哈工大威海校区2015春集合图论试题A
哈工大集合与图论习题
![哈工大集合与图论习题](https://img.taocdn.com/s3/m/fbb5b90b4b35eefdc8d33397.png)
集合与图论习题第一章习题.画出具有个顶点地所有无向图(同构地只算一个)..画出具有个顶点地所有有向图(同构地只算一个)..画出具有个、个、个顶点地三次图..某次宴会上,许多人互相握手.证明:握过奇数次手地人数为偶数(注意,是偶数)..证明:哥尼斯堡七桥问题无解..设与是图地两个不同顶点.若与间有两条不同地通道(迹),则中是否有回路?.证明:一个连通地(,)图中≥..设是一个(,)图,δ()≥[],试证是连通地..证明:在一个连通图中,两条最长地路有一个公共地顶点..在一个有个人地宴会上,每个人至少有个朋友(≤≤).试证:有不少于个人,使得他们按某种方法坐在一张圆桌旁,每人地左、右均是他地朋友.b5E2R。
.一个图是连通地,当且仅当将划分成两个非空子集和时,总有一条联结地一个顶点与地一个顶点地边..设是图.证明:若δ()≥ ,则包含长至少是δ()地回路..设是一个(,)图,证明:()≥,则中有回路;()若≥,则包含两个边不重地回路..证明:若图不是连通图,则是连通图..设是个(,)图,试证:()δ()·δ()≤[()]([()]),若≡,,( )() δ()·δ()≤[()]·[()],若≡( ).证明:每一个自补图有或个顶点..构造一个有个顶点而没有三角形地三次图,其中≥..给出一个个顶点地非哈密顿图地例子,使得每一对不邻接地顶点和,均有≥.试求中不同地哈密顿回路地个数..试证:图四中地图不是哈密顿图..完全偶图,为哈密顿图地充分必要条件是什么?.菱形面体地表面上有无哈密顿回路?.设是一个(≥)个顶点地图.和是地两个不邻接地顶点,并且≥.证明:是哈密顿图当且仅当是哈密顿图..设是一个有个顶点地图.证明:若>δ(),则有长至少为δ()地路..证明具有奇数顶点地偶图不是哈密顿图..证明:若为奇数,则中有()个两两无公共边地哈密顿回路..中国邮路问题:一个邮递员从邮局出发投递信件,然后返回邮局.若他必须至少一次走过他所管辖范围内地每条街道,那么如何选择投递路线,以便走尽可能少地路程.这个问题是我国数学家管梅谷于年首先提出地,国外称之为中国邮路问题.p1Ean。
哈工大集合论习题
![哈工大集合论习题](https://img.taocdn.com/s3/m/f6cec97102768e9951e738c0.png)
第一章 习题1.写出方程2210x x ++=的根所构成的集合。
2.下列命题中哪些是真的,哪些为假 3设有n 个集合12,,,n A A A 且121n A A A A ⊆⊆⊆⊆,试证:12n A A A ===4.设{,{}}S φφ=,试求2S?5.设S 恰有n 个元素,证明2S有2n个元素。
6.设A 、B 是集合,证明:(\)()\A B B A B B B φ=⇔=7.设A 、B 是集合,试证A B A B φ=⇔=∆8. 设A 、B 、C 是集合,证明:()()A B C A B C ∆∆=∆∆9.设A 、B 、C 为集合,证明\()(\)\A B C A B C =10.设A ,B ,C 为集合,证明: ()\(\)(\)A B C A C B C =11.设A,B,C 为集合,证明:()\(\)(\)A B C A C B C =12.设A,B,C 都是集合,若A B A C =且A B B C =,试证B=C 。
13.设A,B,C 为集合,试证:(\)\(\)\(\)A B C A B C B =14.设X Y Z ⊆⊆,证明\(\)(\)Z Y X X Z Y =15.下列命题是否成立? (1)(\)\(\)A B C A B C =(2)(\)()\AB C A B C =(3)\()()\A B C A B B = 16.下列命题哪个为真? a)对任何集合A,B,C ,若AB BC =,则A=C 。
b)设A,B,C 为任何集合,若A B A C =,则B=C 。
c)对任何集合A,B ,222A BAB =。
d)对任何集合A,B ,222A B AB =。
e)对任何集合A,B ,\22\2A BA B =。
f)对任何集合A,B ,222A BAB∆=∆。
17.设R,S,T 是任何三个集合,试证:(1)()()S T S T S T ∆=∆;(2)()()()R S T R S R T ∆⊇∆∆;(3)()()()()()R S R T R ST R S R T ∆∆⊆∆⊆∆∆;(4)()()()RS T RS R T ∆⊇∆ 18.设A 为任一集,{}IB ξξ∈为任一集族(I φ≠),证明:()()IIA B A B ξξξξ∈∈=19.填空:设A,B 是两个集合。
哈工大(威海)模电习题册(一)答案
![哈工大(威海)模电习题册(一)答案](https://img.taocdn.com/s3/m/b0c7fe49e45c3b3567ec8bae.png)
第三章 多级放大电路一.解:(a )共射,共基 (b )共射,共射 (c )共射,共射 (d )共集,共基 (e )共源,共集 (f )共基,共集二.解:(1)R W 的滑动端在中点时A d 的表达式为beWc IOd )2( r R R u u A +-=∆∆=β(2)R W 的滑动端在最右端时I beW c C2C1O IbecC2I beW c C1)2( 2 2)( u r R R u u u u r R u u r R R u ∆⋅+-=∆-∆=∆∆⋅+=∆∆⋅+-=∆βββ所以A d 的表达式为beWc IOd )2( r R R u u A +-=∆∆=β比较结果可知,两种情况下的A d 完全相等;但第二种情况下的C21C u u ∆∆>。
三.解:R W 滑动端在中点时T 1管和T 2管的发射极静态电流分析如下:mA 517.02222e WBEQEE EQEE e EQ WEQ BEQ ≈-==+⋅+R R U V I V R I R I U + A d 和R i 分析如下:Ω≈++=-≈++-=Ω≈++=k 5.20)1(2972)1( k 18.5mV26)1(W be i Wbe cd EQbb'be R r R R r R A I r r ββββ四. 解:电路的共模输入电压u I C 、差模输入电压u I d 、差模放大倍数A d 和动态电压△u O 分别为V67.0672 mV 10mV 152Id d O becd I2I1Id I2I1IC -≈=∆-≈-==-==+=u A u r R A u u u u u u β由于电路的共模放大倍数为零,故△u O 仅由差模输入电压和差模放大倍数决定。
第五章 放大电路的频率响应一.解:(1)1be b s )(π21C r R R ∥+ 。
①;①。
(2)'s b bb'e b')]([21ππC R R r r ∥∥+ ;①;①,①,③。
哈工大图论习题
![哈工大图论习题](https://img.taocdn.com/s3/m/3ac180dace2f0066f53322c0.png)
1.画出具有4个顶点的所有无向图(同构的只算一个)。
2.画出具有3个顶点的所有有向图(同构的只算一个)。
3.画出具有4个、6个、8个顶点的三次图。
4.某次宴会上,许多人互相握手。
证明:握过奇数次手的人数为偶数(注意,0是偶数)。
5.证明:哥尼斯堡七桥问题无解。
6.设u与v是图G的两个不同顶点。
若u与v间有两条不同的通道(迹),则G中是否有回路?7.证明:一个连通的(p,q)图中q ≥p-1。
8.设G是一个(p,q)图,δ(G)≥[p/2],试证G是连通的。
9.证明:在一个连通图中,两条最长的路有一个公共的顶点。
10.在一个有n个人的宴会上,每个人至少有m个朋友(2≤m≤n)。
试证:有不少于m+1个人,使得他们按某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。
11.一个图G是连通的,当且仅当将V划分成两个非空子集V1和V2时,G总有一条联结V1的一个顶点与V2的一个顶点的边。
12.设G是图。
证明:若δ(G)≥ 2,则G包含长至少是δ(G)+1的回路。
13.设G是一个(p,q)图,证明:(a)q≥p,则G中有回路;(b)若q≥p+4,则G包含两个边不重的回路。
14.证明:若图G不是连通图,则G c 是连通图。
15.设G是个(p,q)图,试证:(a)δ(G)·δ(G C)≤[(p-1)/2]([(p+1)/2]+1),若p≡0,1,2(mod 4)(b) δ(G)·δ(G C)≤[(p-3)/2]·[(p+1)/2],若p≡3(mod 4)16.证明:每一个自补图有4n或4n+1个顶点。
17.构造一个有2n个顶点而没有三角形的三次图,其中n≥3。
18.给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有degu+degv≥919.试求Kp中不同的哈密顿回路的个数。
20.试证:图四中的图不是哈密顿图。
21.完全偶图Km,n为哈密顿图的充分必要条件是什么?22.菱形12面体的表面上有无哈密顿回路?23.设G是一个p(p≥3)个顶点的图。
哈工大集合与图论习题
![哈工大集合与图论习题](https://img.taocdn.com/s3/m/26947f6eb84ae45c3b358c80.png)
第一章习题1.画出具有4个顶点的所有无向图(同构的只算一个)。
2.画出具有3个顶点的所有有向图(同构的只算一个)。
3.画出具有4个、6个、8个顶点的三次图。
4.某次宴会上,许多人互相握手。
证明:握过奇数次手的人数为偶数(注意,0是偶数)。
5.证明:哥尼斯堡七桥问题无解。
6.设u与v是图G的两个不同顶点。
若u与v间有两条不同的通道(迹),则G中是否有回路?7.证明:一个连通的(p,q)图中q ≥p-1。
8.设G是一个(p,q)图,δ(G)≥[p/2],试证G是连通的。
9.证明:在一个连通图中,两条最长的路有一个公共的顶点。
10.在一个有n个人的宴会上,每个人至少有m个朋友(2≤m≤n)。
试证:有不少于m+1个人,使得他们按某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。
11.一个图G是连通的,当且仅当将V划分成两个非空子集V1和V2时,G总有一条联结V1的一个顶点与V2的一个顶点的边。
12.设G是图。
证明:若δ(G)≥ 2,则G包含长至少是δ(G)+1的回路。
13.设G是一个(p,q)图,证明:(a)q≥p,则G中有回路;(b)若q≥p+4,则G包含两个边不重的回路。
14.证明:若图G不是连通图,则G c 是连通图。
15.设G是个(p,q)图,试证:(a)δ(G)·δ(G C)≤[(p-1)/2]([(p+1)/2]+1),若p≡0,1,2(mod 4)(b) δ(G)·δ(G C)≤[(p-3)/2]·[(p+1)/2],若p≡3(mod 4)16.证明:每一个自补图有4n或4n+1个顶点。
17.构造一个有2n个顶点而没有三角形的三次图,其中n≥3。
18.给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有degu+degv≥919.试求Kp中不同的哈密顿回路的个数。
20.试证:图四中的图不是哈密顿图。
21.完全偶图Km,n为哈密顿图的充分必要条件是什么?22.菱形12面体的表面上有无哈密顿回路?23.设G是一个p(p≥3)个顶点的图。
2015年山东省威海市高考数学模拟试卷(理科)(5月份)解析
![2015年山东省威海市高考数学模拟试卷(理科)(5月份)解析](https://img.taocdn.com/s3/m/6a5f2a314b35eefdc8d333a7.png)
2015年山东省威海市高考数学模拟试卷(理科)(5月份)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.2B23.(5分)(2015•威海模拟)设单位向量的夹角为120°,,则|=5.(5分)(2015•威海模拟)双曲线=1的顶点到其渐近线的距离为()B6.(5分)(2015•威海模拟)已知x,y满足约束条件,则z=2x+y的最大值7.(5分)(2015•威海模拟)周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则f(2014)+f(2015)=()8.(5分)(2015•威海模拟)已知m,n,l是不同的直线,α,β是不同的平面,以下命题正确的是()①若m∥n,m⊂α,n⊂β,则α∥β;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;③若m⊥α,n⊥β,α∥β,则m∥n;9.(5分)(2015•威海模拟)在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=()B10.(5分)(2015•威海模拟)设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(e)=,则下列结论正确的是()二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•威海模拟)用分层抽样的方式对某品牌同一批次两种型号的产品进行抽查,已知样本容量为80,其中有50件甲型号产品,乙型号产品总数为1800,则该批次产品总数为.12.(5分)(2015•威海模拟)右面的程序框图输出的S的值为.13.(5分)(2015•威海模拟)已知x>0,y>0且x+y=2,则++的最小值为.14.(5分)(2015•威海模拟)若f(x)+∫01f(x)dx=x,则.15.(5分)(2015•威海模拟)函数f(x)=|x2﹣2x+|﹣x+1的零点个数为.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)(2015•威海模拟)已知向量(ω>0),函数f(x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.17.(12分)(2015•威海模拟)一汽车4S店新进A,B,C三类轿车,每类轿车的数量如下(Ⅰ)从店中一次随机提取2辆车,求提取的两辆车为同一类型车的概率;(Ⅱ)若一次性提取4辆车,其中A,B,C三种型号的车辆数分别记为a,b,c,记ξ为a,b,c的最大值,求ξ的分布列和数学期望.18.(12分)(2015•威海模拟)已知{a n}是各项都为正数的数列,其前n项和为S n,且S n 为a n与的等差中项.(Ⅰ)求证:数列为等差数列;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)设,求{b n}的前n项和T n.19.(12分)(2015•威海模拟)如图:是直径为2的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,BF=2,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:QR∥平面BCD;(Ⅱ)求平面BCF与平面BDF所成二面角的余弦值.20.(13分)(2015•威海模拟)已知函数f(x)=+ax,x>1.(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)若a=2,求函数f(x)的极小值;(Ⅲ)若存在实数a使f(x)在区间()(n∈N*,且n>1)上有两个不同的极值点,求n的最小值.21.(14分)(2015•威海模拟)如图,过原点O的直线l1,l2分别与x轴,y轴成30°的角,点P(m,n)在l1上运动,点Q(p,q)在l2上运动,且.(Ⅰ)求动点M(m,p)的轨迹C的方程;(Ⅱ)设A,B是轨迹C上不同两点,且,(ⅰ)求的取值范围;(ⅱ)判断△OAB的面积是否为定值?若是,求出该定值,不是请说明理由.2015年山东省威海市高考数学模拟试卷(理科)(5月份)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.2B=的虚部为,23.(5分)(2015•威海模拟)设单位向量的夹角为120°,,则|=,|==(5.(5分)(2015•威海模拟)双曲线=1的顶点到其渐近线的距离为()B解:双曲线的顶点(y==6.(5分)(2015•威海模拟)已知x,y满足约束条件,则z=2x+y的最大值注意圆心,半径的运用得出满足约束条件,7.(5分)(2015•威海模拟)周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则f(2014)+f(2015)=(),8.(5分)(2015•威海模拟)已知m,n,l是不同的直线,α,β是不同的平面,以下命题正确的是()①若m∥n,m⊂α,n⊂β,则α∥β;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;③若m⊥α,n⊥β,α∥β,则m∥n;9.(5分)(2015•威海模拟)在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=()BabsinC=,代入(cosC=,或C=10.(5分)(2015•威海模拟)设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(e)=,则下列结论正确的是(),,,=,得二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•威海模拟)用分层抽样的方式对某品牌同一批次两种型号的产品进行抽查,已知样本容量为80,其中有50件甲型号产品,乙型号产品总数为1800,则该批次产品总数为4800.=,该批次产品总数为:=480012.(5分)(2015•威海模拟)右面的程序框图输出的S的值为.的值为:S=S=S=的值为:故答案为:;13.(5分)(2015•威海模拟)已知x>0,y>0且x+y=2,则++的最小值为3.由基本不等式可得++的最小值14.(5分)(2015•威海模拟)若f(x)+∫01f(x)dx=x,则.x|=x,=|;故答案为:.15.(5分)(2015•威海模拟)函数f(x)=|x2﹣2x+|﹣x+1的零点个数为2.2x+x2x+|=2x+|三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)(2015•威海模拟)已知向量(ω>0),函数f(x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.)由题意知,.,)的单调增区间为.)的图象向左平移个单位,得到再纵坐标不变,横坐标缩短为原来的倍,得到,,∴,∴,17.(12分)(2015•威海模拟)一汽车4S店新进A,B,C三类轿车,每类轿车的数量如下(Ⅰ)从店中一次随机提取2辆车,求提取的两辆车为同一类型车的概率;(Ⅱ)若一次性提取4辆车,其中A,B,C三种型号的车辆数分别记为a,b,c,记ξ为a,b,c的最大值,求ξ的分布列和数学期望.,2 3 4数学期望为18.(12分)(2015•威海模拟)已知{a n}是各项都为正数的数列,其前n项和为S n,且S n 为a n与的等差中项.(Ⅰ)求证:数列为等差数列;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)设,求{b n}的前n项和T n.即可说明,通过(Ⅲ)化简,即式得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(由(Ⅰ)可得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(,∴(Ⅲ).19.(12分)(2015•威海模拟)如图:是直径为2的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,BF=2,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:QR∥平面BCD;(Ⅱ)求平面BCF与平面BDF所成二面角的余弦值.,且,∴,∴,中有则所成二面角的余弦值为20.(13分)(2015•威海模拟)已知函数f(x)=+ax,x>1.(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)若a=2,求函数f(x)的极小值;(Ⅲ)若存在实数a使f(x)在区间()(n∈N*,且n>1)上有两个不同的极值点,求n的最小值.,推出(Ⅰ),的最小值为时,﹣﹣或,当)的极小值为由题意可知法一:令,根据图象可知:,整理得﹣﹣,﹣﹣﹣由题意可知解得21.(14分)(2015•威海模拟)如图,过原点O的直线l1,l2分别与x轴,y轴成30°的角,点P(m,n)在l1上运动,点Q(p,q)在l2上运动,且.(Ⅰ)求动点M(m,p)的轨迹C的方程;(Ⅱ)设A,B是轨迹C上不同两点,且,(ⅰ)求的取值范围;(ⅱ)判断△OAB的面积是否为定值?若是,求出该定值,不是请说明理由.的斜率不存在时,由;(Ⅰ)由题意知,由,整理得.的方程;,∴,∴;,得(.,则.,带入整理得的面积为定值参与本试卷答题和审题的老师有:孙佑中;lincy;刘长柏;qiss;sdpyqzh;尹伟云;w3239003;吕静;changq;caoqz;sxs123(排名不分先后)菁优网2015年7月11日。
图论测试题及答案
![图论测试题及答案](https://img.taocdn.com/s3/m/a07c17f5dbef5ef7ba0d4a7302768e9951e76ea4.png)
图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。
答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。
答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。
答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。
解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。
7. 描述图论中的图着色问题,并说明其在实际生活中的应用。
答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。
在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。
结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。
山东省威海市2015届高三下学期第二次高考模拟数学(理)试题
![山东省威海市2015届高三下学期第二次高考模拟数学(理)试题](https://img.taocdn.com/s3/m/1263a2ce5ef7ba0d4b733b14.png)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在答题纸规定的位置.第Ⅰ卷(选择题 共50分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足2(2)1i z -⋅=,则z 的虚部为( ) (A )325i (B )325 (C )425i (D )425【答案】D 【解析】试题分析:由213434(2)1(34)134(34)(34)2525i i z i z z i i i i +-⋅=⇒-=⇒===+--+,所以复数z 的虚部为425,故答案选D . 考点:1.复数的计算;2.复数的定义.2. 已知集合2{|},{1,0,1}A x x a B ===-,则1a =是A B ⊆的( ) (A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A 【解析】试题分析:由A B ⊆得集合A 是空集或者非空集合, 当集合A 是空集时,0a <,当集合A 是非空集合时,1x =-或1或0,此时1a =或0, 故答案选A .考点:1.集合之间的关系;2.命题的充分必要性.3. 设单位向量12,e e 的夹角为120,122a e e =-,则 ||a =( )(A )3 (B (C )7 (D 【答案】D考点:1.向量的模;2.数量积.4. 已知等差数列{}n a 满足61020a a +=,则下列选项错误的是( ) (A )15150S = (B )810a = (C )1620a =(D )41220a a += 【答案】C 【解析】试题分析:因为{}n a 是等差数列,所以6108220a a a +==,得810a =,11515815()151502a a S a +===;4128220a a a +==故答案选C .考点:等差数列的性质.5. 双曲线22124x y -=的顶点到其渐近线的距离为( )(A (B (C (D【答案】B 【解析】试题分析:由双曲线22124x y -=,得其顶点坐标,(,渐近线方程y =,点到y =的距离为3d ==,由双曲线的性质得双曲线22124x y -=B .考点:双曲线的性质.6. 已知,x y 满足约束条件224220220x y x y x y ⎧+≤⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )(A )2 (B(C )4 (D)【答案】D 【解析】试题分析:如图所示阴影部分为不等式组224220220x y x y x y ⎧+≤⎪--≤⎨⎪-+≥⎩表示的可行域,由图可知,当直线20x y z +-=与圆224x y +=相切时,z 取得最大值,2z =⇒=±max z =D .考点:1.线性规划;2.直线与圆的位置关系.7. 周期为4的奇函数()f x 在[0,2]上的解析式为22,01()log 1,12x x f x x x ⎧≤≤=⎨+<≤⎩,则(2014)+(2015)f f =( )(A )0 (B )1 (C )2 (D )3 【答案】B 【解析】试题分析:因为函数()f x 是周期为4的奇函数,所以2(2014)(50342)(2)log 212f f f =⨯+==+=,2(2015)(50441)(1)(1)11f f f f =⨯-=-=-=-=-,(2014)+(2015)1f f =,故答案选B .考点:1.函数求值;2.函数的周期性和奇偶性.8. 已知,,m n l 是不同的直线,,αβ是不同的平面,以下命题正确的是( )①若m ∥n ,,m n αβ⊂⊂,则α∥β;②若,m n αβ⊂⊂,α∥l m β⊥,,则l n ⊥;③若,,m n αβα⊥⊥∥β,则m ∥n ;④若αβ⊥,m ∥α,n ∥β,则m n ⊥; (A )②③ (B )③ (C )②④ (D )③④ 【答案】B 【解析】试题分析:如图所示,在正方体1111ABCD A BC D -中,11//AD B C ,AD ⊂平面ABCD ,11B C ⊂平面11BB C C ,但平面ABCD 与平面11BB C C 相交于BC ,故选项①错误;平面//ABCD 平面1111A B C D ,AD ⊂平面ABCD ,11D C ⊂平面11BB C C ,CD AD ⊥,但CD 与11D C 不垂直,,故选项②错误;选项③是线面垂直的一个性质定理,故选项③是正确的;平面ABCD ⊥平面11BB C C ,11//B C 平面ABCD ,//AD 平面11BB C C ,但11//B C AD ,故选项④错误.故答案选B考点:点、线、面的位置关系.9. 在ABC ∆中,内角C B A 、、的对边分别是c b a 、、,若22()6c a b =-+,ABC ∆的面积为2,则C =( ) 3π23π6π56π(A ) (B ) (C ) (D ) 【答案】A考点:解三角形.10. 设()f x '为函数()f x 的导函数,已知21()()ln ,()x f x xf x x f e e'+==,则下列结论正确的是 ( )(A )()f x 在(0,)+∞单调递增 (B )()f x 在(0,)+∞单调递减 (C )()f x 在(0,)+∞上有极大值 (D )()f x 在(0,)+∞上有极小值 【答案】D 【解析】 试题分析:22ln ln 1()()ln ()()[()]()(ln )2x x x f x xf x x xf x f x xf x xf x x c x x '''+=⇒+=⇒=⇒=+ 所以2ln ()2x c f x x x =+,又1()f e e =,得12c =,即2ln 1()22x f x x x=+所以222222ln ln 1(ln 1)()0222x x x f x x x x---'=-=≤,所以()f x 在(0,)+∞单调递减 故答案选D考点:1.导数的应用;2.构造函数.第Ⅱ卷(非选择题 共100分)1. 请用0.5毫米的黑色签字笔将每题的答案填写在答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 二、填空题:本大题共5小题,每小题5分,共25分.11. 用分层抽样的方式对某品牌同一批次两种型号的产品进行抽查,已知样本容量为80,其中有50件甲型号产品,乙型号产品总数为1800,则该批次产品总数为________. 【答案】4800 【解析】试题分析:由题知乙型号产品所占比例为80503808-=,所以该批次产品总数为3180048008÷=考点:分层抽样.12. 右面的程序框图输出的S 的值为_____________.【答案】2512【解析】试题分析:1n =时,1011s =+=;2n =时,13122s =+=;3n =时,3111236s =+=;4n =时,111256412s =+=;5n =时,输出2512s =. 考点:程序框图的识别.13. 已知0,0x y >>且2x y +=,则22111x y xy++的最小值为______.【解析】试题分析:2222222221111111()()[4()3()]24x y y x y xx y xy x y xy x y x y+++=++=++++11[423(426)344y x x y ≥+⋅⋅+⋅=++=,当且仅当""x y =时,等号成立.考点:基本不等式.14. 若1()()f x f x dx x +=⎰, 则1()f x dx =⎰_________.【答案】14【解析】试题分析:因为1()f x dx ⎰是一常数,即可设1()f x dx m =⎰,所以()f x x m =-()f x 的原函数2(1()2g x x m c x c =-+为常数)所以1()(1)(0)f x dx g g =-⎰,即得12m m =- 解得14m =,即11()4f x dx =⎰考点:1.定积分. 15. 函数213()|2|122f x x x x =-+-+的零点个数为___________. 【答案】2 【解析】试题分析:令()0f x =,即213|2|122x x x -+=- 则函数21()|2|2h x x x =-+和函数3()12g x x =-的交点个数即为函数()f x 的零点个数,如上图所示,()h x 与()g x 有两个交点,所以函数()f x 的零点个数为2. 考点:1.函数的零点;2.数形结合.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分)已知向量)2,cos (sin ),1,cos 2(x x x ωωω-=-=)0(>ω, 函数3)(+⋅=n m x f ,若函数)(x f 的图象的两个相邻对称中心的距离为2π. (Ⅰ)求函数)(x f 的单调增区间;(Ⅱ)若将函数)(x f 的图象先向左平移4π个单位,然后纵坐标不变,横坐标缩短为原来的21倍,得到函数)(x g 的图象,当]2,6[ππ∈x 时,求函数)(x g 的值域.【答案】(Ⅰ)Z k k k ∈+-],83,8[ππππ;(Ⅱ)[.【解析】试题分析:(Ⅰ)利用向量的数量积公式以及三角函数的恒等变换得())4f x x πω=-,由函数)(x f 的图象的两个相邻对称中心的距离为2π,所以函数)(x f 的周期为π,利用周期公式即可求得1ω=,即())4f x x π=-,令Z k k x k ∈+≤-≤-,224222πππππ,解之即可求出函数)(x f 的单调增区间;(Ⅱ)由三角函数图像变换得)44sin(2)(π+=x x g ,因为]2,6[ππ∈x ,即得1194[,]4124x πππ+∈,根据三角函数的性质得22)44sin(1≤+≤-πx ,最后求得函数)(x g 在]2,6[ππ∈x 的值域.试题解析:(Ⅰ)32)cos (sin cos 23)(+--=+⋅=x x x x f ωωω2sin 22cos 1sin 2cos 2)4x x x xx ωωωωπω=-+=-=-,由题意知,πωπ==22T ,1=∴ω, )42sin(2)(π-=∴x x f .由Z k k x k ∈+≤-≤-,224222πππππ,解得:Z k k x k ∈+≤≤-,838ππππ,∴)(x f 的单调增区间为Z k k k ∈+-],83,8[ππππ.(Ⅱ)由题意,若)(x f 的图像向左平移4π个单位,得到)4y x π=+,再纵坐标不变,横坐标缩短为原来的21倍,得到)44sin(2)(π+=x x g ,]2,6[ππ∈x ,]49,1211[44πππ∈+∴x , ∴22)44sin(1≤+≤-πx , ∴函数()g x的值域为[.考点:1.三角函数的性质;2.三角函数图像;3.三角函数的值域.17. (本小题满分12分)一汽车4S 店新进A ,B ,C 三类轿车,每类轿车的数量如下表:同一类轿车完全相同,现准备提取一部分车去参加车展.(Ⅰ)从店中一次随机提取2辆车,求提取的两辆车为同一类型车的概率;(Ⅱ)若一次性提取4辆车,其中A ,B ,C 三种型号的车辆数分别记为,,a b c ,记ξ为,,a b c 的最大值,求ξ的分布列和数学期望. 【答案】(Ⅰ)518; (Ⅱ)分布列略,209.∴其分布列为数学期望为23414631269E ξ=⨯+⨯+⨯= 考点:古典概型的分布列及期望.18. (本小题满分12分)已知 {}n a 是各项都为正数的数列,其前 n 项和为 n S ,且n S 为n a 与1na 的等差中项. (Ⅰ)求证:数列2{}n S 为等差数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)设(1),nn nb a -=求{}n b 的前n 项和n T .【答案】(Ⅰ)证明略;(Ⅱ)n a ;(Ⅲ)(1)n T =-【解析】试题分析:(Ⅰ)由题意知12n n nS a a =+,即221n n n S a a -=,当1n =时,可得11S =;又2n ≥时,有1n n n a S S -=-,得2112()()1n n n n n S S S S S -----=,整理得2211,(2)n n S S n --=≥,2{}n S 是首项为1,公差为1的等差数列.(Ⅱ)由(Ⅰ)可得211n S n n =+-=,{}n a 是各项都为正数,n S =1n n n a S S -=-=2n ≥),又111a S ==,∴n a =;(Ⅲ)由(Ⅱ)得(1)(1),n n nn n b a -===-当n 为奇数时,n T =当n 为偶数时,n T ={}n b 的前n 项和(1)n T =-试题解析:(Ⅰ)由题意知12n n nS a a =+,即221n n n S a a -=,① 当1n =时,由①式可得11S =;又2n ≥时,有1n n n a S S -=-,代入①式得2112()()1n n n n n S S S S S -----=整理得2211,(2)n n S S n --=≥. ∴ 2{}n S 是首项为1,公差为1的等差数列. (Ⅱ) 由(Ⅰ)可得211n S n n =+-=,∵{}n a 是各项都为正数,∴n S∴1n n n a S S -=-=2n ≥),又111a S ==,∴n a(Ⅲ)(1)(1),n n nn n b a -===-当n 为奇数时,11)(1n T n =-+-++--=当n 为偶数时,11)(1n T n =-+-+--+=∴{}n b 的前n 项和(1)n T =-考点:1.等差数列的判定;2.通项公式的求法;3.数列求和.19. (本小题满分12分)如图:BCD 是直径为O 为圆心,C 是BD 上一 点,且2BC CD =.DF CD ⊥,且2DF =,BF =,E 为FD 的中点,Q 为BE 的中点,R 为FC 上一点,且3FR RC =.(Ⅰ) 求证:QR ∥平面BCD ;(Ⅱ)求平面BCF 与平面BDF 所成二面角的余弦值.【答案】(Ⅰ)证明略;. 【解析】试题分析:(Ⅰ) 连接OQ ,在面CFD 内过R 做RM CD ⊥,则OQ //DF ,且12OQ DE =,又DF CD ⊥,所以//RM FD ,又3F R R C =,则14RM CR DF CF ==,所以14RM DF =,因为E 为FD 的中点,所以12RM DE =,故OQ //RM ,且OQ RM =,即得OQRM 为平行四边形,得RQ //OM ,即证QR //平面BCD ;(Ⅱ)可证得DF ⊥平面BCD ,以O 为原点,OD 为y 轴建立如图空间直角坐标系求平面BCF 与平面BDF 所成二面角的余弦值.BED试题解析:(Ⅰ) 连接OQ ,在面CFD 内过R 做RM CD ⊥ ∵,O Q 为中点,∴OQ //DF ,且12OQ DE = ∵DF CD ⊥ ∴//RM FD又3FR RC =,∴14RM CR DF CF ==,∴14RM DF = ∵E 为FD 的中点,∴12RM DE =.∴OQ //RM ,且OQ RM = ∴OQRM 为平行四边形,∵RQ //OM又RQ ⊄平面BCD , OM ⊂平面BCD , ∴QR //平面BCD .(Ⅱ)∵2DF =,BF =BD =∴222BF BD DF =+,∴BD DF ⊥,又DF CD ⊥,∴DF ⊥平面BCD . 以O 为原点,OD 为y 轴建立如图空间直角坐标系B考点:1.线面平行的判定;2.二面角的求法. 20. (本小题满分13分)已知函数(),ln xf x ax x=+1x >. (Ⅰ)若()f x 在()1,+∞上单调递减,求实数a 的取值范围; (Ⅱ)若2a =,求函数()f x 的极小值;(Ⅲ)若存在实数a 使()f x 在区间1(,)(,n ne e n N *∈且1)n >上有两个不同的极值点,求n 的最小值.【答案】(Ⅰ)14a ≤-;(Ⅱ)()f x 的极小值为1122()4f e e =;(Ⅲ)3.【解析】试题分析:(Ⅰ)2ln 1()ln x f x a x-'=+,由题意可得()0f x '≤在()1,x ∈+∞上恒成立;2111()ln 24a x ≤--, 即2min 111[()]ln 24a x ≤--,求得函数2111()ln 24y x =--在()1,+∞的最小值即可; (Ⅱ)当2a =时,()2ln x f x x x =+,求得222ln 1ln 12ln ()2ln ln x x xf x x x--+'=+=令()0f x '=,解得1ln 2x =或ln 1x =-(舍),即12x e =,当121x e <<时,()0f x '<,当12x e >时,()0f x '>,()f x 的极小值为1122()4f e e =;(Ⅲ)原题等价于()0f x '=在1(,),(,n ne e n N *∈且1)n >上有两个不等的实数根;由题意可知22ln 1ln ()ln x a x f x x-+'=,即2l n l n 10a x x +-=在1(,)n ne e 上有两个不等实根,令1ln ,()x u u n n =<<,2()1g u au u =+-在1(,)n n上有两个不等实根,根据二次函数根的分别列出不等式组,即可求出n 的最小值.试题解析:(Ⅰ)2ln 1()ln x f x a x-'=+,由题意可得()0f x '≤在()1,x ∈+∞上恒成立; ∴2211111()ln ln ln 24a x x x ≤-=--, ∵()1,x ∈+∞,∴()ln 0,x ∈+∞,∴110ln 2x -=时函数t =2111()ln 24x --的最小值为14-, ∴14a ≤-(Ⅱ) 当2a =时,()2ln xf x x x=+ 222ln 1ln 12ln ()2ln ln x x xf x x x--+'=+=令()0f x '=得22ln ln 10x x +-=,解得1ln 2x =或ln 1x =-(舍),即12x e =当121x e <<时,()0f x '<,当12x e >时,()0f x '>∴()f x 的极小值为11112222()242e f e e e =+= (Ⅲ)原题等价于()0f x '=在1(,),(,n ne e n N *∈且1)n >上有两个不等的实数根;由题意可知222ln 1ln 1ln ()ln ln x x a xf x a x x--+'=+= 即2ln ln 10a x x +-=在1(,)nne e 上有两个不等实根.令1ln ,()x u u n n=<<,2()1g u au u =+- ∵(0)10g =-<,根据图象可知:1401121()0()0a a n n a g n g n ⎧⎪<⎪∆=+>⎪⎪⎪<-<⎨⎪⎪<⎪⎪<⎪⎩,整理得2210412211a n a n a n n a n n ⎧-<<⎪⎪⎪-<<-⎪⎨⎪<-⎪⎪<-⎪⎩ - 即2min 21111{,,}24n n n n n --->-,解得2n >, ∴n 的最小值为3. 考点:1.导函数的应用;2.函数的极值;3.二次函数根的分布.21. (本小题满分14分)如图,过原点O 的直线12,l l 分别与x 轴,y 轴成30︒的角,点(,)P m n 在1l 上运动,点(,)Q p q 在2l上运动,且||PQ =(Ⅰ)求动点(,)M m p 的轨迹C 的方程;(Ⅱ)设,A B 是轨迹C 上不同两点,且13OA OB k k ⋅=-, (ⅰ)求OA OB ⋅的取值范围;(ⅱ)判断OAB ∆的面积是否为定值?若是,求出该定值,不是请说明理由.【答案】(Ⅰ)22162m p +=;(Ⅱ)(ⅰ)22OA OB -≤⋅< ;(ⅱ【解析】试题分析:(Ⅰ)由题意知12:,:,3l y x l y ==可得(),(,)3P m m Q p p,由||PQ =22()()83m p -+=,整理得22162p m +=,所以动点M 的轨迹C 的方程22162m p +=;(Ⅱ)(ⅰ)设1122(,),(,)A x y B x y 所在直线为l ,当l 斜率不存在时,1111(,),(,),A x y B x y -则1111,OA OB y yk k x x ==- 由22211121133OA OBy k k x y x ⋅=-=-⇒=,又2211162x y +=,211y =,21212122OA OB x x y y y ⋅=+==, 当l 斜率存在时,设l 方程y kx m =+,联立2236y kx mx y =+⎧⎨+=⎩,得222(13)6360k x kmx m +++-=2222223612(31)(2)12(62)0.........()k m k m k m a ∴∆=-+-=-+>且2121222636,.3131km m x x x x k k --+==++由121213OA OB y y k k x x ⋅==-,整理得2213................()m k b =+,又1212242OA OB x x y y m⋅=+=-由(),()a b 得22131m k =+≥,可得22OA OB -≤⋅<;(ⅱ) 由(i )知,l 斜率不存在时,2111||OAB S x y ∆== 当l斜率存在时,1||2OABS AB d ∆== 将2213m k =+带入整理得OAB S ∆=,所以OAB ∆试题解析:(Ⅰ)由题意知12:,:,l y x l y ==∴(),(,)P m m Q p,由||PQ =22()()83m p -+=,整理得22162p m += 所以动点M 的轨迹C 的方程22162m p +=. (Ⅱ)(ⅰ)设1122(,),(,)A x y B x y 所在直线为l , 当l 斜率不存在时,则11111111(,),(,),,OA OB y yA x yB x y k k x x -∴==- 由22211121133OA OBy k k x y x ⋅=-=-⇒=,又2211162x y +=,211y ∴= 21212122OA OB x x y y y ∴⋅=+==当l 斜率存在时,设l 方程y kx m =+,联立2236y kx m x y =+⎧⎨+=⎩,得222(13)6360k x kmx m +++-= 2222223612(31)(2)12(62)0.........()k m k m k m a ∴∆=-+-=-+>且2121222636,.3131km m x x x x k k --+==++ 由1212121212133()()3OA OB y y k k x x y y kx m kx m x x ⋅==-⇒=-=-++ 221212(13)3()30k x x km x x m ⇒++++=整理得2213................()m k b =+221212122222242442313m m OA OB x x y y x x k m m --∴⋅=+====-+由(),()a b 得2224131,04m k m=+≥∴<≤,22OA OB ∴-≤⋅< 综上:22OA OB -≤⋅≤.(ⅱ)由(i )知,l 斜率不存在时,2111||OAB S x y ∆==当l斜率存在时,121||2OABS AB d x x ∆==-=将2213m k =+带入整理得OAB S ∆=所以OAB ∆考点:1.椭圆的标准方程;2.向量在圆锥曲线中的应用;3.圆锥曲线中的定值问题.。
哈工大集合论与图论作业题答案
![哈工大集合论与图论作业题答案](https://img.taocdn.com/s3/m/67d13ec76037ee06eff9aef8941ea76e58fa4a8e.png)
第六章图的根本概念P206习题1.画出具有4个顶点的所有无向图(同构的只算一个).11个2.画出具有3个顶点的所有有向图(同构的只算一个)o16个3.画出具有4个、6个、8个顶点的三次图.略4.某次宴会上,许多人互相握手.证实:握过奇数次手的人数为偶数(注意,0是偶数)o把实际问题转化为图论问题,然后用握手定理的推论.P209习题1.设u与v是图G的两个不同顶点.假设u与v间有两条不同的通道(迹),那么G 中是否有圈假设u与v间有两条不同的通道,G中无圈假设u与v间有两条不同的迹,G中有圈2.证实:一个连通的(p , q)图中q?p-1.数学归纳法3.设G是一个(p, q)图,且q (p 1)(p 2)/2,那么G是连通的.征2用反征法口假咬囹G是小庄逋叼,那么图G至少狂仕两?逢逋分支.尸⑵⑼)和&二仇必)时,G 的最大可能边数勺二名+公式T)'2 +p式1)/2 ,其中曲三户一],1 < < p-1 ?所以〞(pZp-W2,与题设矛盾n所以假设.是简单图,那么仃是连通的.6.在一个有n个人的宴会上,每个人至少有m个朋友(2&m< n).试证:有不少于m+1个人,使得他们按某种方法坐在一张圆桌旁, 每人的左、右均是他的朋友. 证实:把实际问题转化为图论问题,就和下面的题一样了.8.设G是图.证实:假设5 (G) >2,那么G包含长至少是6(G)+1的圈.这两个题和这个题一样的证实方法.例3设行=(匕均是无向图,证实:假设久⑴之出,那么行包含长至少为中+ 1的|口1路, iiF:设上是G中最长的路, £:v t P2L v…a由于WE—d次置之所以必自Z上的m个顶点工门,,…,叫(2 = «o,VQ与耳邻接,干是马巧…%巧便是G中的一个回路,且长至少为2去晨假设上上不存在陋个顶点与耳邻接,那么在最长路L外必有一个顶点与巧邻接,于是有更长路矛盾.P216习题1.证实:假设图G不是连通图,那么GC是连通图.由于G不连通,故G至少有两个分支对于G,中任意两个顶点把和v :(1)假设"匕匕,¥曰匕,那么仃与野不在G中邻接.由补图的定义可知:N与F必在T中邻接;(2)假设以廿三艮(或匕),取WE匕(或昨),那么廿与w, w与在G都不邻接,故"与1#, w与廿在G'必邻接.于是ww窜就是G'中的一条踏.综上可知,由于对G『中任意两个加点〞和% .和y之间都有路连接,故G, 连通.2.证实:每一个自补图有4n或4n+1个顶点.(3)由于每个自补图G的对应的完全图的边数必为偶数,即q-p(p-1)/2为偶数.而当p二123时,图G无自补图,只有p之4时,图G才有自补图;于是「可写成如下形式,4/4〃+ L4叱2刈】+3,其中〃为正整数;代入〞风p -1)2中,只有加也十1才能使&为偶数r故每个自补图必有4“成4"】个顶点.例4证实:在一个连通图中,两条最长的路有一个公共的顶点口证】设乙与乙是图中的两条最长的路r 4飞打4 J上上:叫的力—但设心与心没有公共顶点*由于<7是连通的,所以心与上上之间必TT一条路尸连接且|尸岸1 0令尸与4上的匕连接,与&上的2连接,那么假设,之J*那么路先岭次〃产产1%比4长,矛盾:假设,,J f那么路修/…%7VM.I…/比4长,矛盾.故假设不成立,即两条最长的路必有公共顶点,P228习题1.给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有:degu+degv> 9.下列图中任意一对不邻接的顶点u和v ,均有:degu+degv> 9 .2.试求Kp中不同的哈密顿圈的个数.〔p-1〕!/2 4.完全偶图Km n为哈密顿图的充分必要条件是什么?〔2〕=>假设|匕<|匕,有〔1〕可知区门不是哈密顿图;假设IRWI/I,同理有K〞不是哈密顿图.故&◎是哈密顿图时只有14 1=1/ I,即一-*U假设加二〃,那么匕扇即斗廛gv=|1I/2+|炉],2二/卜由定理知:?明,是哈密顿图二10.证实具有奇数顶点的偶图不是哈密顿图.证:〔1〕设G是,个具有奇数顶点的偶图,那么G的顶点集了有•个二划分, 即展的匕}H有因周匕I,不妨设| - K彩|,那么有印〔0—=1七忸匕I,由哈密顿图的必要条件可知:G不是哈密顿图.。
哈工大集合论习题课-第五章 图的基本概念习题课(学生)
![哈工大集合论习题课-第五章 图的基本概念习题课(学生)](https://img.taocdn.com/s3/m/a275fb200066f5335a8121b9.png)
第五章 图的基本概念习 题 课 11. 画出具有 6、8、10、…、2n 个顶点的三次图;是否有7个顶点的三次图?2. 无向图G 有21条边,12个3度数顶点,其余顶点的度数均为2,求G 的顶点数p 。
解:设图的顶点为p ,根据握手定理:1deg()2pi i v q ==∑,有212)12(2312⨯=-⨯+⨯p ,得15302==p p ,。
3. 下列各无向图中有几个顶点?(1)16条边,每个顶点的度为2;(2)21条边,3个4度顶点,其余的都为3度数顶点;(3)24条边,各顶点的度数相同。
解: 设图的顶点为p ,根据握手定理:(1)1deg()2pi i v q ==∑,即2221632p q ==⨯=;所以16p =,即有16个顶点。
(2)1deg()2p i i v q ==∑,即433(3)222142p q ⨯+⨯-==⨯=,所以13p =。
(3)各点的度数为k ,则1deg()2i pi v q ==∑,即222448k p q ⨯==⨯=,于是① 若1k =,48p =; ② 若2k =,24p =;③ 若3k =,16p =;④ 若4k =,12p =; ⑤ 若6k =,8p =;⑥ 若8k =,16p =; ⑦ 若12k =,4p =; ⑧ 若16k =,3p =;⑨ 若24k =,2p =; ⑩ 若48k =,1p =。
4.设图G 中9个顶点,每个顶点的度不是5就是6。
证明G 中至少有5个6度顶点或至少有6个5度顶点。
证:由握手定理的推论可知,G 中5度顶点数只能是0,2,6,8五种情况,此时6度顶点数分别为9,7,5,3,1个。
以上五种情况都满足至少5个6度顶点或至少6个5度顶点的情况。
5.有n 个药箱,若每两个药箱里有一种相同的药,而每种药恰好放在两个药箱中,问药箱里共有多少种药?[就是求一个完全图n K 的边数(1)(2)/2q p p =--]6.设G 是有p 个顶点,q 条边的无向图,各顶点的度数均为3。
哈工大2006年秋季学期《集合论与图论》试题
![哈工大2006年秋季学期《集合论与图论》试题](https://img.taocdn.com/s3/m/678c381611661ed9ad51f01dc281e53a58025193.png)
哈工大2006年秋季学期《集合论与图论》试题哈工大 2006年秋季学期《集合论与图论》试题本试题满分90,平时作业分满分10分。
一、(10分,每小题1分)判断下列各命题真伪(真命题打“√”号,假命题打“×”号):1.从{1,2,3}到{4,5}共有9个不同的映射。
()2.从{1,2,3}到{4,5}共有5个不同的满射。
()3.从{4,5}到{1,2,3}共3个不同的单射。
()4.集合{1,2,…,10}上共有2100个不同的二元关系。
()5.如果A为可数集,则2A也是可数集合。
()6.欧拉图中没有割点。
()7.有向图的每一条弧必在某个强支中。
()8.P为正整数,Kp的顶点连通度为P-1。
()9.(P,P)连通图至少有2个生成树。
()10.每个有2个支的不连通图,若每个顶点的度均大于或等于2,则该图至少有2个圈。
()二、(20分,每小题2分)计算题。
对每一小题给出计算结果:1.{1,2,…,n}上有多少个反自反且对称的二元关系?()2.把置换123456789579413826分解成循环置换的乘积。
()3.计算下面两个图G1和G2的色数。
()G1:G2:(答:G1的色数为,G2的色数为)4.设X为集合,R为X上的偏序关系,计算1iiR ∞=等于什么。
()5.求下面的有向图D的邻接矩阵和可达矩阵。
D=-------------------:()6.一个有向图D=(V,A)满足什么条件是V到V的一个映射的图?()7.P个顶点的无向连通图G的邻接矩阵中至少有多少个1?()8.设X为n 个元素的集合,X上有多少个二元运算?()9.9个学生,每个学生向其他学生中的3个学生各送一张贺年卡。
确定能否使每个学生收到的卡均来自其送过卡的相同人?为什么?()10.某次会议有100人参加,每人可以是诚实的,也可能是虚伪的。
已经知道下面两项事实:(1)这100人中至少有一人是诚实的;(2)任两人中至少有一人是虚伪的。
哈工大集合论习题课-第三章 关系习题课(学生)
![哈工大集合论习题课-第三章 关系习题课(学生)](https://img.taocdn.com/s3/m/d8a8a5c99ec3d5bbfd0a74b9.png)
习 题 课例1设{,,}A a b c =,给出A 上的一个二元关系,使其同时不满足自反性、反自反性、对称性、反对称和传递性的二元关系,并画出R 的关系图。
解:{(,),(,),(,),(,)}R a a b c c b a c =,关系图如图所示。
例2 设X 是一个集合,X =n ,求:1.X 上的二元关系有多少?()22n 2. X 上的自反的二元关系有多少? 3. X 上的反自反的二元关系有多少?解:因为把所有的反自反的二元关系的每个都加上对角线上的序对,就变成了自反的关系,因此,自反的与反自反的个数一样多。
即22nn-4. X 上的对称的二元关系有多少?2222n n n nn -++=,故共有222n n+个对称的关系。
5. X 上的反对称的二元关系有多少?22(32)n n n -∙6. X 上既是自反的也是反自反的二元关系的个数;(0)个7.X 上既不是自反的也不是反自反的二元关系有多少?2(2(22))n nn --解:解:可用容斥原理来计算设B 表示所有自反关系构成的集合,C 表示所有反自反关系构成的集合,则22nnB C -==。
而B C φ=,故B C B C =+,从而CC B C S B C S B C =-=--2222222222222(22)n n n n n n n n n n n ----=--=-=-于是,既不是自反的,也不是反自反关系共有22(22)n nn --个。
8.自反的且对称的关系有多少?[此结果与“反自反的且对称的关系有多少?”是一样多]即有222n n -(对角线上全去掉)9.自反的或对称的关系有多少?解:设B 表示自反关系的集合,C 表示对称关系的集合,则自反或对称关系的集合为:22222222n n n n nnB C B C B C +--=+-=+-。
10.X 上既是反自反的也是反对称的二元关系的个数为:223n n -;11.X 上既是对称的也是反对称的关系个数;解:X 上既是对称的也是反对称的关系X R I ⊆,故有2n 。
集合论与图论试题与参考答案哈工大本科
![集合论与图论试题与参考答案哈工大本科](https://img.taocdn.com/s3/m/041cbed72dc58bd63186bceb19e8b8f67c1cefd9.png)
集合论与图论试题与参考答案哈⼯⼤本科哈尔滨⼯业⼤学(威海)继续教育学院年春季学期集合与图论本科试题考试形式:开卷答题时间:90 分钟本卷⾯成绩站课程成绩100 %(所有答案必须写在答题纸上、标清题号)⼀、填空题(每空2分,计20分)1. 集合{0}的所有⼦集是______________。
2. 设A={1,2,3,{1,2},{3}},B={2,{1},{2,3}},则B- A=__________。
3. 有偏序集(N,≤),即⾃然数集N上的⼩于等于关系,N的⼦集A={2,3,6,8}的下确界和上确界分别是______、_______。
4. 设A={1,2,3,4,5,6},R={<1,5>,<2,3>,<2,6>,<3,2>,<3,6>,<5,1>, <6,2>,<6,3>}∪I A,则[1]=_____________,[2]=_______________。
5. n个顶点的有向完全图边数是______,每个顶点的度数是_____。
6. 设图G1=和G2=,若____________,则G2是G1的真⼦图;若____________,则G2是G1的⽣成⼦图。
⼆、简答题(每题 10 分,计 40 分)1. 设A是⼀个⾮空集合,问(1)A上是否存在⼀个既是等价关系⼜是偏序关系的关系?若不存在,请说明理由;若存在,请给出⼀个实例。
(2) A上是否存在⼀个既是⾃反的⼜是反⾃反的关系?若不存在,请说明理由;若存在,请给出⼀个实例。
2. 是否存在每个顶点的度数≥3且只有7条边的简单平⾯连通图?请说明理由。
3. 某公司来了9名新员⼯,⼯作时间不能互相交谈,为了尽快互相了解,他们决定利⽤每天吃午饭时间相互交谈,于是,每天吃午饭时他们围在⼀张圆桌旁坐下,他们是这样安排的,每⼀次每⼈的左右邻均与以前的⼈不同,问这样的安排法能坚持多久?4. 有向图D如图所⽰,(1) 给出D的邻接矩阵A;(2) D中长度为1, 2, 3, 4的通路各有多少条?其中回路分别为多少条?(3) D中长度⼩于或等于4的通路为多少条?其中有多少条回路?1。
图论试卷及参考答案A-13级数学本科
![图论试卷及参考答案A-13级数学本科](https://img.taocdn.com/s3/m/c1aa2b40ad51f01dc381f163.png)
**学院2013—2014学年第二学期期末考试 数学与应用数学专业2013级《图论》试卷A(本试卷满分100分,考试时间110分钟)一、填空题 (每小题2分,共20分) 1.5阶完全图G 的边的个数是___________.2.如果图G 的每个顶点的度数都相同,则称图G 为________图. 3.当且仅当无向连通图G 的顶点个数比边的个数多1时,图 G 是___. 4.无向图G 为欧拉图当且仅当G 连通,并且所有顶点的度都是 . 5.(p ,q ) 图G 的向量空间的维数是_________.6.图G 的任意一个顶点的关联集都是其余各顶点关联集的____. 7.5阶完全图的边连通度是 .8.已知M 是图G 的一个 ,若从G 中一个顶点到另一个顶点存在一条道路,此路径由属于M 和不属于M 的边交替出现组成的,则称此路径为M -交错道路.9.图G 是2-色的当且仅当G 是 . 10.极大平面图所有面的次数均为 . 二、判断题(每小题2分,共20分)1.图的所有顶点的度数之和是边数的2倍.2.连通图的一个生成树是边数最少的连通生成子图. 3.若一个图是欧拉图,那它也一定是哈密顿图.4.图的秩等于图的完全关联矩阵的秩,也等于其关联矩阵的秩. 5.r 一定是r —正则图的一个特征值. 6.图的点连通度小于等于图的边连通度.7.若一个图G 存在完美匹配,则该匹配必定是最大匹配. 8.图G 的一个M —可增广道路未必是一个M —交错道路. 9.图的边着色问题可以转化成图的点着色问题.10.设G 为p 阶、q 条边、f 个面的连通平面图,则 p -q +f =2.专业:__________ 班级:______ 学号:_______________________ 姓名:_____________________——————————————密——————————————封————————————————线———————————专业:________ 班级:___________ 学号:_______________________ 姓名:_____________________ ——————————————密——————————————封————————————————线———————————三、解答题(每小题5分,共30分) 1.试判断下列两个图是否同构.2.写出下图G 的一个生成树T 并写出图G 关于T 的基本圈组.3.求下图的完全关联矩阵并以v 2为参考点写出关联矩阵和一个可逆大子阵.4.简述图的点连通度、边连通度、最小顶点的度数三者之间的关系,并举例说明.5.下面的图中加粗的边构成最大匹配吗?如果不是请说明理由.v 143 v e 2 e 34 e AB CDGF4v5v 6v 1v2v 3v 15 u u43 u u26 u u6.试写出下图的一个着色方案,并回答该图的色数.四、应用题(每小题5分,共10分)1.下图是一个公园的平面图,能不能使游人走遍每一条路不重复?入口和出口又应设在哪儿?2.试建立下列问题的数学模型:有两组化学药品X 和Y ,每组各三类,设{}123,,x x x 和{}123,,y y y ,已知不同组的化学药品不能放在一起,否则会发生爆炸.现在将这些物品存放在三个仓库1,2,3中,但由于物品的特性及仓库自身的物理条件(如有无空调、通风条件等),1x 和1y 只允许放在1号和2号仓f 1 f 2 m 1f 3 f 4f 5m 2 m 3 m 4 m 5v 2v 3v 4v 1v 5库内,2x 和2y 只允许放在2号和3号仓库内,3x 和3y 只允许放在1号和3号仓库内,问:满足要求的存放方案是否存在?若存在,如何存放? 五、证明题(每小题10分,共20分)1.设T 是一个无向(p ,q )图,证明T 是树则T 无圈且q =p -1.2.设G 为p 阶连通平面图, 有q 条边, 且每个面的次数不小于l (l ³3), 证明 ()≤lq p -2l -2.**学院2013—2014学年第二学期期末考试 数学与应用数学专业2013级《图论》参考答案与评分标准A命题教师:***二、填空题 (每小题2分,共20分)参考答案:1.120;2.正则图;3.树;4.偶数;5.q ;6.环和;7.4;8.匹配;9.二部图;10.3 评分标准:本部分每小题2分.凡与答案一致或意义相同的得2分,不一致(含空白)的不得分.三、判断题(每小题2分,共20分)参考答案:1-5.√√×√√ 6-10.√√×√√ 评分标准:本部分每小题2分.凡与答案一致的得2分,不一致(含未做判断)的不得分.三、解答题(每小题5分,共30分)参考答案:1.解:建立一一映射,1,2,3,4,5,6i i v u i =a ,可知两图同构. ……(5分)2.解:因为图的生成树即其连通无圈的生成子图,因此,去掉图的一些边使其保持连通无圈即得其生成树.下图是其中的一种做法. …………(2分)关于这棵树的基本圈有6个:AEG ,ABG ,EFG ,BCE ,DEF ,CDF .(5分)3.解: ………………(3分)其中一个可逆的大子阵100011001⎛⎫⎪ ⎪ ⎪⎝⎭123e e e …………………………………………(5分) 4.解:图的点连通度、边连通度、最小顶点的度数三者之间的关系为k (G )≤l (G )≤d (G ). …………………………………………(3分)下图是无向连通图,点连通度k (G )=1,边连通度l(G )=2,最小度d(G )=3,此图满足k (G )≤l (G )≤d (G ). …………………………………………(5分)100110110100110⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭2完全关联矩阵关联矩阵(v 为参考点)1001111000→0110100110EAB CDGF5.解:不是最大匹配,因为该图中存在M-可增广道路. ………………(5分) 6.该图是3色的,颜色1:v 1,v 5,颜色2:v 2,v 4,颜色3:v 3. ………(5分) 本部分每小题5分,由于某些题的结果不唯一,因此要求只要运用理论正确,结果与答案等价,即得满分;如果有些偏差,酌情扣分;如果关键部分错误,该得分点不得分.四、应用题(每小题5分,共10分)参考答案:1.这个问题可以归结为一笔画问题,一个连通图存在欧拉圈当且仅当图的顶点的度数是偶数.H 点和B 点是奇点,其余都是偶点,所以入口和出口应设在H 点和B 点. ………………(5分)2.解:以药品为点,两药品不能放在一起则连边,则得到一个二部图,然后再对图中每个点x ,指定一个集合()L x ,用以表示允许存放的仓库和集合,即令()(){}111,2L x L y ==,()(){}222,3L x L y ==,()(){}331,3L x L y ==,如下图所示,于是问题转化为对3,3K 的点着色,但要求对每个点x 的着色,应选用各自的中所罗列的“颜色”,如下图所示:f 1f 2m 1 f 3f 4f 5m 2 m 3 m 4 m 5{}11,2x{}22,3x{}31,3x实际上,本问题的着色不存在. ………………(5分) 评分标准:本部分每小题5分,考生每解出一个步骤,得相应的分数.由于某一步单纯计算错误而导致其后数据错误,但方法正确的,酌情给分. 五、证明题(每小题10分,共20分)参考答案:1.证明:由树的定义可知T 无圈.下证q =p -1.对p 进行归纳证明. 当p=1时,q=0,显然q =p -1.假设p=k 时结论成立,现证明p=k+1时结论也成立. ………… (2分)由于树是连通而无圈的,所以至少有一个度数为1的顶点v ,在T 中删去v 及其关联边,便得到k 个顶点的连通无圈图. ………… (4分)由归纳假设它有k-1条边.再将顶点v 及其关联边加回得到原图T ,所以T 中含有k+1个顶点和k 条边,故结论q =p -1成立.所以树是无圈且q =p -1的图.即q =k +1时结论成立. ……………… (10分)2.证明:由于在计算面数之和时,每个边被计算了两次,因此各面次数之和等于边数的2倍,再由欧拉公式得: ……………… (5分) 2q ³ lf = l (2+q-p )()1⎛⎫≥⇒≥⇒≤ ⎪⎝⎭2q 2l 2+q -p -q 2-p q p -2l l l -2 …… (10分)评分标准:本部分每小题10分,根据参考答案的答题要点给分。
哈工大集合与图论习题
![哈工大集合与图论习题](https://img.taocdn.com/s3/m/fbaf763ff78a6529647d538d.png)
集合与图论习题第一章习题1.画出具有4个顶点的所有无向图(同构的只算一个)。
2.画出具有3个顶点的所有有向图(同构的只算一个)。
3.画出具有4个、6个、8个顶点的三次图。
4.某次宴会上,许多人互相握手。
证明:握过奇数次手的人数为偶数(注意,0是偶数)。
5.证明:哥尼斯堡七桥问题无解。
6.设u与v是图G的两个不同顶点。
若u与v间有两条不同的通道(迹),则G中是否有回路?7.证明:一个连通的(p,q)图中q ≥p-1。
8.设G是一个(p,q)图,δ(G)≥[p/2],试证G是连通的。
9.证明:在一个连通图中,两条最长的路有一个公共的顶点。
10.在一个有n个人的宴会上,每个人至少有m个朋友(2≤m≤n)。
试证:有不少于m+1个人,使得他们按某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。
11.一个图G是连通的,当且仅当将V划分成两个非空子集V1和V2时,G总有一条联结V1的一个顶点与V2的一个顶点的边。
12.设G是图。
证明:若δ(G)≥ 2,则G包含长至少是δ(G)+1的回路。
13.设G是一个(p,q)图,证明:(a)q≥p,则G中有回路;(b)若q≥p+4,则G包含两个边不重的回路。
14.证明:若图G不是连通图,则G c 是连通图。
15.设G是个(p,q)图,试证:(a)δ(G)·δ(G C)≤[(p-1)/2]([(p+1)/2]+1),若p≡0,1,2(mod 4)(b) δ(G)·δ(G C)≤[(p-3)/2]·[(p+1)/2],若p≡3(mod 4)16.证明:每一个自补图有4n或4n+1个顶点。
17.构造一个有2n个顶点而没有三角形的三次图,其中n≥3。
18.给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有degu+degv≥919.试求Kp中不同的哈密顿回路的个数。
20.试证:图四中的图不是哈密顿图。
21.完全偶图Km,n为哈密顿图的充分必要条件是什么?22.菱形12面体的表面上有无哈密顿回路?23.设G 是一个p(p ≥3)个顶点的图。
2014-2015学年第二学期考试试题A
![2014-2015学年第二学期考试试题A](https://img.taocdn.com/s3/m/2813204801f69e314332944b.png)
哈尔滨理工大学第二学期考试试题A 卷考试科目:高等数学(一)-Ⅱ 考试时间:100分钟 试卷总分100分考试班级:工科类各专业一、填空题(每小题4分,总计40分)1、设单位向量x 与向量{}212-=,,a 和{}011,,b =都垂直,则向量= .2、设222lnz y x u ++=,则=∂∂+∂∂+∂∂zu z y u y x u x. 3、螺旋线θπθθ8,s in 2,c o s 2===z y x 在点),,(211处的法平面方程为 .4、设22(,)(1)cos π2xy f x y x y ⎛⎫=+⎪⎝⎭,则grad (1,1)f = . 5、设()yxy x z arctan22+=,则=z d . 6、极限=⎰⎰≤+++∞→y x t y x y xt t d d e e1lim222222.7、微分方程0=-''y y 的通解为 .8、曲线L 为14922=+y x ,记L 的弧长为m ,则=++⎰s y x L d )941(22 .9、设nn nx a)2(1-∑∞=在5=x 处条件收敛,则n n n x a ∑∞=1的收敛半径=R .10、设)(x f 是周期为2的周期函数,且⎩⎨⎧<<-≤≤-=10,201,)(x ,x x x x f ,)(x f 的傅里叶级数的和函数记为)(x S ,则=)2(S .二、解答下列各题(每小题8分,总计56分)1、 设()xyy x z e 22-=,求yx z∂∂∂2.2、 求微分方程xy y y 2e 127=+'-''的通解。
3、判别级数∑∞=-12)1(n n nn的收敛性,若收敛,指出是条件收敛,还是绝对收敛。
4、设D 是由2y x =,y 轴及1=y 所围成的区域,计算y x Dy d d e3⎰⎰.5、计算曲线积分()()y x y x x y y xLd 2d 32332++-⎰,其中L 为任意一条正向光滑封闭曲线,且曲线L 所围成区域的面积为2.6、将()2()ln 1f x x=+展开成x 的幂级数,指出收敛区间.7、计算⎰⎰⎰Ω+v zd 114,其中Ω为22y x z +=与1=z 围成.三、证明题(本题4分)已知级数∑∞=12n n a ,证明级数∑∞=+121n n n a 绝对收敛.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名: 班级: 学号:
遵 守 考 试 纪 律 注
意 行 为 规 范
哈尔滨工业大学(威海)2014 / 2015学年春季学期
集合论与图论 试题卷(A )
考试形式(开、闭卷):闭卷 答题时间:105(分钟)本卷面成绩占课程成绩 30 %
试卷说明:
[1] 卷面总分100分,取卷面成绩的70%计入总分,平时成绩30%。
[2] 填空题请在答题卡内答题,其它处无效。
[3] 答卷时禁止拆开试卷钉,背面即为草稿纸。
一、填空题(每小题2分,共20分)
(1) 集合的()表示方法可能产生悖论。
(2) 映射f左可逆的充分必要条件是:()。
(3) 设R={(a, b),(c, d),(e, f)}是一个二元关系,则R的逆记为R-1,R-1=()。
(4) n个顶点的完全图的边的个数是( )。
(5) 一个无向图的边数为20,那么所有顶点的度数和为()。
(6) 设G是一个有p个顶点q条边的最大可平面图,则: q=( )。
(7) 一个图是树当且仅当G是连通的且p=()。
(8) G是一个p个顶点q条边的最大平面图,则G的每个面都是( )形。
(9) 若G是偶数个顶点的圈,则G是()色的。
(10) 当顶点数大于2时,树的连通度是()。
二、简答题(每小题5分,共20分)
1.设集合X={a,b,c,d,e},E={a,b,c}是X的子集。
写出E的特征函数。
2.R={(1,b),(2,c),(3,a),(4,d)}是集合A={1,2,3,4}到集合B={a,b,c,d}的一个二元关系,画出R的关系矩阵和关系图。
3.举例说明什么是偏序关系?什么是偏序集?
4.简述图的连通度、边连通度、最小度之间的关系。
三、证明题(每小题10分,共20分)
1. A和B是两个集合,证明:(A∪B)c=A c∩B c
2. 证明:3度正则图(每个顶点的度数都是3)的顶点的数目必为偶数。
四、计算题(每小题5分,共20分)
1. 集合X={a,b,c,d,e,f,g,h},X的两个子集是A={a,b,c,d},B={e,f,g,h}
求:A⋃B,A⋂B,A c,A\B,A∆B
2、一个学校学生总人数为336人,共有数学,物理,化学3门课。
已知参加这3门课的学生人数分别有170,130,120人;同时参加数学、物理两门课的学生有45人;同时参加数学、化学的有20人;同时参加物理、化学的有22人;
问同时参加三门课的学生有多少人?
3. 集合X={1, 2, 3, 4, 5},Y={a, b, c, d, e, f},f是X到Y的一个映射,其中:f(1)=b, f(2)=a, f(3)=a, f(4)=c, f(5)=d, A和B分别是X和Y的子集,其中:
A={1, 2, 3}, B={a, c, f}。
求:f(A), f-1(B)
4. 设集合X={a, b, c, d, e, f}, R和S是X上的二元关系,其中:
R={(a, b), (c, d), (e, f)}, S={(b, c), (d, a), (b, a), (f, d)}
求:R︒S和S︒R
1、
(1)举例说明什么是偶图?(2分)
(2)一个图是偶图的充分必要条件是什么?(3分)
(3)已知图G是偶图,写出图G的顶点划分过程。
(5分)
2、
(1)举例说明什么是欧拉图?(2分)
(2)一个图G是欧拉图的充分必要条件是什么?(3分)(3)已知图G是欧拉图,写出求G的欧拉闭迹的过程。
(5分)。