数学人教版七年级下册PPT课件

合集下载

人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)

人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)
新课引入 展示目标 精讲精练 归纳小结 强化训练
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.

人教版七年级下数学《平方根》实数PPT教学课件

人教版七年级下数学《平方根》实数PPT教学课件
学校要举行美术作品比赛,小美想裁出一块面积为9 dm2的正方形画布,临摹自己的最喜欢的作品参加比赛, 这块正方形画布的边长应取多少?
你一定会算出边长应取3 dm. 说一说,你是怎样算出来的? 因为32=9,所以这个正方形 画布的边长应取3 dm.
课程讲授
1 算术平方根
填表:
正方形的 面积/dm2
1
课程讲授
2 估算算术平方根
如此进行下去,可以得到 2 的更精确的近似值. 事实 上, 2 =1. 414 213 562 373…,它是一 个无限不循环 小数. 实际上,许多正有理数的算术平方根(例如 3, 5, 7 等)都是无限不循环小数.
小数位数无限,且小数部分 不循环的小数称为无限不循 环小数.
… 0.062 5 0.625 6.25 62.5 625 6 250 62 500 … … 0.25 0.790 6 2.5 7.906 25 79.06 250 …
课程讲授
3 用计算器求一个正数的算术平方根
归纳小结:被开方数的小数点向右每移动 位,它的算2术平方 根的小数点就向右移动 位;被开方数的小数点向1左每移动 位,
(5) x (6) x2 (7) x2 1 (8) 1
x1
x2
(9) x 2 4 2x
第六章 实 数
6.1 平方根
第1课时
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.算术平方根 2.估算算术平方根
3.用计算器求一个正数的算术平方根
新知导入
试一试:根据所学知识,试着解决下列问题.
课程讲授
1 算术平方根
例 求下列各数的算术平方根:
(1)100;
(2)49 ; 64
(3)0.000 1.

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.

人教版数学七年级下册 不等式与不等式组 课件PPT

人教版数学七年级下册 不等式与不等式组 课件PPT
+ 1 > 0,
②ቊ
− 1 < 0, 两个未知数
> −2,
①ቊ
< 3,
2 + 1 < ,
③ቊ 2
+ 2 > 4,
A. 1 个
最高次为2
B. 2 个
+ 3 > 0,
④ቊ
< −7.
C. 3 个
D. 4 个
x>1
2 − 1 > 1,
2.不等式组 ቊ
的所有整数解的和是 9 .
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
8.一元一次不等式组的解集
解集的公共部分
一般地,几个不等式的_________________,叫做由它们所组成的
不等式组的解集.
“公共部分”是指同时满足不等式组中每一个不等式的解集的
部分.如果组成不等式组的各个不等式的解集没有公共部分,则
18 个学生,就有一名老师少带 4 个学生.为了安全,每辆客车上至
少要有 2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少
人?
解:(1)设老师有 x 人,学生有 y 人.
17 = − 12,
= 16,
依题意得 ቊ
解得 ቊ
= 284.
18 = + 4,
答:此次参加研学旅行活动的老师有 16 人,学生有 284 人.
由题意得获得的利润为 y=50x+45(80-x),
当 x=40时,y=3800;
当 x=41时,y=3805;
当 x=42时,y=3810;
当 x=43时,y=3815;

人教版七年级数学下册第七章平面直角坐标系PPT课件全套

人教版七年级数学下册第七章平面直角坐标系PPT课件全套

有序数对在生活中的应用
知 识 点 二
如图是某学校的平面示意图.如果用 (5,1)表示学校大门的位置,那么运动场表 宿舍楼 (6,8) ,(8,5)表示的场所是_____. 示为_____
有序数对在生活中的应用
知 识 点 二
如图3,甲处表示2街与5巷的十字路口,乙处表 示5街与2巷的十字路口,如果用(2,5)表示甲处的位 置,那么“(2,5)→(3,5) →(4,5) →(5,5) →(5,4) →(5,3) →(5,2)”表示从甲处到乙处的一种路线,请 你用 这种形式写出两种从甲处到乙处的最短路线.
这就是我们接下来要学习的相关概念的内容。
2、在平面内画两条互相____、原点____的数轴, 垂直 重合 横轴 组成平面直角坐标系.水平的数轴称为____或____, x轴 y轴 习惯上取向_____为正方向;竖直的数轴称为___ 右 _或____,取向____为正方向;两个坐标轴的_ 上 纵轴 ___为平面直角坐标系的原点 . 交点 y轴
D
-4 -3 -2 -1 -1 4 3 2 1
y A
O1
2 3
4
x
C
-2 -3
B
4、如图所示,在第三象限的点是(C ) A.点A B.点B C.点C D.点D
(1)
学习目标
1
会根据实际情况建立适当的坐 标系;
2
通过点的位置关系探索坐标之间 的关系及根据坐标之间的关系探 索点的位置关系.
讲授新课
认真阅读课本第67至68页的内容,
分别为:A( 0,0 ),B(6,0),C(6,6 ),D(0,6). y 2、若以线段DC所在的直线为x轴,纵轴(y 轴)位置不变,则四个顶点的坐标分别为: 6,0 ), A( 0,-6),B( 6,-6 ),C( D( 0,0 ).

人教版七年级数学下7.1.1有序实数对课件(共42张PPT)

人教版七年级数学下7.1.1有序实数对课件(共42张PPT)

(3)甲地距我市29km
如图,写出表示下列各点的有序数对:
如图,写出表示下列各点的有序数对:
或者老师说一个数对,请代表相应位置的人站起来。
如图,写出表示下列各点的有序数对:
下列关于有序数对的说法正确的是( )
5排8号 5排6号 在数轴上,确定一个点的位置需要几个数据呢?
问题⑴: 新学期开始,老师要重新调整学生的座位,老师如何描述才能让学生准确地找到自己的新座位呢?
的方式表示出图中“怪兽”经过的其他几个位置吗?
排5
(4,5) (5,5)
4
(5,4)
(7,4)
3
(3,3)
(4,3)
在生活中,确定物体的位置,还有
其他方法吗2? (1,2)(3,2)(7,3) (8,3)
1 (1,1)

1
2
3
4
5
6
7
8
如图( 1 , 3 )表示 第一列第三排,请用 彩笔把以下位置的五 角星涂上颜色。
(4 ,6)
(3 ,4)
(5 ,4)
设计图案
排 7 6
5
4
3
(2 ,2)
2
(4 ,2)
1
(6 ,2)
12
34
5
6
7列
神州飞船的发 射和回收都那么成 功 ,圆了几代中国 人的梦想,让全中 国人为之骄傲和自 豪!但是,同学们知 道我们的科学家是 怎样迅速地找到返 回舱着陆的位置的 吗?
神州飞船
这全依赖于 “GPS——卫星全球定位系统”
A.(7,4)
B.(4,7)
C.(7,5)
D.(7,6)
例1. 如图,点A表示3街与5大道的十字路口,点B 表示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?

人教版七年级下册数学课件相似三角形的性质pptx

人教版七年级下册数学课件相似三角形的性质pptx

27.2.4 相似三角形的性质
3. 如图,△ABC 与 △A′B′C′ 相似,AD,BE 是 △ABC 的高,A′D′,
AD
BE
B′E′ 是 △A′B′C′ 的高,求证 A D B E .
证明:∵△ABC ∽ △A′B′C′,AD,A′D′ 分别
是 △ABC,△A′B′C′ 的高,
A′
△BOC的周长为( A )
A.1:2
B.2:3
BE,CD是两条
中线
C.1:3
DE 是△ABC 的中
位线
△EOD 的周长:
△BOC 的周长=1:2
D.1:4
DE 1

DE//BC,SDDDD
BC 2
△EOD∽△BOC
27.2.4 相似三角形的性质
5.如图,在△ABC 中,DE//BC,AH⊥BC 于点 H,与 DE 交于点 G.若
kA ' B ' kB ' C ' kC ' A '
从而

k.
A ' B ' B ' C ' C ' A '
A ' B ' B ' C ' C ' A '
总结:相似三角形对应中线的比等于相似比
综合以上四个结论有:相似三角形对应线段的比等于相似比
27.2.4 相似三角形的性质
针 对 训 练
∴S△ABF∶S△DEF=AF2∶FD2,S△BCE∶S△FDE=BC2∶FD2,
∵△CEB的面积为9,∴△FDE的面积为1,∴△ABF的面积为4,
∴▱ABCD的面积=9-1+4=12.
27.2.4 相似三角形的性质

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.


合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】

人教版七年级数学下册全册9.1《不等式》PPT课件

人教版七年级数学下册全册9.1《不等式》PPT课件

三 利用不等式的性质解简单的不等式
例4 利用不等式的性质解下列不等式:
第二种:用数轴,一般标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 用数轴表示不等式的解集的步骤: 第一步:画数轴; 第二步:定界点; 第三步:定方向.
画一画: 利用数轴来表示下列不等式的解集.
空心圆圈表 (1)x>-1 ;
示不含此点
(2)
x<
1 2
.
表示
1 2
的点
-1 0
表示-1的点
方向向右
观察由上述问题得到的关系式:x>1 , x<100, x>50,s>60x,s<100x ,它们有什么共同的特点?
左右不相等
总结归纳 一般地,用不等号“>”,“<”连接而成的式
子叫做不等式.像a≠2这样的式子也叫做不等式.
练一练 判断下列式子是不是不等式: (1)-3>0; (2)4x+3y<0;
则都点点大表因不A于示此等右2的可式,边数以的而所都像解点有小图集A的于左那x点>2边样2表. 所表示有示的的数 先在数轴上标出表示2的点A
把表示2 的点A
画成空心圆圈,表 示解集不包括2.
A -1 0 1 2 3 4 5 6
解集的表示方法: 第一种:用式子(如x>2),即用最简形式的不等式 (如x>a或x<a)来表示.
不等式性质1:不等式两边加(或减)同一个数(或 式子),不等号的方向不变.
如果a>b,那么a+c>b+c,a-c>b-c.
典例精析 例1 用“>”或“<”填空: (1)已知 a>b,则a+3 > b+3 解: 因为 a>b,两边都加上3,

人教版七年级数学下册《直方图》PPT课件

人教版七年级数学下册《直方图》PPT课件

1. 为了解某校九年级男生的身高情况,该校从九年级 随机找来 50 名男生进行了身高测量,根据测量结果(均 取整数,单位:cm) 列出了下表.
根据表中提供的信息回答下列问题:
(1) 数据在 161~165 范围内的频数 是__1_2_;
(2) 频数最大的一组数据的范围是 _1_6_6_~_1_7_0_;
3900 2700 3300 3610 3450 3850 3400
3300 2850 2800 3800 3100 2850 3400
3500 3800 2150 3280 3400 3450 3120
3315 3500 3700 3100 4160 3800 3600
3800 2900 3465 3000 3300 3500 2900
请将数据适当分组,列出频数分布表,画出频数 分布直方图,并分析这个面粉批发商每星期进面粉多 少吨比较合适.
解:这组数据中最大为 24.4, 最小值是 18.5,差为 5.9, ∴ 取组距为 1,组数为 7. 列频数分布表如右表:
画频数分布直方图如下:
频数 12
12
11
10 9 8 7 6
8 7
9 6
列频数分布表 画频数分布直方图
1. 在频数分布表中,各小组的频数之和 ( B ) A. 小于数据总数 B. 等于数据总数 C. 大于数据总数 D. 不能确定
2. 某地某月 1~20 日中午 12 时的气温 (单位: ℃) 如下:
22 31 25 15 18 23 21 20 27 17
20 12 18 21 21 16 20 24 26 19
5 4
3
有 10 天.
2 1
温度/℃
12 17 22 27 32

新人教版初中数学七年级下册《直方图》第1课时《频数分布图相关概念》PPT课件

新人教版初中数学七年级下册《直方图》第1课时《频数分布图相关概念》PPT课件

5.归纳小结
(1) 对自己说,你有什么收获? (2)对同学说,你有什么温馨提示? (3)对老师说,你还有什么困惑?
6.布置作业
前六名的小组做教科书 P150习题10.2 第2、3题 后二名小组做教科书 P150习题10.2 第1、2、3题
小长方形面积=组距
频数 =频数 组距
频数
(学生人数)
20
19
有通 什过 么直
15
12
10
10
8
6
规方 律图 吗你 ?发
5
2
4

2
0 149 152 155 158 161 164 167 170 173
等距分组的频数分布直方图
身高/㎝
3.画出频数分布直方图
总结:画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差). 极差:
2.创设情境,整理数据
(2) 决定组距和组数
把所有数据分成若干组,每个小组的两
个端点之间的距离称为组距.
组数=(最大值-最小值)÷组距=
23
7
2
,
分组原则:不重不漏;
33
149≤x<152 152≤x<155 155≤x<158 158≤x<161 161≤x<164 164≤x<167 167≤x<170 170≤x<173
如果我们先确定组数是8,能否确定组距呢?
127 149 23 2 7
8
88
可以确定组距是3.
2.创设情境,整理数据
2.创设情境,整理数据
解:⑴若以2为组距,则23÷2=11.5,所以 分为12组,
身高分组 149 ≤x<151 151 ≤x<153 153 ≤x<155 155 ≤x<157 157 ≤x<159 159 ≤x<161 161 ≤x<163 163 ≤x<165 165 ≤x<167 167 ≤x<169 169 ≤x<171 171 ≤x<173

人教版七年级数学下册《平方根》实数PPT优质课件

人教版七年级数学下册《平方根》实数PPT优质课件
第六章 实数
平方根
第1课时
学习目标
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平
方根的非负性;
2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根;
新课导入
学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为
25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正
是0.002,即 0.000004 0.002.
随堂练习
6.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会
议室的地面,每块地板砖的边长是多少?
解:设每块地板砖的边长为x m.由题意得
1
240 x 2 60, x 2 .
4
1 1
x
0.5
4 2
故每块地板砖的边长是0.5 m.
方形画布的边长应取多少?你能帮小明算一算吗?
5 dm
因为 52=25
合作探究
新知一
什么是算术平方根
完成表1:
正方形的边长/dm
正方形的面积/dm2
1
1
3
9
6
2
5
36
4
25
4
16
你能从表1中各运算发现什么共同点吗
已知一个正数,求这个正数的平方
合作探究
完成表2:
正方形的面积/dm2
正方形的边长/dm
➢ 用计算器求解:
一般情况下按键顺序:
a
=
课堂总结
例1 估算 19 的值 ( D )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5.

人教版数学七年级下册全册完整版课件

人教版数学七年级下册全册完整版课件

12
1
1
2
2
2
1
A.1个 B.2个 C.3个 D.4个
三、研读课文

知 识 点 二
补 角 和 对 顶




1、互为邻补角的两个角的和等于 180°. 2、如图, ∵∠1+∠2 = 1,80° ∠2+∠3 = 1.80° (邻补角的定义) ∴∠1=180°- ,∠2 ∠3=180°- ,∠2 (等式的性质) ∴∠1=∠3 (等量代换) 由上面推理可知,对顶角的性质: 对顶角相等 .
等于___9_0_°_,就说这两个角互为补角.
2、一个角是20°,则它的余角是
______,它的补角是_______.
70°
160°
二、学习目标
1 了解两条直线相交所构成的角, 理解并掌握对顶角、邻补角的概 念和性质。
2 理解对顶角性质的推导过程, 并会用这个性质进行简单的计 算。
三、研读课文

*8.4 三元一次方程组的解 10.3 课题学习 从数据谈

节水
第九章 不等式与不等式 组
9.1.1不等式及其解集
9.1.2不等式的性质
5.4.1 平移的概念、平移的性 质 5.4.2 平移的简单应用
第六章 实数
7.2.2坐标表示平移
第八章 二元一次方程 组 8.1 二元一次方程组
9.1.2不等式的性质 9.2 一元一次不等式
9.2.1一元一次不等式及 其解法
9.2.2 一元一次不等式应 用
“引导学生读懂数学书”课题 研究成果配套课件
新课引入 展示目标 研读课文
归纳小结 强化训练
第五章 相交线与平行线
第1课时 5.1.1相交线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.求下列各数的立方根.
(1) 1 ; (2) 3 4 3 ; (3)0.216 .
1 000
2.求下列各式的值.
( 1 ) 3-8 ; ( 2 ) -32 7 ; ( 3 ) 33 -1 7 ; ( 4 ) 331 1 21.
2 7
24
3.如果3x+16的立方根是4,求2x+4的算术平方根.
4 .若 3x 5 3y 6 0 ,求 x y 的 值 .
6.2 立方根
学习目标
1.了解立方根的概念,会用符号表示一个数 的立方根 2.会求一个数的立方根 3.通过类比、讨论、总结出立方根与平方根 之间的异同 4.体会学数学的方法———类比法
一 、创设情境,复旧导新 1. 1想. 想一想一想:
(1) 16的平方根是_____4_;
(2)-16的平方根_不__存__在___;
根指数
3
a
被开方数
读作:三次根号 a , 其中a是被开方数,3是根指数,不能省略.
4.跟踪练习 教材习题 P51 第1题, P52 第2题
5. 议一议:
你能说出数的平方根性质与数的立 方根性质有什么不同吗?
被开方数 平方根
立方根
正数 负数

有两个,互为相反数 有一个,是正数
无平方根
有一个,是负数
(3)0的平方根是___0_____. 问题:
平方根是如何定义的?平方根有哪些性质?
2. 学一学
自学课本P49-P50. 小组交流
3. 做一做
问题: 要制作一种容积为27 m3的正方体形状
包装箱,这种包装箱的棱长应该是多少?
4. 试一试 你能给数的立方根下个定义吗?
一般地,如果一个数的立方等于a,那么这 个数叫做a的立方根或三次方根.
3 a3 a
四、应用新知,形成技能
• 例1 求下列各数的立方根.
(1)8 ;
(2)
1 27
; (3)-0.064.
解(1)因为 2 3 8 ,所以8的立方根是2,
记作 3 8 2
(2)因为
( 1)3 3
1 27
,所以
1 27
的立方根是
1 3
记作 3 1 1 27 3
四、应用新知,形成技能
64
解(1)64的立方根,值是4
(2)-125的立方根,值是-5
(3)
2 6
7 4
的立方根,值是
3 4
例2. 下列式子表示什么意义? 你能求出它们的值吗?
(1)3 64 ;
(2)3 125;
27 (3)3 ;
64
(4)3 (3)3 ; (5)3 2 3 ;
64
(4)( 3 ) 3 的立方根,值是-3


三 、引导探究,延伸知识 1. 探究
填空: 因为 3 8 =__-_2_, 3 8 =_-_2___; 所以 3 8 __=___ 3 8 . 因为 3 27 =__-_3_, 3 27 =__-3___; 所以 3 27 ___=__ 3 2 7 .
2. 猜一猜
你能从上述问题中总结出互为相反数的 两个数a与-a的立方根的关系吗?
(5)因为(
2 3
)3=-

-287 ,所以--287
的立方根
是( 2 ).
3
探究题中正数、0和负数的立方根各有 什么特点?
2.说一说 观察练习题中正数、0和负数的立方 根各有什么特点?
正数的立方根是正数, 负数的立方根是负数, 0的立方根是0.
3. 自主探究
一个如数a何的表立示方一根可个以数表的示立为方: 根?
• 例1 求下列各数的立方根.
(1)8 ;
(2)
1 27
; (3)-0.064.
(3)因为 (0.4)30.06,4 所以-0.064的立方根是 -0.4,记作 30.0640.4
例2. 下列式子表示什么意义? 你能求出它们的值吗?
(1)3 64 ;
(2)3 125;
27 (3)3 ;
64
(4)3 (3)3 ; (5)3 2 3 ;
(5)-2与 3
64
的和的立方根,值是
5 4
五、归纳小结,深化新知
1. 小结:本节课你学习了哪些知识? 在探索知识的过程中,你用了哪些 方法?对你今后的学习有什么帮助?
2. 课后归纳:(1)从不同角度总结数 的平方根与数的立方根的异同. (2)立方根是它本身的数有哪些?平 方根是它本身的数呢?
六、达标检测
5.若3 2y4与3 43x互为相反x数 的, (值 . 选求 做题) y
七、布置作业
作业本—P61 第2题,第3题 质量检测—P40 A组必做,P41 B组选做
即:如果x3=a,那么x叫做a的立方根. 求一个数的立方根的运算,叫做开立方.
二 、启发诱导,探索新3 知
1. 探究 (1) 因为2 3=383 ,所以8的立方根是( 2 );
(2) 因为(0.5)33=0.125,所以0.125的立方根是(0.5);
(3)因为( 0 )33=0,所以0的立方根是( 0 ); (4)因为 (2)3 =-8,所以-8的立方根是(2);
相关文档
最新文档