STATA软件应用(三)定量资料的统计分析解析
使用Stata进行统计数据分析教程
使用Stata进行统计数据分析教程章节一:Stata简介与安装Stata是一款广泛使用的统计软件,由StataCorp开发,并提供了强大的数据分析和数据管理功能。
首先,我们需要了解Stata的基本特点和优势,并学习如何安装Stata软件及其组件包。
为了顺利进行数据分析,安装正确的版本和组件是必不可少的。
章节二:数据导入与数据管理在开始数据分析之前,我们首先需要将数据导入Stata软件中,这涉及到数据的格式转换和读取,包括常见的Excel、CSV等格式。
然后,我们会学习如何对数据进行清洗,删除无效数据、处理缺失数据和异常值等。
此外,我们还会介绍如何创建和修改变量、合并数据集以及数据筛选等高级数据管理功能。
章节三:描述性统计分析描述性统计是最基本的统计方法之一,用于描述数据的分布和性质。
在这一章节中,我们会学习如何使用Stata进行描述性统计分析,包括计算平均数、中位数、标准差、最大值和最小值等统计指标。
同时,我们还会学习如何绘制直方图、箱线图和散点图等图形工具,以更直观地展示数据的分布特征。
章节四:推断统计分析推断统计分析用于从样本数据中推断总体的性质,常用的方法包括假设检验和置信区间估计。
在这一章节中,我们会学习如何使用Stata进行常见的假设检验,如单样本t检验、独立样本t检验和相关样本t检验等。
同时,我们还会介绍如何计算置信区间和进行方差分析等高级统计方法。
章节五:回归分析回归分析是统计学中常用的建模和预测方法,用于描述自变量与因变量之间的关系。
在这一章节中,我们会学习如何使用Stata 进行简单线性回归和多元线性回归分析,包括模型拟合、参数估计和模型诊断。
此外,我们还会介绍如何解决共线性和异方差等常见问题,并讨论如何进行交互效应和非线性回归分析。
章节六:多元统计分析除了回归分析,Stata还提供了丰富的多元统计分析方法,如主成分分析、因子分析和聚类分析等。
在这一章节中,我们会学习如何使用Stata进行多元统计分析,包括降维与因子提取、聚类分析和判别分析等。
使用Stata进行经济学和统计分析
使用Stata进行经济学和统计分析在当今的经济学研究和数据分析领域,Stata 凭借其强大的功能和易用性,成为了众多学者和研究人员的得力工具。
Stata 是一款专门用于数据管理、统计分析和绘图的软件,它为我们解决各种经济和统计问题提供了高效而可靠的途径。
Stata 的一个显著优势在于其丰富的数据管理功能。
在进行经济研究时,我们常常需要处理大量的数据,这些数据可能来自不同的来源,格式也各不相同。
Stata 能够轻松地读取和导入各种常见的数据格式,如 Excel、CSV 等,并且可以对数据进行清理、转换和合并等操作。
例如,我们可以使用`drop` 命令删除不需要的变量,使用`generate`命令创建新的变量,使用`merge` 命令将多个数据集合并在一起。
通过这些操作,我们能够将原始数据整理成适合分析的形式,为后续的研究工作打下坚实的基础。
在统计分析方面,Stata 提供了广泛而全面的统计方法。
无论是描述性统计、推断统计,还是复杂的计量经济学模型,Stata 都能应对自如。
比如,我们可以使用`summarize` 命令快速获取数据的均值、标准差、最小值和最大值等描述性统计量,从而对数据的基本特征有一个直观的了解。
对于假设检验,Stata 提供了`ttest` 命令用于均值比较,`chi2test` 命令用于独立性检验等。
在计量经济学领域,Stata 支持线性回归、Logit 模型、Probit 模型、面板数据模型等多种模型的估计和检验。
以线性回归为例,我们可以使用`regress` 命令来估计回归方程,并通过查看输出结果中的系数估计值、标准误、t 值和 p 值等信息来评估模型的拟合效果和变量的显著性。
除了基本的统计分析,Stata 还在处理时间序列数据方面表现出色。
时间序列数据在经济学中非常常见,如股票价格、通货膨胀率等。
Stata 提供了一系列专门用于时间序列分析的命令和函数,如`arima` 命令用于拟合自回归移动平均模型(ARIMA),`forecast` 命令用于进行预测。
STATA软件应用(三)定量资料的统计分析解析
/* 不打印方差分析表
/* 将缺省值作为单独的一组
/* 打印各组的基本统计量表 简写:t
/* Scheffe法 简写:sch
/* Bonferroni法 简写:bon
/* Sidak法
简写:si
单因素方差分析
三组小鼠的FDP酶活力
对照组 水层RNA组
2.79
3.83
2.69
3.15
3.11
4.70
仅有原始数据时
ttest 变量名= #val
注: #val /*总体均数 命令可以加一些if和in条件限制
样本均数与总体均数比较的t检验
例4.4 命令:ttesti 25 5.1 0.88 4.6
样本均数与总体均数比较的t检验
例:某医生随机抽查10名某病患者的血红蛋白,如下:
病例号
1 23 4
医学统计学实习课
STATA软件的应用(3) ——定量资料的统计分析
定量资料的统计分析
➢ 样本均数与总体均数比较的t 检验 ➢ 配对设计t 检验 ➢ 成组设计t 检验 ➢ 单因素方差分析 ➢ 两因素方差分析 ➢ 方差齐性检验 ➢ 正态性检验
样本均数与总体均数比较的t检验
仅有数据之统计量时
ttesti #obs #mean #sd #val
data:oneway.dta
. oneway x g,t sch
|
Summary of x
g|
Mean Std. Dev. Freq.
------------+------------------------------------
1 | 2.7025 .50013569
8
2 | 3.66125 .98508069
使用Stata进行数据分析的教程
使用Stata进行数据分析的教程第一章:介绍StataStata是一种统计软件,经常被研究人员和学者用于数据分析和统计建模。
它提供了强大的数据处理和分析功能,可以应用于不同领域的研究项目。
本章介绍了Stata的基本功能和特点,包括数据管理、数据操作和Stata的界面等。
1.1 Stata的起源和发展Stata最初是由James Hardin和William Gould创建的,旨在为统计学家和社会科学研究人员提供一个数据分析工具。
随着时间的推移,Stata得到了广泛的应用,并逐渐发展成为一种强大的统计软件。
1.2 Stata的功能和特点Stata提供了许多数据处理和分析函数,包括描述性统计、回归分析、因子分析和生存分析等。
它还具有数据的管理功能,可以导入、导出和编辑数据文件。
Stata的界面友好,并且支持批处理和交互模式。
第二章:数据管理与准备在进行数据分析之前,首先需要准备和管理数据集。
本章将详细介绍Stata中的数据导入、数据清洗和数据变换等操作。
2.1 数据导入与导出Stata可以导入各种格式的数据文件,包括CSV、Excel和SPSS 等。
同时,Stata也支持将分析结果导出为不同的格式,如PDF和HTML等。
2.2 数据清洗和缺失值处理在实际研究中,数据常常存在缺失值和异常值。
Stata提供了处理缺失值和异常值的方法,可以通过删除、替换或插补来处理这些问题。
2.3 数据变换和指标构造数据变换是指将原始数据转化为适合分析的形式,常见的变换包括对数变换、差分和标准化等。
指标构造是指根据已有变量构造新的变量,如计算平均值和构造虚拟变量等。
第三章:描述性统计和数据可视化描述性统计是对数据集的基本统计特征进行总结和分析,而数据可视化则是通过图表和图形展示数据的特征和关系。
本章将介绍在Stata中进行描述性统计和数据可视化的方法。
3.1 中心趋势和离散程度的度量通过计算平均值、中位数和众数等指标来描述数据的中心趋势。
使用Stata进行统计分析的方法与实例
使用Stata进行统计分析的方法与实例第一章:导言统计分析是一种基于数据的科学方法,主要用于搜集、整理、分析和解释数据,以便更好地理解和描述现象、随机事件或人类行为。
Stata是一款功能强大且广泛应用于统计学和经济学领域的统计分析软件。
本文将介绍使用Stata进行统计分析的方法和实例,并按以下章节进行详细说明。
第二章:数据导入与清洗在使用Stata进行统计分析之前,首先需要导入和清洗数据。
Stata支持多种数据导入格式,如文本文件、Excel表格和数据库等。
通过使用Stata的数据管理命令,我们可以对数据进行清洗和预处理,包括删除缺失值、处理离群值和进行变量转换等。
第三章:描述性统计分析描述性统计分析是研究对象的基本特征和总体分布的方法。
在Stata中,我们可以使用各种命令来计算和展示数据的描述性统计量,如平均值、标准差、中位数和频数分布等。
此外,可以使用图表工具来可视化数据的分布和特征,如直方图、箱线图和散点图等。
第四章:推断统计分析推断统计分析是通过抽样来推断总体参数的方法。
Stata提供了一系列统计模型和命令,用于进行参数估计、假设检验和置信区间估计等推断统计分析。
常见的推断统计方法包括回归分析、方差分析和非参数检验等。
通过Stata的命令和函数,我们可以轻松地应用这些方法,从而得出关于总体的推断结论。
第五章:多元统计分析多元统计分析是研究多个变量之间关系的方法。
Stata提供了多元统计模型和命令,用于探索和解释多个变量之间的关系。
其中包括多元线性回归分析、主成分分析和因子分析等。
通过使用Stata的多元统计分析功能,我们可以深入研究变量之间的相关性和潜在结构等。
第六章:时间序列分析时间序列分析是研究时间变化规律的方法。
在Stata中,我们可以使用时间序列模型和命令,对时间序列数据进行建模和预测分析。
其中包括平稳性检验、自回归移动平均模型和差分自回归移动平均模型等。
通过利用Stata的时间序列分析功能,我们可以分析和预测各种经济和社会现象的发展趋势。
Stata统计分析与应用(第3版)
11 11 时间序列分析
11 时间序列分析
11.1 基本时间序列模型 的估计
11.3 VAR与VEC的估计及 解释
11.5 Stata操作习题
11.2 ARIMA模型的估计、单 位根与协整
11.4 ARCH与GARCH的 估计及解释
11 时间序列分析
2.8.1 encode 和decode命令
2.8.2 real函 数
2.8 数值和字符串的转换
2 数据管理
2.9.1 生成 虚拟变量
1
2.9.2 生成 分类变量
2
2.9 生成分类变量和虚拟变量
2 数据管理
2.10.1 数据的横 向合并
2.10.3 数据的交 叉合并
2.10.2 数据的纵 向合并
11 时间 序列分析
11.4 ARCH与GARCH 的估计及解释
A
11.4.1 ARCH模型
C
11.4.2 GARCH模型
11.4.3 ARCH模型 的Stata实现
B
12 12 聚类分析
12 聚类分析
12.1 聚类分析的 基本思想与理论
12.1.1 聚类分析的基本 思想
12.1.2 聚类分析的相似 性测度
03
8.4.3 使用test命
令——进行读者指
定的检验
02
8.4.2 使用 predict命令——
计算拟合值和残差
01
8.4.1 使用regress 命令——因变量对自
变量的回归
9 非经典假设、线性方程组、
09 面板数据估计的Stata实现
9 非经典假设、线性方程组、 面板数据估计的Stata实现
Stata软件应用
1.3Stata主要功能模块介绍
Stata软件具有数据处理、绘图、统计分析、回归分析
和编程处理这五大主要功能,其相互配合,可以完成 系统完整的数据分析和处理任务。 1.3.1数据处理 用户得到第一手数据之后要做的就是对数据进行基本 的处理,主要包括数据的读入、类型的转换、压缩等, 此外还可以对数据进行基本的描述分析,包括频数分 布、离散趋势、集中趋势的分析等等。 1.3.2绘图 绘图是进行数据分析的又一种重要的分析工具,Stata 提供了强大的绘图功能,主要包括散点图、线图、条 形图、直方图、饼图、箱线图、函数图等图形的绘制 和相应设定。
1.2 Stata窗口及基本操作
1.2.2Stata帮助系统 Stata为用户提供了强大的帮助系统,新用户可以通过
帮助系统的应用,更好地利用Stata完成自己所需要的 功能和操作。Stata的帮助系统主要由Stata手册、Stata 自带帮助和网络帮助三个方面组成。 (一)Stata手册是一本学习Stata使用的权威书籍,它 按字母顺序排列出了Stata所有相关的命令。 (二)Stata自带帮助系统是使用最方便,也是最常用 的方法。其语法格式为:help [所要查询命令] (三)Stata的网络帮助系统更为强大,用户可以在网 上查找Stata还没有内置化的命令,实现自行安装。
1.2 Stata窗口及基本操作
Stata最主要的部分是由四大窗口组成的,它们是分别是命
令回顾窗口(Review)、结果窗口(Results)、变量窗口 (Variables)、和命令输入窗口(Command),接下来, 将会详细地介绍一下这四个窗口。 (1)命令回顾窗口(Review),主要是用来临时性存储已 经执行过的命令语句的窗口,这些执行的命令语句主要包 括两种:一种是直接从命令窗口中输入的命令,另一种是 通过窗口菜单操作转化而成的命令。Review窗口可以临时 性存储自Stata本次运行到结束的所有命令,若Stata中途或 最终被关闭,则所有的命令语句将会自动消失,若想永久 保存这些命令,可以通过使用log命令或单击右键实现存储。 在Stata运行过程中,可以重复使用显示在Review窗口中的 命令,只需要左键单击命令,该命令将会重新显示在 Command窗口中,供用户进行修改和执行。
STATA使用教程
STATA使用教程第一章:介绍 StataStata 是一款统计分析软件,广泛应用于经济学、社会科学、健康科学和医学研究等领域。
本章将介绍 Stata 软件的基本特点、适用范围和主要功能。
1.1 Stata 的特点Stata 是一款功能强大、易于使用的统计软件。
不同于其他统计软件,Stata 具有灵活性高、数据处理效率好的优点。
它支持多种数据文件格式,可以处理大规模的数据集,并且具有丰富的数据处理、统计分析和图形展示功能。
1.2 Stata 的适用范围Stata 软件适用于各类研究领域,涵盖了经济学、社会科学、医学、健康科学等多个领域。
它广泛应用于定量分析、回归分析、面板数据分析、时间序列分析等领域,可用于统计推断、数据可视化和模型建立等任务。
1.3 Stata 的主要功能Stata 软件提供了丰富的功能模块,包括数据导入导出、数据清洗、数据管理、描述性统计、推断统计、回归分析、面板数据分析、时间序列分析、图形展示等。
这些功能模块为用户提供了全面且灵活的数据分析工具。
第二章:Stata 数据处理数据处理是统计分析的前置工作,本章将介绍 Stata 软件的数据导入导出、数据清洗和数据管理等功能。
2.1 数据导入导出Stata 支持导入多种文件格式的数据,如文本文件、Excel 文件和 SAS 数据集等。
用户可以使用内置命令或者图形界面进行导入操作,导入后的数据可以存储为 Stata 数据文件(.dta 格式),方便后续的数据处理和分析。
2.2 数据清洗数据清洗是数据处理的重要环节,Stata 提供了多种数据清洗命令,如缺失值处理、异常值处理和数据类型转换等。
用户可以根据实际情况选择合适的数据清洗操作,确保数据的准确性和完整性。
2.3 数据管理数据管理是有效进行数据处理的关键,Stata 提供了许多数据管理命令,如数据排序、数据合并、数据分割和数据标记等。
这些命令可以帮助用户高效地对数据进行管理和组织,提高数据处理效率。
如何使用Stata进行统计学分析
如何使用Stata进行统计学分析Stata是一种流行的统计学软件,广泛应用于各个领域的数据分析和统计学研究。
本文将介绍如何使用Stata进行统计学分析,并按照不同的主题进行划分章节。
第一章:Stata基础操作在开始使用Stata进行统计学分析之前,首先需要了解一些基础操作。
包括数据导入和导出、数据清洗、变量定义等。
Stata支持各种数据文件格式的导入,例如Excel、CSV等,通过使用`import`命令可以将数据导入到Stata中。
此外,Stata还提供了丰富的数据清洗功能,如缺失值处理、异常值处理等。
在数据准备工作完成后,可以使用`generate`命令定义变量,并使用`list`命令查看数据集的内容。
第二章:描述性统计分析描述性统计分析是了解数据的基本特征和分布情况的重要手段。
在Stata中,可以使用`summarize`命令计算变量的均值、方差、最大值、最小值等统计量。
此外,还可以使用`tabulate`命令生成频数表和列联表,用以统计分类变量的分布情况和不同变量之间的关联。
第三章:统计图形绘制统计图形是数据可视化的重要工具,有助于更直观地理解数据的特点和模式。
Stata提供了多种绘图命令,例如`histogram`命令用于绘制直方图、`scatter`命令用于绘制散点图、`boxplot`命令用于绘制箱线图等。
通过适当选择和组合这些绘图命令,可以呈现出丰富的数据图形,有助于揭示数据背后的规律。
第四章:参数估计与假设检验参数估计和假设检验是统计学分析的核心内容。
Stata提供了多种统计分析命令,如`ttest`命令用于独立样本t检验、`regress`命令用于回归分析、`anova`命令用于方差分析等。
这些命令可以根据用户提供的数据和分析需求,进行相应的估计和检验,并输出相应的统计结果和解释。
第五章:相关分析和回归分析相关分析和回归分析是统计学中常用的分析方法,用于探究变量之间的关系和预测模型的建立。
教你如何使用Stata进行统计分析和建模
教你如何使用Stata进行统计分析和建模Stata是一款广泛使用的统计软件,它在数据处理、统计分析和建模等方面具有强大的功能。
本文将介绍如何使用Stata进行统计分析和建模,包括数据导入、数据整理和清洗、描述性统计分析、假设检验、回归分析等内容。
一、数据导入在使用Stata进行统计分析和建模之前,首先需要将数据导入Stata软件中。
Stata支持多种数据格式,包括Excel、CSV、SPSS等格式。
通过点击菜单栏中的"File"选项,选择"Import Data"命令,可以将数据导入Stata软件中。
二、数据整理和清洗当数据导入Stata之后,需要对数据进行整理和清洗,以便进行后续的统计分析和建模。
数据整理包括选择所需变量、变量重命名、变量标签设置等操作。
数据清洗则包括缺失值处理、异常值处理等。
三、描述性统计分析描述性统计分析是对数据进行概括的过程,可以使用Stata的各种命令来完成。
常用的描述性统计分析包括计算均值、中位数、标准差、最小值、最大值以及绘制直方图、散点图等。
四、假设检验在进行统计分析和建模时,常常需要进行假设检验,以验证研究假设的合理性。
Stata提供了多种假设检验的方法,如t检验、方差分析、卡方检验等。
通过运用这些方法,可以对不同群体之间的差异进行检验。
五、回归分析回归分析是一种通过建立数学模型来研究因变量与自变量之间关系的统计方法。
在Stata软件中,可以使用regress命令进行普通最小二乘回归分析。
此外,Stata还支持逐步回归、多元回归分析等其他回归分析方法。
六、模型诊断与验证在进行回归分析时,需要对模型进行诊断和验证,以确保模型的有效性和可靠性。
Stata提供了多个命令,如estat命令用于检验模型的方差齐性和正态性假设,predict命令用于保存残差和拟合值,以供进一步的分析和验证。
七、模型应用和预测通过回归分析建立的模型,可以应用于实际问题的预测和决策。
stata统计分析与应用笔记汇总
第一章:Stata概述:help和search都是查找文件的命令但help用于查找精确的命令,search是模糊查找。
还可使用help|contents 来分类查找第二章:数据管理:2.1变量和变量的取值:1.变量的命名:不能以数字开头,区分大小写,不能命名为系统变量名2.变量的取值类型:(1)字符型:字符变量存储格式是str⋕,str表示格式⋕表示该变量的存储最多可容纳的字符数(2)数值型数据:存储格式:byte.int.long.float.double.Stata默认将数字存储为浮点数据,而将计算结果存为双浮点数据。
(3)缺失数据:一般仅用“.”表示3.变量的显示:(1)数值变量的显示格式:a.普通格式有%w.dg, %w.dgc(g表示普通,w表示整个显示所占的字符数,d表示显示的数字中小数点后的位数,c是要求Stata给出带逗号“,”数字显示格式如12345显示为12,345)b.固定格式有%w.df, %w.dfc(f表示固定)c.科学指数法格式:%w.de, (e表示科学计数)(2)字符变量的显示格式:仅有一种%⋕s,%是提示符,#表示显示字符数,s表示字符变量显示格式,默认右对齐,后加“-”可改为左对齐。
(3)使用format命令变量显示格式:format varlist %fmt 或者 format %fmt varlist 4.变量的标签(1)添加数据集的标签使用: label data [“lable”](2)添加变量的标签使用:label variable varname [“lable”](3)label为变量数值添加标签的语法有两部分,先定义数值标签:label define lblname#“lable” [#“lable”](lblname是标签名称) 然后将定义好的数值标签添加到变量上:label values varlist [lblnamel.]2.2创建一个新的数据集1.关于数据集操作的基本命令(1)browse 和edit 命令:browse 用于打开数据浏览器,edit命令用于打开数据编辑器Edit [varlist] [if] [in]browse [varlist] [if] [in](if和in 用于选择需要的子集)(2)rename:rename old_varname new_varname(3)save命令:save [filename] [,save_options]([,save_options]可以指nolabel(不保存设定标签),replace(允许新文件覆盖原文件),all主要用于编程(4)describe:用于产生一个对数据集的简明总结格式:describe [varlist] [,memory_options](命令选项:simple,short,detail,fullnames)(5)list:用于显示变量的数值,其后可以跟需要显示的变量名称语法:list [varlist] [if] [in] [,options](命令选项包括:noobs(不显示观测值的数值),clean,separator,sepby,nolabel)(6)codebook:用于详尽地描述变量的内容,包括变量名称、标签、赋值。
使用Stata进行统计分析和数据可视化的教程
使用Stata进行统计分析和数据可视化的教程Stata是一种常用的统计分析软件,广泛应用于社会科学、经济学和健康科学等领域的数据分析和可视化。
本文将为大家提供一个使用Stata进行统计分析和数据可视化的教程,包括数据导入、数据处理、统计分析和数据可视化等内容。
首先,我们需要了解Stata软件的基本操作。
一、Stata软件的基本操作1. 安装与启动:将Stata软件下载并安装在电脑上,然后双击桌面上的图标启动程序。
2. 导入数据:在Stata中,可以通过多种方式导入数据,如Excel表格、文本文件和数据库等。
使用命令“import excel”导入Excel表格数据,命令“import delimited”导入文本文件数据。
导入数据后,可以使用“describe”命令查看数据的结构和变量的属性。
3. 数据浏览与修改:使用“browse”命令可以打开数据集的浏览窗口,查看数据的内容。
要对数据进行修改,可以使用“generate”或“replace”命令创建或修改变量的值。
4. 数据子集选择:使用“keep”和“drop”命令选择需要分析的变量或观测。
5. 数据排序:使用“sort”命令可以按照指定的变量对数据进行排序。
二、数据处理与统计分析1. 描述统计分析:使用“summarize”命令计算变量的均值、方差、最大值、最小值等统计指标。
可以使用“tabulate”命令生成频数表和交叉表。
使用“histogram”命令生成直方图,“scatter”命令生成散点图。
2. t检验与方差分析:使用“ttest”命令进行两样本t检验,使用“oneway”命令进行方差分析。
3. 回归分析:使用“regress”命令进行线性回归分析。
可以使用“predict”命令创建预测值,并使用“estat”命令计算回归结果的统计量。
4. 面板数据分析:对于面板数据,使用“xtset”命令设置面板数据的结构,然后使用面板数据专用的命令进行分析,如“xtreg”进行面板数据的固定效应模型分析。
如何使用Stata进行统计分析和数据可视化
如何使用Stata进行统计分析和数据可视化第一章:Stata统计分析基础Stata是一个功能强大的统计分析软件,广泛应用于社会科学、经济学、医学研究等领域。
在使用Stata进行统计分析之前,我们需要熟悉一些基本概念和操作。
1.1 Stata界面介绍Stata界面分为主窗口和命令窗口。
主窗口用于显示数据和结果,命令窗口用于输入和运行命令。
1.2 导入数据在Stata中,可以通过多种方式导入数据,包括直接输入数据、从其他文件格式导入数据、从数据库导入数据等。
1.3 数据清洗和准备在进行统计分析之前,需要对数据进行清洗和准备。
这包括处理缺失值、异常值,创建新变量,转换数据类型等操作。
1.4 描述统计分析描述统计分析是对数据的基本特征和分布进行描述和分析。
可以使用Stata的命令进行频数统计、均值计算、方差分析等操作。
1.5 统计推断统计推断是通过样本数据对总体特征进行推断。
可以使用Stata进行t检验、方差分析、回归分析等操作。
第二章:Stata数据可视化数据可视化是将统计分析结果以图形或图表的方式展示,可以帮助我们更好地理解和传达数据。
2.1 绘制直方图和箱线图直方图和箱线图可以用来展示数据的分布和异常值情况。
在Stata中,可以使用histogram命令和graph box命令绘制直方图和箱线图。
2.2 绘制散点图和线图散点图和线图可以用来展示变量之间的关系和趋势。
在Stata中,可以使用scatter命令和twoway line命令绘制散点图和线图。
2.3 绘制柱状图和折线图柱状图和折线图适用于展示不同类别或时间点的数据比较。
在Stata中,可以使用bar命令和twoway line命令绘制柱状图和折线图。
2.4 绘制饼图和雷达图饼图和雷达图适用于展示比例或多维数据的分布。
在Stata中,可以使用pie命令和radar命令绘制饼图和雷达图。
第三章:高级统计分析和可视化除了基本的统计分析和数据可视化外,Stata还提供了一些高级功能,可以进行更复杂和深入的统计分析和数据可视化。
Stata统计分析命令
一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。
1、Stata中的单变量极端值处理:stata ,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p或者在命令窗口中输入:ssc install winsor安装winsor命令。
winsor命令不能进行批量处理。
2、批量进行winsorize极端值处理:打开链接:,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。
命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。
如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。
3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以 winsor,也可以 trimming;(3) 附加了 by() 选项,可以分组 winsor 或 trimming;(4) 增加了 replace 选项,可以不必生成新变量,直接替换原变量。
浅析统计软件STATA的操作和运用
目录摘要: (2)Abstract: (2)一、Stata的数据管理能力 (3)二、Stata的统计功能与矩阵运算功能 (3)三、Stata的数据输入与储存 (4)四、Stata的作图功能 (5)五、Stata的操作方式 (5)六、Stata的数据输入,存盘和调用文件命令以及数据管理命令 (6)七、Stata的相关分析 (7)结论: (8)浅析统计软件ST AT A的操作和运用摘要:Stata是一个用于分析和管理数据的功能强大又小巧玲珑的实用统计分析软件,由美国计算机资源中心(Computer Resource Center)研制。
从1985至1998的十四年时间里,已连续推出1.1,1.2,1.3,1.4,1.5,……及2.0,2.1,3.0,3.1,4.0,5.0,6.0等多个版本,通过不断更新和扩充,内容日趋完善。
它同时具有数据管理软件、统计分析软件、绘图软件、矩阵计算软件和程序语言的特点,又在许多方面别具一格。
Stata融汇了上述程序的优点,克服了各自的缺点,使其功能更加强大,操作更加灵活、简单,易学易用,越来越受到人们的重视和欢迎。
Stata的突出特点是只占用很少的磁盘空间,输出结果简洁,所选方法先进,内容较齐全,制作的图形十分精美,可直接被图形处理软件或字处理软件如WORD 等直接调用。
关键词:StataAbstract:Stata is one for the analysis and management of data is little and dainty powerful practical statistical analysis software, by the United States Computer Resource Center ( Computer Resource Center ) development. From 1985 to 1998 in fourteen years, has introduced 1.1, 1.2, 1.3, 1.4, 1.5, ... ... And 2, 2.1, 3, 3.1, 4, 5, 6 and other versions, through constantly updated and expanded, the content is perfect with each passing day. It also has a data management software, statistical analysis software, mapping software, matrix calculation software and programming language features, and in many ways have a style of one's own. Stata combines the advantages of the procedure, overcomes the shortcomings, to make it more powerful, more flexible operation, simple, easy to use, more and more people's attention and welcome.The outstanding characteristic of Stata is only rarely occupied disk space, the output results concisely, the selected method is advanced, the content is complete, making graphics is very beautiful, can be directly used by the graphics processing software or word processing software such as WORD directly call.Key word:Stata一、Stata的数据管理能力1. stata的数据管理空间受计算机的操作系统和计算机扩展内存的影响。
第七章两独样本定量资料的统计分析的Stata实现
第七章两独立样本定量资料的统计分析的Stata 实现例7-1 为研究金属镉中毒对大鼠肝脏中锌含量的影响,随机抽取20只小鼠,随机分为实验组和对照组。
实验组小鼠每日经饮水染毒,对照组正常饮水。
1个月后,测量小鼠肝脏中锌含量(u g/ml )(表7-1),试分析两种饮用水小鼠的肝脏中锌平均含量有无差异。
表7-1 实验组和对照组小鼠肝脏中锌含量(ug/ml )例7-2 为研究接触某重金属对人体血胰岛素水平有无影响,研究者从接触某重金属的职业工人中随机抽取14人,从非接触工人中随机抽取14人,测量每个工人的血胰岛素水平(ulu/ml )(表7-2),试分析上述两个人群的血胰岛素平均水平有无差异。
表7-2 某重金属接触工人和非接触工人血胰岛素水平(ulu/ml ) 接触重金属工人7.84 8.11 8.45 9.38 10.22 12.28 11.57 11.38 8.23 8.92 3.02 4.547.116.04非接触工人17.94 7.42 9.12 9.45 7.86 16.48 24.12 8.57 8.92 6.74 9.23 16.29 5.738.51例7-3 随机抽取30名在校大学生,男性16人,女性14人,检测血红蛋白含量(g/ul ),问男性和女性大学生的血红蛋白平均含量有无差别?(数据略)例7-4 例7-1中要检验两种饮水小鼠的肝脏锌平均含量有无差别,需要先检验实验组和对照组所来自的总体方差是否相等,即对例7-1中资料进行方差齐性检验。
例7-1的Stata 数据格式如下:实验组 7.14 5.95 7.10 8.26 10.08 7.91 9.07 9.30 8.64 8.51 对照组 6.61 7.31 7.20 6.59 7.65 5.59 6.39 6.57 7.91 7.864 实验组8.265 实验组10.086 实验组7.917 实验组9.078 实验组9.39 实验组8.6410 实验组8.5111 对照组 6.6112 对照组7.3113 对照组7.214 对照组 6.5915 对照组7.6516 对照组 5.5917 对照组 6.3918 对照组 6.5719 对照组7.9120 对照组7.86α=正态性检验的程序和结果如下:0.05swilk x if group=="实验组" 对实验组资料进行正态性检验Shapiro-Wilk W test for normal dataVariable | Obs W V z Prob>z -------------+------------------------------------------------- x | 10 0.97984 0.311 -1.803 0.96432 P=0.96432>,按正态性假定进行统计分析。
Stata的统计分析功能介绍
Stata的统计分析功能介绍一.数值变量资料的统计分析1.变量的类型表1 资料类型的判断2.数值变量的描述summarize [变量名]centile [变量名] [, centile(# [# ...])graph [变量名] [, 图形类型通用选择项特殊选择项]练习1:某哨点医院监测到110例因交通事故住院的天数如下,计算平均住院天数和标准差,并对其分组;求95%、50%、25%分位数。
14 7 24 22 3 16 5 27 4 34 105 5 14 4 38 5 13 8 4 9 118 4 4 2 5 32 9 7 4 12 89 3 6 5 4 6 8 8 5 14 912 5 9 17 6 4 8 10 5 8 911 9 18 3 3 55 8 11 6 7 97 8 17 15 3 12 4 3 4 7 126 12 87 5 6 3 5 78 204 15 156 1 3 2 4 8 8 513 45 12 10 11 3 8 8 8 9 8. sum daysVariable | Obs Mean Std. Dev. Min Max-------------+-----------------------------------------------------days | 110 9.745455 8.468437 1 55. sum days,ddays-------------------------------------------------------------Percentiles Smallest1% 2 15% 3 210% 3 2 Obs 11025% 5 3 Sum of Wgt. 11050% 8 Mean 9.745455Largest Std. Dev. 8.46843775% 11 3490% 17 38 Variance 71.7144395% 27 45 Skewness 2.87051799% 45 55 Kurtosis 12.96038gra days,bin(11) ylab(0,0.1,0.2,0.3,0.4,0.5) xlab(0,5,10,15,20,25,30,35,40,45,50,55). gen g=int((days-0)/5)+1. tab gg | Freq. Percent Cum.------------+-----------------------------------1 | 24 21.82 21.822 | 52 47.27 69.093 | 18 16.36 85.454 | 7 6.36 91.825 | 3 2.73 94.556 | 1 0.91 95.457 | 2 1.82 97.278 | 1 0.91 98.1810 | 1 0.91 99.0912 | 1 0.91 100.00------------+-----------------------------------Total | 110 100.00. centile days,centile(2.5,50,97.5)-- Binom. Interp. --Variable | Obs Percentile Centile [95% Conf. Interval]-------------+-------------------------------------------------------------days | 110 2.5 2 1 3*| 50 8 7 8| 97.5 39.575 24.32943 55*Lower (upper) confidence limit held at minimum (maximum) of sample3.t检验用于三种情况:样本均数与总体均数比较;配对数值变量资料的比较;两样本均数的比较;命令格式(ttest命令容许使用[if 表达式]和[in 范围]条件限制):(1)样本均数与总体均数比较的t检验的命令是ttest:ttest 变量名= #valttesti #obs #mean #sd #val练习2:某区10例犬伤患者的治疗费用如下,另一区的平均费用为680元,问两区是否在费用上有区别?病例号: 1 2 3 4 5 6 7 8 9 10 治疗费用(元)730 650 580 550 680 620 600 510 630 590. ttest a=680One-sample t test------------------------------------------------------------------------------Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]---------+--------------------------------------------------------------------a | 10 614 20.06656 63.45602 568.6063 659.3937 ------------------------------------------------------------------------------ Degrees of freedom: 9Ho: mean(a) = 680Ha: mean < 680 Ha: mean ~= 680 Ha: mean > 680t = -3.2891 t = -3.2891 t = -3.2891P < t = 0.0047 P > |t| = 0.0094 P > t = 0.9953. ttesti 10 614 63.456 680结果同上(2)配对样本t检验的命令是ttest:ttest 变量1=变量2练习3:某类别伤害两个医院治疗时间(天)配对研究病例号: 1 2 3 4 5 6 7 8 9 10 甲医院(x0): 7.3 6.8 7.0 6.9 7.1 7.2 6.7 6.5 6.9 7.1 乙医院(x1): 7.1 7.0 6.2 6.0 6.1 7.4 6.5 7.0 6.0 6.9. ttest x0=x1Paired t test------------------------------------------------------------------------------ Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] ---------+-------------------------------------------------------------------- x0 | 10 6.95 .0763763 .2415229 6.777225 7.122775 x1 | 10 6.62 .1645195 .5202564 6.247831 6.992169 ---------+-------------------------------------------------------------------- diff | 10 .33 .1706524 .5396501 -.0560424 .7160425 ------------------------------------------------------------------------------ Ho: mean(x0 - x1) = mean(diff) = 0Ha: mean(diff) < 0 Ha: mean(diff) ~= 0 Ha: mean(diff) > 0t = 1.9338 t = 1.9338 t = 1.9338P < t = 0.9574 P > |t| = 0.0852 P > t = 0.0426(3)两样本均数比较的t检验ttest 变量1=变量2, unpairedttest 变量, by(分组变量)ttesti #obs1 #mean1 #sd1 #obs2 #mean2 #sd2练习4:两个区对犬伤治疗费用的比较?730 650 580 550 680 620 600 510 630 590 730 650 580 550 甲区:乙区:710 600 740 650 670 660 590 670 770 690 580. ttest v1=v2,unpTwo-sample t test with equal variances------------------------------------------------------------------------------Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]---------+--------------------------------------------------------------------v1 | 14 617.8571 17.54675 65.65394 579.9497 655.7646v2 | 11 666.3636 18.2544 60.543 625.6903 707.037---------+-------------------------------------------------------------------- combined | 25 639.2 13.36563 66.82814 611.6147 666.7853---------+--------------------------------------------------------------------diff | -48.50649 25.57778 -101.4182 4.405167------------------------------------------------------------------------------Degrees of freedom: 23Ho: mean(v1) - mean(v2) = diff = 0Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0t = -1.8964 t = -1.8964 t = -1.8964P < t = 0.0353 P > |t| = 0.0705 P > t = 0.9647二.分类变量资料的χ2检验tabulate var1 var2 [fw=频数变量] [,选择项]tabi其中var1,var2分别表示行变量和列变量,[fw=频数变量]只在变量以频数形式存放时选用。
如何使用Stata进行统计分析和数据管理
如何使用Stata进行统计分析和数据管理第一章:Stata软件介绍Stata是一款功能强大的统计分析和数据管理软件,被广泛应用于学术研究、商业分析和政府决策等领域。
它提供了丰富的统计分析工具和数据操作功能,可以帮助用户进行各种数据处理、可视化和模型建立等工作。
第二章:数据导入和管理在使用Stata进行统计分析之前,首先需要将数据导入到软件中进行管理。
Stata支持多种数据格式的导入,比如Excel、CSV、SPSS等。
用户可以使用import命令将外部数据导入到Stata的数据集中,并可以使用rename、label等命令对数据集进行重命名和备注,提高数据管理的效率和准确性。
第三章:数据清洗和变量转换在进行统计分析之前,常常需要对原始数据进行清洗和变量转换。
Stata提供了丰富的数据清洗命令,如drop、replace、gen等,可以帮助用户处理缺失值、异常值和重复观测等问题。
同时,Stata还支持对变量进行变换,如计算新变量、重编码变量和生成虚拟变量等,以满足不同的分析需求。
第四章:描述性统计分析描述性统计是了解数据特征和总体情况的基本手段,Stata提供了多种描述性统计命令,如mean、median、sum、tab等。
这些命令可以计算数据的均值、中位数、总和、频数等统计量,并可以按照变量和组别进行分析,帮助用户发现数据的分布、集中趋势和离散程度等信息。
第五章:推断性统计分析推断性统计分析是基于样本数据对总体进行推断的方法,Stata 提供了丰富的推断性统计命令,如ttest、regress、anova等。
这些命令可以进行单样本和双样本假设检验、回归分析、方差分析等统计计算,从而帮助用户验证研究假设、探究变量之间的关系和差异。
第六章:多元统计分析多元统计分析是研究多个变量之间的关系和模式的方法,Stata 提供了多种多元统计分析命令,如因子分析、聚类分析和多元回归等。
用户可以使用这些命令对数据进行降维、分类、预测和解释,挖掘变量之间的潜在结构和相互作用关系,为研究提供更深入的认识和解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------+--------------------------------------------------------------------
x1 | 10 12.59 .5162794 1.632619 11.42209 13.75791
x2 | 10 13.27 .3415813 1.080175 12.49729 14.04271
5
6 7 8 9 10
血红蛋白 11.3 15 15 13.5 12.8 10 11 12 13 12.3 (x,g/dl)
问:该病患者的平均Hb含量是否与正常人的平均Hb含量 相同 (正常人的平均Hb含量为14.02(g/dl) )。
data:ttest_1
问题:
正常人
0=14.02
患者
1=?
data:ttest_2
配对设计t检验
. ttest x1=x2
Paired t test
------------------------------------------------------------------------------
Variable | Obs
Mean Std. Err. Std. Dev. [95% Conf. Interval]
Variable | Obs
Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--------------------------------------------------------------------
x | 10 12.59 .5162794 1.632619 11.42209 13.75791
仅有原始数据时
ttest 变量名= #val
注: #val /*总体均数 命令可以加一些if和in条件限制
样本均数与总体均数比较的t检验
例4.4 命令:ttesti 25 5.1 0.88 4.6
样本均数与总体均数比较的t检验
例:某医生随机抽查10名某病患者的血红蛋白,如下:
病例号
1 23 4
------------------------------------------------------------------------------
mean = mean(x)
t = -2.7698
Ho: mean = 14.02
degrees of freedom = 9
Ha: mean < 14.02 Pr(T < t) = 0.0109
---------+--------------------------------------------------------------------
diff | 10 -.6799999 .5204272 1.645735 -1.857288 .4972881
------------------------------------------------------------------------------
[,unequal]
➢ unpaired 表示非配对的,如不选就作配对t检验 ➢ unequal 表示假设两组方差不齐,如不选表示假设两组方差达到齐性成组 Nhomakorabea计t检验
例:分别测得14例老年人煤饼病人及11例正常人的 尿中17 酮类固醇排出量(mg/dl)如下,试比较 两组的均数有无差别
病人: 2.90 5.41 5.48 4.60 4.03 5.10 4.97 4.24 4.36 2.72 2.37 2.09 7.10 5.92
Ha: mean(diff) > 0 Pr(T > t) = 0.8881
配对设计t检验
另一种思路: gen d=x0-x1 ttest d=0 结果一致
成组设计t检验
ttest 变量1=变量2, unpaired [unequal] ttest 变量,by(分组变量)[unequal] ttesti #obs1 #mean1 #sd1 #obs2 #mean2 #sd2
配对设计t检验
例:10例矽肺患者经某药治疗,其血红蛋白 (g/dl)如下:
病例号:
1
2
3
4
5
6
7
8
9 10
治疗前(x1): 11.3 15.0 15.0 13.5 12.8 10.0 11.0 12.0 13.0 12.3 治疗后(x2): 14.0 13.8 14.0 13.5 13.5 12.0 14.7 11.4 13.8 12.0
Ha: mean != 14.02 Pr(|T| > |t|) = 0.0218
Ha: mean > 14.02 Pr(T > t) = 0.9891
配对设计t检验
ttest 变量1=变量2
变量1与变量2必须成对输入,样本含量必须相 等,如有缺省值,则用小数点表示,但与之对 应的记录在计算时被忽略
样本含量:10 均 数: 12.59 g/dl 标准差: 1.63 g/dl
统计量与参数不同的两种可能
其一:抽样误差 (偶然的、随机的、较小的)
其二:本质上的差别 (必然的、大于随机误差)
样本均数与总体均数比较的t检验
ttest x=14.02
One-sample t test
------------------------------------------------------------------------------
医学统计学实习课
STATA软件的应用(3) ——定量资料的统计分析
定量资料的统计分析
➢ 样本均数与总体均数比较的t 检验 ➢ 配对设计t 检验 ➢ 成组设计t 检验 ➢ 单因素方差分析 ➢ 两因素方差分析 ➢ 方差齐性检验 ➢ 正态性检验
样本均数与总体均数比较的t检验
仅有数据之统计量时
ttesti #obs #mean #sd #val
mean(diff) = mean(x1 - x2)
t = -1.3066
Ho: mean(diff) = 0
degrees of freedom =
9
Ha: mean(diff) < 0 Pr(T < t) = 0.1119
Ha: mean(diff) != 0 Pr(|T| > |t|) = 0.2237