最新北师大版初中数学七年级上册《有理数加减混合运算复习》精品试题
七年级数学上册2.6有理数的加减混合运算测验新北师大版有答案
合用优选文件资料分享七年级数学上册 2.6 有理数的加减混淆运算测试(新北师大版有答案)2.6 有理数的加减混淆运算 1.设 a 是最小的自然数, b 是最大的负整数, c 是绝对值最小的数,则a-b+c 的值为 ()A.-1B.0 C.1 D.2 2.-6 的相反数与比 5 的相反数小 1 的数的和为 () A.1 B .0 C.2 D .11 3 .若四个有理数之和的 14 是 3,其中三个数是- 10,+ 8,- 6,则第四个数是 () A.+8 B.-8 C.+20 D.+ 11 4 .某运动员在东西走向的公路上练习跑步,跑步情况记录以下 ( 向东为正,单位:米 ) :1 000,-1200,1 100,-800,1400,该运动员跑的行程共为 ()A.1500米 B.5 500米 C.4500米 D.3 700 米 5 .若 a+b+c=0,则以下结论正确的选项是 () A.a =b=c=0 B.a,b,c 中最罕有两个是负数 C.a,b,c 中能够没有负数 D.a,b,c 中最罕有两个是正数 6 .把以下各式写成省略括号的和的形式: (1)( +7) -( +8) +( -1) -( -5) +( +3) =____;(2)9 +( +5) +( -6) -( -7) =________;(3) -( +3) +( -4) -( -19) -( +11) =________; (4) -0.21 +( -5.34) -( +0.15) -( -1015) =________. 7 .运用互换律和结合律计算:(1)3 -10+7=3________7______10=________; (2) -6+12-3-5=______6______3______5______12=______. 8.有理数 a,b,c 在数轴上的对应点以以下列图,计算a-b+c________0(填“>”“<”或“=” ) . 9 .在以下括号内填上适合的数:(________) -( +12)=- 13; (________) -( -0.05) =10. 10.计算以下各题:(1)(-9) -( -7) +( -6) -( +4) -( -5) ; (2)(+4.3)-(-4)+(-2.3)-(+4).11.甲、乙两队拔河,标志物向甲队搬动 0.5 m,又向乙队搬动 0.8 m,对持后又向乙队搬动 0.4 m ,随后向甲队搬动 1.5 m ,接着再向甲队搬动 1.2 m ,按规定标志物向某队搬动 2 m 即获胜,现在甲队获胜了吗?(201 5?河南 ) 计算: 434 -( +3.85) -( -314) +( -3.15) .课后作业 1 .C a=0,b=- 1,c=0,则 a-b+c=1. 2.B-(-6)+( -5-1) =0. 3 .C 四个有理数之和为 12,所以第四个数是+20. 4 .B |1000| +| -1200| +|1100| +| -800| +|1400| =5500合用优选文件资料分享米. 5 .C若a=b=c=0时,则三个数中能够没有负数. 6 .(1)7-8-1+5+3 (2)9 +5-6+7 (3) -3-4+19-11 (4) -0.21 -5.34 -0.15 +1015 7.(1) +-0 (2) ---+-2 8.>9.16 9.95 10.(1) -7原式=-9+7-6-4+5=(-9-6-4)+7+5=- 19+12=- 7; (2)2 原式= 4.3 +4-2.3 -4=2. 11 .解:标志物向甲队搬动的距离为 0.5 -0.8 -0.4 + 1.5 +1.2 =2(m) ,所以甲队获胜了.中考链接原式=4.75-3.85+3.25-3.15=1.。
北师大版七年级数学上册《2.2有理数的加减运算》同步测试题附答案
北师大版七年级数学上册《2.2有理数的加减运算》同步测试题附答案【基础达标练】课时训练夯实基础知识点1运用运算律简化有理数加法运算1.在计算-+3-时通常转化成--+3,这个变形的依据是( )A.加法交换律B.加法结合律C.乘法分配律D.乘法交换律2.下列变形,运用加法运算律正确的是( )A.3+(-2)=2+3B.4+(-6)+3=(-6)+4+3C.[5+(-2)]+4=[5+(-4)]+2D.+(-1)++=++(+1)3.计算43+(-78)+27+(-52)时,运算律使用最为恰当的是( )A.[43+(-78)]+[27+(-52)]B.(43+27)+[(-78)+(-52)]C.[43+(-52)]+[27+(-78)]D.[27+(-78)]+[43+(-52)]4.(2024·铜仁江口县质检)绝对值不大于100的所有整数的和是.5.计算:(1)(-2.4)+(-3.7)+(-4.6)+5.7;(2)+13++17;(3)(-3.14)+(+4.96)+(+2.14)+(-7.96).6.计算:30+(-18)+(-30)+48.知识点2有理数加法的综合运用7.(2024·威海期中)一跳蚤在一直线上从O点开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度……依此规律跳下去,当它跳第100次落下时,落点处离点O的距离是个单位长度.( )A.49B.50C.-50D.998.如图,小明设计了一个计算程序,并按此程序进行了计算,若开始输入的数为-7,则最后输出的数为.输入➝+7➝+(-8)➝+2➝+(-12)➝输出9.(2024·贵阳南明区质检)某邮递员根据邮递需要,先从A地向东走3千米,然后折回向西走10千米,又折回向东走6千米,最后折回向西走5.5千米.现规定向东为正,问:该邮递员此时在A地的哪个方向?与A地相距多少千米?要求:用有理数加法运算,并将这一问题在数轴上表示出来.【综合能力练】巩固提升迁移运用10.(2024·贵州质检)若|a|=3,|b|=1,且a,b同号,则a+b的值为 ( )A.4B.-4C.2或-2D.4或-411.如果a+b+c=0,且|c|>|b|>|a|,则下列说法中可能成立的是 ( )A.a,b为正数,c为负数B.a,c为正数,b为负数C.b,c为正数,a为负数D.a,b,c均为负数12.(2024·铜仁江口县质检)某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,+6),(-3,+2),(+1,-7),则车上还有人.13.用适当方法计算:(1)(-51)+(+12)+(-7)+(-11)+(+36);(2)-4+7.75+-1+-2;(3)1.3+0.5+0.5+0.3+(-0.7)+3.2+(-0.3)+0.7.14.(素养提升题)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=;②=;③=.(2)数a在数轴上的位置如图所示,则|a-2.5|=.A.a-2.5B.2.5-aC.a+2.5D.-a-2.5(3)利用上述介绍的方法计算或化简:①+--+;②+-+2,其中a>2.参考答案【基础达标练】课时训练夯实基础知识点1运用运算律简化有理数加法运算1.在计算-25+3-85时通常转化成-25-85+3,这个变形的依据是(A)A.加法交换律B.加法结合律C.乘法分配律D.乘法交换律2.下列变形,运用加法运算律正确的是(B)A.3+(-2)=2+3B.4+(-6)+3=(-6)+4+3C.[5+(-2)]+4=[5+(-4)]+2D.16+(-1)++56=16+56+(+1)3.计算43+(-78)+27+(-52)时,运算律使用最为恰当的是(B)A.[43+(-78)]+[27+(-52)]B.(43+27)+[(-78)+(-52)]C.[43+(-52)]+[27+(-78)]D.[27+(-78)]+[43+(-52)]4.(2024·铜仁江口县质检)绝对值不大于100的所有整数的和是0.5.计算:(1)(-2.4)+(-3.7)+(-4.6)+5.7;(2)(-13)+13+(-23)+17;(3)(-3.14)+(+4.96)+(+2.14)+(-7.96).【解析】(1)原式=-10.7+5.7=-5.(2)原式=[(-13)+(-23)]+(13+17)=-1+30=29.(3)原式=(-3.14+2.14)+(4.96-7.96)=-1-3=-4.6.计算:30+(-18)+(-30)+48.【解析】30+(-18)+(-30)+48=30+(-30)+[(-18)+48]=0+30=30.知识点2有理数加法的综合运用7.(2024·威海期中)一跳蚤在一直线上从O点开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度……依此规律跳下去,当它跳第100次落下时,落点处离点O的距离是个单位长度.(B)A.49B.50C.-50D.998.如图,小明设计了一个计算程序,并按此程序进行了计算,若开始输入的数为-7,则最后输出的数为-18.输入➝+7➝+(-8)➝+2➝+(-12)➝输出9.(2024·贵阳南明区质检)某邮递员根据邮递需要,先从A地向东走3千米,然后折回向西走10千米,又折回向东走6千米,最后折回向西走5.5千米.现规定向东为正,问:该邮递员此时在A地的哪个方向?与A地相距多少千米?要求:用有理数加法运算,并将这一问题在数轴上表示出来.【解析】根据题意知,+3+(-10)+6+(-5.5)=-6.5(千米)所以该邮递员此时在A地的西方,与A地相距6.5千米.【综合能力练】巩固提升迁移运用10.(2024·贵州质检)若|a|=3,|b|=1,且a,b同号,则a+b的值为 (D)A.4B.-4C.2或-2D.4或-411.如果a+b+c=0,且|c|>|b|>|a|,则下列说法中可能成立的是 (A)A.a,b为正数,c为负数B.a,c为正数,b为负数C.b,c为正数,a为负数D.a,b,c均为负数12.(2024·铜仁江口县质检)某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,+6),(-3,+2),(+1,-7),则车上还有12人.13.用适当方法计算:(1)(-51)+(+12)+(-7)+(-11)+(+36);(2)-458+7.75+-138+-234;(3)1.3+0.5+0.5+0.3+(-0.7)+3.2+(-0.3)+0.7.【解析】(1)原式=-39+(-7)+(-11)+(+36)=-46+(-11)+(+36) =-57+(+36)=-21;(2)原式=-458+-138+7.75+-234=-6+5=-1;(3)原式=(1.3+3.2)+(0.5+0.5)+[0.3+(-0.3)]+[(-0.7)+0.7]=4.5+1=5.5.14.(素养提升题)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=;②|-12-0.8|=;③|717-718|=.(2)数a在数轴上的位置如图所示,则|a-2.5|=.A.a-2.5B.2.5-aC.a+2.5D.-a-2.5(3)利用上述介绍的方法计算或化简:①|15-12018|+|12018-12|--12+11009;②|15-1a|+|1a-12|-|-12|+2(1a),其中a>2.【解析】(1)①|7-21|=21-7;②|-12-0.8|=12+0.8;③|717-718|=717-718.答案:①21-7②12+0.8③717-718(2)选B.由题中数轴得,a<2.5 则|a-2.5|=2.5-a.(3)略。
七年级数学上册 2.6《有理数的加减混合运算》测试题(含解析)(新版)北师大版
有理数的加减混合运算测试题时间:60分钟总分: 100一、选择题(本大题共10小题,共30.0分)1.计算的结果是A. 2B.C. 4D.2.下列说法中,正确的个数有一定是负数;一定是正数;倒数等它本身的数是;绝对值等于它本身的数是1;两个有理数的和一定大于其中每一个加数;如果两个数的和为零,那么这两个数一定是一正一负.A. 1个B. 2个C. 3个D. 4个3.如果两个有理数的积小于零,和大于零,那么这两个有理数A. 符号相反B. 符号相反且绝对值相等C. 符号相反且负数的绝对值大D. 符号相反且正数的绝对值大4.下列各计算题中,结果是零的是A. B. C. D.5.给出20个数:89,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,则它们的和是A. 1789B. 1799C. 1879D. 18016.两个正数与一个负数相加,和为A. 正数B. 负数C. 零D. 以上都有可能7.已知12与a的积为,则a比4小A. 1B. 2C. 4D. 88.两个数的差是负数,则这两个数一定是A. 被减数是正数,减数是负数B. 被减数是负数,减数是正数C. 被减数是负数,减数也是负数D. 被减数比减数小9.下列式子成立的是A. B. C. D.10.一天,昆明的最高气温为,最低气温为,那么这天的最高气温比最低气温高A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.已知,,,则ab______ 0, ______ 填“、或”12.若a,b,c均为有理数,满足,其中,,请你写出一个满足条件的算式______.13.比3大的数是______.14.计算的结果是______ .15.若,,则,则的值为______ .16.纽约与北京的时差是小时,如果现在是北京时间9月11日15时,那么现在的纽约时间是______ .17.计算的结果是______.2 218.______ . 19. A ,B ,C 三地的海拔高度分别是米,米,20米,则最高点比最低点高______米20. 在图中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图能变为图,则图中A 格内的数是______三、计算题(本大题共4小题,共24.0分) 21. 计算.22. 计算:.23. 计算:.24. 计算:四、解答题(本大题共2小题,共16.0分)25.某检修小组乘一辆汽车沿东西向公路检修线路,约定向东为正,某天从A地出发到收工时,行走记录为长度单位:千米:每小题10分,共30分,,,,,,,,,,,,,收工时,检修小组在A地的哪一边?距A地多远?26.已知,,且,求的值.34 4 答案和解析【答案】1. D2. A3. D4. A5. D6. D7. D8. D9. A10. A11. ;12. 答案不唯一13.14. 415.16. 9月11日2时17. 218.19. 9020. 421. 解:原式;原式.22. 解:原式.23. 解:原式.24. 解:25. 解:由题意得:向东路程记为“”,向西路程记为“”,则检修小组离A点的距离为:千米答:小花猫最后在出发点的东边;离开出发点A相距36千米.26. 解:由,得,因为,所以所以.【解析】1. 解:,故选:D.根据同号两数相加的法则进行计算即可.本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.2. 解:如果为负数时,则为正数,一定是负数是错的.当时,,一定是正数是错的.倒数等于它本身的数只有,对.绝对值都等于它本身的数是非负数,不只是1,绝对值等于它本身的数是1的说法是错误的.两个负有理数的和小于其中每一个加数,错误.如果两个数的和为零,那么这两个数可能为0,错误.所以正确的说法共有1个.故选A.本题须根据负数、正数、倒数、绝对值、相反数的有关定义以及表示方法逐个分析每个说法,得出正确的个数.本题考查了负数、正数、倒数、绝对值、相反数的有关定义以及表示方法,难度一般.3. 解:两个有理数的积小于零,和大于零,那么这两个有理数符号相反且正数的绝对值大.故选D.根据积小于0,可得两有理数异号,根据和大于零,可得正数的绝对值大,结合选项可得出答案.本题考查了有理数的乘法及有理数的加法法则,属于基础题,掌握各部分的运算法则是关键.4. 解:因为,故选项A的结果是零;因为,故选项B的结果不是零;因为,故选项C的结果不是零;因为,故选项D的结果不是零.故选A.根据四个选项,可以分别计算出它们的结果,进行观察,即可解答本题.本题考查有理数的加法、有理数的减法、去绝对值,解题的关键是正确的运用加法和减法法则进行计算.5. 解:每个数都减去90得,,1,4,,3,1,,,2,,0,2,,0,1,,,2,5,,求和得1,则它们的和为,,故选D.观察这组数的特点,这些数在90上下波动,要这些数都减去90,得出一组新数,把这组新数相加,再加上,即得结果,这样算简便.本题考查了有理数的加法法则,还考查了有理数加法的简便运算.6. 解:,和为正数;,和为0;,和为负数.故选:D.根据有理数的加法,举出例子即可求解.此题考查了有理数加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”.7. 解:由题意,得,解得,,故选:D.根据有理数的乘法,有理数的减法,可得答案.本题考查了有理数的乘法,利用有理数的乘法、有理数的减法是解题关键8. 解:如果两个数的差是负数,则这两个数一定是被减数比减数小.故选D.56 6两个数的差是负数,说明是较小的数减较大的数的结果,应该是被减数比减数小. 考查有理数的运算方法有理数减法法则:减去一个数等于加上这个数的相反数. 9. 解:A 、原式,正确; B 、原式,错误; C 、原式,错误; D 、原式,错误, 故选A原式各项计算得到结果,即可作出判断.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键. 10. 解:, 故选:A .利用最高气温减去最低气温即可.此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 11. 解:,,;,,,.故答案为,. 由,,根据有理数乘法法则得出;由,,,根据有理数加法法则得出.本题考查了有理数的加法与乘法法则用到的知识点:绝对值不相等的异号加减,取绝对值较大的加数符号;两数相乘,异号得负. 12. 解:,,、b 均为负数. 令,则..故答案为:答案不唯一. 由,可知a 、b 均为负数,然后任意给出符合条件的a 、b 在进行计算即可. 本题主要考查的是有理数的加法法则的应用,根据题意判断出a 、b 均为负数是解题的关键.13. 解:根据题意得:. 故答案为:.根据题意列出算式,利用加法法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键. 14. 解: 故答案为:4. 先求与2的和,再计算和的绝对值.本题考查了有理数的加法和绝对值的意义理清运算顺序是解决本题的关键. 15. 解:,,且,,;,,则. 故答案为:.根据题意,利用绝对值的代数意义求出x 与y 的值,即可求出的值.此题考查了有理数的乘法,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.16. 解:由题意,得,现在的纽约时间是9月11日2时,故答案为:9月11日2时.根据有理数的减法,可得答案.本题考查了有理数的减法,利用有理数的减法是解题关键.17. 解:.故答案为:2.依据有理数的减法法则进行计算即可本题主要考查的是有理数的减法,熟练掌握有理数的减法法则是解题的关键.18. 解:,,.故答案为:.根据绝对值的性质和有理数的减法运算法则进行计算即可得解.本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记运算法则是解题的关键.19. 解:根据题意得:,则最高点比最低点高90米,故答案为:90根据题意列出算式,计算即可求出值.此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.20. 解:如图,将相邻两格用阴影区分出来.由于每次变换都是一个阴影格和相邻的无阴影格中的数据同时加1或减2,所以变换过程中,所有阴影格中的数字之和与所有无阴影格中的数字之和的差不变.图中对应的阴影格的数字之和为:,图中对应的无阴影格的数字之和为:,图中对应的阴影格的数字之和为:,图中对应的无阴影格的数字之和为:,由上述分析可知:,则可得.故答案为:4.每次变换都是在相邻的两格,则将相邻的两格区分出来,如解答中图的有阴影和无阴影由题可知,每次变换都是阴影格中的一个数据和无阴影格中的一个数据同时加1或减2,所以无论变换多少次,所有阴影格中的数字之和与所有无阴影格中的数字之和的差不变.解答此题的关键是将相邻两格区分出来,然后根据两部分之和的差求解.21. 原式结合后,相加即可得到结果;原式结合后,相加即可得到结果.此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22. 原式结合后,利用加法法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.23. 本题主要考查有理数的加减混合运算掌握法则是解题的关键先把减法转化为加法,然后再根据有理数加法的法则计算即可.24. 根据有理数的减法的运算方法,应用加法交换律和加法结合律,求出算式的值是多少即可.此题主要考查了有理数的减法,要熟练掌握,注意加法交换律和加法结合律的应用.25. 首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.726. 先由、、确定a 的值,再计算的值.本题考查了有理数的乘法、绝对值及有理数的减法,根据,确定a的值,是解决本题的关键.88。
北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案
北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案考试时间:60分钟满分100分班级:________________ 姓名:________________ 考号:________________一、单选题(本大题共8小题,总分24分)1.下列结论中,正确的是()A.有理数减法中,被减数一定比减数大B.减去一个数,等于加上这个数的相反数C.0减去一个数,仍得这个数D.互为相反数的两个数相减等于02.计算﹣2﹣8的结果是()A.﹣6B.﹣10C.10D.63.甲地的海拔高度是5m,乙地比甲地低9m,乙地的海拔高度是()m.A.9B.﹣9C.4D.﹣44.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,长春的气温是﹣14℃,则此刻两地的温差是()A.33℃B.19℃C.14℃D.5℃5.将式子3﹣10﹣7写成和的形式正确的是()A.3+(﹣10)+(﹣7)B.﹣3+(﹣10)+(﹣7)C.3﹣(+10)﹣(+7)D.3+10+76.已知|a|=8,|b|=6,若|a+b|=a+b,则b﹣a的值为()A.﹣2B.﹣4C.﹣2或﹣4D.﹣2或﹣147.若|m|=5,|n|=4,且|m+n|=|m|﹣|n|,则m﹣n=()A.﹣9或﹣1B.1或9C.9或﹣9D.1或﹣98.对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和,这样的运算称为对这若干个数的“差绝对值运算”,例如,对于1,2,3进行“差绝对值运算”,得到:|1﹣2|+|2﹣3|+|1﹣3|=4.①对﹣2,3,5,9进行“差绝对值运算”的结果是35;②x,−52,5的“差绝对值运算”的最小值是152;③a,b,c的“差绝对值运算”化简结果可能存在的不同表达式一共有8种;以上说法中正确的个数为()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,总分24分)9.计算:(−5.2)−145=.10.已知:|x|=8,y=﹣5,且x<y,则x﹣y的值为.11.如图是某市连续5天的天气情况,最大的日温差是℃.12.A、B、C三地的海拔高度分别是﹣112米、﹣80米、﹣25米,则最高点比最低点高米.13.某超市出售的一种品牌大米袋上,标有质量为(20±0.2)kg的字样,则从该超市里任意拿出这种品牌的大米两袋,它们的质量最多相差kg.14.若|x|=7,|y|=6,|x+y|=﹣(x+y),则x﹣y的值为.三、解答题(本大题共6小题,总分52分)15.计算:(1)﹣3﹣1﹣13.(2)−(+416)−6−(−0.125).16.已知|a|=3,|b|=5,且a>b,求a﹣b的值.17.请列式计算:(1)求绝对值小于5的所有整数的和;(2)设m为5与﹣12的差,n比6的相反数大5,求m+n的值.18.已知|x|=12,|x﹣y|=5.(1)求x,y的值:(2)当x﹣y<0,求x+y的值.19.(1)若|x+3|+|y﹣5|=0,那么x+y的值是多少?(2)已知|a|=7,|b|=3,|a﹣b|=b﹣a,求a+b的值.20.(1)阅读思考:小唐在学习过程中,发现“数轴上两点间的距离”可以用“表示这两点数的差”来表示.【探索】:如图1,线段AB,BC,CD的长度可表示为:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4);于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB=b﹣a(较大数﹣较小数).(2)尝试应用:①如图2所示,计算:OE=,EF=.②把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=;若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=.(3)问题解决:如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN=4PM,求出点P和点N分别表示的数.参考答案一、单选题(本大题共8小题,总分24分)1.BBDA.5.ADCB.【点评】本题考查了新定义运算,化简绝对值符号,整式的加减运算,掌握绝对值运算,整式的运算是解题的关键.二、填空题(本大题共6小题,总分24分)9.﹣7.10.﹣3.11.10.12.87.13.0.4.14.﹣1或﹣13.三、解答题(本大题共6小题,总分52分)15.解:(1)原式=﹣4﹣13=﹣17;(2)原式=﹣416−6+18 =﹣10−16+18=﹣10−424+324=﹣10124.16.解:∵|a |=3,|b |=5∴a =±3或b =±5∵a >b∴a =3时,b =﹣5a ﹣b =3﹣(﹣5)=3+5=8a =﹣3时,b =﹣5a ﹣b =﹣3﹣(﹣5)=﹣3+5=2综上所述,a ﹣b 的值为8或2.17.解:(1)绝对值小于5的整数有:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4 所以﹣4﹣3﹣2﹣1+0+1+2+3+4=0;(2)由题意得m =5﹣(﹣12)=5+12=17,n =﹣6+5=﹣1所以m +n =17+(﹣1)=16.18.解:(1)∵|x |=12∴x =±12∵|x ﹣y |=5∴x =12,y =7或y =17,或者x =﹣12,y =﹣7或y =﹣17;(2)∵x ﹣y <0∴x =12,y =17或x =﹣12,y =﹣7;∴x +y 的值为:29或﹣19.19.解:(1)∵|x +3|+|y ﹣5|=0∴x =﹣3,y =5∴x +y =﹣3+5=2;(2)∵|a ﹣b |=b ﹣a∴b≥a∵|a|=7,|b|=3∴a=﹣7,b=±3∴a+b=﹣7±3=﹣10或﹣4.20.解:(2)①OE=0﹣(﹣5)=0+5=5,EF=3﹣(﹣5)=3+5=8②由题意得:3﹣m=m﹣1∴m=2把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=2由题意得:3﹣n=n﹣(﹣5)∴n=﹣1∴若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=﹣1故答案为:①5,8②2,﹣1;(3)由题意得:MN=2x+8﹣(﹣2)=2x+10,PM=﹣2﹣x∵MN=4PM∴2x+10=4(﹣2﹣x)解得:x=﹣3∴2x+8=2∴点P表示的数是:﹣3,点N表示的数是。
北师大版七年级数学上册《2.2有理数的加减运算》同步测试题带答案
北师大版七年级数学上册《2.2有理数的加减运算》同步测试题带答案【基础达标练】课时训练夯实基础知识点1有理数的减法1.比2小3的数是( )A.-3B.-1C.2D.52.--的值是( )A.-B.-C.D.3.下列各式中正确的是( )A.-5-(-3)=-8B.+6-(-5)=1C.-7-|-7|=0D.+5-(+8)=-34.下列结论不正确的是( )A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a<0,b<0,则a-(-b)>0D.若a<0,b<0,且|b|>|a|,则a-b>05.(2024·益阳期末)a的相反数是它本身,b是最大的负整数,则a-b的值是.6.计算:(1)0-2;(2)--;(3)|-5-6|-(4-5)-|-8|;(4)2-.知识点2有理数减法的应用7.(2024·贵阳期中)某市冬季的一天,中午12时的气温是-2 ℃,经过6小时气温下降了6 ℃,那么当天18时的气温是( )A.4 ℃B.-4 ℃C.8 ℃D.-8 ℃8.数轴上表示数-5和表示数-14的两点之间的距离是.9.(2024·贵阳南明区质检)科技改变世界.快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确放入相应的格口,还会感应避让障碍物、自动归队取包裹,没电的时候还会自己找充电桩充电.某分拣仓库计划平均每天分拣20万件包裹,但实际每天的分拣量与计划相比会有出入,下表是该仓库10月份第三周分拣包裹的情况(超过计划量的部分记为正,未达到计划量的部分记为负):星期一二三四五六日分拣情况+60-4+5-1+7-6(单位:万件)(1)该仓库本周内分拣包裹数量最多的一天是星期;最少的一天是星期;最多的一天比最少的一天多分拣万件包裹;(2)该仓库本周实际平均每天分拣多少万件包裹?【综合能力练】巩固提升迁移运用10.(2024·毕节金沙县质检)如图,|a|-a的值为()A.-6B.0C.3D.611.(2024·黔西南州质检)若数a,b在数轴上的位置如图所示,则 ( )A.a+b>0B.|a|<|b|C.a-b>0D.-a-b>012.(2024·贵阳花溪区质检)若|a|=8,|b|=5,且a>0,b<0,则a-b的值是.13.如果一个数的实际值为a,测量值为b,我们把|a-b|称为绝对误差,称为相对误差.若有一种零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差是cm,相对误差是cm.14.计算下列各题,能简算的要简算.(1)3-(+63)-(-259)-(-41);(2)598-12-3-84.15.(素养提升题)点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a-b|,利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2和-3的两点之间的距离是,数轴上表示x和-2的两点之间的距离是.(2)若|x+3|+|x-5|=8,利用数轴求出x的整数值为.(3)P是数轴上任意一点,且点P表示的数是x,求|x+2|+|x-4|的最小值.参考答案【基础达标练】课时训练夯实基础知识点1有理数的减法1.比2小3的数是(B)A.-3B.-1C.2D.52.-12-14的值是(B)A.-14B.-34C.34D.143.下列各式中正确的是(D)A.-5-(-3)=-8B.+6-(-5)=1C.-7-|-7|=0D.+5-(+8)=-34.下列结论不正确的是(C)A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a<0,b<0,则a-(-b)>0D.若a<0,b<0,且|b|>|a|,则a-b>05.(2024·益阳期末)a的相反数是它本身,b是最大的负整数,则a-b的值是1.6.计算:(1)0-2;(2)-12-(-12);(3)|-5-6|-(4-5)-|-8|;(4)223-(134-313).【解析】(1)0-2=0+(-2)=-2.(2)-12-(-12)=-12+12=0.(3)|-5-6|-(4-5)-|-8|=11-(-1)-8=11+1-8=4.(4)223-(134-313)=83-(74-103)=32 12-2112-4012=3212-(-1912)=32+1912=174.知识点2有理数减法的应用7.(2024·贵阳期中)某市冬季的一天,中午12时的气温是-2 ℃,经过6小时气温下降了6 ℃,那么当天18时的气温是(D)A.4 ℃B.-4 ℃C.8 ℃D.-8 ℃8.数轴上表示数-5和表示数-14的两点之间的距离是9.9.(2024·贵阳南明区质检)科技改变世界.快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确放入相应的格口,还会感应避让障碍物、自动归队取包裹,没电的时候还会自己找充电桩充电.某分拣仓库计划平均每天分拣20万件包裹,但实际每天的分拣量与计划相比会有出入,下表是该仓库10月份第三周分拣包裹的情况(超过计划量的部分记为正,未达到计划量的部分记为负):星期一二三四五六日分拣情况+60-4+5-1+7-6(单位:万件)(1)该仓库本周内分拣包裹数量最多的一天是星期;最少的一天是星期;最多的一天比最少的一天多分拣万件包裹;(2)该仓库本周实际平均每天分拣多少万件包裹?【解析】(1)由题表可知:该仓库本周内分拣包裹数量最多的一天是星期六;最少的一天是星期日;最多的一天比最少的一天多分拣+7-(-6)=13(万件).答案:六日13(2)略【综合能力练】巩固提升迁移运用10.(2024·毕节金沙县质检)如图,|a|-a的值为(D)A.-6B.0C.3D.611.(2024·黔西南州质检)若数a,b在数轴上的位置如图所示,则 (D)A.a+b>0B.|a|<|b|C.a-b>0D.-a-b>012.(2024·贵阳花溪区质检)若|a|=8,|b|=5,且a>0,b<0,则a-b的值是13.13.如果一个数的实际值为a,测量值为b,我们把|a-b|称为绝对误差,|a-b|a称为相对误差.若有一种零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差是0.2cm,相对误差是0.04cm.14.计算下列各题,能简算的要简算.(1)3-(+63)-(-259)-(-41);(2)598-1245-335-84.【解析】(1)原式=3-63+259+41 =-60+300=240;(2)原式=598-12-45-3-35-84=(598-12-3-84)-45+3 5=499-75=49735.15.(素养提升题)点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a-b|,利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示2和-3的两点之间的距离是,数轴上表示x和-2的两点之间的距离是.(2)若|x+3|+|x-5|=8,利用数轴求出x的整数值为.(3)P是数轴上任意一点,且点P表示的数是x,求|x+2|+|x-4|的最小值.【解析】(1)由题意可得,数轴上表示2和5两点之间的距离是|5-2|=3数轴上表示2和-3的两点之间的距离是|-3-2|=5,数轴上表示x和-2的两点之间的距离是|x-(-2)|=|x+2|.答案:35|x+2|(2)根据绝对值的定义有|x+3|+|x-5|=8可表示为|x-(-3)|+|x-5|=8,即表示点x到-3与5两点距离之和借助数轴分析可知,当x在-3与5之间时,|x+3|+|x-5|=8此时x的整数值是-3,-2,-1,0,1,2,3,4,5.答案:-3,-2,-1,0,1,2,3,4,5(3)根据绝对值的定义有|x+2|+|x-4|可表示为|x-(-2)|+|x-4|,即表示点x到-2与4两点距离之和根据(2)中的数轴可知,当x在-2与4之间时,|x+2|+|x-4|有最小值最小值为4-(-2)=6.。
七年级上册数学北师大版计算题
七年级上册数学北师大版计算题一、有理数的运算1. 加法运算- 计算:( - 3)+5- 解析:有理数加法法则为,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
| - 3|=3,|5| = 5,5>3,所以结果为正,( - 3)+5 = 5 -3=2。
2. 减法运算- 计算:4-( - 2)- 解析:减去一个数等于加上这个数的相反数。
所以4-( - 2)=4 + 2 = 6。
3. 乘法运算- 计算:( - 2)×3- 解析:两数相乘,异号得负,并把绝对值相乘。
| - 2|×|3|=2×3 = 6,所以( - 2)×3=-6。
4. 除法运算- 计算:( - 8)÷( - 2)- 解析:两数相除,同号得正,并把绝对值相除。
| - 8|÷| - 2|=8÷2 = 4,所以( - 8)÷( - 2)=4。
5. 混合运算- 计算:2×( - 3)+( - 2)^2- 解析:- 先算乘方,( - 2)^2=4。
- 再算乘法,2×( - 3)=-6。
- 最后算加法,-6 + 4=-2。
二、整式的加减1. 同类项的合并- 化简:3x+2y - 5x - y- 解析:- 首先找出同类项,3x和-5x是同类项,2y和-y是同类项。
- 合并同类项,(3x - 5x)+(2y - y)=-2x + y。
2. 整式的加减运算- 计算:(2a^2+3a - 1)-(3a^2 - 2a+4)- 解析:- 去括号,括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
得到2a^2+3a - 1 - 3a^2+2a - 4。
- 再合并同类项,(2a^2 - 3a^2)+(3a+2a)+(-1 - 4)=-a^2 + 5a - 5。
三、一元一次方程1. 简单方程的求解- 解方程:2x+3 = 7- 解析:- 首先进行移项,把常数项移到等号右边,得到2x=7 - 3。
北师大版(2024)七年级上册《2.2_有理数的加减运算2》2024年同步练习卷+答案解析
北师大版(2024)七年级上册《2.2有理数的加减运算2》2024年同步练习卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算的结果等于()A.12B.C.6D.2.下列算式正确的是()A. B.C. D.3.下列算式正确的是()A. B.C. D.4.把统一为加法运算,正确的是()A. B.C. D.5.若,则括号内的数是()A.13B.3C.D.6.甲、乙两人用简便方法进行计算的过程如下所示,下列判断正确的是()甲:乙:A.甲、乙都正确B.甲、乙都不正确C.只有甲正确D.只有乙正确7.能与相加得0的数是()A. B. C. D.8.某同学在计算时,误将看成了,从而算得的结果是5,则正确结果是()A.13B.C.9D.二、填空题:本题共4小题,每小题3分,共12分。
9.已知甲地的海拔高度是300m ,乙地的海拔高度是,那么甲地比乙地高______.10.若a 的相反数是,b 的绝对值是4,则______.11.若a 是绝对值最小的数,b 是最大的负整数,则______.12.如图所示,某勘探小组测得E点的海拔为20m,F点的海拔为以海平面为基准,则E点比F点高______三、计算题:本大题共1小题,共6分。
13.计算;四、解答题:本题共10小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
14.本小题8分计算:;;15.本小题8分计算:;;;;;16.本小题8分计算:;;;以地面为基准,A处高,B处高,C处高处比B处高多少米?处和C处哪个地方高?高多少米?处和C处哪个地方低?低多少米?18.本小题8分列式计算:减的差与的和;与的和减的差.19.本小题8分计算.;20.本小题8分计算:;;;;;;;;21.本小题8分某商店去年四个季度盈亏情况如下盈利为正数,亏损为负数:68万元,万元,万元,145万元.问:盈利最多的季度与最少的季度相差多少?全年盈亏情况如何?用简便方法计算:;23.本小题8分已知,若,,求的值;若,求的值.答案和解析1.【答案】C【解析】【分析】根据减去一个数等于加上这个数相反数,可得答案.本题考查了有理数的加法,先转化成加法,再进行加法运算.【解答】解:原式故选2.【答案】B【解析】解:,故选项A错误;B.,故选项B正确;C.,故选项C错误;D.,故选项D错误.故选:根据有理数的减法运算法则解答即可.本题考查了有理数的减法运算,熟练掌握有理数的减法运算法则是解题的关键.3.【答案】D【解析】解:,此选项的计算错误,故此选项不符合题意;B.,此选项的计算错误,故此选项不符合题意;C.,此选项的计算错误,故此选项不符合题意;D.,,,此选项的计算正确,故此选项符合题意;故选:各个选项均根据有理数的加减法则和绝对值是性质,进行计算,然后根据计算结果进行判断即可.本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.4.【答案】B【解析】解:原式,故选:根据有理数的减法法则即可求得答案.本题考查有理数的减法,熟练掌握相关运算法则是解题的关键.5.【答案】A【解析】解:;故选:根据有理数的加法即可算出答案.本题考查的有理数的加法运算,解题关键是掌握有理数的加法法则.6.【答案】D【解析】解:甲的计算错误,正确过程如下:;乙的计算过程正确:原式,故选:分别根据甲乙两人的计算过程,结合加法的运算律,根据有理数的加减混合运算的法则进行判断即可.本题考查了有理数的加减混合运算,运用运算律简化运算,掌握加法运算律是解题的关键.7.【答案】B【解析】解:一个数能与相加得0,这个数是的相反数,即故选:根据相反数的定义列式求解即可.本题主要考查了相反数的应用,理解和为零的两个数互为相反数是解答本题的本题的关键.8.【答案】B【解析】解:由题意,得,,故选:根据题意,得出,求出N的值,然后再计算出正确结果即可.本题考查了有理数的加法运算和减法运算,熟练掌握有理数的加法运算法则和减法运算法则是解题的关键.9.【答案】360m【解析】解:根据题意,得,故答案为:根据甲地比乙地高列式计算.本题主要考查了有理数的加法,掌握有理数的加法运算法则,符号的确定是解题关键.10.【答案】7或【解析】解:的相反数是,的绝对值是4,当,时,则,当,时,故答案为:7或先根据相反数和绝对值的定义求得a、b的值,最后相加即可.本题主要考查的是求代数式的值,求得a、b的值是解题的关键.11.【答案】1【解析】解:若a是绝对值最小的数,b是最大的负整数,则,,故答案为:根据绝对值都是非负数,可得绝对值最小的数,根据相反数,可得一个负数的相反数.本题考查了绝对值,根据定义解题是解题关键.12.【答案】40【解析】解:,答:E点比F点高故答案为:根据题意,列出,再根据有理数的减法运算法则计算即可.本题考查了有理数的减法运算,正负数,熟练掌握有理数的减法运算法则是解题的关键.13.【答案】解:;【解析】根据有理数加减运算法则、去绝对值法则计算出结果即可.本题考查了有理数加减运算、去绝对值,做题关键是要掌握有理数加减运算法则、去绝对值法则.14.【答案】解:;;【解析】先把式子省略括号和加号,再加减;先把式子省略括号和加号,再把分数化为小数,最后利用加法的交换律和结合律;先把部分分数化为小数,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.15.【答案】解:;;;;;【解析】根据有理数减法法则:减去一个数,等于加上这个数的相反数.即:,依此计算即可求解.考查了有理数减法.①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号减号变加号;二是减数的性质符号减数变相反数16.【答案】;;;【解析】利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算.本题考查了有理数的减法运算,解题的关键是掌握有理数的减法法则.17.【答案】解:答:A处比B处高19m;,处比C处高,答:B处比C处高15m;,处比A处低,答:C处比A处低【解析】分别列式,再根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了正负数的意义,大小比较,有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.18.【答案】解:;【解析】根据题意列出式子再进行计算即可;根据题意列出式子再进行计算即可.本题考查有理式的加减法,掌握运算法则是解题的关键.19.【答案】解:;【解析】先把式子化为省略加号和括号的形式,再把正数、负数分别相加;先把式子化为省略加号和括号的形式,再把分母相同的分数分别相加.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.20.【答案】解:原式;原式;原式;原式;原式;原式;原式;原式;原式【解析】直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的减法,正确掌握相关运算法则是解题关键.21.【答案】解:由题意知,盈利最多的季度盈利了145万元,最少的季度盈利了万元,万元;由题意,,,万元答:盈利最多的季度与最少的季度相差285万元;全年亏损22万元.【解析】由题意知,盈利最多的季度为145万元,盈利最少的季度为万元,盈利最多的季度钱数-盈利最少的季度钱数,即为所求;四个季度的盈利额相加,结果为正则盈利,结果为负则亏损.本题主要考查了正数和负数,掌握正负数表示一对相反意义的量,用正数表示其中一种意义的量,另一种量用负数表示.22.【答案】解:;【解析】先把分数化为小数,再利用加法的交换律和结合律;先把减法转化为加法,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.23.【答案】解:,,,,,,,;,,,,或,,当,时,,当,时,,的值为或【解析】先根据已知条件,求出x,y值,再根据,,求出;由中求出的x,y值,根据,取值进行计算即可.本题主要考查了有理数的加减法,解题关键是熟练掌握有理数的加减法则.。
北师大版七年级数学上册《有理数的加减混合运算》综合练习-精品
2.6 有理数的加减混合运算【同步达纲练习】1.判断题(1)运用加法的交换律,得-7+3=-3+7.(2)-5-4=-1.(3)(88-21)-35=88-(21+35).(4)-21+[-(-13)]=-[21+(-13)].(5)888-614+112=888+(-614+112).(6)|x -y|=|x|-|y|.2.填空题(1)-2+3-6=-2-_______+_______.(2)气温从-5℃上升到8℃,上升了_______.(3)大于-10而小于3的所有整数的和等于_______.(4)如果a 与b 互为相反数,且a =-2,则a -b =_______.(5)比-2.78大-0.23的数是_______.(6)两个数的和是-6521,一个加数为-2732,另一个加数是_______. (7)从-2中减去31与-61的和,所得的差是_______. (8)如果a +b =c ,那么a =c -_______.(9)如果x =y -z ,那么z =_______.(10)如果x -(-y)=z ,那么x =_______.3.选择题(1)-2-1+3的值等于( )A .0B .2C .-2D .-3(2)把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是( )A .-5-3+1-5B .5-3-1-5C .5+3+1-5D .5-3+1-5(3)下列计算正确的是( )A .-3-5=2B .2-8=-6C .(-6)-(-3)-(-1)=-10D .0-10=10(4)x =3,y =-4,z =7,w =-6时,代数式x -y +(-z)-(-w)的值是( )A .6B .-6C .4D .0(5)A 地海拔高度是-53 m ,B 地比A 地高17 m ,B 地的海拔高度是( )A .60 mB .-70 mC .70 mD .-36 m(6)如果a>0,b<0,且|b|>|a|,那么|a +b|是( )A .a +bB .a -bC .-(a +b)D .-(a -b)(7)如果b<-1,0<a<1,c>1,那么,|c -a|+|b -a|等于( )A .c -bB .b -cC .c +b -2aD .c -b +2a(8)已知数轴上A 点为-7,B 点为1,C 点为数轴上的一点,且A 、B 两点到C 点的距离均为4,则C 点为( )A .4B .-4C .-3D .3(9)两个数相加,其和小于每个加数,那么这两个数( )A .同为负数B .异号C .同为正数D .零或负数(10)在算式①211211-=⨯,②3121321-=⨯,③4131431-=⨯, ④111)1(1+-=+⨯n n n n 中,正确的个数有( ) A .1 B .2 C .3 D .44.把下列各式写成省略括号的和的形式:(1)(-28)-(+12)-(-3)-(+6);(2)(-25)+(-7)-(-15)-(-6)+(-11)-(-2);(3)(-0.5)-(-2.1)+(+0.3)-(+0.5)+(-0.3);(4))2116()83()81()524(213+---++--.5.计算:(1)[(-89.76)+(-475041)]+[34258-(-89.76)];(2)(-1374)-[(-1174)+697];(3)(-23717)-[3743+(-5.75)]-2.25;(4)753-23+454+(-5.9)-(-13)-4.1.6.当a =-121,b =331,c =-4时,求代数式a -b -c 的值.7.已知4a -6与-3a +4互为相反数,求代数式|2a -(-a)|的值.8.计算:(1)|0-5|-|(-4)-(+6)|-|(-7.5)+2-(+5.5)|;(2)432+[8.6+(-332)+(-57)]+(-253);(3)243-[(-0.5)-(-65)+(-43)+432];(4)49+(-2343+18.7-25.25);(5))]4112(711712[)]311()325[()]524(535[-+-+-+-+--.【思路拓展题】形数结合,相辅相成如图2—13,矩形ABCD 被分成六个大小不一的正方形,现在只知道中间一个小正方形的面积是1,求矩形ABCD 的面积.图2—13参考答案【同步达纲练习】1.(1)× (2)× (3)√ (4)√ (5)√ (6)×2.(1)6 3 (2)13℃ (3)-39 (4)-4(5)-2.55 (6)3765 (7)-261(8)(-b)(9)y -x (10)z -y3.(1)A (2)D (3)B (4)B (5)D (6)C (7)A (8)C(9)A (10)D 4.(1)-28-12+3-6;(2)-25-7+15+6-11+2;(3)-0.5+2.1+0.3-0.5-0.3; (4)321+452+81+83-1621.5.(1)-1321(2)-897(3)-2 (4)-7536.-657. 68.(1)-16 (2)5.6 (3)-23(4)18.7 (5)-841【思路拓展题】143提示:设图中两个大小一样的正方形的边长为x .。
最新2019-2020年度北师大版七年级数学上册《有理数的加减混合运算》同步练习题及答案-精品试题
2.6有理数的加减混合运算(1)一、填空题1.计算:(5)______++=(5)______+-=(5)______-+=(5)______--=2.在下列括号内填上适当的数:(________)-(+12)=-13; (________)-(-0.05)=10.二、选择题3.规定向北为正,某人走了+5米,又继续走了﹣10米,那么,他实际上( )A .向北走了15kmB .向南走了15kmC .向北走了5kmD .向南走了5km4.计算-2+3的结果是( )A .1B .-1C .-5D .-65.比1小2的数是( )A .3-B .1-C .1D .36.在1,-1,-2这三个数中,任意两数之和的最大值是( ).A .1B .0C .-1D .-3三、计算题(1))5(8--- (2)4.28.3--(3))21()53(52-+-- (4)3)3()8(18---+-(5)51192533812812-+--2.6有理数的加减混合运算(2)一、填空题1.+3-(-7)=_______.2..(-32)-(+19)=_______.3.-7-(-21)=_______.4..(-38)-(-24)-(+65)=_______.5.-4-_______=23.6..36℃比24℃高_______℃,19℃比-5℃高_______℃.7..A .B .C 三点相对于海平面分别是-13米、-7米、-20米,那么最高的地方比最低的地方高____米.8..冬季的某一天,甲地最低温度是-15℃,乙地最低温度是15℃,甲地比乙地低_______℃.二、计算题(1)1315.5()44-++- (2)4.8 3.4( 4.5)---(3)12.54()2-+- (4)2113()()3838---+-(5)111324-++ (6)1241()()()2352+---+-三、解答题已知:a=-2,b=20,c=-3,且a -(-b)+c -d=10,求d 的值.2.6有理数的加减混合运算(3)一、选择题1.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的数,则a -b +c 的值为( )A .-1B .0C .1D .22.-6的相反数与比5的相反数小1的数的和为( )A .1B .0C .2D .11二、填空题3.计算(去括号)(1)(+7)-(+8)+(-1)-(-5)+(+3)=____;(2)9+(+5)+(-6)-(-7)=________;(3)-(+3)+(-4)-(-19)-(+11)=________;(4)-0.21+(-5.34)-(+0.15)-(-1015)=________. 4.运用交换律和结合律计算:(1)3-10+7=3________7______10=________;(2)-6+12-3-5=______6______3______5______12=______.5.有理数a ,b ,c 在数轴上的对应点如图所示,计算a -b +c________0(填“>”“<”或“=”).三、解答题6.计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4).(3)434-(+3.85)-(-314)+(-3.15).7.甲、乙两队拔河,标志物向甲队移动0.5 m,又向乙队移动0.8 m,相持后又向乙队移动0.4 m,随后向甲队移动1.5 m,接着再向甲队移动1.2 m,按规定标志物向某队移动2 m即获胜,现在甲队获胜了吗?2.6 有理数的加减混合运算(1)一、填空题1, 5, -5, -5, 52.61;9.95 二、选择题3.D4.A5.B6.B二、计算题(1)-3 (2)-6.2 (3)21 (4)10 (5)-821 2.6有理数的加减混合运算(2)一、填空题1.102.-513.144.-795.-27.6.12.,24.7..138..30二、计算题(1)14.5 (2)5.9 (3)-2 (4)21(5)125 (6)152 三、解答题 解:把a=-2,b=20,c=-3代入a -(-b)+c -d=10,得d=5.2.6有理数的加减混合运算(3)一、选择题1.C2.B二、填空题3. (1)7-8-1+5+3 (2)9+5-6+7 (3)-3-4+19-11 (4)-0.21-5.34-0.15+10154.运用交换律和结合律计算:(1)+ - 0 (2)- - - + -25.>.三、解答题6.(1) 原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7;(2) 原式=4.3+4-2.3-4=2.(3) 原式=8.711.解:标志物向甲队移动的距离为0.5-0.8-0.4+1.5+1.2=2(m),所以甲队获胜了.。
七年级北师大数学上第二章 有理数加减法则复习及四套试题
有理数加减法的运算律一、有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
二、有理数加法运算律交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示:a+b=b+a运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示:(a+b)+c=a+(b+c)这里a、b、c表示任意三个有理数.注意:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.总结常用的三个规律:1.一般地,总是先把正数或负数分别结合在一起相加。
2.有相反数的可先把相反数相加,能凑整的可先凑整。
三、有理数的减数法则减去一个数,等于加上这个数的相反数.四、有理数的混合运算统一成加法后,按加法运算来完成.有理数的加减法则测试题(一)一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。
2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。
3、3与-2的和的倒数是____,-1与-7差的绝对值是____。
4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。
5、-0.25比-0.52大____,比-521小2的数是____。
6、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”) 7、已知21,43,32-=-==c b a ,则式子=--+-)()(c b a _____。
8、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____。
北师大课标版七年级数学上册《有理数的混合运算》习题2(精品习题)
《有理数的混合运算》习题1、下列说法:①两个数相加,同号得正,异号得负,并把绝对值相加;②任何一个有理数的绝对值总是一个正数;③n 个因数相乘,有一个因数为零,积就为零;④减去一个数等于加上这个数的相反数;⑤正数的任何次幂都是正数,负数的奇数次幂是负数,偶数次幂是正数.其中正确的是( )A .①②B .①③C .②③④D .③④⑤2、114-的倒数乘以14的相反数,其结果为( )A .+5B .-5C .15D .15- 3、下列式子正确的是( )A .2222(0.5) 1.2-<-<-B .2221.22(0.5)-<-<-C .2222 1.2(0.5)-<-<-D .222(0.5) 1.22-<-<-4、若▲表示最小的正整数,●表示最大的负整数,■表示绝对值最小的有理数,则(▲+●)×■=________.5、计算:(1)7+3-7-6=_________.(2)(-3)×(-8)×25=________.6、计算:()11132⎛⎫-÷- ⎪⎝⎭=___________.(2)2(3)10(1)---+-=_____________.7、如图是一个数值转换机的示意图,若输入x 的值为-5,则输出的结果为_________.8、在实数的原有运算法则中我们补充定义新运算“⊕”如下: 当a ≥b 时,a ⊕b=b 2;当a<b 时,a ⊕b=a .则当x=2时, (1⊕x)·x -(3⊕x)的值为_______.(“·”和“-”仍为实数 运算中的乘号和减号)9、已知530a b ++-=,则a=___________,b=_________.10、计算:(1)()()3353225⎛⎫-⨯--÷- ⎪⎝⎭; (2)221230.8535⎡⎤⎛⎫⎛⎫-⨯--÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦; (3)()751327181264⎛⎫-⨯+-÷ ⎪⎝⎭. 11、用计算器计算(精确到0.1):(1)(-5)2-(-3)+4×(-2)3; (2)18+42÷(-2)-(-2)2×5.12、计算: (1)1110.3341233⎛⎫-+⨯+÷- ⎪⎝⎭; (2)2112222233⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭; (3)()375244128⎛⎫-+-⨯- ⎪⎝⎭; (4)-2.5×(-4.8)×(0.09)÷(-0.27).。
北师大版七年级数学上册《有理数的加减混合运算》典型例题(含答案)
《有理数的加减混合运算》典型例题例1 计算下列各式:(1)()()4357+-++-;(2)()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++-322213224; (3)3696+--;(4)()()()()8.45.22.35.5-------.解:(1)原式()()[]()4537++-+-=()910+-=1-=.(2)原式()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+-=322322214 ()0214+⎪⎭⎫ ⎝⎛-+-= 214-=. (3)原式()6936--+=699--=60-=6-=.(4)原式()8.45.22.35.5+++-=()[]()8.42.35.25.5+++-=83+-=5=.说明:对于有理数的加法或有理数的减法的题目,要先进行全面分析,找出特点,采用适当的步骤,才能计算正确、简便和迅速,如多个有理数相加、一般按从左到右的顺序,逐个进行计算而得出结果.但根据题目特点,若能应用加法交换律或结合律的一定要先用这些运算律,不但可以简便运算,而且还能防止出错.另外,加数中若有相反数,也应先把相反数相加.例2 计算:2111)10()9()217()8(7+-++------. 分析 在进行加减混合运算时运算的顺序是由左向右,所以该题我们可以由左向右依次进行;也可以先利用减法法则把式子中的减法运算都变成加法运算,再考虑运用运算定律进行简算.解 方法一:2111)10()9()217()8(7+-++------ 2111)10()9()217(87+-++---+-= 2111)10()9()217(1+-++---= 2111)10()9(2171+-++-+= .12111)10()9(218=+-++-= 方法二:2111)10()9()217()8(7+-++------ 2111)10()9(21787+-+-+++-= )21112178()]10()9(7[+++-+-+-= .12726=+-=说明:(1)在运用结合律和交换律时,我们首先要根据减法运算法则把式子中的减法都变成加法;(2)在交换数的前后位置时应连同符号一起交换;(3)在我们运算熟练之后,负数相加可以省略“+”号,但我们可以仍然认为是加法.如2111)10()9(21787+-+-+++-可以写成: 211110921787+--++-.其中的…-9-10+…可以看成是…+(-9)+(-10)+….例3 计算下列各题:(1)()()⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-76.892583450114776.89;(2)()5.14328412435313--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-;(3)3135.4514121516+-+---. 解:(1)原式()76.892583450114776.89++⎪⎭⎫ ⎝⎛-+-= ()[]⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-++-=2583450114776.8976.89 109125045120-=⎪⎭⎫ ⎝⎛-+=. (2)原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=328412435313()5.14++ 5.14328412435313+-+--= ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--=5.14412435328313 ⎪⎭⎫ ⎝⎛+-+-=5.1421312 11112-=+-=(3)原式⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛----=3135145.4151621 15113561+-= 1511315183+-= 314-=. 说明:计算有理数加减混合运算的题目。
最新北师大版七年级数学上册《有理数的混合运算》同步精品练习题
2.11 有理数的混合运算一、填空题1.如果提高10分表示+10分,那么下降8分表示_______,不升不降用_______表示.2. n 为正整数,则(-1)2n =_______,(-1) 2n +1=_______.3. 大于-5.1的所有负整数为__________________.4.某地气象站测得某天的四个时刻气温为:早晨6点零下3℃,中午12点为零上1℃,下午4点为0℃,晚上12点为零下9℃.则早晨6点比晚上12点高_____,.下午4点比中午12点___________.5. “x 的5倍与y 的和的一半”可以表示为____________.6. 在数轴上有一个点,已知离原点的距离是3个单位长度,这个点表示的数为_______.7. 数轴上-1所对应点为A ,将A 右移4个单位再向左移6个单位,此时A 点距原点距离为_____.8. 比较大小:(1)-2.1_____1 (2)-3.2____-4.3 (3)31____21--(4)0____41-9. 已知a 是最小的正整数,b 的相反数还是它本身,c 比最大的负整数大3,则(2a +3c )·b =______.10.计算: _____76=⎪⎭⎫⎝⎛--, _____76=--,____313231=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+-。
11.()()__________474--5-73--1--10=-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+12.若|x -2|+|y +3|+|z -5|=0:则x=____,,y=______,,z=_______。
13.若2<a <4,化简|2-a | + |a -4| =____________ 14. 若|a |=2,|b |=5,则| a + b |=_______15. 某人从A 处出发,约定向东为正,向西为负,从A 到B 所走的路线(单位:米),分别为+10、-3、+4、-2、+13、-8、-7、-5、-2,则此人走过的路程为______米。