最新七年级下册数学几何压轴题集锦
七年级下册数学几何压轴题集锦-七下翻折压轴题
在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。
1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。
2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点E 的坐标。
$1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;((3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,ABABCCBCBC(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系说明你的理由。
~ 6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系为什么FAAEBB7.已知∠ABC 与∠ADC 的平分线交于点E 。
七年级下数学压轴题
七年级下数学压轴题一、相交线与平行线。
题1:如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE = 4:1,求∠AOF的度数。
解析:设∠BOE = x,因为OE平分∠BOD,所以∠BOD = 2∠BOE=2x。
又因为∠AOD + ∠BOD = 180°,且∠AOD:∠BOE = 4:1,所以∠AOD = 4x。
则4x + 2x=180°,6x = 180°,解得x = 30°。
所以∠COE = 180° - ∠BOE = 150°。
因为OF平分∠COE,所以∠COF=(1)/(2)∠COE = 75°。
∠AOC=∠BOD = 60°,所以∠AOF=∠AOC+∠COF = 60°+ 75°=135°。
题2:已知直线l_1∥ l_2,直线l_3和直线l_1、l_2交于点C和D,在C、D之间有一点P。
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化。
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?解析:(1)过点P作PE∥ l_1,因为l_1∥ l_2,所以PE∥ l_2。
∠PAC = ∠APE,∠PBD=∠BPE。
所以∠APB = ∠APE+∠BPE = ∠PAC + ∠PBD。
(2)当点P在l_1上方时,过点P作PF∥ l_1,因为l_1∥ l_2,所以PF∥ l_2。
∠PAC = ∠APF,∠PBD + ∠BPF=180°,所以∠PBD = 180°-(∠APB - ∠PAC),即∠PAC=∠APB + ∠PBD。
当点P在l_2下方时,过点P作PG∥ l_2,同理可得∠PBD = ∠APB+∠PAC。
二、实数。
题3:已知a、b满足√(2a + 8)+| b - √(3)|=0,解关于x的方程(a + 2)x + b^2=a - 1。
最新七年级下册数学几何压轴题集锦
精品文档与AFE重合,射线AFAE翻折,△ABE与△在矩形ABCD中,点E为BC边上的一动点,沿交于点G。
直线CD AEG的正弦值。
,若AB=6,BC=12,求锐角11、当BE:EC=3:时,连结EG,轴建立平面直角坐标系,AB=5,BC=8分别为X轴、Y直线2、以B为原点,BC和直线AB成等腰三角形,若存在,AEG△E从原点出发沿X正半轴运动时,是否存在某一时刻使当点E的坐标。
求出点、2=14.Sb+3=0,b)且(a-4)+,0,a),B(0b),C(m,A如图,已知(1ABC点坐标C1)求(o。
90?DFE=的平分线,且y,交轴于E点,EF为?AEDDE(2)作?DC;ADOFD平分?求证:,平分∠AEC为AC延长线上一点,EM点轴负半轴上运动时,)(3E在y连EC,P在运动过程中,E点,轴于交APNPQNxEM,PNPM且⊥⊥轴于点,平分∠,xQ则精品文档.精品文档?MPQ ECA?的大小是否发生变化,若不变,求出其值。
y yA A ND F oQ D x oxE MC CB PE1 ∠AB//EF,∠2=22、如图1,FCE;∠(1)证明∠FEC=NMC,则∠∠FMN为FE延长线上一点,且∠FNM=上一点,(2)如图2,M为ACN CFM有何数量关系,并证明。
与∠AAN ME2CC BF2 1 图图°,∠1=130、ED,若∠的三等分线交于点、∠∠ABC,1、3()如图,△ABCACB 的度数。
°,求∠2=110A精品文档.精品文档AE21DBCD,E 的平分线交于点的三等分线分别与∠ACB2)如图,△ABC,∠ABC( A的度数。
°,∠若∠1=1102=130°,求∠ADE12CB的位置OFOE、分别是角平分线,则判断∠ADC=180°,OE、OF、如图,∠4ABC+ 关系为ECOFAB.°∠C=90、已知∠5A=有何位置关DEBEEADCABC(1)如图,∠的平分线与∠的平分线交于点,试问与精品文档.精品文档系?说明你的理由。
七年级下册数学几何压轴题
七年级下册数学几何压轴题
1. 把一个长方形沿x轴正方向移动m个单位,求移动前后阴影的面积差。
2. 一个小正方体沿着x轴正方向移动,它的一面在x轴上翻转,求翻转前后阴影的面积比值。
3. 一个方形沿着y轴正方向移动,移动到一个圆的周围,求圆和方形的阴影面积比值。
4. 把一个正方形沿对角线方向移动,它最后完全重合的时候恰好覆盖了一个面积为S的等腰三角形,求三角形面积S。
5. 把一个正方形沿着y轴正方向移动,移动m个单位的时候与另外一个正方形刚好重合,求另外一个正方形的边长。
6. 一个矩形沿x轴正方向移动,移动到另外一个矩形的正上方还有b个单位,求两个矩形的阴影面积比值。
7. 把一个半圆形沿y轴正方向移动,移动到正方形的中心时,求正方形面积和半圆形面积的阴影面积比值。
8. 把一个梯形沿y轴正方向移动,移动到一个与梯形相似的大梯形上面靠着底边的位置,求阴影的面积比值。
9. 把一个正三角形沿着x轴正方向移动,相邻两次的位移满足一个等差数列,第一次移动2个单位,第三次移动8个单位,求正三角形的边长。
10. 一个椭圆形沿y轴正方向移动,移动到一个长方形上方恰好横跨长方形的两个端点,求已经移动了多少个单位。
最新人教版七年级数学下册期末几何压轴题测试题和答案
一、解答题1.如图,在平面直角坐标系xOy 中,已知(4,0)A ,将线段OA 平移至CB ,点D 在x 轴正半轴上,(,)C a b ,且2|3|0a b -+-=.连接OC ,AB ,CD ,BD .(1)写出点C 的坐标为 ;点B 的坐标为 ;(2)当ODC △的面积是ABD △的面积的3倍时,求点D 的坐标;(3)设OCD ∠=α,DBA ∠=β,BDC θ∠=,判断α、β、θ之间的数量关系,并说明理由.2.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E . ①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)3.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.4.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)5.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.6.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 7.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)8.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=9.数学中有很多的可逆的推理.如果10b n =,那么利用可逆推理,已知n 可求b 的运算,记为()b f n =,如210100=, 则42(100);1010000f ==,则4(10000)f =.①根据定义,填空:(10)f =_________,()310f =__________.②若有如下运算性质:()()(),()()n f mn f m f n f f n f m m⎛⎫=+=- ⎪⎝⎭. 根据运算性质填空,填空:若(2)0.3010f =,则(4)f =__________;(5)f =___________; ③下表中与数x 对应的()f x 有且只有两个是错误的,请直接找出错误并改正.10.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即; 仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++11.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:0与 0相加得 0; 0与1相加得1;1与1相加得0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”. ①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由; ②与23“模二相加不变”的两位数有______个 12.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).13.已知A 、B 两点的坐标分别为()2,1A -,()4,1B --,将线段AB 水平向右平移到DC ,连接AD ,BC ,得四边形ABCD ,且12ABCD S =四边形.(1)点C 的坐标为______,点D 的坐标为______;(2)如图1,CG x ⊥轴于G ,CG 上有一动点Q ,连接BQ 、DQ ,求BQ DQ +最小时Q 点位置及其坐标,并说明理由;(3)如图2,E 为x 轴上一点,若DE 平分ADC ∠,且DE HC ⊥于E ,14ABH ABC ∠=∠.求BHC ∠与A ∠之间的数量关系.14.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.15.在平面直角坐标系中,已知线段AB ,点A 的坐标为()1,2-,点B 的坐标为()3,0,如图1所示.(1)平移线段A B 到线段C D ,使点A 的对应点为,点B 的对应点为C ,若点C 的坐标为()2,4-,求点D 的坐标;(2)平移线段A B 到线段C D ,使点C 在y 轴的正半轴上,点D 在第二象限内(A 与D 对应, B 与C 对应),连接BC BD ,,如图2所示.若(7BCD BCD S S ∆∆=表示△BCD 的面积),求点C 、D 的坐标;(3)在(2)的条件下,在y 轴上是否存在一点P ,使(23PCD PCD BCD S S S ∆∆∆=表示△PCD 的面积)?若存在,求出点P 的坐标; 若不存在,请说明理由.16.某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省? 17.(了解概念)在平面直角坐标系xOy 中,若(,),(,)P a b Q c d ,式子a c b d -+-的值就叫做线段PQ 的“勾股距”,记作PQ d a c b d =-+-.同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”. (理解运用)在平面直角坐标系xOy 中,()2,3 4,,(),(2),A B C m n . (1)线段OA 的“勾股距”OA d = ;(2)若点C 在第三象限,且2OC AB d d =,求AC d 并判断ABC 是否为“等距三角形”﹔ (拓展提升)(3)若点C 在x 轴上,OBC ∆是“等距三角形”,请直接写出m 的取值范围.18.如图所示,在直角坐标系xoy 中,已知()6,0A ,()8,6B ,将线段OA 平移至CB ,连接OC 、AB 、CD 、BD ,且//OC AB ,点D 在x 轴上移动(不与点O 、A 重合).(1)直接写出点C 的坐标;(2)点D 在运动过程中,是否存在ODC △的面积是ABD △的面积的3倍,如果存在请求出点D 的坐标,如果不存在请说明理由;(3)点D 在运动过程中,请写出OCD ∠、ABD ∠、BDC ∠三者之间存在怎样的数量关系,并说明理由.19.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a 元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a 元收费,超过的部分按c 元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份 用水量(m 3)收费(元) 3 5 7.5 4 927(1)求a 、c 的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费. 20.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 21.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 值.22.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.23.如果3个数位相同的自然数m ,n ,k 满足:m +n =k ,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s 和两位数t 的十位数字相同,若s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,求出满足题意的s .24.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x 的代数式2x ,当-1≤x ≤ 1时,代数式2x 在x =±1时有最大值,最大值为1;在x =0时有最小值,最小值为0,此时最值1,0均在-1≤x ≤1这个范围内,则称代数式2x 是-1≤x ≤1的“湘一代数式”.(1)若关于x 的代数式x ,当13x ≤≤时,取得的最大值为 ,最小值为 ,所以代数式x (填“是”或“不是”)13x ≤≤的“湘一代数式”. (2)若关于x 的代数式12ax -+是22x -≤≤的“湘一代数式”,求a 的最大值与最小值. (3)若关于x 的代数式2x -是4m x ≤≤的“湘一代数式”,求m 的取值范围.25.某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元:新建4个地上停车位和2个地下停车位共需1.4万元,(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额. 26.某工厂准备用图甲所示的A 型正方形板材和B 型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若现有A 型板材150张,B 型板材300张,可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24000元资金去购买A 、B 两种型号板材,制作竖式、横式箱子共100个,已知A 型板材每张20元,B 型板材每张60元,问最多可以制作竖式箱子多少个?(3)若该工厂新购得65张规格为3m 3m ⨯的C 型正方形板材,将其全部切割成A 型或B 型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个? 27.阅读理解:例1.解方程|x |=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2,在数轴上找出|x ﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x ﹣1|=2的解为x =﹣1或x =3,因此不等式|x ﹣1|>2的解集为x <﹣1或x >3.参考阅读材料,解答下列问题: (1)方程|x ﹣2|=3的解为 ; (2)解不等式:|x ﹣2|≤1. (3)解不等式:|x ﹣4|+|x +2|>8.(4)对于任意数x ,若不等式|x +2|+|x ﹣4|>a 恒成立,求a 的取值范围.28.中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?29.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.30.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 光射线自AM 顺时针旋转至AN 便立即逆时针旋转至AM ,如此循环灯B 光射线自BP 顺时针旋转至BQ 便立即逆时针旋转至BP ,如此循环.两灯交叉照射且不间断巡视.若灯A 转动的速度是a 度/秒,灯B 转动的速度是b 度/秒,且a ,b 满足22(4)(5)0a b a b -++-=.若这一带江水两岸河堤相互平行,即//PQ MN ,且60BAN ∠=︒.根据相关信息,解答下列问题.(1)a =__________,b =__________.(2)若灯B 的光射线先转动24秒,灯A 的光射线才开始转动,在灯B 的光射线到达BQ 之前,灯A 转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯A 的光射线到达AN 之前,若两灯射出的光射线交于点C ,过点C 作CD AC ⊥交PQ 于点D ,则在转动的过程中,BAC ∠与BCD ∠间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(2,3)C ,(6,3)B ;(2)点D 的坐标为(3,0)或(6,0);(3),,αβθ之间的数量关系θαβ=+,或θαβ=-,理由见解析.【分析】(1)由二次根式成立的条件可得a 和b 的值,由平移的性质确定BC ∥OA ,且BC=OA ,可得结论;(2)分点D 在线段OA 和在OA 延长线两种情况进行计算;(3)分点D 在线段OA 上时,α+β=θ和在OA 延长线α-β=θ两种情况进行计算;【详解】解:(1)∵2|3|0a b -+-=,∴a=2,b=3,∴点C 的坐标为(2,3),∵A (4,0),∴OA=BC=4,由平移得:BC ∥x 轴,∴B (6,3),故答案为:(2,3)C ,(6,3)B ;(2)设点D 的坐标为,0)x ( ∵△ODC 的面积是△ABD 的面积的3倍∴3OCD ABD S S ∆∆=∴OD 3AD =①如图1,当点D 在线段OA 上时,由OD 3AD =,得03(4)x x -=-解得3x =∴点D 的坐标为(3,0)②如图2,当点D 在OA 得延长线上时,由OD 3AD =,得03(4)x x -=-解得6x =∴点D 的坐标为(6,0)综上,点D 的坐标为(3,0)或(6,0).(3)①如图1,当点D 在线段OA 上时,过点D 作DE ∥AB ,与CB 交于点E.由平移知OC ∥AB ,∴DE ∥OC∴,CDE BDE αβ=∠=∠又BDC CDE BDE θ=∠=∠+∠∴θαβ=+.②如图2,当点D 在OA 得延长线上时,过点D 作DE ∥AB ,与CB 得延长线交于点E由平移知OC ∥AB ,∴DE ∥OC∴,CDE BDE αβ=∠=∠又BDC CDE BDE θ=∠=∠-∠∴θαβ=-.综上,,,αβθ之间的数量关系θαβ=+,或θαβ=-.【点睛】此题考查四边形和三角形的综合题,点的坐标和三角形面积的计算方法,平移得性质,平行线的性质和判定,解题的关键是分点D在线段OA上,和OA延长线上两种情况.2.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.3.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE 中,∠G =180°-(∠GFE +∠GEF ),∵∠GEF =12∠PEA +∠OEF ,∠GFE =12∠PFC +∠OFE ,∴∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,∵由(2)知∠PFC =∠PEA +∠P ,∴∠PEA =∠PFC -α,∵∠OFE +∠OEF =180°-∠FOE =180°-∠PFC ,∴∠GEF +∠GFE =12(∠PFC −α)+12∠PFC +180°−∠PFC =180°−12α,∴∠G =180°−(∠GEF +∠GFE )=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 4.(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠,BF 平分ABC ∠,DF 平分ADC ∠, 1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 5.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.7.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可. 8.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数; (2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100, ∴故答案为:两;(2)∵只有个位数是2的立方数是个位数是8, ∴2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040. ∴3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100, ∴∵只有个位数是4的立方数是个位数是4, ∴4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∴∵只有个位数是8的立方数是个位数是2,∴8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.∴;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.9.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根据定义可得:f(10b)=b,即可求得结论;②根据运算性质:f(mn)=f(m)+f(n),f(nm)=f(n)-f(m)进行计算;③通过9=32,27=33,可以判断f(3)是否正确,同样依据5=102,假设f(5)正确,可以求得f(2)的值,即可通过f(8),f(12)作出判断.【详解】解:①根据定义知:f(10b)=b,∴f(10)=1,f(103)=3.故答案为:1,3.②根据运算性质,得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f(102)=f(10)-f(2)=1-0.3010=0.6990.故答案为:0.6020;0.6990.③若f(3)≠2a-b,则f(9)=2f(3)≠4a-2b,f (27)=3f (3)≠6a -3b ,从而表中有三个对应的f (x )是错误的,与题设矛盾,∴f (3)=2a -b ;若f (5)≠a +c ,则f (2)=1-f (5)≠1-a -c ,∴f (8)=3f (2)≠3-3a -3c ,f (6)=f (3)+f (2)≠1+a -b -c ,表中也有三个对应的f (x )是错误的,与题设矛盾,∴f (5)=a +c ,∴表中只有f (1.5)和f (12)的对应值是错误的,应改正为:f (1.5)=f (32)=f (3)-f (2)=(2a -b )-(1-a -c )=3a -b +c -1, f (12)=f (663⨯)=2f (6)-f (3)=2(1+a -b -c )-(2a -b )=2-b -2c . ∵9=32,27=33,∴f (9)=2f (3)=2(2a -b )=4a -2b ,f (27)=3f (3)=3(2a -b )=6a -3b .【点睛】本题考查了幂的应用,新定义运算等,解题的关键是深刻理解所给出的定义或规则,将它们转化为我们所熟悉的运算.10.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (54)-+++++=∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.11.(1)1011,1101;(2)①12,65,97,见解析,②38【分析】(1) 根据“模二数”的定义计算即可;(2) ①根据“模二数”和模二相加不变”的定义,分别计算126597,,和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a ,个位数字为b ,根据a 、b 的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与23“模二相加不变”的两位数的个数【详解】解: (1) ()296531011M =,()()221010111108531596M M =+=+故答案为:1011,1101()2①()()222301,1210M M ==,()()()222122311,122311M M M +=+=()()()22212231223M M M ∴+=+,12∴与23满足“模二相加不变”.()()222301,6501M M ==,,()()()222652310,652300M M M +=+=()()()22265236523M M M +≠+,65∴与23不满足“模二相加不变”.()()222301,9711M M ==,()()()2229723100,9723100M M M +=+=,()()()22297239723M M M +=+,97∴与23满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a ,个位数字为b ,1a 70b 7≤≤<<,; 当a 为偶数,b 为偶数时()()2210002013,a b M M +==,∴()()()()22222301,102310(2)(3)1001M M M a b M a a b b +=++++++==∴与23满足“模二相加不变”有12个(28、48、68不符合)当a 为偶数,b 为奇数时()()2210012013,a b M M +==,∴()()()()22222310,102310(2)(3)1000M M M a b M a a b b +=++++++==∴与23不满足“模二相加不变”.但27、47、67、29、49、69符合共6个当a 为奇数,b 为奇数时()()2210112013,a b M M +==,∴()()()()222223100,102310(2)(3)1010M M M a b M a a b b +=++++++==∴与23不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a 为奇数,b 为偶数时()()2210102013,a b M M +==,∴()()()()22222311,102310(2)(3)1011M M M a b M a a b b +=++++++==∴与23满足“模二相加不变”有16个,(18、38、58不符合)当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.12.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②, ②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.13.(1)()2,1C -,()4,1D ;(2)12,2Q ⎛⎫ ⎪⎝⎭,理由见解析;(3)4180BHC A ∠-∠=︒【分析】(1)根据已知条件求出AD 和BC 的长度,即可得到D 、C 的坐标;(2)连接BD 与直线CG 相交,其交点Q 即为所求,然后根据BND BQC QCND SS S =+梯形求出 QC 、QG 后即可得到Q 点坐标;(3)过H 作HF ∥AB ,过C 作CM ∥ED ,则根据已知条件、平行线的性质和角的有关知识可以得到4180BHC A ∠-∠=︒ .【详解】(1)解:由题意可得四边形ABCD 是平行四边形,且AD 与BC 间距离为1-(-1)=2, ∴平行四边形ABCD 的高为2,∴AD=BC=S 四边形ABCD ÷2=12÷2=6,∴C 点坐标为(-4+6,-1)即(2,-1),D 点坐标为(-2+6,1)即(4,1);(2)解:如图,连接BD 交CG 于Q ,∵BQ DQ BD +=,∴此时BQ DQ +最小(两点之间,线段最短),过D 作DN BC ⊥于N ,∵()4,1B --,()2,1C -,()4,1D ,∴2DN =,6BC =,2CN =,设QC a =,∴8BND S =△,3BQC S a =△,2QCND S a =+梯形,又∵BND BQC QCND S S S =+梯形,∴()832a a =++, ∴32a =, ∴31122QG a GC =-=-=, ∴12,2Q ⎛⎫⎪⎝⎭.(3)∵//AD BC ,//AB DC ,∴180A ABC ∠+∠=︒,180A ADC ∠+∠=︒,∴ABC ADC ∠=∠.∵DE 平分ADC ∠,∴12ADE CDE ADC ∠=∠=∠.又∵14ABH ABC ∠=∠, 设ABH x ∠=︒,则4ABC ADC x ∠=∠=︒,∴()1804A x ∠=-︒,2ADE CDE x ∠=∠=︒,过H 作//FH AB ,又∵//AB DC ,∴//FH DC ,∴////FH AB DC ,∴ABH BHF x ∠=∠=︒.过C 作//CM DE ,∴HED HCM ∠=∠,2EDC DCM x ∠=∠=︒.∵DE HC ⊥于E ,∴90HED HCM ∠=∠=︒,∴()902HCD HCM DCM x ∠=∠-∠=-︒,∴()()90290BHC BHF FHC x x x ∠=∠+∠=+-︒=-︒,又∵()1804A x ∠=-︒,∴4180BHC A ∠-∠=︒.【点睛】本题考查平行线的综合应用,熟练掌握平行线的判定与性质、平移坐标变换规律、两点之间线段最短的性质、角的有关知识和运算是解题关键 .14.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC -∠DBC =60°-∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA =90°,∴∠3=180°-∠BCA -∠1=180°-90°-48°=42°,∵a ∥b ,∴∠2=∠3=42°;(2)理由如下:过点B 作BD ∥a .如图2所示:则∠2+∠ABD =180°,∵a ∥b ,∴b ∥BD ,∴∠1=∠DBC ,∴∠ABD =∠ABC -∠DBC =60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C 作CP ∥a ,如图3所示:∵AC 平分∠BAM∴∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,又∵a ∥b ,∴CP ∥b ,∠1=∠BAM =60°,∴∠PCA =∠CAM =30°,∴∠BCP =∠BCA -∠PCA =90°-30°=60°,又∵CP ∥a ,∴∠2=∠BCP =60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.15.(1)()4,2D -;(2)()()0422C D -,、,;(3)存在点P ,其坐标为20,3⎛⎫- ⎪⎝⎭或260,3⎛⎫ ⎪⎝⎭. 【分析】。
七年级下册数学压轴题集锦
七年级下册数学压轴题集锦(一)1、如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)2+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ; (3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.2、如图1,AB ∥EF ,∠2=2∠1(1)证明∠FEC =∠FCE ;图1(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM =∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图2B C B3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
BA B6、(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
(完整版)初中七年级下册期末几何压轴题数学附答案(一)
一、解答题1.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.①求t为何值时,AP所在直线垂直于x轴;②求t为何值时,S=S△APE.2.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.3.直线AB∥CD,点P为平面内一点,连接AP,CP.(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.4.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.5.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.6.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H . (1)当点H 在线段EG 上时,如图1 ①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.7.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值. 8.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭9.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 10.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复) 11.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即; 仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++12.对于有理数a 、b ,定义了一种新运算“※”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※如:532537=⨯-=※,2131313=-⨯=-※. (1)计算:①()21-=※______;②()()43--=※______;(2)若313m x =-+※是关于x 的一元一次方程,且方程的解为2x =,求m 的值; (3)若3241A x x x =-+-+,3262B x x x =-+-+,且3A B =-※,求322x x +的值. 13.在平面直角坐标系中,已知线段AB ,点A 的坐标为()1,2-,点B 的坐标为()3,0,如图1所示.(1)平移线段A B 到线段C D ,使点A 的对应点为,点B 的对应点为C ,若点C 的坐标为()2,4-,求点D 的坐标;(2)平移线段A B 到线段C D ,使点C 在y 轴的正半轴上,点D 在第二象限内(A 与D 对应, B 与C 对应),连接BC BD ,,如图2所示.若(7BCD BCD S S ∆∆=表示△BCD 的面积),求点C 、D 的坐标;(3)在(2)的条件下,在y 轴上是否存在一点P ,使(23PCD PCD BCD S S S ∆∆∆=表示△PCD 的面积)?若存在,求出点P 的坐标; 若不存在,请说明理由.14.已知,AB ∥CD ,点E在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E . (1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.15.如图,在平面直角坐标系中,点()26A ,,()4,3B ,将线段AB 进行平移,使点A 刚好落在x 轴的负半轴上,点B 刚好落在y 轴的负半轴上,A ,B 的对应点分别为A ',B ',连接AA '交y 轴于点C ,BB '交x 轴于点D .(1)线段A B ''可以由线段AB 经过怎样的平移得到?并写出A ',B '的坐标; (2)求四边形AA BB ''的面积;(3)P 为y 轴上的一动点(不与点C 重合),请探究PCA '∠与A DB ''∠的数量关系,给出结论并说明理由.16.对于平面直角坐标系xOy 中的任意两点M (x 1,y 1),N (x 2,y 2),给出如下定义: 将|x 1﹣x 2|称为点M ,N 之间的“横长”,|y 1﹣y 2|称为点M ,N 之间的纵长”,点M 与点N的“横长”与“纵长”之和称为“折线距离”,记作d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|“.例如:若点M (﹣1,1),点N (2,﹣2),则点M 与点N 的“折线距离”为:d (M ,N )=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6. 根据以上定义,解决下列问题: 已知点P (3,2).(1)若点A (a ,2),且d (P ,A )=5,求a 的值;(2)已知点B (b ,b ),且d (P ,B )<3,直接写出b 的取值范围;(3)若第一象限内的点T 与点P 的“横长”与“纵长”相等,且d (P ,T )>5,简要分析点T 的横坐标t 的取值范围.17.如图1,在直角坐标系中直线AB 与x 、y 轴的交点分别为(),0A a ,()0,B b ,且满足80a b a b ++-+=.(1)求a 、b 的值;(2)若点M 的坐标为()1,m 且2ABMAOMSS=,求m 的值;(3)如图2,点P 坐标是()1,2--,若ABO 以2个单位/秒的速度向下平移,同时点P 以1个单位/秒的速度向左平移,平移时间是t 秒,若点P 落在ABO 内部(不包含三角形的边),求t 的取值范围.18.在平面直角坐标系中,O 为坐标原点.已知两点(),0A a ,(), 0B b 且a 、b 满足430a b +-=;若四边形ABCD 为平行四边形,//CD AB 且CD AB = ,点()0,4C 在y轴上.(1)如图①,动点P 从C 点出发,以每秒2个单位长度沿y 轴向下运动,当时间t 为何值时,三角形ABP 的面积等于平行四边形ABCD 面积的四分之一;(2)如图②,当P 从O 点出发,沿y 轴向上运动,连接PD 、PA ,CDP ∠、APD ∠、PAB ∠存在什么样的数量关系,请说明理由(排除P 在O 和C 两点的特殊情况).19.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)用解方程的方法求α∠和β∠的度数; (2)求C ∠的度数.20.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a 元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a 元收费,超过的部分按c 元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份 用水量(m 3)收费(元) 3 5 7.5 4 927系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.21.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --+-.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.22.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( ) A .2019 B .2020 C .2021 D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?23.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm 40cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲,(单位:cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A 型板材________张,B 型板材_______张;②已知①中的A 型板材和B 型板材恰好做成竖式有盖礼品盒x 个,横式无盖礼品盒的y 个,求x 、y 的值.24.对a ,b 定义一种新运算T ,规定:T (a ,b )=(a +2b )(ax +by )(其中x ,y 均为非零实数).例如:T (1,1)=3x +3y .(1)已知T (1,﹣1)=0,T (0,2)=8,求x ,y 的值;(2)已知关于x ,y 的方程组()()113028T a T a ⎧-=-⎪⎨=⎪⎩,,,若a ≥﹣2,求x +y 的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O ′A ′,坐标轴上有一点B 满足三角形BOA ′的面积为9,请直接写出点B 的坐标.25.某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元:新建4个地上停车位和2个地下停车位共需1.4万元, (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额. 26.阅读材料:关于x ,y 的二元一次方程ax+by=c 有一组整数解00x x y y =⎧⎨=⎩,则方程ax+by=c 的全部整数解可表示为00x x bty y at =-⎧⎨=+⎩(t 为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为0069x y =⎧⎨=⎩,则全部整数解可表示为61997x ty t =-⎧⎨=+⎩(t 为整数).因为61909+70.tt->⎧⎨>⎩,解得96719t-<<.因为t为整数,所以t=0或-1.所以该方程的正整数解为69xy=⎧⎨=⎩和252xy=⎧⎨=⎩.(1)方程3x-5y=11的全部整数解表示为:253x ty tθ=+⎧⎨=+⎩(t为整数),则θ= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案.27.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长40cm,宽34cm的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒200元购进一批茶叶,按进价增加18%作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了6元,售价仍不变,已知在整个买卖过程中共盈利1800元,求这批茶叶共进了多少盒?28.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①240523xx-=⎧⎨-⎩<;②5323233124x xx x--⎧=-⎪⎪⎨+-⎪-⎪⎩<.(2)若关于x 的组合515032x x a a +=⎧⎪⎨-⎪⎩>是“有缘组合”,求a 的取值范围; (3)若关于x 的组合5323212a x x a x a x a -⎧-=-⎪⎪⎨-⎪+≤+⎪⎩是“无缘组合”;求a 的取值范围. 29.如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果)(2)若k 使得方程组321431x y k x y k +=+⎧⎨+=-⎩中的x ,y 均为连动数,求k 所有可能的取值; (3)若关于x 的不等式组263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.30.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(3,4);(2)①t =32时,AP 所在直线垂直于x 轴;②当t 为107或145时,S =S △APE .【分析】(1)根据直角坐标系得出点F 的坐标即可;(2)①根据AP 所在直线垂直于x 轴,得出关于t 的方程,解答即可;②分713t ≤≤和71033t ≤≤两种情况,利用面积公式列出方程即可求解. 【详解】(1)由直角坐标系可得:F 坐标为:(3,4);故答案为:(3,4);(2)①要使AP 所在直线垂直于x 轴.如图1,只需要P x =A x , 则 t +3=3t ,解得:32t =,所以即32t =时,AP 所在直线垂直于x 轴;②由题意知,OH =7,所以当73t =时,点D 与点H 重合,所以要分以下两种情况讨论: 情况一:当713t ≤≤时, GD =3t ﹣3,PF =t ,PE =4﹣t , ∵S =S △APE , ∴BC ×GD =()12y y PE E A ⨯-, 即:2×(3t ﹣3)=()1422t -⨯, 解得:107t =; 情况二:当71033t ≤≤时,如图2,HD =3t ﹣7,PF =t ,PE =4﹣t ,∵S =S △APE ,∴BC ×CH =()12y y PE E A ⨯-, 即:2×[2﹣(3t ﹣7)]=()1422t -⨯, 解得:145t =, 综上所述,当t 为107或145时,S =S △APE . 【点睛】 本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.2.(1)150°;(2)∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′【分析】(1)先根据平行线的性质得到∠AOE 的度数,再根据直角、周角的定义即可求得∠BOE 的度数;(2)如图②,过O 点作OF ∥CD ,根据平行线的判定和性质可得∠OCD 、∠BO ′E ′的数量关系;(3)由已知推出CP ∥OB ,得到∠AOB +∠PCO =180°,结合角平分线的定义可推出∠OCD =2∠PCO =360°-2∠AOB ,根据(2)∠OCD +∠BO ′E ′=360°-∠AOB ,进而推出∠AOB =∠BO ′E ′.【详解】解:(1)∵CD ∥OE ,∴∠AOE =∠OCD =120°,∴∠BOE =360°-∠AOE -∠AOB =360°-90°-120°=150°;(2)∠OCD +∠BO ′E ′=360°-α.证明:如图②,过O 点作OF ∥CD ,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.3.(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.4.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠,⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 5.(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=β,∠EPD=α,∴CPDβα∠=∠-∠;当P在BO之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴CPDαβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.6.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a 2017=12,a 2018=2然后计算a 2016•a 2017•a 2018的值; (3)观察可得a 3、a 6、a 9、…a 99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a 1=12,代入11a -,得21=211-2a = ; 将a 2=2,代入11a -,得31=-11-2a =; 将a 3=-1,代入11a -,得411=1--12a =(). (2)根据(1)的计算结果,从a 1开始,每三个数一循环, 而2016÷3=672,则a 2016=-1,a 2017=12 ,a 2018=2 所以,a 2016•a 2017•a 2018=(-1)×12×2= -1 (3)观察可得a 3、a 6、a 9、…a 99,都等于-1,将-1代入,a 33+a 66+a 99+…+a 9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.8.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.9.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.10.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75) 【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1, ∴35,2⎛⎫ ⎪⎝⎭是“白马有理数对”, 故答案为:35,2⎛⎫ ⎪⎝⎭; (2)若(,3)a 是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.11.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.12.(1)①5;②2-;(2)1;(3)16.【分析】(1)根据题中定义代入即可得出;(2)根据2x =,讨论3和 m 的两种大小关系,进行计算;(3)先判定A 、B 的大小关系,再进行求解.【详解】(1)根据题意:∵21>-,∴()()212215-=⨯--=※,∵43-<-,∴()()()243434223--=--⨯-=-+=-※. (2)∵2x =,∴31325m =-+⨯=※,① 若3m >,则235m ⨯-=,解得1m =,②若3m <, 则2353m -⨯=,解得3m =-(不符合题意), ∴1m =.(3)∵()()323224162210A B x x x x x x x -=-+-+--+-+=--<,∴A B <, ∴()3232224162333A B A B x x x x x x =-=-+-+--+-+=-※, 得380x x +-=,∴3222816x x +=⨯=.【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键.13.(1)()4,2D -;(2)()()0422C D -,、,;(3)存在点P ,其坐标为20,3⎛⎫- ⎪⎝⎭或260,3⎛⎫ ⎪⎝⎭. 【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S △BCD =7(S △BCD 建立方程求解,即可); (3)设出点P 的坐标,表示出PC 用PCD BCD S 2S 3=,建立方程求解即可. 【详解】(1)∵B(3,0)平移后的对应点()2,4C -,∴设3204a b +=-+=,, ∴54a b =-=, 即线段AB 向左平移5个单位,再向上平移4个单位得到线段CD ,∴A 点平移后的对应点()4,2D -;(2)∵点C 在y 轴上,点D 在第二象限,∴线段AB 向左平移3个单位,再向上平移y 个单位,∴()()022C y D y --+,,, 连接OD ,BCD BOC COD BOD S S S S =+-=1112(2)7222OB OC OC OB y ⨯+⨯-⨯-+=,∴4y = ∴()()0422C D -,、,; (3)存在设点()0P m ,,∴4PC m =- ∵23PCD BCD S S ∆=, ∴12|4|2723m -⨯=⨯ ∴14|4|3m -=, ∴22633m m =-=或 ∴存在点P ,其坐标为20,3⎛⎫- ⎪⎝⎭或260,3⎛⎫ ⎪⎝⎭. 【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.14.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H 作HP ∥AB ,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∴∠HEM=∠DEM=1∠HED,2∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M 作MQ ∥AB ,过点H 作HP ∥AB ,由∠KFE :∠MGH =13:5,设∠KFE =13x ,∠MGH =5x ,由(2)可知:∠BGH =2∠MGH =10x ,∵∠AFE +∠BFE =180°,∴∠AFE =180°﹣10x ,∵FK 平分∠AFE ,∴∠AFK =∠KFE =12 ∠AFE , 即1(18010)132x x ︒-=, 解得:x =5°,∴∠BGH =10x =50°,∵HP ∥AB ,HP ∥CD ,∴∠BGH =∠GHP =50°,∠PHE =∠HED ,∵∠GHE =90°,∴∠PHE =∠GHE ﹣∠GHP =90°﹣50°=40°,∴∠HED =40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.15.(1)向左平移4个单位,再向下平移6个单位,(2,0)A '-,(0,3)B '-;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点P 在点C 的上方,点P 在点C 的下方,分别求解即可.【详解】解:(1)点(2,6)A ,(4,3)B , 又将线段AB 进行平移,使点A 刚好落在x 轴的负半轴上,点B 刚好落在y 轴的负半轴上,∴线段A B ''是由线段AB 向左平移4个单位,再向下平移6个单位得到,(2,0)A ,(0,3)B '-.(2)11692232642422ABB A S ''=⨯-⨯⨯⨯-⨯⨯⨯=四边形.(3)连接AD .(4,3)B ,(0,3)B '-,BB ∴'的中点坐标为(2,0)在x 轴上,(2,0)D ∴.)6(2,A ,//AD y ∴轴,同法可证(0,3)C ,OC OB ∴=',AO CB '⊥',AC A B ∴'='',同法可证,B A B D ''=',A DB DA B ∴∠'=∠'',ACBA B C ∠''=∠'', 当点P 在点C 的下方时,180PCA ACB ∠'+∠''=︒,90A B C DA B ∠''+∠''=︒,90180PCA A DB ∴∠'+︒-∠''=︒,'''90PCA A DB ∴∠-∠=︒,当点P 在点C 的上方时,'''90PCA A DB ∠+∠=︒.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.16.(1)a =﹣2或a =8;(2)1<b <4;(3)t 112>或0<t 12<. 【分析】(1)将点P 与点A 代入d (M ,N )=|x 1−x 2|+|y 1−y 2|即可求解;(2)将点B 与点P 代入d (M ,N )=|x 1−x 2|+|y 1−y 2|,得到d (P ,B )=|3−b|+|2−b|,分三种情况去掉绝对值符号进行化简,有当b <2 时,d (P ,B )=3−b +2−b =5−2b <3;当2≤b≤3时,d (P ,B )=3−b +b−2=1<3;当b >3时,d (P ,B )=b−3+b−2=2b−5<3;(3)设T 点的坐标为(t ,m ),由点T 与点P 的“横长”与“纵长”相等,得到|t−3|=|m−2|,得到t 与m 的关系式,再由T 在第一象限,d (P ,T )>5,结合求解即可.【详解】(1)∵点P (3,2),点A (a ,2),∴d (P ,A )=|3﹣a |+|2﹣2|=5,∴a =﹣2或a =8;(2)∵点P (3,2),点B (b ,b ),∴d (P ,B )=|3﹣b |+|2﹣b |,当b <2 时,d (P ,B )=3﹣b +2﹣b =5﹣2b <3,∴b >1,∴1<b <2;当2≤b ≤3时,d (P ,B )=3﹣b +b ﹣2=1<3成立,∴2≤b ≤3;当b >3时,d (P ,B )=b ﹣3+b ﹣2=2b ﹣5<3,∴b <4,∴3<b <4;综上所述:1<b <4;(3)设T 点的坐标为(t ,m ),点T 与点P 的“横长”=|t ﹣3|,点T 与点P 的“纵长”=|m ﹣2|.∵点T 与点P 的“横长”与“纵长”相等,∴|t ﹣3|=|m ﹣2|,∴t ﹣3=m ﹣2或t ﹣3=2﹣m ,∴m =t ﹣1或m =5﹣t .∵点T 是第一象限内的点,∴m >0,∴t >1或t <5,又∵d (P ,T )>5,∴2|t ﹣3|>5,∴t 112>或t 12<, ∴t 112>或0<t 12<. 【点睛】本题考查平面内点的坐标,新定义;能够将定义内容转化为绝对值不等式,再将绝对值不等式根据绝对值的意义转化为一元一次不等式的求解是解题的关键.17.(1)4a =-,4b =;(2)5m =-或53m =;(3)513t << 【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a ,b 的值;(2)设直线AB 与直线x =1交于点N ,可得N (1,5),根据S △ABM =S △AMN −S △BMN ,即可表示出S △ABM ,从而列出m 的方程.(3)根据题意知,临界状态是点P 落在OA 和AB 上,分别求出此时t 的值,即可得出范围.【详解】(1)∵80a b -+=0,80a b -+≥∴0a b +=,80a b -+=解得:4a =-,4b =(2)设直线AB 与直线1x =交于N ,设()1,N n∵a =−4,b =4,∴A (−4,0),B (0,4),设直线AB 的函数解析式为:y =kx +b ,代入得044k b b =-+⎧⎨=⎩,解得14k b =⎧⎨=⎩∴直线AB 的函数解析式为:y =x +4,代入x =1得()1,5N∵()1,M m∴ABM AMN BMN S S S =-△△△=12×5×|5−m |−12×1×|5−m |=2|5−m |,1422AOM S m m =⨯⨯=△ ∵2ABM AOM S S =∴2522m m -=⨯∴52m m -=或52m m -=-解得:5m =-或53m =,(3)当点P 在OA 边上时,则2t =2,∴t =1,当点P 在AB 边上时,如图,过点P 作PK //x 轴,AK ⊥x 轴交于K , 则KP '=3−t ,KA '=2t −2,∴3−t =2t −2,∴53t = 综上所述:513t <<.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.18.(1)1或3;(2)∠APD =∠CDP +∠PAB 或∠APD =∠PAB -∠CDP ,理由见解析【分析】(1)由非负数的性质求出a ,b ,得到AB 的长,结合点C 坐标求出平行四边形ABCD 的面积,再根据ABP △的面积等于平行四边形ABCD 面积的14,列出方程,解之即可; (2)分点P 在线段OC 上和点P 在OC 的延长线上,两种情况,过P 作PQ ∥AB ,利用平行线的性质求解.【详解】解:(1)∵430a b +-=,∴a =-4,b =3,即A (-4,0),B (3,0),∴AB =3-(-4)=7,又C (0,4),∴OC =4,∴平行四边形ABCD 的面积=4×7=28,由题意可知:PC =2t ,则OP =42t -,∵ABP △的面积等于平行四边形ABCD 面积的14, ∴114272824t ⨯-⨯=⨯, 解得:t =1或t =3,(2)如图,当点P 在线段OC 上时,过P 作PQ ∥AB ,则PQ ∥CD ,∴∠CDP =∠DPQ ,∠APQ =∠PAB ,∴∠APD =∠DPQ +∠APQ =∠CDP +∠PAB ;。
最新七年级下册数学几何压轴题集锦
精品文档与AFE重合,射线AFAE翻折,△ABE与△在矩形ABCD中,点E为BC边上的一动点,沿交于点G。
直线CD AEG的正弦值。
,若AB=6,BC=12,求锐角11、当BE:EC=3:时,连结EG,轴建立平面直角坐标系,AB=5,BC=8分别为X轴、Y直线2、以B为原点,BC和直线AB成等腰三角形,若存在,AEG△E从原点出发沿X正半轴运动时,是否存在某一时刻使当点E的坐标。
求出点、2=14.Sb+3=0,b)且(a-4)+,0,a),B(0b),C(m,A如图,已知(1ABC点坐标C1)求(o。
90?DFE=的平分线,且y,交轴于E点,EF为?AEDDE(2)作?DC;ADOFD平分?求证:,平分∠AEC为AC延长线上一点,EM点轴负半轴上运动时,)(3E在y连EC,P在运动过程中,E点,轴于交APNPQNxEM,PNPM且⊥⊥轴于点,平分∠,xQ则精品文档.精品文档?MPQ ECA?的大小是否发生变化,若不变,求出其值。
y yA A ND F oQ D x oxE MC CB PE1 ∠AB//EF,∠2=22、如图1,FCE;∠(1)证明∠FEC=NMC,则∠∠FMN为FE延长线上一点,且∠FNM=上一点,(2)如图2,M为ACN CFM有何数量关系,并证明。
与∠AAN ME2CC BF2 1 图图°,∠1=130、ED,若∠的三等分线交于点、∠∠ABC,1、3()如图,△ABCACB 的度数。
°,求∠2=110A精品文档.精品文档AE21DBCD,E 的平分线交于点的三等分线分别与∠ACB2)如图,△ABC,∠ABC( A的度数。
°,∠若∠1=1102=130°,求∠ADE12CB的位置OFOE、分别是角平分线,则判断∠ADC=180°,OE、OF、如图,∠4ABC+ 关系为ECOFAB.°∠C=90、已知∠5A=有何位置关DEBEEADCABC(1)如图,∠的平分线与∠的平分线交于点,试问与精品文档.精品文档系?说明你的理由。
初一下册数学压轴题
初一下册数学压轴题一、下列关于三角形的说法中,正确的是:A. 三个内角之和大于180度B. 任意两边之和等于第三边C. 直角三角形中,斜边一定是最长边D. 等腰三角形的底角一定小于90度(答案:C、D)二、在平行线的性质中,下列说法错误的是:A. 两直线平行,同位角相等B. 两直线平行,内错角相等C. 两直线平行,同旁内角互补D. 两直线平行,它们之间的任意一条横截线都与这两条直线垂直(答案:D)三、对于不等式ax + b > 0,当a < 0时,下列关于x的解集说法正确的是:A. x的解集为全体实数B. x的解集为空集C. x的解集为x < -b/aD. x的解集为x > -b/a(答案:C)四、在坐标系中,点A(3, -2)关于x轴对称的点B的坐标是:A. (-3, 2)B. (3, 2)C. (-3, -2)D. (2, 3)(答案:B)五、下列关于多边形的说法中,错误的是:A. 三角形的内角和为180度B. 四边形的外角和为360度C. 五边形的对角线数量为5条D. n边形的内角和为(n-2) * 180度(答案:C)六、在二元一次方程组中,若方程组{x + y = 5, 2x - y = m}的解满足x > y,则m的取值范围是:A. m < 5B. m > 5C. m < 15D. m > 15(答案:B)七、下列关于实数的说法中,正确的是:A. 实数包括有理数和无理数,其中有理数包括整数和分数B. 实数都可以表示为两个整数的比C. 无理数就是开方开不尽的数D. 实数轴上的点与有理数一一对应(答案:A)八、在数据的统计与分析中,下列说法错误的是:A. 中位数是将一组数据从小到大排列后,位于中间位置的数B. 众数是一组数据中出现次数最多的数C. 平均数可以反映数据的集中程度,但受极端值影响较大D. 方差用于衡量数据的波动大小,方差越大,数据越稳定(答案:D)。
2023-2024学年七年级数学下册 全等三角形 压轴题(六大题型)(原卷版)
17.【思维启迪】
(1)如图 1,点 P 是线段 AB,CD 的中点,则 AC 与 BD 的数量关系为
,位置关系
为
;
【思维探索】
(2)如图 2,在△ABC 中,∠ACB=90°,点 D 为△ABC 内一点,连接 BD,DC,延长 DC 到点 E,使
使 AD=AE,∠DAE=∠BAC,连接 CE.
(1)如图 1,当点 D 在线段 BC 上,如果∠BAC=90°.
①则△ABD 与△ACE 全等吗?请说明理由;
②求∠BCE 的度数;
(2)如图 2,如果∠BAC=60°,当点 D 在线段 BC 上移动,则∠BCE 的度数是
°;
(3)如图 2,当点 D 在线段 BC 上,如果∠BAC=60°,D 点为△ABC 中 BC 边上的一个动点(D 与 B、
于点 H,直接写出
的值.
11.为了进一步探究三角形中线的作用,数学兴趣小组合作交流时,小丽在组内做了如下尝试:如图 1,在 △ABC 中,AD 是 BC 边上的中线,延长 AD 到 M,使 DM=AD,连接 BM.
【探究发现】:(1)图 1 中 AC 与 BM 的数量关系是
2)如图 2,在△ABC 中,若 AB=12,AC=8,求 BC 边上的中线 AD 的取值范围.(提 示:不等式的两边都乘或除以同一个正数,不等号的方向不变.例如:若 3x<6,则 x<2.)
专题 04 全等三角形 压轴题(六大题型)
目录: 题型 1:一线三等角构造全等模型 题型 2:手拉手模型—旋转型全等 题型 3:倍长中线模型 题型 4:平行线+线段中点构造全等 题型 5:等腰三角形中的半角模型 题型 6:对角互补且一组临边相等的半角模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。
1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。
2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,
求出点E 的坐标。
1、
2
a b m b a-+b+3=0=14.ABC
A S
如图,已知(0,),B (0,),C (,)且(4),
o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标
(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;
(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,
MPQ
ECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;
(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图1 图2 3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
B C B C
(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?
5、已知∠A=∠C=90°.
(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关
B
C
A
C
F
A
系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?
7.已知∠ABC 与∠ADC 的平分线交于点E 。
(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
A
E
E
A
D
B
B
(2)如图,是探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
8.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。
(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ//NH ,当点P 在线段EM 上运动时,∠JPQ 的度数是否改变?若不变,求出其值;若改变,请说明你的理由。
9.如图,已知MA//NB ,CA 平分∠BAE ,CB 平分∠ABN ,点D 是射线AM 上一动点,连DC ,当D 点在射线AM (不包括A 点)上滑动时,∠ADC+∠ACD+∠ABC 的度数
B
C
B
C
A
C
D
是否发生变化?若不变,说明理由,并求出度数。
10.如图,AB//CD ,PA 平分∠BAC ,PC 平分∠ACD ,过点P 作PM 、PE 交CD 于M ,交AB 于E ,则(1)∠1+∠2+∠3+∠4不变;(2)∠3+∠4-∠1-∠2不变,选择正确的并给予证明。
11.如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;
(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
设从出发起运动了x 秒。
①请用含x 的代数式分别表示P,Q 两点的坐标; ②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?
12.
如图,在平面直角坐标系中,∠ABO=2∠BAO ,P 为x 轴正半轴上一动点,BC 平分
B
N
A
D
x
x
∠ABP ,PC 平分∠APF ,OD 平分∠POE 。
(1)求∠BAO 的度数; (2)求证:∠C=15°+1
2∠OAP ;
(3)P 在运动中,∠C+∠D 的值是否变化,若发生变化,说明理由,若不变求其值。
13.如图,A 为x 轴负半轴上一点,C (0,-2),D (-3,-2)。
(1)求△BCD 的面积;
(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。
(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,∠E ∠ABC
的值是否变化?若不变,求出其值;
若变化,说明理由。
14.如图,已知点A (-3,2),B (2,0),点C 在x 轴上,将△ABC 沿x 轴折叠,使
x
x
x
点A 落在点D 处。
(1)写出D 点的坐标并求AD 的长;
(2)EF 平分∠AED ,若∠ACF-∠AEF=15º,求∠EFB 的度数。
15.(1)在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD 。
①直接写出图中相等的线段、平行的线段; ②已知A (-3,0)、B (-2,-2),点C 在y 轴的正半轴上,点D 在第一象限内,且S ∆ACD =5,求点C 、D 的坐标;
(2)在平面直角坐标系中,如图,已知一定点M (1,0),两个动点E (a ,2a+1)、F (b ,-2b+3),请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM 。
若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由。
16.如图,在直角坐标系中,已知B (b ,0),C (0,a ),且|b +3|+(2c-8)²=0.
x
(1)求B 、C 的坐标;
(2)如图,AB//CD ,Q 是CD 上一动点,CP 平分∠DCB ,BQ 与CP 交于点P ,求
∠DQB+∠QBC
∠QPC
的值。
17.如图,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的负方向运动,点B 以每秒n 个单位长度沿y 轴的正方向运动。
(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A 、B 两点的坐标。
(2)如图,设∠BAO 的邻补角和∠ABO 的邻补角平分线相交于点P ,问:点A 、B 在运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由。
(3)如图,延长BA 至E ,在∠ABO 的内部作射线BF 交x 轴于点C ,若∠EAC 、∠FCA 、∠ABC 的平分线相交于点G ,过点G 作BE 的垂线,垂足为H ,试问∠AGH 和∠BGC 的大小关系如何?请写出你的结论并说明理由。
18、如图,在平面直角坐标系中,A (a ,0),C (b ,2
),且满足(a+b )²+|a-b+4|=0,过C 作CB ⊥x 轴于B 。
(1)求三角形ABC 的面积。
(2)若过B 作BD//AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。
(3)在y 轴上是否存在点P ,使得∆ABC 和∆ACP 的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由。
19.已知:在△ABC 和△XYZ 中,∠Y+∠Z=95°,将△XYZ 如图摆放,使得∠X 的两条边分别经过点B 和点C 。
(1)将△XYZ 如图1摆放时,则∠ABX+∠ACX= 度;
(2)将△XYZ 如图2摆放时,请求出∠ABX+∠ACX 的度数,并说明理由;
(3)能否将△XYZ 摆放到某个位置时,使得BX 、CX 同时
平分∠ABC 和∠ACB ?请写
出你的结论。
Z
精品文档精品文档。