新浙教版数学八年级下册特殊平行四边形精讲

合集下载

新浙教版数学八年级下册特殊平行四边形精讲教学总结

新浙教版数学八年级下册特殊平行四边形精讲教学总结

课题特殊平行四边形精讲知识点一:矩形的性质和判定考点1:直角对边平行且相等对角线相等考点2:一个角是直角的平行四边形三个角是直角对角线相互平分且相等考点3:勾股定理(主要与折叠相关) 一定要用起来对应边相等,对应角相等经典例题分析,提高综合能力例题1:如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.例题2:如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD 边的F点上,则DF的长为.例题3:、如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为 .例题4:如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为 .例题5:如图所示,在矩形中,,两条对角线相交于点.以、为邻边作第1个平行四边形;对角线相交于点;再以、为邻边作第2个平行四边形,对角线相交于点;再以、为邻边作第3个平行四边形……依次类推.(1)求矩形的面积;(2)求第1个平行四边形、第2个平行四边形 和第6个平行四边形的面积.例题6:如图,已知直线与直线分别交轴于两点.矩形的顶点上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;知识点二:菱形的性质和判定 考点1:四边相等对角相等且被对角线平分对角线互相垂直考点2:一组邻边相等的平行四边形 对角线互相垂直 平分对角 考点3:对称性勾股定理例题1:在菱形中,对角线与相交于点,.过点作交的延长线于点.(1)求的周长;(2)点为线段上的点,连接并延长交于点.求证:.ABCD 1220AB AC ==,O OB OC 1OBB C 1A 11A B 1A C 111A B C C 1O 11O B 11O C 1121O B B C ABCD 11OBB C 111A B C C 128:33l y x =+2:216l y x =-+C l l 12,、x A B 、DEFG D E 、12l l 、F G 、x G B ABC △DEFG DE EF ABCD AC BD O 56AB AC ==,D DE AC ∥BC E BDE △P BC PO AD Q BP DQ = AQ DEBP COA 1 A 2B 2C 2C 1 B 1O 1 DABC O例题2:如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.例题3:如图,△ABC中,AD是边BC 上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.例题4:如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.例题5:如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A、(2,2-) B、(2,2-) C、(3,3-) D、(2,2--)知识点3:正方形考点1: 直角平行四边相等45°特殊角度对角线互相垂直辅助线考点2:勾股定理综合应用例题1:如图,ABCD是正方形,点G是BC上的任意一点,于E,,交AG 于F.求证:.DE AG⊥BF DE∥AF BF EF=+ DCBAEFG例题2:正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12C .14D .16例题3:如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边长为 .例题4:如图(22),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒(). (1)求两点的坐标;(2)用含的代数式表示的面积;(3)以为对角线作矩形,记和重合部分的面积为, ①当时,试探究与之间的函数关系式;②在直线的运动过程中,当为何值时,为面积的?l 4y x =-+x y A B 、l m O x x y M N 、t 04t <≤A B 、t MON △1S MN OMPN MPN △OAB △2S 2t <≤42S t m t 2S OAB △516OMAP N y l mx BO MAP N y l mxBE PF 图。

新浙教版数学八年级下册特殊平行四边形精讲

新浙教版数学八年级下册特殊平行四边形精讲

课题特殊平行四边形精讲知识点一:矩形的性质和判定考点1:直角对边平行且相等对角线相等考点2:一个角是直角的平行四边形三个角是直角对角线相互平分且相等考点3:勾股定理(主要与折叠相关) 一定要用起来对应边相等,对应角相等经典例题分析,提高综合能力例题1:如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.例题2:如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD 边的F点上,则DF的长为.例题3:、如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为 .例题4:如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为 .例题5:如图所示,在矩形中,,两条对角线相交于点.以、为邻边作第1个平行四边形;对角线相交于点;再以、为邻边作第2个平行四边形,对角线相交于点;再以、为邻边作第3个平行四边形……依次类推.(1)求矩形的面积;(2)求第1个平行四边形、第2个平行四边形 和第6个平行四边形的面积.例题6:如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;知识点二:菱形的性质和判定 考点1:四边相等对角相等且被对角线平分对角线互相垂直考点2:一组邻边相等的平行四边形 对角线互相垂直 平分对角 考点3:对称性勾股定理例题1:在菱形中,对角线与相交于点,.过点作交的延长线于点.(1)求的周长;(2)点为线段上的点,连接并延长交于点.求证:.ABCD 1220AB AC ==,O OB OC 1OBB C 1A 11A B 1A C 111A B C C 1O 11O B 11O C 1121O B B C ABCD 11OBB C 111A B C C 128:33l y x =+2:216l y x =-+C l l 12,、x A B 、DEFG D E 、12l l 、F G 、x G B ABC △DEFG DE EF ABCD AC BD O 56AB AC ==,D DE AC ∥BC E BDE △P BC PO AD Q BP DQ = AQ DEBP COA 1A 2B 2C 2C 1 B 1O 1 DABCOA DB EOCF x yy(G )例题2:如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE//BC ,过点D 作DE//AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC . (1)求证:AD =EC ;(2)当∠BAC =Rt ∠时,求证:四边形ADCE 是菱形.例题3:如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE//BC ,过点D 作DE//AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC . (1)求证:AD =EC ;(2)当∠BAC =Rt ∠时,求证:四边形ADCE 是菱形.例题4:如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 .例题5:如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕原点顺时针旋转105°至OA ′B ′C ′的位置,则点B ′的坐标为( )A 、(2,2-)B 、(2,2-)C 、(3,3-)D 、(2,2--) 知识点3:正方形考点1: 直角 平行 四边相等 45°特殊角度对角线互相垂直辅助线考点2:勾股定理 综合应用例题1:如图,ABCD 是正方形,点G 是BC 上的任意一点,于E ,,交AG 于F .求证:. DE AG ⊥BF DE ∥AF BF EF =+ DC BA EF G例题2:正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12C .14D .16例题3:如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边长为 .例题4:如图(22),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒(). (1)求两点的坐标;(2)用含的代数式表示的面积;(3)以为对角线作矩形,记和重合部分的面积为, ①当时,试探究与之间的函数关系式;②在直线的运动过程中,当为何值时,为面积的? l 4y x =-+x y A B 、l m O x x y M N 、t 04t <≤A B 、t MON △1S MN OMPN MPN △OAB △2S 2t <≤42S t m t 2S OAB △516OMAP N y l mxBOMAP N y l mxB E P F 图22。

浙教版八年级下册 4.2 平行四边形性质 课件(共20张PPT)

浙教版八年级下册 4.2 平行四边形性质 课件(共20张PPT)

∴ AB∥CD,AD∥BC (平行四边形的定义)
∴ ∠A+∠B=180° ∠C+∠B=180°
∠A+∠D=180° ∠C+∠D=180°
(两直线平行,同旁内角互补)
推论: 平行四边形邻角互补.
做一做 1.已知在□ABCD中,∠A=55°.求其余内角的度
数.
2.已知平行四边形相邻两条边的长度之比为3:2, 周长为20cm,求平行四边形各条边长.
新课讲解
验证 平行四边形的对角相等.
平行四边形的对边相等.
D
已知:如图,四边形ABCD是平行四边形,
C
求证:∠A=∠C,∠ABC=∠CDA.
AB=CD, AD=BC.
A
B
新课讲解
D
C
∵ 四边形ABCD是平行四边形
∴ ∠A=∠C,∠B=∠D.
A
B
(平行四边形的对角相等)
AB=CD,AD=BC.
(平行四边形的对边相等)
∴AD-AE=CB-CF 即 DE=BF
∵∠BAD=∠DCB,∠EAF=∠FCE (平行四边形对角相等)
∴∠BAD-∠EAF=∠DCB-∠FCE 即∠BAF=∠DCE
做一做
已知:如图,在□ABCD中,E是CD上一点,BE=BC.
求证:AD=BE,∠A=∠ABE.
DE
C
A
B
新课讲解 与三角形的稳定性相反,四边形具有不稳定性.
BE⊥AC,DF⊥AC,垂足分别为点E,F.
求证:BE=DF.
A
D
E
F
B
C
拓展提高
1.学校买了四棵树,准备栽在花园里,已经 栽了三棵(如图),现在学校希望这四棵树 能组成一个平行四边形,你觉得第四棵树应 该栽在哪里?

(完整版)新浙教版数学八年级下册特殊平行四边形精讲

(完整版)新浙教版数学八年级下册特殊平行四边形精讲

课题特殊平行四边形精讲知识点一:矩形的性质和判定考点1:直角对边平行且相等对角线相等考点2:一个角是直角的平行四边形三个角是直角对角线相互平分且相等考点3:勾股定理(主要与折叠相关) 一定要用起来对应边相等,对应角相等经典例题分析,提高综合能力例题1:如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.例题2:如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD 边的F点上,则DF的长为.例题3:、如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为 .例题4:如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为 .例题5:如图所示,在矩形中,,两条对角线相交于点.以、为邻边作第1个平行四边形;对角线相交于点;再以、为邻边作第2个平行四边形,对角线相交于点;再以、为邻边作第3个平行四边形……依次类推.(1)求矩形的面积;(2)求第1个平行四边形、第2个平行四边形 和第6个平行四边形的面积.例题6:如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;知识点二:菱形的性质和判定 考点1:四边相等对角相等且被对角线平分对角线互相垂直考点2:一组邻边相等的平行四边形 对角线互相垂直 平分对角 考点3:对称性勾股定理例题1:在菱形中,对角线与相交于点,.过点作交的延长线于点.(1)求的周长;(2)点为线段上的点,连接并延长交于点.求证:.ABCD 1220AB AC ==,O OB OC 1OBB C 1A 11A B 1A C 111A B C C 1O 11O B 11O C 1121O B B C ABCD 11OBB C 111A B C C 128:33l y x =+2:216l y x =-+C l l 12,、x A B 、DEFG D E 、12l l 、F G 、x G B ABC △DEFG DE EF ABCD AC BD O 56AB AC ==,D DE AC ∥BC E BDE △P BC PO AD Q BP DQ = AQ DEBP COA 1A 2B 2C 2C 1 B 1O 1 DABCOA DB EOCF x yy(G )例题2:如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE//BC ,过点D作DE//AB ,DE 与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.例题3:如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.例题4:如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.例题5:如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A、(2,2-) B、(2,2-) C、(3,3-) D、(2,2--)知识点3:正方形考点1: 直角平行四边相等45°特殊角度对角线互相垂直辅助线考点2:勾股定理综合应用例题1:如图,ABCD是正方形,点G是BC上的任意一点,于E,,交AG 于F.求证:.DE AG⊥BF DE∥AF BF EF=+ DCBAEFG例题2:正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12C .14D .16例题3:如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边长为 .例题4:如图(22),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒(). (1)求两点的坐标;(2)用含的代数式表示的面积;(3)以为对角线作矩形,记和重合部分的面积为, ①当时,试探究与之间的函数关系式;②在直线的运动过程中,当为何值时,为面积的? l 4y x =-+x y A B 、l m O x x y M N 、t 04t <≤A B 、t MON △1S MN OMPN MPN △OAB △2S 2t <≤42S t m t 2S OAB △516OMAP N y l mxBOMAP N y l mxB E P F 图。

八年级数学特殊的平行四边形浙江版知识精讲

八年级数学特殊的平行四边形浙江版知识精讲

初二数学特殊的平行四边形某某版【本讲教育信息】一. 教学内容:特殊的平行四边形二、重、难点:1、定义:有一个角是直角的平行四边形叫做矩形。

(长方形和正方形都是矩形) 一组邻边相等的平行四边形叫做菱形。

一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

2、判定:①矩形:有三个角是直角的四边形。

对角线相等的平行四边形②菱形:四条边相等的四边形。

对角线互相垂直的平行四边形。

③正方形:按照定义。

3、性质:①矩形:四个角都是直角,对角线相等。

②菱形:四条边都相等,对角线互相垂直并且每条对角线平分一组对角。

③正方形:四个角都是直角,四条边相等,对角线相等,互相垂直平分并且每条对角线平分一组对角。

【典型例题】例1、如图,平行四边形ABCD 中,以AC 为斜边作Rt △ACE ,BE ⊥DE 于E 。

求证:四边形ABCD 是矩形。

略证:∵平行四边形ABCD ∴对角线AC 、BD 互相平分 又已知△AEC 为Rt △AEC ∴取AC 中点O ,连接OE ∴AC 21OE =同理,对于Rt △BED ,BD 21OE =,∴AC=BD 。

∴四边形ABCD 是矩形(对角线相等的四边形是矩形)例2、△ABC 中,∠BAC=90°,AB=AC ,D 是BC 中点,P 在BC 的延长线上。

过点P 分别作两腰AB 、AC 的垂线PE ,PF 。

垂足分别为E 、F 。

求证:DE=DF 并且DE ⊥DF 。

略证:∵D 为等腰△ABC 的底边BC 上的中点 ∴连接AD∵∠EAF=∠AFP=∠AEP 为Rt ∠∴四边形AEPF 是矩形(三个角是直角的四边形是矩形) ∴AE=FP=FC ∴BE=AF又可证明)SAS (ADF BDE ∆≅∆∴DE=DF ,∠BDE=∠ADF ∴∠ADE=∠FDP∵∠ADE+∠EDP=90° ∴∠FDP+∠EDP=90° ∴DE ⊥DF例3、如图,AB//CD ,∠ACB=90°,E 为AB 中点,CE=CD ,DE 和AC 相交于点F 。

新浙教版八年级下册初中数学 4-4 平行四边形的判定定理 教学课件

新浙教版八年级下册初中数学 4-4 平行四边形的判定定理 教学课件
教学课件
数学 八年级下册 浙教版
第4章 平行四边形
4.4 平行四边形的判定定理(1)
创设情景 明确目标
D
C
定义
性质
判定
A
B
平行四边形的定义:两组对边分别平行的四边形叫 做平行四边形.
平行四边形的性质:对边相等,对角相等,对角线 互相平分.
D A
C
定义
性质
B
判定
问题 如何寻找平行四边形的判定方法?
求证:四边形ABCD是平行四边形. 证明:∵ 多边形ABCD是四边形,
∴ ∠A+∠B+∠C+∠D=360°.
D
C
又∵ ∠A=∠C,∠B=∠D,
∴ ∠A+∠B=180°,

A
B
∠B+∠C=180°.
∴ AD∥BC,AB∥DC.
∴ 四边形ABCD是平行四边形.
猜想3
判定定理3 对角线互相平分的四边形是平行四边形.
D
还有其他证明方法吗?
你更喜欢哪一种证法.
O F
B
C
启示:
条件
对角线
简便的证明方法
变式练习
在上题中,若点E,F 分别在AC 两侧的延长线上,
如图,其他条件不变,结论还成立吗?请证明你的结论.
E
A
D
O
B
C
F
总结梳理 内化目标
知识的角度: 平行四边形的判定定理: (1)两组对边分别相等的四边形是平行四边形; (2)两组对角分别相等的四边形是平行四边形; (3)对角线互相平分的四边形是平行四边形.
探究点一 平行四边形的判定定理
平行四边形的性质 对边相等
猜想

八年级数学下册 第五章 特殊平行四边形 5.1 矩形(第1课时)课件 (新版)浙教版

八年级数学下册 第五章 特殊平行四边形 5.1 矩形(第1课时)课件 (新版)浙教版
温故知新
平行四边形的性质?
1.边: 平行四边形两组对边分别平行. 平行四边形两组对边分别相等.
2.角: 平行四边形两组对角分别相等,邻角互补. 3. 对角线: 平行四边形对角线互相平分.
4.从对称看: 平行四边形中心对称图形.
合作学习
用6根火柴棒首尾相接摆成一个平行四边形(如图)
议一议

(1)能摆成多少个不同的平行四边形?它们有 什么共同特点? (2)在这些平行四边形中,有没有面积最大的一 个平行四边形?说出你的理由 (3)这个面积最大的平行四边形的内角有什么特 点?量一量对角线的长度,你又发现了什么?
四边形?说出你的理由
有一个面积最大的平行四边形。设一根火柴棒的长为1个单位,平行 四边形的面积是底边乘以高。当平行四边形的一个角是直角时,它 的高为1,面积为2,而对于其他情况,平行四边形的高都小于1, 因此面积都小于2.所以有一个角是直角时,这个平行四边形的面积 最大。
合作学习 用六根棒所围成的平行四边形
思考:△AOB可以由△COD经过一次怎样的图 形变换得到?
追问:对称中心在哪里?
对角线有几条?在哪里?
l
A
E
D
O
B
F
C
★ 1.矩形具有而一般平行四边形不具有
的性质是( A )
A.对角线相等 B.对边相等
C.对角相等
D.对角线互相平分
★ 2.下面性质中,矩形不一定具有的(D)
A.对角线相等 B.四个角相等 C.是轴对称图形 D.对角线互相垂直
改变这个平行四边形的形状,能得到面积最大 的平行四边形吗?
合作学习
用6根火柴棒首尾相接摆成一个平行四边形(如图)
议一议
(1)能摆成多少个不同的平行①四边形?它们有什么共同

浙教版八年级下册第五章特殊平行四边形 第1讲(矩形与菱形)培优讲义(含解析)

浙教版八年级下册第五章特殊平行四边形  第1讲(矩形与菱形)培优讲义(含解析)

特殊平行四边形第1讲(矩形与菱形)命题点一:利用性质解决相关问题例1如图,矩形OBCD的顶点C的坐标为(2,3),则BD=13.例2如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH 的周长之差为12时,AE的值为( C )A.6.5 B.6 C.5.5 D.5命题点二:根据相应的判定方法解题例3下列条件中,不能判定四边形ABCD为矩形的是( C )A.AB∥CD,AB=CD,AC=BD B.∠A=∠B=∠D=90°C.AB=BC,AD=CD,且∠C=90° D.AB=CD,AD=BC,∠A=90°例4四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( B ) A.BA=BC B.AC,BD互相平分 C.AC=BD D.AB∥CD例5如图,在菱形ABCD中,AB=2,∠DAB=60°,E是AD的中点,M是边AB上一动点(不与点A重合),延长ME交射线CD于点N,连结MD,AN.(1)求证:四边形AMDN是平行四边形.(2)填空:①当AM 的值为 1 时,四边形AMDN 是矩形; ②当AM 的值为 2 时,四边形AMDN 是菱形. 解:(1)∵四边形ABCD 是菱形,∴ND ∥AM .∴∠NDE =∠MAE ,∠DNE =∠AME . ∵E 是AD 的中点,∴DE =AE .在△NDE 和△MAE 中,∵⎩⎨⎧∠NDE =∠MAE ,∠DNE =∠AME ,DE =AE ,∴△NDE ≌△MAE (AAS ).∴ND =M A . ∴四边形AMDN 是平行四边形.命题点三:利用图形的轴对称性解题例6如图,四边形ABCD 是菱形,△AEF 是正三角形,点E ,F 分别在BC ,CD 边上,且AB =AE ,则∠B 的大小为( B )A .60°B .80°C .100°D .120°例7如图,四边形ABCD 与四边形AECF 都是菱形,点E ,F 在BD 上,已知∠BAD =120°,∠EAF =30°,则ABAE =6+22. 命题点四:利用图形的中心对称性解题例8如图,在菱形ABCD 中,∠A =110°,E ,F 分别是AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC 的大小为( D )A.35° B.45° C.50° D.55°例9如图,在▱ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C,A运动,其速度为1 cm/s,运动时间为t(s).当AC=16 cm,BD=12 cm,且以D,E,B,F为顶点的四边形是矩形时,t= 2或14 .命题点五:用旋转的方法解决问题例10如图,在平面直角坐标系中,矩形OABC的顶点A(-6,0),C(0,23),将矩形OABC绕点O顺时针旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为(-23,6) .例11如图,在边长为2的菱形ABCD中,BD=2,E,F分别是AD,CD上的动点(包含端点),且AE+CF=2,则线段EF的长的取值范围是3≤EF≤2 .命题点六:巧用公式解决面积有关的问题例12如图,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD 的周长为( A )A.52 cm B.40 cm C.39 cm D.26 cm例13如图,在矩形ABCD中,M为边BC上一点,连结AM,过点D作DE⊥AM,垂足为E,若DE=DC=1,AE=2EM,则BM的长为255.命题点七:在矩形、菱形中的拼接问题例14如图,四张大小不一样的正方形纸片分别放置于矩形的四个角落,其中,①和②纸片既不重叠也无空隙,在矩形的周长已知的情况下,知道下列哪个正方形的边长,就可以求得涂色部分的周长( B)A.① B.② C.③ D.④例15如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无空隙,其中两张等腰三角形纸片的面积都为S1,且AE=AH,CF=CG,另外两张三角形纸片的面积都为S2,中间一张菱形纸片的面积为S3,则这个平行四边形的面积一定可以表示为( A )A.4S1 B.4S2 C.4S2+S3 D.3S1+4S3课后练习1.如图,矩形ABCD的周长是16,DE=2,△EFC是等腰直角三角形,∠FEC=90°,则AE的长是( A )A .3B .4C .5D .62.如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连结BM ,DN .若四边形MBND 是菱形,则AMMD等于( C )A .38B .23C .35D .453.如图,在菱形ABCD 中,边BC 的长为5,高DE 的长为3(垂足E 落在BC 边上),则AC 的长为( A )A .310B .4 5C .8D .104.如图,在菱形ABCD 中,AB =3,DF =1,∠DAB =60°,∠EFG =15°,FG ⊥BC ,则AE 等于( D )A .1+ 2B . 6C .23-1D .1+ 35.如图,大矩形分割成五个小矩形,④号、⑤号均为正方形,其中⑤号正方形边长为1.若②号矩形的长与宽的差为2,则知道哪个小矩形的周长,就一定能算出这个大矩形的面积( A )A.①或③ B.② C.④ D.以上选项都可以6.如图,在矩形中ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连结BH并延长交CD于点F,连结DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH =HF;④BC-CF=2HE;⑤AB=HF.其中正确的有( C )A.2个 B.3个 C.4个 D.5个7.如图,在长方形ABCD中,M是AD边的中点,N是DC边的中点,AN与MC交于点P.若∠MCB =∠NBC+33°,则∠MPA的度数为 33°.8.如图,四边形ABCD是矩形,AB=6,BC=8,P为BC上一点,PF⊥AC,PE⊥BD,则PF+PE 的值为 4.8 .9.如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°,点D从点C出发沿CA方向以每秒2个单位的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒 (t>0),过点D作DF⊥BC于点F,连结EF,当四边形AEFD为菱形时,t的值为103.10.如图,点D,F把线段BH分成三条线段BD,DF,FH,分别以这三条线段为一条对角线作菱形ABCD,菱形DEFG,菱形FMHN,连结CE,EM,MG,GC组成四边形CEMG.若菱形ABCD的边长为7,菱形DEFG的边长为13,菱形FMHN的边长为6,BH=40,DF=24,则四边形CEMG的面积为 160 .11.如图,在矩形ABCD中,AB=2,BC=4,点E,F分别在BC,CD上,若AE=5,∠EAF=45°,则AF的长为4103.12.将矩形ABCD绕点A按顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时,求证:FD=C D.(2)当α为何值时,GC=GB?画出图形,并说明理由.13.(2018·江西)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边三角形APE.点E的位置随着点P位置的变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连结CE,BP与CE的数量关系是BP=CE,CE与AD的位置关系是CE⊥AD.(2)当点E在菱形ABCD外部时,题(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由 (选择图②,图③中的一种情况予以证明或说理).(3)如图④,当点P在线段BD的延长线上时,连结BE,若AB=23,BE=219.求四边形ADPE的面积.解:(2)仍然成立.选图②,证明如下:连结AC交BD于点O.设CE交AD于点H.在菱形ABCD中,∠ABC=60°,∵BA=BC,∴△ABC为等边三角形.∴BA=C A.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°.∴∠BAP=∠CAE.∴△BAP≌△CAE(SAS).∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CAD=60°.∴∠AHC=90°,即CE⊥A D.选图③,证明如下:连结AC交BD于点O.设CE交AD于点H.同理可得△BAP≌△CAE(SAS),BP=CE,CE⊥A D.(3)连结AC交BD于点O,连结CE交AD于点H.由题(2)可知,BP=CE,CE⊥A D.在菱形ABCD中,AD∥BC,∴EC⊥B C.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=2192-232=8. ∴BP=CE=8.∵AC与BD是菱形的对角线,∴∠ABD=12∠ABC=30°,AC⊥BD,BD=2BO=2AB·32=6.∴OA=12AB=3,DP=BP-BD=2. ∴OP=5,AP=AO2+OP2=27.S四边形ADPE =S△ADP+S△AEP=12×2×3+12×27×27×32=3+73=8 3.14.(自主招生模拟题)如图,AB=CD,BC=2AD,∠ABC=90°,∠BCD= 30°.则∠BAD的大小为( B )A.25° B.30° C.35° D.45°15.(自主招生模拟题)如图,在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC得到矩形ADEF,O,B,C的对应点分别为D,E,F.记K为矩形AOBC对角线的交点,则△KDE的最大面积为30+3344.16.一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图①,在矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作如图②,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.(3)归纳与拓展已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b∶c(直接写出结果).解:(1)矩形ABCD是3阶奇异矩形,裁剪线的示意图如下.(2)裁剪线的示意图如下.(3)b∶c的值为15,45,27,37,47,57,38,58.。

浙教版初中八年级下册数学精品教学课件 第五章 特殊平行四边形 5.3 正方形

浙教版初中八年级下册数学精品教学课件 第五章 特殊平行四边形 5.3 正方形
知识点1 正方形的定义
2.正方形的定义有双重应用:
(1)根据定义,可知正方形是特殊的平行四边形,邻边相等;
(2)正方形的定义可作为判定正方形的一个依据
示例
四边形于平行四边形、矩形、菱形、正方形之间的关系
.
1.正方形:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.
考点2 正方形的判定
典例5[2022·绍兴中考]如图,在平行四边形中,,,,是对角线上的动点,且,,分别是边,边上的动点.下列四种说法:
①存在无数个平行四边形;
②存在无数个矩形;
③存在无数个菱形;
④存在无数个正方形.其中正确的个数是()
C
A.B.C.D.
[解析]连结,,且令,,相交于点,如图.
②先说明它是矩形,再说明有一组邻边相等;
③先说明它是菱形,再说明它有一个角为直角.
知识点3正方形的性质重点
1.正方形既是特殊的矩形,又是特殊的菱形,所以正方形同时具有矩形和菱形的所有性质.
性质定理
符号语言
图示
正方形的四个角都是直角,四条边相等.
∵四边形是正方形,,.
.
正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角.
典例4[2022·泰州中考]如图,正方形的边长为2,为与点不重合的动点,以为一边作正方形.设,点,与点的距离分别为,,则的最小值为()
A.B.C.D.
[解析]如图,连结,.
∵四边形是正方形,,.∵四边形是正方形,,,,,.
,∴当点,,,在同一条直线上时,的值最小,最小值为的长,即的最小值为的长.在中,,的最小值为.
知识点2 正方形的基本判定方法 重点
正方形是特殊的平行四边形,也是特殊的矩形和菱形,要判定一个四边形是正方形,

八年级数学下册《第五章 特殊平行四边形》复习课件 (新版)浙教版

八年级数学下册《第五章 特殊平行四边形》复习课件 (新版)浙教版

抢 答:
要使 ABCD成为矩形,需增加的条件是______ 要使 ABCD成为菱形,需增加的条件是______ 要使矩形ABCD成为正方形,需增加的条件是____ 要使菱形ABCD成为正方形,需增加的条件是____ 要使四边形ABCD成为正方形,需增加的条件是 ______
1、如图,将矩形ABCD沿AE折叠,使点D落 在BC边上的F点处。
中心对称图形
互相平分且相等
中心对称图形 轴对称图形
互相垂直平分,且每一 中心对称图形 条对角线平分一组对角 轴对称图形
互相垂直平分且相等,每 中心对称图形 一条对角线平分一组对角 轴对称图形
三、几种特殊四边形的常用判定方法:
四边形
条件
平行 1、定义:两组对边分别平行 四边形 3、一组对边平行且相等
(1)若∠BAF=60°,求∠EAF的度数; (2)若AB=6cm,
AD=10cm, 求线段CE的 长及△AEF的 面积.
4、 如图,矩形纸片ABCD中,AB=3厘米,BC=4厘 米,现将A、C重合,使纸片折叠压平,设折痕为EF。 试确定重叠部分△AEF的面积。
G
A
FD
3
4-X
1 2
B X E 4-X C
6
E
2X
C、3 3cm D、8cm
B
FC
X
3、平行四边形四个内角的平分线,如果能围成 一个四边形,那么这个四边形一定是(

A、矩形
B、菱形
4、如C、图正,方矩形形ABCDD中、,等O腰是梯对形角线的交点,
若AE⊥BD于E,且
A
D
OE∶OD=1∶2,
AE= 3 cm,
则∠AOD =

DE=

浙教版初中数学八年级下册《特殊平行四边形》全章复习与巩固(基础)知识讲解

浙教版初中数学八年级下册《特殊平行四边形》全章复习与巩固(基础)知识讲解

《特殊平行四边形》全章复习与巩固(基础)【学习目标】1. 理解矩形、菱形的概念,探索并证明矩形、菱形的性质定理,以及它们的判定定理.2. 理解正方形的概念,探索并掌握正方形的对称性及其他有关性质,以及一个四边形是正方形的条件.3.会初步综合应用特殊平行四边形的知识,解决一些简单的实际问题.【知识网络】【要点梳理】要点一、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半.要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S 4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点三、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、矩形1、(2016春•常州期末)如图,在△ABC 中,AB=AC ,D 为BC 的中点,AE ∥BC ,DE ∥AB . 试说明:(1)AE=DC ;(2)四边形ADCE 为矩形.【思路点拨】(1)根据已知条件可以判定四边形ABDE 是平行四边形,则其对边相等:AE=BD .结合中点的性质得到AE=CD ;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE 是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论.【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.2、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入Rt△AEF中,由折叠可知CD=CF,DE=EF,易得AC=10,所以AF=4,AE=8-EF,然后在Rt△AEF中利用勾股定理求出EF的值.【答案与解析】解:设EF=x,由折叠可得:DE=EF=x,CF=CD=6,又∵在Rt△ADC中,10AC=.∴ AF =AC -CF =4,AE =AD -DE =8-x .在Rt △AEF 中,222AE AF EF =+,即222(8)4x x -=+,解得:x =3 ∴ EF =3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解.举一反三:【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,222DC F C DF +=,解得x =85,BF =DE =3.4,则D E F 1=D E A B 2S ⨯△=12×3.4×3=5.1.类型二、菱形3、(2015•遵义)在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F .(1)求证:△AEF≌△DEB;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.【答案与解析】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE,BD=CD ,在△AFE 和△DBE 中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴A D=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.4、如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .下列结论:①EG⊥FH,②四边形EFGH 是矩形,③HF 平分∠EHG,④EG=12(BC -AD ),⑤四边形EFGH 是菱形.其中正确的个数是( )A .1B .2C .3D .4【答案】C ;【解析】解:∵E、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点, ∴EF=12CD ,FG =12AB ,GH =12CD ,HE =12AB , ∵AB=CD ,∴EF=FG =GH =HE ,∴四边形EFGH 是菱形,∴①EG⊥FH,正确;②四边形EFGH 是矩形,错误;③HF 平分∠EHG,正确;④当AD∥BC,如图所示:E ,G 分别为BD ,AC 中点,∴连接CD ,延长EG 到CD 上一点N , ∴EN=12BC ,GN =12AD , ∴EG=12(BC -AD ),只有AD∥BC 时才可以成立, 而本题AD 与BC 很显然不平行,故本小题错误;⑤四边形EFGH 是菱形,正确.综上所述,①③⑤共3个正确.故选C .【总结升华】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB =CD 判定四边形EFGH 是菱形是解答本题的关键. 类型三、正方形5、如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M ,N .(1)求证:∠ADB =∠CDB ;(2)若∠ADC =90°,求证:四边形MPND 是正方形.【思路点拨】(1)问通过证明三角形全等来证明角相等;(2)先证明四边形MPND是矩形,再证明一组邻边相等,从而证明四边形MPND是正方形.【答案与解析】证明:(1) ∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.【总结升华】熟记正方形的判定定理,有一组邻边相等的矩形是正方形.6、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HA E=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE =12∠DCE =45°, ∴∠H =∠FCE.由正方形ABCD 知∠B =90°,∠HAE =90°+∠DAE =90°+∠AEB, 而AE ⊥EF ,∴∠FEC =90°+∠AEB ,∴∠HAE =∠FEC.由正方形ABCD 知AB =BC ,∴BH -AB =BE -BC ,∴HA =CE,∴△AHE ≌△ECF (ASA ),∴AE =EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式1】如图所示,E 、F 、G 、H 分别是四边形ABCD 各边中点,连接EF 、FG 、GH 、HE ,则四边形EFGH 为________形.(1)当四边形满足________条件时,四边形EFGH 是菱形.(2)当四边形满足________条件时,四边形EFGH 是矩形.(3)当四边形满足________条件时,四边形EFGH 是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH 为平行四边形;解:(1)AC =BD ,理由:如图①,四边形ABCD 的对角线AC =BD ,此时四边形EFGH 为平行四边形,且EH =12BD ,HG =12AC ,得EH =GH , 故四边形EFGH 为菱形.(2)AC ⊥BD ,理由:如图②,四边形ABCD 的对角线互相垂直,此时四边形EFGH 为平行四边形.易得GH ⊥BD ,即GH ⊥EH ,故四边形EFGH 为矩形.(3)AC =BD 且AC ⊥BD ,理由:如图③,四边形ABCD 的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH 为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.【变式2】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 度.【答案】65°.提示:∠ABE=90°-20°=70°,由正方形的性质知,∠BAC=45°,∴∠AEB=180°-45°-70°=65°,由正方形的对称性可知,∠AED=∠AEB=65°.。

浙教版初中八年级下册数学精品教学课件 第五章 特殊平行四边形 5.1 矩形

浙教版初中八年级下册数学精品教学课件 第五章 特殊平行四边形 5.1 矩形
3
解析]∵四边形是矩形,∴由矩形的中心对称性易知,,.
知识点4 矩形的判定 重点
文字语言
符号语言
图示
定义
有一个角是直角的平行四边形是矩形.
在中,,是矩形.
.
判定定理1
有三个角是直角的四边形是矩形.
在四边形中,,∴四边形是矩形.
.
判定定理2
对角线相等的平行四边形是矩形.
典例2如图,矩形中,点是边上一点,连结,若,,则的长为()
C
A.B.C.D.
[解析]∵四边形是矩形,,.在中,,.
典例3如图,矩形的顶点的坐标为,则长为()
A
A.B.C.D.
[解析]如图,连结,∵点的坐标为,.∵四边形是矩形,.
例题点拨已知点的坐标,可构造直角三角形(或用两点间的距离公式)求的长,再由矩形对角线相等可得,即可求解.
第5章 特殊平行四边形
5.1 矩形
学习目标
1.掌握矩形的概念,理解矩形与长方形、正方形的关系.2.掌握矩形的性质定理“矩形的四个角都是直角”.3.掌握矩形的性质定理“矩形的对角线相等”.4.掌握矩形的对称性,并能准确描述对称轴.5.掌握矩形的判定定理“有三个角是直角的四边形是矩形”.6.掌握矩形的判定定理“对角线相等的平行四边形是矩形”.7.灵活运用矩形的性质和判定方法解决问题.
(2)解:当时,四边形为矩形.理由:∵线段为的中位线,,,.由(1),得四边形是平行四边形,∴四边形为矩形.
(1)求证:四边形是矩形.
(2)你所证明结论的依据是______________________________,该依据的逆命题是____命题(填“真”或“假”).
对角线相等的平行四边形是矩形

证明:(1)∵四边形是平行四边形,,.又,,即,∴四边形为平行四边形.,,∴四边形为矩形.

数学课件浙教版八年级下平行四边形

数学课件浙教版八年级下平行四边形

平行四边形的性质
对边平行
平行四边形的对边平行,即如果$AB parallel CD$,则$BC parallel AD$。
对角相等
对角线互相平分
平行四边形的对角线互相平分,即线 段$AC$和$BD$相交于点$O$,且 $AO = OC$,$BO = OD$。
平行四边形的对角相等,即$angle A = angle C$,$angle B = angle D$。
数学课件浙教版八年级 下平行四边形
目录
• 平行四边形的定义与性质 • 平行四边形的判定 • 平行四边形的面积与周长 • 平行四边形的应用 • 习题与解答
01
平行四边形的定义与性质
平行四边形的定义
平行四边形的定义
平行四边形是一个平面图形,由两组 相对边平行组成。
平行四边形的表示方法
通常用大写字母表示平行四边形的顶点, 如$ABCD$,其中$AB$和$CD$是相对 边。
形。
对角线互相平分
03
如果一个四边形的对角线互相平分,则该四边形是平行四边形。
平行四边形的判定方法三
两组对角相等
如果一个四边形的两组对角相等,则该四边形是平行四边形 。
一组对角相等
如果一个四边形的一组对角相等,则该四边形是平行四边形 。
03
平行四边形的面积与周长
平行四边形的面积计算
01
02
03
05
习题与解答
基础习题
基础习题1
已知平行四边形ABCD中, ∠A=60°,∠B=120°,则∠C的度
数为多少?
基础习题2
在平行四边形ABCD中,已知 AB=5,BC=3,则CD的长度是
多少?
基础习题3

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)说课稿3

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)说课稿3

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)说课稿3一. 教材分析《平行四边形》是浙教版数学八年级下册第四章第二节的内容。

本节内容是在学生已经掌握了四边形的定义和性质、平行线的性质等基础知识的基础上进行学习的。

本节课的主要内容有:平行四边形的定义、性质、判定以及平行四边形的应用。

这部分内容是学生进一步学习几何图形的基础,也是培养学生空间想象能力和逻辑思维能力的重要环节。

二. 学情分析学生在学习本节内容之前,已经掌握了四边形的定义和性质,平行线的性质等基础知识。

但是,学生对于平行四边形的理解和应用还有一定的困难。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等活动,加深对平行四边形的理解,提高学生的空间想象能力和逻辑思维能力。

三. 说教学目标1.知识与技能目标:使学生掌握平行四边形的定义、性质、判定,能运用平行四边形的性质解决一些简单问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活实际的联系。

四. 说教学重难点1.教学重点:平行四边形的定义、性质、判定。

2.教学难点:平行四边形的性质的证明和应用。

五. 说教学方法与手段本节课采用情境教学法、启发式教学法、合作学习法等教学方法。

利用多媒体课件、几何画板等教学手段,帮助学生直观地理解平行四边形的性质。

六. 说教学过程1.导入新课:通过复习四边形的定义和性质、平行线的性质,引出平行四边形的定义。

2.探究性质:引导学生观察、操作,发现平行四边形的性质。

3.证明性质:利用几何画板等工具,证明平行四边形的性质。

4.应用性质:通过例题,引导学生运用平行四边形的性质解决实际问题。

5.巩固练习:设计一些练习题,让学生加深对平行四边形性质的理解。

6.总结归纳:引导学生总结本节课的主要内容。

七. 说板书设计板书设计如下:八. 说教学评价本节课的教学评价主要采用课堂问答、练习题、小组讨论等方式进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题特殊平行四边形精讲
知识点一:矩形的性质和判定
考点1:直角对边平行且相等对角线相等
考点2:一个角是直角的平行四边形三个角是直角对角线相互平分且相等
考点3:勾股定理(主要与折叠相关) 一定要用起来对应边相等,对应角相等
经典例题分析,提高综合能力
例题1:如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.
例题2:如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD 边的F点上,则DF的长为.
例题3:、如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,
∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为 .
例题4:如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板
如图放置,则矩形ABCD的周长为 .
例题5:如图所示,在矩形中,,两条对角线相交于点.以、
为邻边作第1个平行四边形;对角线相交于点;再以、为邻边作第2个
平行四边形,对角线相交于点;再以、为邻边作第3个平行四边形
……依次类推.(1)求矩形的面积;
(2)求第1个平行四边形、第2个平行四边形 和第6个平行四边形的面积.
例题6:如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线
上,顶点都在轴上,且点与点重合.
(1)求的面积;
(2)求矩形的边与的长;
知识点二:菱形的性质和判定 考点1:四边相等
对角相等且被对角线平分
对角线互相垂直
考点2:一组邻边相等的平行四边形 对角线互相垂直 平分对角 考点3:对称性
勾股定理
例题1:在菱形中,对角线与相交于点,.过点作
交的延长线于点.(1)求的周长;(2)点为线段上的点,连接并延长交于点.求证:.
ABCD 1220AB AC ==,O OB OC 1OBB C 1A 11A B 1A C 111A B C C 1O 11O B 11O C 1121O B B C ABCD 11OBB C 111A B C C 128
:33
l y x =
+2:216l y x =-+C l l 12,、x A B 、DEFG D E 、12l l 、F G 、x G B ABC △DEFG DE EF ABCD AC BD O 56AB AC ==,D DE AC ∥BC E BDE △P BC PO AD Q BP DQ = A
Q D
E
B
P C
O
A 1
A 2
B 2
C 2
C 1 B 1
O 1 D
A
B
C
O
A D
B E
O
C
F x y
y
(G )
例题2:如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
例题3:如图,△ABC中,AD是边BC 上的中线,过点A 作AE//BC ,过点D作DE//AB ,DE 与AC 、AE分别交于点O 、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
例题4:如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是
对角线AC上的一个动点,则PE+PB的最小值是.
例题5:如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()
A、(2
,2-) B、(2
,2
-) C、(3
,3-) D、(2
,2-
-)
知识点3:正方形
考点1: 直角平行四边相等45°特殊角度对角线互相垂直辅助线
考点2:勾股定理综合应用
例题1:如图,ABCD是正方形,点G是BC上的任意一点,于E,,交AG 于F.求证:.
DE AG
⊥BF DE

AF BF EF
=+ D
C
B
A
E
F
G
例题2:正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12
C .14
D .16
例题3:如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边长为 .
例题4:如图(22),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒(). (1)求两点的坐标;
(2)用含的代数式表示的面积;
(3)以为对角线作矩形,记和重合部分的面积为, ①当时,试探究与之间的函数关系式;
②在直线的运动过程中,当为何值时,为面积的?
l 4y x =-+x y A B 、l m O x x y M N 、t 04t <≤A B 、t MON △1S MN OMPN MPN △OAB △2S 2t <≤42S t m t 2S OAB △516
O
M
A
P N y l m
x
B
O
M
A
P N y l m
x
B E P F 图。

相关文档
最新文档