上海四校自招-数学交附卷解析

合集下载

上海中学自主招生数学试题(含解析)

上海中学自主招生数学试题(含解析)

2
4
【解析】(1)设正五边形 ABCDE ,联结 AC, BE ,且设它们交于点 M .可以计算得到
ABM ABC 36 ,因此 ABM ACB ,可得 AB2 AM AC .同时, BMC CBM 72 ,所以 BC MC .若正五边形边长为 1,则 AB BC CM 1,
设 AC x ,则由 AB2 AM AC 可列方程12 x(x 1) ,解得 x 5 1 (另一负根舍 2
2、设 a b 0 , a2 b2 4ab ,则 a b

ab
【答案】 3 .
【解析】由条件可得 (a b)2
6ab ,(a b)2
2ab .因此 (a b)2 (a b)2
6ab 2ab
3.由于 a b 0 ,
a b 0 ,所以 a b 3 . ab
3、若 x2 x 1 0 ,则 x3 2x2 3
【解析】(1) 0 f 1 f 2 f 3 3 , f x k 0 有三个实根 x 1, 2, 3 , f x k x 1 x 2 x 3 ,展开得 c k 6 ,6 c 9 ; (2)方程 f x 10x 0 有三个实根 x 1, 2,3 , 记第 4 个根为 x p ,则 f x 10x x p x 1 x 2 x 3 , f x x p x 1 x 2 x 3 10x , f 10 f 6 10 p 9 8 7 100 6 p 7 8 9 60 8104 .
,解得 3
m n
3 2 3 2
,另一解与
O
重合,舍去.因此 C(3 2
,
3). 2
7、一张矩形纸片 ABCD , AD 9 , AB 12 ,将纸片折叠,使 A 、 C 两点重合,折痕长是

上海四校自主招生-数学交附卷(高清打印)

上海四校自主招生-数学交附卷(高清打印)

⎨四校自招-数学·交附卷一、填空题1、在△ABC中,设CA=a,CB=b,P是中线AE与中线CF的交点,则BP= 。

(用a,b表示)2、已知a是正实数,则a+2的最小值等于a3、正整数360共有个正因数。

4、小明负责小组里4个同学的作业本的收发,但做事比较马虎。

如果他随机的分发4个同学的本子,那么他把每个同学的本子都发错的概率是5、计算:1=3-226、计算:1+1+ +1=1⨯22⨯32013⨯20147、一卷直径为10厘米的圆柱形无芯卷筒纸是由长为L厘米的纸绕80圈而成,那么L=8、满足方程:4+2=1的正整数有序数对的(m,n)个数为m n9、已知实数x满足2x2-4x=6x2-2x-1,则x2-2x的值为10、直线x-y=1与反比例函数y=k的图像如果恰有一个交点,则该交点必定在第象限。

x11、平面上边长为1的正方形ABCD绕着其中心旋转45︒得到正方形A'B'C'D',那么这两个正方形重叠部分的面积为12、请在下列表格的9个小方格中分别填入数字1、2、3、4、5、6、7、8、9,使得每行每列,以及两条对角线上的三个数之和相等(只需要填1种答案)13、在前1000个整数1,2,3,…,1000中,数码1共出现了次14、设A(0,-2),B(4,2)是平面直角坐标系中的两点,P是线段AB垂直平分线上的点,如果点P与点C(1,5)的距离等于22,则点P的坐标为15、方程组⎧217x+314y=2的解为⎩314x+217y=2 16、坐标原点(0,0)关于直线y=x+4翻折后的点的坐标为二、解答题17、已知,在△ABC中,AC=BC=1,∠C=36°,求△ABC的面积S18、已知二次函数y=ax2+bx+c的图像抛物线经过A(-3,0),B(1,0)两点,M(t,4)是其顶点。

(1)求实数a,b,c的值;(2)设点C(-4,-6),D(1,-1),点P在抛物线上且位于x轴上方,求当△CDP的面积达到最大时点P 的坐标。

绝对精品 上海市答案-四校自招模拟题-数学卷

绝对精品  上海市答案-四校自招模拟题-数学卷
四校自招针对性训练
学而思高中部 胡晓晨老师
Part 1 代数式变换
1.1 因式分解
【1】 x, y 是正整数,满足 1 4 1的数对 (x, y) _________________ xy
【解析】式子即 y 4x xy ,即 xy 4x y 0 ,即 xy 4x y 4 4
1 1 1 1 1 ,故 a 1 abc a
∴1 a 3 ∴a 2 则11 1
bc 2 1 1 1 1 ,故 b 2 2bc b 1 1 1 1 1 2 ,故 b 4 2bc bb b ∴2b 4 ∴b 3 ∴c 6 综上, a 2,b 3,c 6
即 (x 1)( y 4) 4
x, y 是正整数,则 x 1 0 ,则
x 1 4 x 1 2 x 11

y

4

1


y

4

2


y

4

4
因此, (x, y) (5,5) 或 (3, 6) 或 (2,8)
【2】 x, y 是正整数,且 x y ,则满足 4xy 15(x y) 的数对 (x, y) 有_____________个 【解析】 4xy 15x 15y 0 ,即16xy 60x 60y 0 即16x 60x 60y 225 225 即 (4x 15)(4y 15) 225 225 32 52 ,则 225 1 225 375 5 45 9 25 1515 经检验,当 (4x 15, 4y 15) (1, 225) 或 (5, 45) 或 (9, 25) 时, x, y 有正整数解 因此满足题意的数对有 3 个

上海市交通大学附属中学(交大附中)2019年-自主招生数学试卷 (PDF版 含答案)

上海市交通大学附属中学(交大附中)2019年-自主招生数学试卷  (PDF版 含答案)

2019年交大附中自招数学试卷一、填空题1、求值:cos30sin 45tan 60⋅⋅=.2、反比例函数1y x =与二次函数243y x x =-+-的图像的交点个数为.3、已知210x x --=,则3223x x -+=.4、设方程()()()()()()11111211210x x x x x x ++++++++=的两根为1x ,2x ,则()()1211x x ++=.5、直线y x k =+(0k <)上依次有,,,A B C D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k =.6、交大附中文化体行设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体育课,英才班部分学生参加篮球小组、其余学生参加排球小组。

篮球小组中男生比女生多五分之一,排球小组男女生人数相等;一段时间后,有一名男生从篮球小组转到排球小组,一名女生从排球小组转到篮球小组,这样篮球小组的男女生人数相等,排球小组女生人数比男生人数少四分之一,问英才班有人.7、已知,,,a b c n 是互不相等的正整数,且1111a b c n +++也是整数,则n 的最大值是.8、如图,ABCDE 是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.9、若关于x 的方程()()2460x x x m --+=的三个根恰好可以组成某直角三角形的三边长,则m =.10、设ABC 的三边,,a b c 均为正整数,且40a b c ++=,当乘积abc 最大时,ABC 的面积为.11、如图,在直角坐标系中,将AOB 绕原点旋转到OCD ,其中()3,1A -,()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为.二、解答题12、如图,数轴上从左到右依次有,,,A B C D 四个点,它们对应的实数分别为,,,a b c d ,如果存在实数λ,满足:对线段AB 和CD 上的任意M W,其对应的数为x ,实数xλ对应的点N 仍然在线段AB 或CD 上,则称(),,,,a b c d λ为“完美数组”。

上海市区域四校联考2023_2024学年高一第一学期12月月考数学测检测模拟试题(附解析)

上海市区域四校联考2023_2024学年高一第一学期12月月考数学测检测模拟试题(附解析)

f (x) f (x) ax2 2x, x 1 ,分
类讨论此时函数的值域即可.
【详解】函数
f
(x)
x 1, x 1 ax2 2x, x
1 的值域为
R

当 x 1 时, x 1 2 , f x2, ,
( , 2] f (x) f (x) ax2 2x, x 1
则有

a 0 时, f (x) 2x, x 1 ,不合题意,
要 x0 R , f (x0 ) M ,命题②错误;
若对于任意的 x1, x2 R x1
x2 ,都有
f
x1 f x2 0
x1 x2
成立,
则任意的 x1 x2 ,有 x1 x2 0 ,都有 f x1 f x2 0 ,即 f x1 f x2 ,
所以 y f (x) 在 R 上严格递减,命题③正确;
(3)当 a 0 时,求函数 y f (x) 在区间[2,4] 上的最小值.
20.在数学中,双曲函数是与三角函数类似的函数,最基本的双曲函数是双曲正弦函数与双
sinh(x) ex ex
cosh(x) ex ex
曲余弦函数,其中双曲正弦:
2 ,双曲余弦.
2 ( e 是自然对数
的底数, e 2.71828… )
. 二、选择题(本大题共有 4 小题,满分 18 分,其中第 13、14 题每题 4 分,第 14、15 题每题 5 分) 13.下列选项中的两个函数表示同一函数的是( )
A. f (x) x 与 g(x) = elnx
g(x) 2x2
B. f (x) 2 | x |与
|x|
C. f (x)
即 a 的取值范围为 (, 2) (2, ) ,

上海市上海交通大学附属中学等四校联考2024-2025学年高一上学期10月数学试卷

上海市上海交通大学附属中学等四校联考2024-2025学年高一上学期10月数学试卷

上海市上海交通大学附属中学等四校联考2024-2025学年高一上学期10月数学试卷一、填空题1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=.2.不等式3102x x +≤-的解集是.3.已知,R b c ∈,关于x 的不等式20x bx c -+<的解集为()3,2-,则b c +=.4.已知方程22430x x +-=的两实根为12,x x ,则12x x -的值为.5.若:||1x m α-<是:04x β<<的充分非必要条件,则实数m 的取值范围是.6.化简:211133221566425a b a b a ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭=.(其中0a >,0b >)7.已知,0x y >且31x y +=,则11x y+的最小值为8x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是.9.已知实数a b c >>,且0a b c ++=,则c a 的取值范围是.10.若关于x 的不等式()2220x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为.11.已知a ,b ,c 不全为无理数,则关于三个数a b +,b c +,c a +,下列说法正确的是(把所有正确选项都填上)①可能均为有理数②可能均为无理数③可能恰有一个为有理数④可能恰有两个为有理数12.已知二次函数2()(0)f x ax bx c a =++>,若集合{()0,13}A xf x x ==≤≤∣中恰有两个元素,则(2)f a 的取值范围为.二、单选题13.下列结论中错误的有()A .若a ,b 为正实数,a b >,则3322a b a b ab +>+B .若a ,b ,m 为正实数,a b <,则a m ab m b+<+C .若22a b c c >,则a b >;D .当0x >时,2xx+的最小值为14.下列问题中,a ,b 是不相等的正数,比较x ,y ,z 的表达式.下列选项正确的是()问题甲:一个直径a 寸的披萨和一个直径b 寸的披萨,面积和等于两个直径都是x 寸的披萨;问题乙:某人散步,第一圈的速度是a ,第二圈的速度是b ,这两圈的平均速度为y ;问题丙:将一物体放在两臂不等长的天平测量,放左边时右侧砝码质量为a (天平平衡),放右边时左边砝码质量为b (天平平衡),物体的实际质量为z .A .x y z >>B .x z y >>C .z x y >>D .z y x>>15.设1237 A A A A 、、、、是均含有2个元素的集合,且171(1,2,3,,6)i i A A A A i +=∅==∅ 、,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .4B .5C .6D .716.已知集合S 是由某些正整数组成的集合,且满足:若a S ∈,则当且仅当(a m n =+其中,m n S ∈且)m n ≠,或(a p q =+其中*,,,Z p q S p q ∉∈且)p q ≠.现有如下两个命题:①4S ∈;②集合{}35,N x x n n S =+∈⊆.则下列选项中正确的是()A .①是真命题,②是真命题;B .①是真命题,②是假命题C .①是假命题,②是真命题;D .①是假命题,②是假命题.三、解答题17.设集合{}260P x x x =--<,{}23Q x a x a =≤≤+.(1)若Q P Q P ≠∅= 且,求实数a 的取值范围;(2)若P Q =∅ ,求实数a 的取值范围.18.已知函数()y f x =满足2()21f x x a x a =-+-+(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥恒成立,求实数a 的取值范围.19.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少?(2)为了扩大商品的影响力,提高年销售量,公司决定明年对该商品进行全面技术革新和营销策略改革,并提高价格到x 元,公司拟投入()216006x -万元作为技改费用,投入50万元作为固定宣传费用,试问:该商品明年的销售量a 至少达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.20.已知a b c d ,,,为正实数,利用平均不等式证明(1)(2)并指出等号成立条件,然后解决(3)中的实际问题.(1)请根据基本不等式2a b +≥(,a b R +∈),证明:4a b c d +++≥;(2)请利用(1)的结论,证明:3a b c ++≥(3)如图,将边长为1米的正方形硬纸板,在它的四个角各减去一个小正方形后,在这层一个无盖纸盒.如果要使制作的盒子容积最大,那么剪去的小正方形的边长应为多少米?21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.。

2024年交大附中自主招生数学试题

2024年交大附中自主招生数学试题

2024年交大附中自主招生数学试题2024年交大附中自主招生数学试题的挑战与应对交通大学附属中学自主招生考试是一场极具挑战性的数学考试,而2024年的考试试题更是引人注目。

在这场考试中,考生们将面临一些颇具难度的问题,要求他们展现出卓越的数学思维和解决问题的能力。

本文将结合具体试题,为读者解析这场考试的挑战性,并提供一些应对策略。

首先,2024年交大附中自主招生数学试题的难点表现在以下几个方面。

首先,题目涉及的知识面非常广,包括代数、几何、概率与统计等多个领域。

考生需要在短时间内掌握并运用这些知识,无疑是一大挑战。

其次,题目对考生的数学思维能力和逻辑推理能力要求极高,需要考生具备严密的逻辑推理能力和深入的数学思维能力。

最后,试题中还出现了一些需要运用复杂数学模型和方法的题目,要求考生具备较高的数学建模能力和解决问题的能力。

针对这些难点,考生可以采取以下几种应对策略。

首先,考生需要全面复习数学知识,确保自己对各个领域都有深入的理解和掌握。

在复习过程中,考生可以结合历年自主招生试题进行练习,提高自己的应试能力。

其次,考生需要注重培养自己的数学思维能力和逻辑推理能力,通过大量的练习和反思来提升自己的数学素养。

最后,考生还需要加强对数学方法和技术的应用,通过模拟考试和练习,提高自己的解题能力和应变能力。

在应对2024年交大附中自主招生数学试题的过程中,考生还需要注意一些问题。

首先,要合理规划答题时间,避免在难题上过度纠结,影响整体成绩。

其次,要注重解题的准确性和规范性,避免因为细节问题而丢分。

最后,要保持冷静,遇到难题时要保持冷静,避免因为紧张而犯错。

总之,2024年交大附中自主招生数学试题是一场极具挑战性的考试,要求考生具备全面的数学知识、深刻的数学思维能力和灵活的解题技巧。

考生在备考过程中需要全面复习数学知识,注重培养数学思维能力和解题技巧,同时保持良好的心态和冷静的态度,以应对这场极具挑战性的考试。

2020年上海交通大学附属中学自主招生数学试卷 解析版

2020年上海交通大学附属中学自主招生数学试卷  解析版

2020年上海交大附中自主招生数学试卷一、填空题1.直线l1∥l2∥l3∥l4,其中l1,l2之间距离和l3,l4之间距离均为1,l2,l3之间距离为2.正方形ABCD的四个顶点分别在l1,l2,l3,l4上,则S四边形ABCD=.2.设f(x)=,则f()+f()+…+f()+f(2)+f(3)+…+f(99)=.3.设第n行第m个数为a n,m.满足a n,n=a n,1=,a n,m=a n+1,m+a n+1,m+1,求a12,11=.二、解答题4.设P(x1,y1)、Q(x2,y2),定义PQ的“xx距离”为|x1﹣x2|+|y1﹣y2|,求下列情况中PQ的“xx距离”的最小值.(1)P(﹣2,2),Q在y=x﹣1上;(2)P(﹣2,2),Q在y=x2﹣1上;(3)P在y=x﹣1上,Q在y=x2﹣1上;5.试用直尺,圆规在图中作出∠ACB=90°,CA=CB的△ACB,其中A在找段a上,B 在线段b上.6.我们知道存在无穷多组最大公数约为1的正整数a、b、c使a2+b2=c2,求证:存在无穷多组最大公约数为1的正整数r、s、t,其中r<s<t,使得(rs)2+(rt)2=(st)2.7.矩形ABCD,AB=3,BC=4,联结AC,若以B为圆心,r为半径的圆与线段AC,AD,CD都有公共点,则r的取值是.8.解关于x的方程a(x﹣1)++3=0.9.(1)如图1,求证:∠AOD=2∠ACD;(2)如图2,AC⊥BD,M是AB中点,求证:①EM⊥CD;②CD=2OM.2020年上海交大附中自主招生数学试卷参考答案与试题解析一、填空题1.直线l1∥l2∥l3∥l4,其中l1,l2之间距离和l3,l4之间距离均为1,l2,l3之间距离为2.正方形ABCD的四个顶点分别在l1,l2,l3,l4上,则S四边形ABCD=10.【分析】过A作AE⊥l1于E,过C点作CF⊥l2于F,根据AAS定理证得△ABE≌△BCF,得到AE=BF=1,EB=CF=3,由勾股定理求得AB2=10,即为正方形的面积.【解答】解:过A作AE⊥l1于E,过C点作CF⊥l2于F,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠BCF=90°﹣∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=1,EB=CF=3,∴AB2=AE2+EB2=12+32=10,∴S正方形ABCD=10,故答案为:10.2.设f(x)=,则f()+f()+…+f()+f(2)+f(3)+…+f(99)=98.【分析】通过计算f(2)+f()=1,f(3)+f()=1…,可以推出f()+f()+…+f()+f(2)+f(3)+…+f(99)的结果.【解答】解:∵f(2)==,f()==,f(2)+f()=1,f(3)==,f()==,f(3)+f()=1,…f(99)==,f()==,f(99)+f()=1,∴f()+f()+…+f()+f()+f(2)+f(3)+…+f(98)+f(99)=98×1=98,故答案为:98.3.设第n行第m个数为a n,m.满足a n,n=a n,1=,a n,m=a n+1,m+a n+1,m+1,求a12,11=.【分析】观察已知所给等式的规律即可求出结果.【解答】解:因为a n,n=a n,1=,所以a11,11=a11,1=,a12,12=a12,1=,因为a n,m=a n+1,m+a n+1,m+1,所以a12,11=a11,11﹣a12,12=﹣=.故答案为:.二、解答题4.设P(x1,y1)、Q(x2,y2),定义PQ的“xx距离”为|x1﹣x2|+|y1﹣y2|,求下列情况中PQ的“xx距离”的最小值.(1)P(﹣2,2),Q在y=x﹣1上;(2)P(﹣2,2),Q在y=x2﹣1上;(3)P在y=x﹣1上,Q在y=x2﹣1上;【分析】(1)根据题意,可以写出PQ的“xx距离”,然后利用分类讨论的方法,可以得到PQ的“xx距离”的最小值;(2)根据题意,可以写出PQ的“xx距离”,然后利用分类讨论的方法,可以得到PQ 的“xx距离”的最小值;(3)根据题意,可以写出PQ的“xx距离”,然后根据绝对值的性质,可以得到PQ的“xx距离”的最小值.【解答】解:(1)由题意可得,PQ的“xx距离”是:d=|x﹣(﹣2)|+|(x﹣1)﹣2|=|x+2|+|x﹣3|,当x<﹣2时,PQ的“xx距离”是:d=﹣(x+2)+[﹣(x﹣3)]=﹣x﹣2﹣x+3=﹣2x+1>5,当﹣2≤x≤3时,PQ的“xx距离”是:d=x+2+[﹣(x﹣3)]=x+2﹣x+3=5,当x>3时,PQ的“xx距离”是:d=x+2+x﹣3=2x﹣1>5,由上可得,PQ的“xx距离”的最小值是5;(2)由题意可得,PQ的“xx距离”是:|x﹣(﹣2)|+|(x2﹣1)﹣2|=|x+2|+|x2﹣3|,当x≤﹣2时,PQ的“xx距离”是:d=﹣(x+2)+x2﹣3=x2﹣x﹣5=(x﹣)2﹣≥1;当﹣2<x≤时,PQ的“xx距离”是:d=x+2+x2﹣3=(x+)2﹣≥2﹣;当<x≤时,PQ的“xx距离”是:d=x+2﹣x2+3=﹣(x﹣)2+>2﹣;当x>时,PQ的“xx距离”是:d=x+2+x2﹣3=(x+)2﹣>2+;由上可得,PQ的“xx距离”的最小值是2﹣;(3)设点P的坐标为(x1,x1﹣1),点Q的坐标为(x2,x22﹣1),PQ的“xx距离”是:d=|x1﹣x2|+|(x1﹣1)﹣(x22﹣1)|=|x1﹣x2|+|x1﹣x22|≥0,当x1=x2时,d=0,故PQ的“xx距离”的最小值是0.5.试用直尺,圆规在图中作出∠ACB=90°,CA=CB的△ACB,其中A在找段a上,B 在线段b上.【分析】①过点C作CD⊥直线b于D.②在直线b上截取DE=CD.③过点E作EA ⊥b交直线a于A.④连接CA,以C为圆心,CA为半径画弧交线段DE于B,连接AB,BC,△ABC即为所求.【解答】解:如图,△ABC即为所求.6.我们知道存在无穷多组最大公数约为1的正整数a、b、c使a2+b2=c2,求证:存在无穷多组最大公约数为1的正整数r、s、t,其中r<s<t,使得(rs)2+(rt)2=(st)2.【分析】先证明两两互素的a、b、c有无穷多组;然后基于a、b、c构造r、s、t.故设a<b<c,取r=ab,s=ac,t=bc,此时根据r<s<t且r<s<t的最大公数约为1进行推理论证.【解答】证明:去互素的两数m、n,使a=m2﹣n2,b=2mn,c=m2+n2.此时a、b、c两两互素且a2+b2=c2,由于互素的正整数组(m,n)有无穷多组,故存在无穷多组满足(a,b,c).不妨设a<b<c,取r=ab,s=ac,t=bc,此时r<s<t且r<s<t的最大公数约为1,此时(rs)2=a4b3c2,(rt)2=a2b4c2,(st)2=a2b3c4,故(rs)2+(rt)2=(st)2.7.矩形ABCD,AB=3,BC=4,联结AC,若以B为圆心,r为半径的圆与线段AC,AD,CD都有公共点,则r的取值是r=4.【分析】当⊙B经过点C时,满足条件.【解答】解:如图,当r<BC时,和CD无交点,当r>BC时,和AC无交点,∴r=BC=4时,以B为圆心,r为半径的圆与线段AC,AD,CD都有公共点.故答案为:r=4.8.解关于x的方程a(x﹣1)++3=0.【分析】方程整理后,根据a的范围分类讨论求出解即可.【解答】解:方程整理得:+=﹣3,去分母得:ax2+3x+2=0,当a=0时,方程为3x+2=0,即x=﹣;当a>时,方程无解;当a=时,方程的解为x=﹣;当a<且a≠0时,方程的解为x1=,x2=.9.(1)如图1,求证:∠AOD=2∠ACD;(2)如图2,AC⊥BD,M是AB中点,求证:①EM⊥CD;②CD=2OM.【分析】(1)如图1中,连接CO,延长CO到T.利用三角形的外角的性质以及等腰三角形的性质解决问题即可.(2)①如图2﹣1中,延长ME交CD于H.想办法证明∠D+∠DEH=90°,可得结论.②如图2﹣2中,延长BO交⊙O于P,连接PD,P A,AD.这部分证明CD=P A,P A=2OM即可解决问题.【解答】(1)证明:如图1中,连接CO,延长CO到T.∵∠TOD=∠D+∠DCO,∠AOT=∠A+∠AOC,∴∠AOD=∠TOD+∠TOA=∠D+∠DCO+∠ACO+∠A,∵OD=OC=OA,∴∠D=∠OCD,∠A=∠ACO,∴∠AOD=2∠ACD.(2)①证明:如图2﹣1中,延长ME交CD于H.∵AC⊥BD,∴∠AEB=90°,∵AM=BM,∴ME=AM=BM,∴∠A=∠D=∠AEM,∵∠AEM+∠MEB=90°,∠MEB=∠DEH,∴∠D+∠DEH=90°,∴∠DHE=90°,∴ME⊥CD.②证明:如图2﹣2中,延长BO交⊙O于P,连接PD,P A,AD.∵AM=MB,OP=OB,∴AP=2OM,∵PB是直径,∴∠PDB=90°,∵AC⊥BD,∴∠AEB=∠PDB=90°,∴PD∥AC,∴∠ADP=∠DAC,∴=,∴CD=AP,∴CD=2OM.。

2025届四校联考高三数学期中考试试卷及答案

2025届四校联考高三数学期中考试试卷及答案

上海(四校联考)2024学年高三数学第一学期期中考试试卷考试时间:120分钟满分:150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合{}265<0A x x x =-+,{}0,1,2B =,则A B ⋂=___________.【答案】:{}22.已知向量(1,2)a =- ,(3,2)b = ,则b 在a方向上的数量投影为_____________.【答案】:52.53.曲线xy e =在点(01),处的切线方程为_______.【答案】:1y x =+4.某老年健康活动中心随机抽取了6位老年人的收缩压数据,分别为120,96,153,146,112,136,则这组数据的40%分位数为__________.【答案】:1205.二项式6(3x 的展开式中,常数项为_______.【答案】:18-6.关于x 的方程100910152024x x x +++-=的解集为__________.【答案】:{}07.已知>0x ,>0y ,4x y xy +=,则x y +的最小值为________.【答案】:98.《九章算术》卷五《商功》中有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面是相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),则《商功》中提及的这个刍童的外接球表面积为________平方尺.【答案】:41π9.意大利著名画家、自然科学家、工程师达芬奇在绘制作品《抱银貂的女人》时,曾仔细思索女人脖子上黑色项链的形状,这就是著名的悬链线形状问题.后续的数学家对这一问题不断研究,得到了一类与三角函数性质相似的函数:双曲函数.其中双曲正弦函数为2x xe e shx --=,并且双曲正弦函数为奇函数,若将双曲正弦函数的图象向右平移12个单位,再向上平移2个单位,得到函数()y f x =的图象,并且数列{}n a 满足条件(2025n na f =,则数列{}n a 的前2024项和2024S =________________.【答案】:202310.已知椭圆Γ:22143x y +=,点1F 和2F 分别是椭圆的左、右焦点,点P 是椭圆上一点,则12PF F △内切圆半径的最大值为__________.【答案】:404811.在ABC △中,a ,b ,c 分别是A ,B ,C 的对边,若2222024a b c +=,则2tan tan tan (tan tan )A BC A B =+________.【答案】:3312.若关于x 的方程2(ln )20x x e a x x a -⋅-+-=在(0,1]上有两个不等的实根,则实数a 的取值范围是________.【答案】:311(,]3e e二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)13.设z C ∈,则1z R z+∈是1z =的()条件.A .充分非必要B .必要非充分C .充分必要D .既不充分也不必要【答案】:B14.在ABC △中,10BC =,M 为BC 中点,4AM =,则AB AC ⋅= ().A .9-B .16-C .9D .16【答案】:14. A15.已知定义在R 上的函数()y f x =,其导数为()f x ',记()()g x f x '=,且()()4f x f x x --=,()(2)0g x g x +-=,则下列说法中正确的个数为().(1)(0)1g =;(2)()f x y x=的图象关于(0,2)对称;(3)()(2)0f x f x +-=;(4)21()nk g k n n==-∑.A .1个B .2个C .3个D .4个【答案】:B16.已知正项数列{}n a 满足1112ln n n n a a a ++=-,下列说法正确的是().A .当10<<1a 时,数列{}n a 单调递减B .当1>1a 时,数列{}n a 单调递增C .当10<<1a 时,存在正整数0n ,当0n n ≥时,01<2n n a D .当1>1a 时,存在正整数0n ,当0n n ≥时,0<2n n a 【答案】:D三、解答题(本大题共有5题,满分78分)17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某市数学竞赛初赛结束后,为了解竞赛成绩情况,从所有学生中随机抽取100名学生,得到他们的成绩,将数据分成五组:[50,60),[60,70),[70,80),[80,90),[90,100],并绘制成如图所示的频率分布直方图:(1)若只有前35%的学生能进决赛,则入围分数应设为多少分?(2)采用分层随机抽样的方法从成绩为[80,100]的学生中抽取容量为6的样本,再从该样本中随机抽取2名学生进行问卷调查,设X 为其中达到90分及以上的学生的人数,求X 的概率分布及数学期望.【解析】:(1)成绩在区间[80,100]的比例为:(0.0100.005)100.150.35+⨯=<;(2分)成绩在区间[70,100]的比例为:0.150.04100.550.35+⨯=>,因此65%分位数位于区间[70,80);(4分)因此入围分数为:0.40.27010750.4-+⨯=,因此入围分数应设为75分;(6分)(2)在这六个人中,有两人的分数在90分及以上,因此0,1,2X =,(0)P X =2426C C =25=(8分)1124268(1)15C C P X C ⋅===(10分)(2)P X =2226C C=115=,则X 的概率分布为:01228151515⎛⎫ ⎪ ⎪ ⎪⎝⎭;(12分)所以X 的数学期望为812[]1215153E X =⨯+⨯=.(14分)18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数()y f x =是定义在(1,1)-上的奇函数,并且当0x >时,()cos sin(223x x f x π=⋅+2cos 2x(1)求函数()y f x =的表达式;(2)求关于x 的不等式21(log 1)()(0)2f x f x f ++-<的解集.【解析】:(1)当01x <<时,()fx 1sin()234x π=-+;(2分)当0x =时,()0f x =;当10x -<<时,0x ->,()()f x f x -=-=1sin(234x π+-;(4分)因此1sin(1234()0, 0133sin()1 0234x x f x x x x ππ⎧-+⎪⎪⎪==⎨⎪⎪+--⎪⎩<<<<;(6分)(2)当(0,1)x ∈时,13336x ππππ---<<<,因此有()y f x =在(0,1)上严格增;(8分)而当0x =时1333sin()02342x π-+=>,因此有()y f x =在(1,1)-上严格增;原不等式可化为:21(log 1)()2f x f x +-<;(10分)而()y f x =是定义在(1,1)-上的严格增函数,所以221log 1111121log 12x x x x ⎧⎪-+⎪⎪--⎨⎪⎪+-⎪⎩<<<<<;(12分)因此不等式的解集为11(,42.(14分)19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在三棱锥P ABC -中AC BC ⊥,平面PAC ⊥平面ABC ,2PA PC AC ===,4BC =,E ,F 分别是PC ,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线EF ⊥平面PAC ;(2)若直线l 上存在一点Q (与B 都在AC 的同侧),且直线PQ 与直线EF 所成的角为4π,求平面PBQ 与平面AEF 所成的锐二面角的余弦值.【解析】:(1)证明:BC AC ⊥ ,平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =BC ∴⊥平面PAC ;(2分)又E 、F 分别为PB 、PC 的中点,//BC EF ∴;(4分)EF ∴⊥平面PAC ;(6分)(2)BC AC ⊥ ,∴以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,过C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,则(2,0,0)A ,(0,4,0)B,P,1(,0,)22E,1(,2,22F ,而//EF BC ,BC 不在平面AEF 上,EF ⊂平面AEF ,//BC ∴平面AEF ,//l BC ∴,设Q 点坐标为(2,,0)(0)y y ≥,(1,PQ y = ,(0,2,0)EF = ,cos ,PQ EF ∴=2=,即2y =,则Q 点坐标为(2,2,0);(8分)设平面PBQ 的法向量000(,,)n x y z = ,即0n PQ n BQ ⎧⋅=⎪⎨⋅=⎪⎩,即0000020220x y x y ⎧+=⎪⎨-=⎪⎩,取01x =,可得n = ;(10分)设平面AEF 法向量为111(,,)m x y z = ,则0m AE m EF ⎧⋅=⎪⎨⋅=⎪⎩,取11x =,可得m = ;(12分)cos ,5m n ∴== ,即平面PBQ 与平面AEF所成的锐二面角的余弦值为5.(14分)20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知点G 是圆22:(1)16T x y ++=上一动点(T 为圆心),点H 的坐标为(1,0),线段GH 的垂直平分线交线段TG 于点R ,动点R 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的两个动点,O 是坐标原点,直线OM 、ON 的斜率分别为1k 和2k 且1234k k =-,则MON △的面积是否为定值?若是,求出这个定值;若不是,请说明理由;(3)设P 为曲线C 上任意一点,延长OP 至Q ,使3OQ OP =,点Q 的轨迹为曲线E ,过点P 的直线l 交曲线E于A 、B 两点,求AQB △面积的最大值.【解析】:(1)RH RG =,则42RT RH RT RG GT TH +=+===>,则曲线C 是以(1,0)-和(1,0)为焦点,4为长轴的椭圆;(2分)设椭圆方程为22221x y a b +=,则2,1a c ==,2223b a c =-=,曲线C :22143x y +=;(4分)(2)设(2cos )M ϕϕ,(2cos )N θθ,则123sin 3sin 2cos 2cos k k ϕθϕθ==⋅34-,即cos()0θϕ-=;(7分)12cos 2cos )2MON S ϕθθϕθϕ∴=-=-=△为定值;(10分)(3)设点(,)Q x y ,则点(,33x y P ,代入椭圆方程得到曲线E :2213627x y +=;当直线l 的斜率不存在时:设:([2,2])l x n n =∈-,代入E 中有223274y n =-,则2AQB AOB S S ==≤△△(12分)当直线l 斜率存在时:设:l y kx m =+,11(,)A x y ,22(,)B x y ,代入E 的方程:222(43)841080k x mkx m +++-=,则122843km x x k -+=+,2122410843m x x k -=+;(14分)122AQB AOBS S m x x ==-==△△;(16分)而l 与椭圆C 有公共点,代入得:222(43)84120k x kmx m +++-=,由0∆≥有2243k m +≥,记2243m t k =+,则AQB S =≤△,综上,AQB △面积的最大值为.(18分)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()y f x =的表达式为()(2ln )()f x x ax x a R =-∈.(1)当1a =时,求()y f x =的单调增区间;(2)若当1x >时,()1f x >恒成立,求a 的取值范围;(3)证明:5740472ln1012233420232024+++⨯⨯⨯ >.【解析】:(1)1a =时,2()(2ln )2ln f x x x x x x x =-=-,则()2(ln 1)f x x x '=--(2分)令()ln 1g x x x =--,则1()1g x x'=-,则()g x 在(0,1)上严格减,(1,)+∞上严格增,则()(1)0g x g ≥=,即()f x 在(0,)+∞上严格增,因此函数()y f x =的增区间为(0,)+∞;(4分)(2)()22(1ln )2(ln 1)f x ax x ax x '=-+=--,记()ln 1h x ax x =--,则1()h x a x'=-,若1a ≥,则1a1≤,即1x >时()0h x >,()f x ∴在(1,)+∞上严格增,()(1)1f x f a >=>,满足要求;(6分)若(0,1)a ∈,则11a >,1(1,x a ∈时()0h x <,则1()(1,f x a 在上严格减,故当1(1,x a ∈时,()(1)1f x f a <=<,不满足要求;(8分)若(,0]a ∈-∞,则()0h x <,()f x 在(1,)+∞上严格减,则()(1)1f x f a <=<,不满足要求;综上,a 的取值范围是[1,)+∞.(10分)(3)由(2)可知1a =时2()2ln 1f x x x x =->,则12ln (1)x x x x <->,取21n x n +=+,则221232ln112(1)(2)n n n n n n n n n ++++<-=+++++,即2322ln (1)(2)1n n n n n ++>+++;(14分)20222022112323420242ln 2ln()2ln 2012(1)(2)1232023n n n n n n n ==++∴>=⨯⨯⨯=+++∑∑ ,即572334+⨯⨯40472ln101220232024++⨯ >.。

上海四校自招-数学华二卷解析

上海四校自招-数学华二卷解析

a - -1. a + a -1 = 4 , a 2 + a -2 =14 , 四校自招-数学·华二卷 a 4 + a -4 = 194学而思高中部 胡晓晨老师 2. S = 1 ⨯(6 ⨯ 3) ⨯(6 ⨯ 4) = 216ABC 2 5 5 25【高中知识点】解三角形——三角形面积公式a 2 +b 2 3. a 2 a 2 + b 2+ = 4 , b 22 2 + = 2 , a 2 b 2 b 4 + a 4 = 2a 2b 2 ,a 2 =b 2若 a = b , ( b )2013 ( a )2014 = 0a b若 a = -b , ( b )2013 ( a )2014 = -2 a bans 0 或-24. 第五列B+A=D ,结合第一列A+B=D ,可得第二列B+C=B 没有进位∴ C = 0∴ A+B=D 也没有进位,算式即A B B 0 B+ B 0 A D AD B D D D 而 A ≥ 1, B ≥ 1,且 A ≠ B∴ D = A + B ≥ 3D 可取到3, 4,,9 ,共 7 个值5. 40 ⨯ 20 ⨯10= 2100 ⨯ 40 【注】我觉得答案也可以是-40 cm ,砖扔到鱼缸里,鱼缸就被砸破了 6. 连 BF , JH ,过 H 作 HM ⊥ AJ 于 M ,则FBE ≌HJM∴ MJ = BE∴ AJ - DH = AJ - AM = MJ = BE∴ AJ = DH + BE = JE + BE = BJ∴ AJ = 1 2b3 ∴ ∠GJA = 60︒ ∴ ∠IJE = 30︒ 设 IJ = x ,则 BE = x , JE = 3 x , BJ = x +2 3 x = 1 2 2∴ x = 2 - 7. 题目不全8. 【注】题目表述应为内切球,不是内切圆大正方体边长2 cm, 其内切球直径2 cm ,也作为小正方体的外接球2∴小正方体边长cm小正方体表面积6⨯( 2 )2 = 8 cm 23【高中知识点】立体几何——正方体与球(a - b )2 + (b - c )2 + (c - a )2 9. = 16 + 36 +100 = 8 +18 + 50 = 762 210. 1- 4 ⨯ 4 = 75 6 15【高中知识点】概率——对立事件发生的概率11. (-8, 4)12. 【注】题目应当补充条件:行驶的时间刚好为整数(单位:小时)(100c +10b + a ) - (100a +10b + c ) = 55t即99(c - a ) = 55t9(c - a ) = 5t∴ c - a = 5,t = 9∴ a = 1, c = 6∴ b = 033 3 a 2 + b 2 + c 2 = 3713. (2x 2 - 3)(7 x - 4) + (-5x + 2) = 14 x 3 -8x 2 - 26 x +1414. 【注】题目意思应表述为,最大的正整数最大值可能为多少 ans 35 ;可构造出11个数分别为1, 1, 8, 8, 8, 9, 9, 10, 10, 11, 3515. 设 AD = 1 , DC = 2 ,则 AE = 1 ,DF = 2AD = 2 , 3AF = ,EF = AF - AE = - 1 = 23 31⨯ 2 ∴ S DEF S ABCD = 2 3 = 1 = 3 2 2 3 6二、16. C17. x 0 > -118. 4【高中知识点】解析几何——点的轨迹问题19. 设 BC = x ,则S = (x - a )3b -(x - 4b )a = (3b - a )x + ab ,当a = 3b 时, S 不变ans B三、20. 1 x - 2 = a + 32若 a + 3 < 0 ,即a < -3 ,原方程无解若 a + 3 = 0 ,即a = -3,原方程即 1 x - 2 = 0 , x = 4 2若 a + 3 > 0 ,即a > -3,原方程即 1 x - 2 = ±(a + 3) , x = 2a +10 或-2a - 22【高中知识点】绝对值不等式⎩ ⎩ OE ⎬OA = ⎬O C21. ⑴设购进甲、乙两种手机分别 x , y 台,则⎧0.4x + 0.25y = 15.5⎨0.03x + 0.05y = 2.1⎧x = 20解得⎨ y = 30答:购进甲手机20 台,乙手机30 台⑵设增加购进乙手机数量为a 台,则甲手机减少 a 台,则2(20 - a ) ⨯ 0.4 + (30 + a ) ⨯ 0.25 ≤ 162解得a ≤ 10(20 - a) ⨯ 0.03 + (30 + a ) ⨯ 0.05 = 0.035a + 2.1 ≤ 2.452 ∴当a = 10 时,利润最大,此时乙手机共40 台,甲手机共15 台答:购进甲手机15 台,乙手机40 台,可达到利润最大,最大为2.45 万元22. ⑴设OD 与 AC 交于点 E ,连OC则 AC ⊥ CB ⎫⇒ OE ⊥ AC ⇒ EA = EC ⇒ DA = DC⎭DA = DC ⎫ ⇒DAO ≌DCO ⇒ ∠DCO = ∠DAO = 90︒⎭∴ DC 为切线,即 DE 为切线⑵ CE= 2 ,则 DC = 1DE 3 DE 3∠ODA = ∠ODE ⇒ OA= DA = DC = 1设OA = x ,则OE = 3x∴ OB = x , BE = 2xOE DE DE 3CE 为切线, ∠ECB = ∠CAE ⇒ ECB ∽EAC∴ EC = EB= CBEA EC AC 设CB = a ,则CA = ⇒ EC = 2 2x ⇒ 2aCB = 2CA 2CB 2 + CA 2 = AB 23 n 2 (n +1)2 + n 2 + (n +1)2 n 2 (n +1)2 + 2n (n +1) +1 (n (n +1) +1)22 ∴ a 2 + 2a 2 = 4x 2 ⇒ a = 2 x ⇒ cos ∠ABC = CB = CA 2 x3 = 32x 323.⑴-1 = -1 = -1n (n +1) = -1 = n (n +1) +1 -1 = 1= 1 -1n (n +1)n (n +1) n (n +1) n (n+1)n n +1⑵原式 = (1+1- 1) + (1 + 1 - 1) ++ (1+ 1 - 1 ) = 9 + (1 - 1 ) = 992 23 【高中知识点】数列——裂项求和9 10 10 1024. ⑴ y = -x 2 - 2x + 3⑵①PDE 为直角三角形,且∠P = ∠BAC = 45︒∴ PE = 2PD = 2DE∴ C PDE = PE + DE + PD = ( +1)PE设 P (m , -m 2 - 2m + 3) ,易求得直线 AB 解析式为 y = x + 3则 E (m , m + 3)∴ PE = -m 2 - 3m = -(m + 3)2 + 92 4∴当m =- 3 时, PE 取到最大值 9 , C = ( +1)PE 取到最大值 9( 2 +1)2 此时 P (-3 , 15)2 44 PDE 4②若 N 在对称轴上,则 PF = 2 ,即-m 2 - 2m + 3 = 2∴ m = -1± 又-3 < m < 0∴ m = -1-∴ P (-1- 2, 2)若点 M 在对称轴上,则 AF + PF = 2∴ 3+ m - m 2 - 2m + 3 = 21+ 1 + n 2 1 (n +1)2 2 2217 -1 ∴ m = -1± 172又-3 < m < 0∴ m =-1- 17 2∴ -m 2 - 2m + 3 =17 -12∴ P (-1- 17 , ) 2 2【试卷总结与分析】1. 高中知识点分析从涉及到的重要高中知识点来说,二附中的考察并无明显针对性(例如上中的考点,明显针对不等式) 本卷中考到的解三角形、概率、立体几何、解析几何、数列等等,涉及到的也非常非常浅,而且考试足以通过初中知识解决2. 初高衔接知识点分析高中知识中,代数与几何所占比重差异巨大,代数大约占到 95%,几何大约 5%想打好初高衔接基础,建议把精力全部放在代数,这其中又主要以①代数式变换(因式分解、配方、根式与分式的化简计算)②解方程③二次函数的图像与性质为主这在本试卷中,体现的非常非常明显,也说明了参加二附中的考试,并不需要超前学习很多,在初中知识的延展范围内,牢牢地打好基础即可考到的初高衔接的知识题目如第一、1, 3, 9, 12, 17第 20, 23 题等,全部都在考察“解方程”,“代数式变换”,“二次函数性质”这也与高中数学以代数为主切合因此,二附中的选拔主线便是——让代数功底强的学生占据主要优势3. 初中知识点分析初中知识以几何为主,但本卷中几何考到的并不多,考察了基本的知识与应用 如第 2, 5, 6 题(本题难度较大,来源是 2014 年美国数学竞赛十二年级试题)第 15 题第二 16, 19 题, 第 22 题数论知识考察也少,如第4, 12 题建议考生无需花太大精力,若已有基本的数论组合知识,可放心应考;若考生完全没有接触过,建议尽快补充知识,否则会在这方面的考题吃亏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 2 · a 2 3 = 四校自招-数学·交附卷
学而思高中部 胡晓晨老师
υυυρ 1. BP = 1 υυυρ BA + 1 υυυρ BC = 2 υυυρ BC + 1 υυυρ
CA = a - 2b
3 3 3 3 3
【高中知识点】向量的分解
2. a + 2 ≥ 2 = 2
a 【高中知识点】均值不等式
3. 360 = 23 ⨯32 ⨯5
约数个数为4⨯3⨯ 2 = 24
4. 所有可能的情况为
1234, 1243, 1324, 1342, 1423, 1432
2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421
4123, 4132, 4213, 4231, 4312, 4321
9
3
全都发错有9 种可能,因此概率为 24 8
2 + 5.
5
2013
6. 2014
【高中知识点】裂项求和
7. 设纸的厚度为r ,则
2⨯80r = 10
即 r = 1 16
L = 2π (r + 2r + 3r +Λ+ 80r ) = 6480π r = 405π cm
【高中知识点】等差数列求和
8.
(m - 4)(n - 2) = 8
= 8⨯1 = 1⨯ 8
= 2 ⨯ 4 = 4 ⨯ 2
= (-8) ⨯(-1) = (-1) ⨯(-8)
= (-4) ⨯(-2) = (-2) ⨯(-4)
2
依次检验,只有前 3 组符合题意,故(m , n ) 的个数为3 个
9. 设 x 2 - 2x = t ,则
2t = 6 -1 ,即2t 2 + t - 6 = 0 ,即(t + 2)(2t - 3) = 0 t ∴ t = -2 或 3 2
又t = (x -1)2 -1 ≥ -1
∴ t = 3
2
10. 四
11. 考虑四个角的小直角三角形,每个小直角三角形的斜边上的高为
2
则面积为( )2 = 2 4
因此,重叠的面积为1- 3 - 2 2 =
2 2 +1 4 4
2 9 4
12. 7 5 3
6 1 8
13. 一位数中,1 出现了1次
两位数中 1 在十位上出现了10 次,在个位上,出现了9 次
这样,前两位数共出现20 次
三位数中,1 在百位上共出现了 100 次,十位和个位看成一个整体,共出现了数字 1 有20⨯9 = 180 次 最后数 1000 里面出现了 1 有1次
一共有20 +100 +180 +1 = 301 次
【高中知识点】组合计数
14. 线段 AB 垂直平分线的方程为 y = -x + 2
因此,设 P (t , -t + 2) ,则 PC 2 = (t -1)2 + (-t + 2 - 5)2
= 8
即 2t 2 + 4t +10 = 8 ,解得t = -1
因此 P (-1,3)
【高中知识点】解析几何——直线与圆的方程
15. 两式相减,得97x = 97 y ,即 x = y
2 -1 2 -1
3 - 2 2
AB 2 - BE 2 5 -
5
8 BA 2
⎧x = ⎪ 因此方程的解为⎨ ⎪ y = ⎩ 2
531
2
531
16. (-4, 4)
【高中知识点】解析几何——点关于直线的对称
17. 在ςABC 中作∠CAB 的角平分线 AD
设 AB = x ,则∠C = 36︒ , ∠CAB = ∠B = 72︒ , ∠CAD = ∠BAD = 36︒
可得ςBAD ∽ςBCA
故 BA
= BD
BC BA
2
则 BD = = x BC ∴ CD = CB - BD =1- x 2
又∠C = ∠CAD = 36︒ ,故 DA = DC =1- x 2
又∠ADB = ∠B = 72︒ ,故 AB = AD ,即 x = 1- x 2
∴ x 2 + x -1 = 0
解得 x =
∴ AB = 5 -1
或 - 2 5 -1
2
5 -1
(舍)
2 过 A 作ςABC 的高 AE ,则
AE = = x 2 = 3 - 5 2
则 AE =
= = 10 - 2 5
4
则 S = 1 CB ·AE = 10 - 2 5
ς ABC
2 8
18.
(1)设 f (x ) = a (x + 3)(x -1) ,且 f (-1) = 4
解得a = -1
∴ f (x ) = -(x + 3)(x -1) = -x 2 - 2x + 3
∴ a = -1, b = -2 , c = 3
(2) 依题意,当 S ςCDP 的面积最大时, P 到直线CD 的距离最大
x - ( )
2 x 2
2
2 3 - 5 - (3 - 5 )2 2 4 ⎪
2 那么,过点 P 作平行于CD 的直线,必与抛物线相切(否则在平行线的上方,有到比CD 的距离更远的点) C (-4, -6), D (1, -1) ,则直线CD 的斜率为k =
-1- (-6) = 1 1- (-4)
设过 P 的直线为 y = x + b ,代入 y = -x 2
- 2x + 3 得 x 2 + 3x + (b - 3) = 0

∆ = 9 - 4(b - 3) = 21- 4b = 0 ∴ b = 21
4
方程即 x 2 + 3x + 9 = 0 ,所以得 x =- 3
4 2 则 y = - 3 + 21 = 15
2 4 4
∴当 S
ς PCD 面积最大时, P 的坐标为 P (- 3 ,
15)
2 4 【高中知识点】解析几何——直线的方程
19. 假设 = p ,其中 p , q 为整数且互质 q
则 p = 2q , p 2 = 2q
2 故 p 2 为偶数,则 p 为偶数
设 p = 2m ,则(2m )2 = 2q 2 ,得 q 2 = 2m
2
则 q 2 为偶数,则q 为偶数 p , q 均为偶数,与 p , q 互质矛盾!
故 不是有理数
【高中知识点】反证法
【试卷总结与分析】
1. 高中知识点分析
从设计到的高中知识点来说,交大附中的考察特点是“杂”,基本上都有涉及,无明显的针对性,如向量、均值不等式、反证法、数列求和、解析几何、组合计数等等,而且考察的也比较基础简单(例如数列求和的两道题可归类于小学奥数内容),涉及到的也不深,考试足以通过初中知识或小学奥数知识解决
如 17 题,是初中讲过的“黄金三角形”,只要基础好,本题可秒杀
19 题,是初中课本的拓展内容的原题,考生只要留心课本的拓展内容即可
2. 初高衔接知识点分析
2
高中知识中,代数与几何所占比重差异巨大,代数大约占到95%,几何大约5%
想打好初高衔接基础,建议把精力全部放在代数,这其中又主要以
①代数式变换(因式分解、配方、根式与分式的化简计算)
②解方程
③二次函数的图像与性质
为主
在本卷中也有所体现,如第5, 8, 9, 10, 15, 18, 19 题,对于代数式变换和二次函数考察的较多,但不太深,只要接触过一点便能解决,建议学生在这方面平时稍加训练即可
3.初中知识点分析
初中知识以几何为主,本卷中几何考到的较多,如第1, 7, 10, 11, 14, 16, 17 都在考察平面几何知识,有一定难度但不偏不怪,想做对,要牢牢打好初中几何的基础,否则考试时会在这方面吃亏数论知识考察的不多,仅在第3,8 题涉及,而且考察点只有“质因数分解,约数个数”这些很基础的内容,建议考生无需花太大精力,若已有基本的数论知识,可放心应考;若考生完全没有接触过,建议尽快补充知识,否则会在这方面的考题吃亏
组合知识在第4, 13 题中考到,两道题都需要用枚举方法解决,但难度不算很低,建议考生在组合知识方面稍加训练以对应考试。

相关文档
最新文档