届后不同的任职结果有()A.16种B.18种C.20种D.22种考点:排列、组合及简单计数问题.专题:概率与统计.分析:利用两个计数原理及排列和组合的计算公式即可得出.解答:解:分为以下两类:一类:若选出的3人中有乙,还得选出另外2人有,又乙只能从书记、宣传委员中选出一个职位,可有,因此,共有=12种不同的结果;另一类:若选出的3人中没有乙,则可有=6种不同的结果.综上共有:12+6=18种不同的结果.故选B,点评:熟练掌握两个计数原理及排列和组合的计算公式是解题的关键.5.(5分)若在区域内任取一点P,则点P恰好在单位圆x2+y2=1内的概率为()A.B.C.D.考点:简单线性规划的应用;几何概型.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△AB0及其内部.单位圆x2+y2=1位于△AB0内的部分为一个圆心角为的扇形,由此结合几何概型计算公式和面积公式,即可算出所求的概率.解答:解:作出不等式组表示的平面区域,得到如图的△AB0及其内部,其中A(1,0),B(0,1),0为坐标原点∵单位圆x2+y2=1位于△AB0内的部分为一个扇形,其圆心角为∴在区域内任取一点P,点P恰好在单位圆x2+y2=1内的概率为P===故选:A点评:本题给出不等式组表示的平面区域内一点,求点P恰好在单位圆x2+y2=1内的概率.着重考查了二元一次不等式组表示的平面区域和几何概型等知识,属于基础题.6.(5分)设直线l的方程为:x+ysinθ﹣2013=0(θ∈R),则直线l的倾斜角α的范围是()A.[0,π)B.C.D.考点:直线的一般式方程.专题:直线与圆.分析:当sinθ=0时,直线l的斜率不存在,倾斜角α=,当sinθ≠0时,直线l的斜率k=结合正弦函数的值域及反比例函数的性质,可以分析出直线l的斜率k的取值范围,进而得到倾斜角的范围,综合讨论结果,可得答案.解答:解:当sinθ=0时,直线l的方程为:x﹣2013=0此时倾斜角α=当sinθ≠0时,直线l的方程为:y=x+2013直线l的斜率k=∈(﹣∞,﹣1]∪[1,+∞)直线l的倾斜角α∈综上所述:直线l的倾斜角α∈故选C点评:本题考查的知识点是直线的方程,直线斜率与倾斜角的关系,解答时易忽略直线l的斜率不存在,倾斜角α=,而错选D.7.(5分)下列命题正确的有①用相关指数R2来刻画回归效果越小,说明模型的拟合效果越好;②命题p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x2﹣x﹣1≤0”;③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则;④回归直线一定过样本中心().()A.1个B.2个C.3个D.4个考点:命题的真假判断与应用;命题的否定;线性回归方程;正态分布曲线的特点及曲线所表示的意义.专题:证明题.分析:①相关指数表示拟合效果的好坏,指数越大,相关性越强.②存在性命题的否定是全称命题③正态分布函数曲线的特点是:关于x=μ对称,在x=μ处达到最大值④性回归方程一定过样本中心点,在一组模型中残差平方和越小,拟合效果越好,解答:解:①R2越大拟合效果越好,故①不正确,②由存在性命题的否定是全称命题得②正确,③正态分布函数曲线的特点是:关于x=0对称,在x=0处达到最大值,且p(ξ<0)=,若P(ξ>1)=p则若P(ξ<﹣1)=p所以.故③正确.④样本中心点在直线上,故④正确故选C.点评:本题考查衡量两个变量之间相关关系的方法,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断.大于0.75时,表示两个变量有很强的线性相关关系.8.(5分)在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“理想距离”为:d(P,Q)=|x1﹣x2|+|y1﹣y2|;若C(x,y)到点A(2,3)、B(8,8)的“理想距离”相等,其中实数x、y满足0≤x≤8、0≤y≤8,则所有满足条件的点C的轨迹的长度之和是()A.3+B.C.10 D.5考点:两点间的距离公式.专题:新定义.分析:利用新定义对x、y分类讨论即可得出.解答:解:∵d(C,A)=|x﹣2|+|y﹣3|,d(C,B)=|x﹣8|+|y﹣8|,d(C,A)=d(C,B),∴|x﹣2|+|y﹣3|=|x﹣8|+|y﹣8|,(*)∵实数x、y满足0≤x≤8、0≤y≤8,则可以分以下4种情况:①当0≤x<2,0≤y≤3时,(*)化为2﹣x+3﹣y=8﹣x+8﹣y,即11=0,矛盾,此种情况不可能;②当0≤x<2,3<y≤8时,(*)化为2﹣x+y﹣3=8﹣x+8﹣y,得到y=>8,此时矛盾,此种情况不可能;③当2≤x≤8,0≤y≤3时,(*)化为x﹣2+3﹣y=8﹣x+8﹣y,得到x=,此时满足条件的点C(x,y)的轨迹的长度为3;④当2≤x≤8,3<y≤8时,(*)化为x﹣2+y﹣3=8﹣x+8﹣y,得到x+y=10.5,令y=8,得x=2.5,点(2.5,8);令y=3,得x=7.5,点(7.5,3).此时满足条件的点C(x,y)的轨迹的长度==.综上可知:所有满足条件的点C的轨迹的长度之和是3+5.故选A.点评:正确理解新定义、分类讨论的思想方法是解题的关键.二、填空题:本大题共8小题,考生作答7小题,每小题0分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)(二)必做题(12~16题)9.计算的值等于2.考点:定积分.专题:计算题.分析:根据定积分的计算法则进行计算,求出3x2的原函数即可;解答:解:==13﹣(﹣1)3=2,故答案为2.点评:此题主要考查定积分的计算,这是高考新增的知识点,此题是一道基础题.10.(5分)如图,点A,B,C是圆O上的点,且,,则圆O的面积等于4π.考点:正弦定理.专题:计算题.分析:设圆的半径为R,由正弦定理可得,可求圆的半径,进而可求圆的面积解答:解:设圆的半径为R由正弦定理可得,∵,∴2R=∴R=2,S=4π故答案为:4π点评:本题主要考查了正弦定理的简单应用,属于基础试题11.(5分)若曲线C的极坐标方程为ρcos2θ=2sinθ,则曲线C的普通方程为x2=2y.考点:简单曲线的极坐标方程.专题:直线与圆.分析:曲线的方程即ρ2•cos2θ=2ρsinθ,根据极坐标和直角坐标之间的互化公式,求出它的直角坐标方程.解答:解:曲线C的极坐标方程为ρcos2θ=2sinθ,即ρ2•cos2θ=2ρsinθ,化为直角坐标方程为x2=2y,故答案为x2=2y点评:本题主要考查曲线的极坐标方程和直角坐标方程之间的互化,属于基础题.12.(5分)看图程序运行后的输出结果s=21.考点:伪代码.专题:图表型.分析:先读懂程序的算法,再据算法规则依次算出结果.可以看出这是一个循环结构.依其特点求解即可.解答:解:程序是一个循环结构,步长是2,每循环一次i就加进2,初始i=1,可循环4次,第4次进入循环体后i=9,故S=9×2+3=21.故答案为:21.点评:考查算法语言的结构,此类题的做法通常是把值代入,根据其运算过程求出值.13.(5分)已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p 是q的必要不充分条件.考点:必要条件、充分条件与充要条件的判断.分析:a与b没有公共点,则a与b所在的平面β可能平行,也可能相交(交点不在直线b上);但α∥β,则面面平行的性质定理,我们易得a与b平行或异面.结合充要条件定义即可得到结论.解答:解:∵a与b没有公共点时,a与b所在的平面β可能平行,也可能相交(交点不在直线b上);∴命题p:a与b没有公共点⇒命题q:α∥β,为假命题;又∵α∥β时,a与b平行或异面,即a与b没有公共点∴命题q:α∥β⇒命题p:a与b没有公共点,为真命题;故p是q的必要不充分条件故答案:必要不充分点评:本题考查的知识点是必要条件、充分条件与充要条件的判断,我们先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论.14.(5分)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文.现在加密密钥为y=log a(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.若接受方接到密文为“4”,则解密后得明文为14.考点:通讯安全中的基本问题.专题:计算题.分析:根据题意中给出的解密密钥为y=log a(x+2),及明文“6”通过加密后得到密文“3”,可求出底数a的值,若接受方接到密文为“4”,不妨解密后得明文为b,构造方程,解方程即可解答.解答:解:∵加密密钥为y=log a(x+2),由其加密、解密原理可知,当x=6时,y=3,从而a=2;不妨设接受方接到密文为“4”的“明文”为b,则有4=log2(b+2),从而有b=24﹣2=14.即解密后得明文为14故答案为:14.点评:本题考查新运算,解题的关键是:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.15.(5分)已知a,b,c成等差数列,则直线ax﹣by+c=0被曲线x2+y2﹣2x﹣2y=0截得的弦长的最小值为2.考点:直线与圆锥曲线的关系.专题:计算题.分析:利用等差数列的定义得到2b=a+c,求出圆心坐标及半径,求出圆心到直线的距离d,利用勾股定理求出弦长,求出最小值.解答:解:因为a,b,c成等差数列,所以2b=a+c因为x2+y2﹣2x﹣2y=0表示以(1,1)为圆心,以为半径的圆,则圆心到直线的距离为d==则直线ax﹣by+c=0被曲线x2+y2﹣2x﹣2y=0截得的弦长l=≥2所以0截得的弦长的最小值为2,故答案为2.点评:求直线与圆相交的弦长问题,一般通过构造直角三角形,利用勾股定理求出弦长.16.(5分)已知x,y∈N*,且1+2+3+4+…+y=1+9+92++…+9x﹣1,当x=2时,y=4;若把y表示成x的函数,其解析式是y=.考点:等比数列的前n项和;等差数列的前n项和.专题:等差数列与等比数列.分析:把x=2代入已知可得=10,解之即可;由又求和公式可得=,解之可得答案.解答:解:由题意可得x=2时,1+2+3+4+…+y=1+9,故可得=10,解得y=4,又由1+2+3+4+…+y=1+9+92++…+9x﹣1可得=,即y(y+1)=,故y=,故答案为:4;点评:本题考查等差数列和等比数列的求和公式,属中档题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知,设ω>0,,,若f(x)图象中相邻的两条对称轴间的距离等于.(1)求ω的值;(2)在△ABC中,a,b,c分别为角A,B,C的对边,.当f(A)=1时,求b,c的值.考点:余弦定理;平面向量数量积的运算.专题:三角函数的图像与性质;解三角形;平面向量及应用.分析:(1)由数量积的定义和三角函数的公式可得f(x)=,又可得,由周期公式可得;(2)由题意可得,由余弦定理和面积可得b,c的方程组,解之即可.解答:解:(1)∵==,又∴,解得ω=1;(2)∵f(A)=1,∴,由0<A<π得,又∵∴解得或点评:本题考查平面向量数量积的运算,以及余弦定理的应用,属中档题.18.(12分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.(Ⅰ)求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.考点:相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:应用题.分析:(Ⅰ)根据题意,该考生8道题全答对即另四道题也全答对,根据相互独立事件概率的乘法公式,计算可得答案.(Ⅱ)根据题意,分析可得,该生答对题的个数可能为4,5,6,7,8,分别求出其概率,进而可得其分布列.解答:解:(Ⅰ)根据题意,该考生8道题全答对即另四道题也全答对,即相互独立事件同时发生,故其概率为:P=.(5分)(Ⅱ)根据题意,分析可得,该生答对题的个数可能为4,5,6,7,8,其概率分别为:P(ξ=8)=分布列为:(13分)点评:本题考查相互独立事件概率的乘法公式与随机变量的分布列,两者经常一起考查,平时要加强这方面的训练.19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.考点:直线与平面垂直的判定;二面角的平面角及求法.专题:计算题;证明题;空间角.分析:(1)连接A1C,证明AE⊥A1C,AF⊥A1C,利用直线与平面垂直的判定定理证明A1C⊥面AEF;(2)如图说明∠NAO=θ就是截面AEF与底面ABCD所成二面角θ,通过解三角形,求出AC,BE,即可求解θ的正切值.解答:证明:(1)连接A1C正四棱柱⇒CB⊥平面ABB1A1⇒CB⊥AE又∵AE⊥A1B∴AE⊥平面A1BC⇒AE⊥A1C同理可得:AF⊥A1C∴A1C⊥平面AEF(2)∵AE⊥A1B⇒Rt△ABA1∽Rt△ABE⇒∠ABA1=∠BEA,如图EF的中点为N,AC 的中点为O,连结NO,则∠NAO=θ,又底面边长是,侧棱长是3∴,得,BE=1同理DF=1又,∴.点评:本题考查直线与平面垂直的判定定理,二面角的求法,考查空间想象能力与计算能力.20.(13分)京广高铁于2012年12月26日全线开通运营,G808次列车在平直的铁轨上匀速行驶,由于遇到紧急情况,紧急刹车时列车行驶的路程S(t)(单位:m)和时间t(单位:s)的关系为:.(1)求从开始紧急刹车至列车完全停止所经过的时间;(2)求列车正常行驶的速度;(3)求紧急刹车后列车加速度绝对值的最大值.考点:函数模型的选择与应用;导数的运算.专题:导数的综合应用.分析:(1)利用导数求出列车的速度关于t的表达式,令v(t)=0解出即可;(2)利用(1),令t=0,解出即可;(3)因为加速度a(t)=V'(t),利用导数求出即可.解答:解:(1)∵紧急刹车后列车的速度V(t)=S'(t),∴,当列车完全停止时V(t)=0m/s,∴t2﹣4t﹣60=0,解得t=10或t=﹣6(舍去).即从开始紧急刹车至列车完全停止所经过的时间为10s.(2)由(1)知,从开始紧急刹车至列车完全停止所经过的时间为10 s,又由列车的速度∴火车正常行驶的速度当t=0时,V(0)=90m/s(3)∵紧急刹车后列车运行的加速度a(t)=V'(t)∴∵|a(t)|=∴|a(0)|最大,|a(t)|max=84m/s2点评:熟练掌握v(t)=s′(t),a(t)=v′(t)是解题的关键.21.(13分)已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)对于抛物线上任意一点Q,点P(a,0)都满足|PQ|≥|a|,求a的取值范围.考点:圆锥曲线的共同特征;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由题意求出平行方程,得到椭圆与双曲线的焦点坐标,求出椭圆与双曲线中a,b,然后求椭圆与双曲线的方程;(2)设出抛物线上任意一点Q的坐标,点P(a,0)求出|PQ|,利用|PQ|≥|a|恒成立,求a的取值范围.解答:解:(1)设抛物线方程为y2=2px(p>0),将M(1,2)代入方程得p=2∴抛物线方程为:y2=4x由题意知椭圆、双曲线的焦点为F(﹣1,0)1,F2(1,0),∴c=1对于椭圆,∴,所以椭圆方程为对于双曲线,∴,所以双曲线方程为(2)设由|PQ|≥|a|得,t2+16﹣8a≥0,t2≥8a﹣16恒成立则8a﹣16≤0,a≤2∴a∈(﹣∞,2]点评:本题考查圆锥曲线的共同特征,三种曲线的求法,两点间的距离公式的应用,考查学生分析问题与解决问题的能力,考查转化思想.22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.考点:数列与函数的综合.专题:综合题;等差数列与等比数列.分析:(1)由f(x)≤0的解集有且只有一个元素可知△=a2﹣4a=0,从而可求得a值,又定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立,对a进行检验取舍,可确定a值,利用S n与a n的关系即可求得a n.(2)由(1)求得b n,根据其结构特征利用错位相减法即可求得T n;(3)先求出C n,判断n≥3时数列的单调性,根据变号数的定义可得n≥3时的变号数,根据c1=﹣3,c2=5,c3=﹣3,可得此处变号数,从而可求得数列{c n}的变号数.解答:解:(1)∵f(x)≤0的解集有且只有一个元素,∴△=a2﹣4a=0⇒a=0或a=4,当a=0时,函数f(x)=x2在(0,+∞)上递增,故不存在0<x1<x2,使得不等式f(x1)>f(x2)成立,当a=4时,函数f(x)=x2﹣4x+4在(0,2)上递减,故存在0<x1<x2,使得不等式f(x1)>f(x2)成立.综上,得a=4,f(x)=x2﹣4x+4,∴,∴;(2)∵=,∴b n=n,,①,②①﹣②得,﹣T n=2+22+…+2n﹣n•2n+1=﹣n•2n+1,∴;(3)由题设∵n≥3时,,∴n≥3时,数列{c n}递增,∵,由,可知a4•a5<0,即n≥3时,有且只有1个变号数;又∵c1=﹣3,c2=5,c3=﹣3,即c1•c2<0,c2•c3<0,∴此处变号数有2个.综上得数列{c n}共有3个变号数,即变号数为3;点评:本题考查数列与函数的综合,考查学生综合运用所学知识分析问题解决问题的能力,考查学生解决新问题的能力,综合性强,难度大,对能力要求高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年湖南省高考数学试卷及答案(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卡上.1.(5分)i是虚数单位,复数=()3.(5分)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()C4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、5.(5分)若在区域内任取一点P,则点P恰好在单位圆x2+y2=1内的概率为().C D..7.(5分)下列命题正确的有①用相关指数R2来刻画回归效果越小,说明模型的拟合效果越好;②命题p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x2﹣x﹣1≤0”;③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则;8.(5分)在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“理想距离”为:d(P,Q)=|x1﹣x2|+|y1﹣y2|;若C(x,y)到点A(2,3)、B(8,8)的“理想距离”相等,其中实数x、y满足0≤x≤8、0≤y≤8,则所有满C二、填空题:本大题共8小题,考生作答7小题,每小题0分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)(二)必做题(12~16题)9.计算的值等于_________.10.(5分)如图,点A,B,C是圆O上的点,且,,则圆O的面积等于_________.11.(5分)若曲线C的极坐标方程为ρcos2θ=2sinθ,则曲线C的普通方程为_________.12.(5分)看图程序运行后的输出结果s=_________.13.(5分)已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p 是q的_________条件.14.(5分)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文.现在加密密钥为y=log a(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.若接受方接到密文为“4”,则解密后得明文为_________.15.(5分)已知a,b,c成等差数列,则直线ax﹣by+c=0被曲线x2+y2﹣2x﹣2y=0截得的弦长的最小值为_________.16.(5分)已知x,y∈N*,且1+2+3+4+…+y=1+9+92++…+9x﹣1,当x=2时,y=_________;若把y表示成x的函数,其解析式是y=_________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知,设ω>0,,,若f(x)图象中相邻的两条对称轴间的距离等于.(1)求ω的值;(2)在△ABC中,a,b,c分别为角A,B,C的对边,.当f(A)=1时,求b,c的值.18.(12分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.(Ⅰ)求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.20.(13分)京广高铁于2012年12月26日全线开通运营,G808次列车在平直的铁轨上匀速行驶,由于遇到紧急情况,紧急刹车时列车行驶的路程S(t)(单位:m)和时间t(单位:s)的关系为:.(1)求从开始紧急刹车至列车完全停止所经过的时间;(2)求列车正常行驶的速度;(3)求紧急刹车后列车加速度绝对值的最大值.21.(13分)已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)对于抛物线上任意一点Q,点P(a,0)都满足|PQ|≥|a|,求a的取值范围.22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卡上.1.(5分)i是虚数单位,复数=()解:复数==23.(5分)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()C4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、人有,又乙只能从书记、宣传委员中选出一个职位,可有因此,共有人中没有乙,则可有5.(5分)若在区域内任取一点P,则点P恰好在单位圆x2+y2=1内的概率为().C D.个圆心角为解:作出不等式组内的部分为一个扇形,其圆心角为∴在区域=.k=y=7.(5分)下列命题正确的有①用相关指数R2来刻画回归效果越小,说明模型的拟合效果越好;②命题p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x2﹣x﹣1≤0”;③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则;=8.(5分)在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“理想距离”为:d(P,Q)=|x1﹣x2|+|y1﹣y2|;若C(x,y)到点A(2,3)、B(8,8)的“理想距离”相等,其中实数x、y满足0≤x≤8、0≤y≤8,则所有满Cx==3+5.二、填空题:本大题共8小题,考生作答7小题,每小题0分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)(二)必做题(12~16题)9.计算的值等于2.=110.(5分)如图,点A,B,C是圆O上的点,且,,则圆O的面积等于4π.,由正弦定理可得,由正弦定理可得,2R=11.(5分)若曲线C的极坐标方程为ρcos2θ=2sinθ,则曲线C的普通方程为x2=2y.12.(5分)看图程序运行后的输出结果s=21.13.(5分)已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p 是q的必要不充分条件.14.(5分)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文.现在加密密钥为y=log a(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.若接受方接到密文为“4”,则解密后得明文为14.15.(5分)已知a,b,c成等差数列,则直线ax﹣by+c=0被曲线x2+y2﹣2x﹣2y=0截得的弦长的最小值为2.)为圆心,以=≥16.(5分)已知x,y∈N*,且1+2+3+4+…+y=1+9+92++…+9x﹣1,当x=2时,y=4;若把y表示成x的函数,其解析式是y=.代入已知可得==10,,三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知,设ω>0,,,若f(x)图象中相邻的两条对称轴间的距离等于.(1)求ω的值;(2)在△ABC中,a,b,c分别为角A,B,C的对边,.当f(A)=1时,求b,c的值.,又可得)由题意可得)∵,解得或18.(12分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.(Ⅰ)求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列..19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.底面边长是,,20.(13分)京广高铁于2012年12月26日全线开通运营,G808次列车在平直的铁轨上匀速行驶,由于遇到紧急情况,紧急刹车时列车行驶的路程S(t)(单位:m)和时间t(单位:s)的关系为:.(1)求从开始紧急刹车至列车完全停止所经过的时间;(2)求列车正常行驶的速度;(3)求紧急刹车后列车加速度绝对值的最大值.21.(13分)已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)对于抛物线上任意一点Q,点P(a,0)都满足|PQ|≥|a|,求a的取值范围.对于椭圆,,,所以双曲线方程为)设得22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.,)∵=)由题设时,,由。