初中七年级下册数学压轴题集锦
初一数学下学期压轴题精选
1.(1)如图1,把△ABC 沿DE 折叠,使点A 落在点A’处,试探索△1+△2与△A 的关系.(不必证明).(2)如图2,BI 平分△ABC ,CI 平分△ACB ,把△ABC 折叠,使点A 与点I 重合,若△1+△2=130°,求△BIC 的度数;(3)如图3,在锐角△ABC 中,BF△AC 于点F ,CG△AB 于点G ,BF 、CG 交于点H ,把△ABC 折叠使点A 和点H 重合,试探索△BHC 与△1+△2的关系,并证明你的结论.2.己知ABC ∆的三边长a 、b 、c 都是正整数,且满足22614580a b a b +--+=(1)求a 、b 的值;(2)求ABC ∆的周长的最小值.3. 9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从苏州出发,1日到4日在北京旅游,8月5日上午返回苏州.苏州与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1) 他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x ,y 的值;(2) 他们往返都坐飞机 (成人票五五折),其他开支不变,至少要准备多少元?(3) 他们去时坐火车,回来坐飞机 (成人票五五折),其他开支不变,准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?4. 如图1,一副三角板的两个直角重叠在一起,△A =30°,△C =45°△COD 固定不动,△AOB 绕着O 点顺时针旋转α°(0°< α <180° )(1)若△AOB 绕着O 点旋转图2的位置,若△BOD =60°,则△AOC =________;(2)若0°<α<90°,在旋转的过程中△BOD +△AOC 的值会发生变化吗?若不变化,请求出这个定值;(3)若90°< α <180° ,问题(2)中的结论还成立吗?说明理由;(4)将△AOB 绕点O 逆时针旋转α度(0°< α <180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).5. 阅读材料:方程x 2﹣x ﹣2=0中,只含有一个未知数且未知数的次数为2.像这样的方程叫做一元二次方程.把方程的左边分解因式得到(x ﹣2)(x+1)=0.我们知道两个因式乘积为0,其中有一个因式为0即可,因此方程可以转化为:x ﹣2=0或x+1=0.解这两个一次方程得:x=2或x=﹣1.所以原方程的解为:x=2或x=﹣1.上述将方程x 2﹣x ﹣2=0转化为x ﹣2=0或x+1的过程,是将二次降为一次的“降次”过程,从而使得问题得到解决.仿照上面降次的方法,解决下列问题:(1)解方程x 2﹣3x=0;(2)2a 2﹣a ﹣3=0;(3)解方程组:. 图1 A B D C 图2 B D C A O O。
七年级下期末真题精选(压轴60题19个考点专练)(原卷版)
七年级下期末真题精选(压轴60题19个考点专练)一.幂的乘方与积的乘方(共1小题)1.(2021春•西湖区校级期末)已知a,b,c为自然数,且满足2a×3b×4c=192,则a+b+c的取值不可能是()A.5B.6C.7D.8二.多项式乘多项式(共1小题)2.(2021春•鄞州区校级期末)若(x﹣3)(x+m)=x2+nx﹣15,求的值.三.完全平方公式的几何背景(共2小题)3.(2021春•奉化区校级期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.4.(2017春•庆元县期末)如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.(1)S甲=,S乙=(用含a、b的代数式分别表示);(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.四.完全平方式(共1小题)5.(2022春•拱墅区期末)如图,用1块边长为a的大正方形,4块边长为b的小正方形和4块长为a,宽为b的长方形(a>b),密铺成正方形ABCD,已知ab=2,正方形ABCD的面积为S,()A.若a=2b+1,则S=16B.若a=2b+2,则S=25C.若S=25,则a=2b+3D.若S=16,则a=2b+4五.整式的混合运算(共4小题)6.(2022春•宁波期末)如图,将两张长为a,宽为b的长方形纸片按图1,图2两种方式放置,图1和图2中两张长方形纸片重叠部分分别记为①和②,正方形ABCD中未被这两张长方形纸片覆盖部分用阴影表示,图1和图2中阴影部分的面积分别记为S1和S2.若知道下列条件,仍不能求S1﹣S2值的是()A.长方形纸片长和宽的差B.长方形纸片的周长和面积C.①和②的面积差D.长方形纸片和①的面积差7.(2021春•镇海区校级期末)下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b28.(2020春•义乌市期末)如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为.9.(2019春•江北区期末)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.六.因式分解的应用(共6小题)10.(2019春•嘉兴期末)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).11.(2022春•金东区期末)通常情况下,a+b不一定等于ab,观察下列几个式子:第1个:2+2=2×2;第2个:3+=3×;第3个:4+=4×…我们把符合a+b=ab的两个数叫做“和积数对”.(1)写出第4个式子.(2)写出第n个式子,并检验.(3)若m,n是一对“和积数对”,求代数式的值.12.(2021春•婺城区校级期末)小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片张,3号卡片张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是;(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=画出拼图.13.(2021春•婺城区校级期末)材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;(2)试证明10不是雪松数;(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.14.(2018春•鄞州区期末)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值,并求出这个最小值.15.(2016春•慈溪市期末)利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你说明这个等式的正确性;(2)若a=2014,b=2015,c=2016,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值;(3)已知实数x,y,z,a满足x+a2=2014,y+a2=2015,z+a2=2016,且xyz=36.求代数式++﹣﹣﹣的值.七.分式的定义(共1小题)16.(2021春•奉化区校级期末)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列各式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.八.分式的化简求值(共2小题)17.(2021春•鄞州区校级期末)已知abc=1,a+b+c=2,a2+b2+c2=3,则的值为()A.﹣1B.C.2D.18.(2019春•鄞州区期末)已知:a﹣b=m,b﹣c=n.(1)m=3,n=4,求代数式(a﹣c)2,a2+b2+c2﹣ab﹣bc﹣ca的值.(2)若m<0,n<0,判断代数式的值与0的大小关系并说明理由.九.二元一次方程组的解(共1小题)19.(2021春•奉化区校级期末)已知关于x,y的方程组给出下列结论:①当a=1时,方程组的解也是x+y=2a+1的解;②无论a取何值,x,y的值不可能是互为相反数;③x,y都为自然数的解有4对;④若2x+y=8,则a=2.正确的有几个()A.1B.2C.3D.4一十.二元一次方程组的应用(共3小题)20.(2019春•北仑区期末)宁波杨梅季,本地慈溪杨梅在宁波人的心中是一种家乡的味道.今年是杨梅大年,某杨梅种植大户为了能让居民品尝到物美价廉的杨梅,对1000斤的杨梅进行打包方式优惠出售,打包方式及售价如下:圆篮每篮8斤,售价160元;方篮每篮18斤,售价270元.假如用这两种打包方式恰好全部装完这1000斤杨梅.(1)若销售a篮圆篮和a篮方篮共收入8600元,求a的值;(2)当销售总收入为16760元时,①若这批杨梅全部售完,请问圆篮共包装了多少篮,方篮共包装了多少篮?②若杨梅大户留下b(b>0)篮圆篮送人,其余的杨梅全部售出,求b的值;(3)为了让更多的人及时吃到杨梅,几家种植大户联合,一起拼车用大、中两种快递送货车运送方形篮杨梅720篮,大车每车比中车每车多送30篮,若一半杨梅用大车送货,一半杨梅用中车装.运送完这批杨梅大中货车运送车次比为3:4,求每辆大、中货车各运送方形杨梅几篮?21.(2018春•宁波期末)用如图所示的甲、乙、丙三块木板做一个长、宽、高分别为x厘米,y厘米和30厘米的长方体木箱,其中甲块木板锯成两块刚好能做箱底和一个长侧面,乙块木板锯成两块刚好能做一个长侧面和一个短侧面,丙块木块锯成两块刚好能做箱盖和剩下的一个短侧面(厚度忽略不计,x>y).(1)用含x,y的代数式表示这三块木板的面积;(2)若甲块木块的面积比丙块木块的面积大300平方厘米,乙块木块的面积为1800平方厘米,求x,y 的值;(3)如果购买一块长120厘米,宽为(x+y)的长方形木板做这个木箱,木板的利用率为,试求+的值.22.(2021春•奉化区校级期末)某公园的门票价格规定如表:购票人数1~50人51~100人100以上票价10元/人8元/人5元/人(1)某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?(2)若有A、B两个团队共160人,以各自团队为单位分别买票,共用950元,问A、B两个团队各有多少人?一十一.解分式方程(共1小题)23.(2022春•宁波期末)我们把形如x+=a+b(a,b不为零),且两个解分别为x1=a,x2=b的方程称为“十字分式方程”.例如x+=4为十字分式方程,可化为x+=1+3,∴x1=1,x2=3.再如x+=﹣6为十字分式方程,可化为x+=(﹣2)+(﹣4),∴x1=﹣2,x2=﹣4.应用上面的结论解答下列问题:(1)若x+=﹣5为十字分式方程,则x1=,x2=.(2)若十字分式方程x﹣=﹣2的两个解分别为x1=m,x2=n,求的值.(3)若关于x的十字分式方程x﹣=﹣k﹣1的两个解分别为x1,x2(k>0,x1>x2),求的值.一十二.分式方程的应用(共6小题)24.(2021春•奉化区校级期末)商家常将单价不同的A、B两种糖混合成“什锦糖”出售,记“什锦糖”的单价为:A、B两种糖的总价与A、B两种糖的总质量的比.现有两种“什锦糖”:一种是由相同千克数的A种糖和B种糖混合而成的“什锦糖”甲,另一种是由相同金额数的A种糖和B种糖混合而成的“什锦糖”乙.若B种糖比A种糖的单价贵40元/千克,“什锦糖”甲比“什锦糖”乙的单价贵5元/千克,则A 种糖的单价为()A.50元/千克B.60元/千克C.70元/千克D.80元/千克25.(2021春•婺城区校级期末)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a的所有可能值.26.(2021春•婺城区校级期末)“十•一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:200≤p<400400≤p<500500≤p<700700≤p<900…消费金额p(元)的范围3060100130…获得奖券金额(元)根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?27.(2021春•奉化区校级期末)某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?28.(2021春•南浔区期末)某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?29.(2015春•杭州期末)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.一十三.平行线的性质(共15小题)30.(2021春•奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°31.(2021春•奉化区校级期末)如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为.32.(2021春•乐清市期末)将一副三角板如图1所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转,设时间为t秒,如图2,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,则所有满足条件的t的值为.33.(2021春•奉化区校级期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.34.(2021春•奉化区校级期末)如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在直线AB 上.(1)∠1、∠2、∠3之间的关系为;(2)如果点P在A、B两点之间运动时,∠1、∠2、∠3之间的关系为;(3)如果点P(点P和A、B不重合)在A、B两点外侧运动时,∠1、∠2、∠3之间关系为.35.(2022春•婺城区期末)如图,已知AB∥CD,直线MN交AB于点M,交CD于点N.点E是线段MN 上一点,P,Q分别在射线MA,NC上,连接PE,QE,PF平分∠MPE,QF平分∠CQE.(1)如图1,若PE⊥QE,∠EQN=64°,则∠MPE=°,∠PFQ=°.(2)如图2,求∠PEQ与∠PFQ之间的数量关系,并说明理由.(3)如图3,当PE⊥QE时,若∠APE=150°,∠MND=110°,过点P作PH⊥QF交QF的延长线于点H.将直线MN绕点N顺时针旋转,速度为每秒5°,直线MN旋转后的对应直线为M′N,同时△FPH绕点P逆时针旋转,速度为每秒10°,△FPH旋转后的对应三角形为△F′PH′,当直线MN首次落到CD上时,整个运动停止.在此运动过程中,经过t秒后,直线M′N恰好平行于△F′PH′的一条边,请直接写出所有满足条件的t的值.36.(2021春•奉化区校级期末)如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ的度数;若不存在,请说明理由.37.(2021春•镇海区校级期末)已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,(1)连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,若∠ABC=60°,∠ADC=70°,则∠BED的度数为;②如图2,设∠ABC=α,∠ADC=β,则∠BED的度数为(用含有α,β的式子表示).(2)如图3,EF平分∠MEN,NP平分∠END,EQ∥NP,则∠FEQ和∠BME的数量关系是.(3)如图4,若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;38.(2021春•慈溪市期末)如图,直线CD∥EF,点A,B分别在直线CD,EF上(自左至右分别为C,A,D和E,B,F),∠ABF=60°.射线AM自射线AB的位置开始,绕点A以每秒1°的速度沿逆时针方向旋转,同时,射线BN自射线BE开始以每秒5°的速度绕点B沿顺时针方向旋转,当射线BN旋转到BF的位置时,两者停止运动.设旋转时间为x秒.(1)如图1,直接写出下列答案:①∠BAD的度数;②射线BN过点A时的x的值.(2)如图2,求当AM∥BN时的x的值.(3)若两条射线AM和BN所在的直线交于点P.①如图3,若P在CD与EF之间,且∠APB=126°,求x的值.②若x<24,求∠APB的度数(直接写出用含x的代数式表示的结果).39.(2021春•镇海区期末)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.40.(2020春•奉化区期末)已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.41.(2021春•奉化区校级期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.42.(2021春•越城区期末)如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)求证∠APB=∠DAP+∠FBP;(2)利用(1)的结论解答:①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你直接写出∠P与∠P1的数量关系是.②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=80°,则∠AP2B的度数是.43.(2021春•婺城区校级期末)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.44.(2016春•嵊州市期末)已知:直线a∥b,点A,B分别是a,b上的点,APB是a,b之间的一条折弦,且∠APB<90°,Q是a,b之间且在折线APB左侧的一点,如图.(1)若∠1=33°,∠APB=74°,则∠2=度.(2)若∠Q的一边与P A平行,另一边与PB平行,请探究∠Q,∠1,2间满足的数量关系并说明理由.(3)若∠Q的一边与P A垂直,另一边与PB平行,请直接写出∠Q,∠1,2之间满足的数量关系.一十四.平行线的判定与性质(共7小题)45.(2021春•奉化区校级期末)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b 满足|a﹣5|+(b﹣1)2=0.若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动秒时,射线AM与射线BQ互相平行.46.(2022春•鄞州区期末)如图,已知CD平分∠ACB,∠1=∠2.(1)求证:DE∥AC;(2)若∠3=30°,∠B=25°,求∠BDE的度数.47.(2021春•奉化区校级期末)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程.解:过点A作ED∥BC,所以∠B=,∠C=.又因为∠EAB+∠BAC+∠DAC=180°.所以∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.提示:过点C作CF∥AB.深化拓展:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.48.(2021春•奉化区校级期末)[感知]如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解;(1)如图①,过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补).∵∠PFD=130°(已知),∴∠2=180°﹣130°=50°(等式的性质),∴∠1+∠2=40°+50°=90°(等式的性质).即∠EPF=90°(等量代换).[探究]如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是°.49.(2021春•奉化区校级期末)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.50.(2020春•诸暨市期末)如图,在三角形ABC中,D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1﹣∠2=150°,2∠2﹣∠1=30°.(1)求证:DM∥AC;(2)若DE∥BC,∠C=50°,求∠3的度数.51.(2019春•拱墅区期末)如图,AD∥EC.(1)若∠C=40°,AB平分∠DAC,求∠DAB的度数.(2)若AE平分∠DAB,BF平分∠ABC,试说明AE∥BF的理由.一十五.平移的性质(共2小题)52.(2022春•西湖区校级期末)如图,直线AB∥CD,直线EF与AB、CD分别交于点G、H,∠EHD=α(0°<α<90°).小安将一个含30°角的直角三角板PMN按如图①放置,使点N、M分别在直线AB、CD上,且在点G、H的右侧,∠P=90°,∠PMN=60°.(1)填空:∠PNB+∠PMD∠P(填“>”“<”或“=”);(2)若∠MNG的平分线NO交直线CD于点O,如图②.①当NO∥EF,PM∥EF时,求α的度数;②小安将三角板PMN保持PM∥EF并向左平移,在平移的过程中求∠MON的度数(用含α的式子表示).53.(2017春•上虞区期末)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.一十六.频数(率)分布直方图(共1小题)54.(2018春•嘉兴期末)某市抽查部分家庭每月水电费的开支(单位:元),得到下面的频数分布直方图(每一组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题:(1)被抽查的家庭共有多少户?(2)自左至右第二组的频数、频率分别是多少?(3)小明同学说:“由图中信息可知,被抽查家庭的每月水电费最低开支至少是100元”你认为小明的说法对吗?为什么?一十七.条形统计图(共4小题)55.(2021春•奉化区校级期末)某中学举行“庆祝中华人民共和国成立70周年”知识预赛,学生会把成绩x(分)分成五组:A组:50≤x<60;B组:60≤x<70;C组:70≤x<80;D组:80≤x<90;E组:90≤x<100.统计后绘制成如下两个统计图(不完整).(1)直接填空:①m的值为;②在图2中,C组的扇形圆心角的度数为.(2)在图1中,画出60≤x<70所对应的条形图;(3)若学生会计划从预赛中选拔前30名进入复赛,则进入复赛的成绩应不低于多少分?56.(2018春•拱墅区期末)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店1﹣4月销售总额统计图绘本类图书销售额占该书店当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2.(3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等.请你判断以上两个结论是否正确,并说明理由.57.(2021春•镇海区期末)牡丹江管局教育局为了解九年级学生每学期参加综合实践活动的情况,随机抽样调查某校九年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出该校九年级学生总数;(2)分别求出活动时间为5天的学生人数和7天的学生人数,并补全图②;(3)求该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是多少?58.(2022春•南浔区期末)某校研究性学习小组以“学生到学校交通工具类型”为主题对全校学生进行随机抽样调查,调查的项目有:公共汽车、小车、摩托车、自行车、其它(每位同学仅选一项).根据调查。
完整版七年级下册数学压轴题集锦
、2如图,已知(A0,a),B(0,b),C(m,b)且(a-4)+b+3=0,S=14.1ABCV(1)求C点坐标o。
90DFE=为?AED的平分线,且?点,(2)作DE?DC,交y轴于EEF求证:FD平分?ADO;(3)E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分∠AEC,且PM⊥EM,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程?MPQ中,?ECA的大小是否发生变化,若不变,求出其值。
y yA A ND F oQ D x oxE MC CB PE1 2=2∠∠、如图1,AB//EF,2FCE;FEC=∠(1)证明∠NMC,则∠FNM=∠FMNN为AC上一点,为FE延长线上一点,且∠M(2)如图2,有何数量关系,并证明。
与∠CFMAN1MEE2CCB BFF2 1 图图1(1)如图,∠ABC的平分线与∠ADC的平分线交于点E,试问BE与DE有何位置关系?说明你的理由。
(2)如图,试问∠ABC的平分线BE与∠ADC的外角平分线DF有何位置关系?说明你的理由。
(3)如图,若∠ABC的外角平分线与∠ADC的外角平分线交于点E,试问BE与DE有何位置关系?说明你的理由。
N G DE D DM BF C B BC C EA A EA,B=60∠°DCE的平分线交于点F,∠1()如图,点E在AC的延长线上,BAC与∠6. BDC的度数。
F=56°,求∠∠FBDEC、试问∠F的平分线交于点与∠ADEF,∠E2()如图,点在CD的延长线上,BAD 之间有何数量关系?为什么?和∠∠BC ABFECD。
的平分线交于点与∠已知∠7.ABCADCE3(1)如图,试探究∠E、∠A与∠C之间的数量关系,并说明理由。
AEDCB(2)如图,是探究∠E、∠A与∠C之间的数量关系,并说明理由。
DAECB的反向延MF,若点G恰好在MF)如图,点E是AB上方一点,平分∠AME8.(1 互余,求∠AME的大小。
初中七年级的下册数学几何压轴题集锦
在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。
1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。
2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点E 的坐标。
1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,ABBACBCBCFA(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系说明你的理由。
6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
AE(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系为什么BBEAD7.已知∠ABC 与∠ADC 的平分线交于点E 。
(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
七年级下数学压轴题
七年级下数学压轴题一、相交线与平行线。
题1:如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE = 4:1,求∠AOF的度数。
解析:设∠BOE = x,因为OE平分∠BOD,所以∠BOD = 2∠BOE=2x。
又因为∠AOD + ∠BOD = 180°,且∠AOD:∠BOE = 4:1,所以∠AOD = 4x。
则4x + 2x=180°,6x = 180°,解得x = 30°。
所以∠COE = 180° - ∠BOE = 150°。
因为OF平分∠COE,所以∠COF=(1)/(2)∠COE = 75°。
∠AOC=∠BOD = 60°,所以∠AOF=∠AOC+∠COF = 60°+ 75°=135°。
题2:已知直线l_1∥ l_2,直线l_3和直线l_1、l_2交于点C和D,在C、D之间有一点P。
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化。
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?解析:(1)过点P作PE∥ l_1,因为l_1∥ l_2,所以PE∥ l_2。
∠PAC = ∠APE,∠PBD=∠BPE。
所以∠APB = ∠APE+∠BPE = ∠PAC + ∠PBD。
(2)当点P在l_1上方时,过点P作PF∥ l_1,因为l_1∥ l_2,所以PF∥ l_2。
∠PAC = ∠APF,∠PBD + ∠BPF=180°,所以∠PBD = 180°-(∠APB - ∠PAC),即∠PAC=∠APB + ∠PBD。
当点P在l_2下方时,过点P作PG∥ l_2,同理可得∠PBD = ∠APB+∠PAC。
二、实数。
题3:已知a、b满足√(2a + 8)+| b - √(3)|=0,解关于x的方程(a + 2)x + b^2=a - 1。
七年级下学期压轴题集
一、平行类压轴题(选填题)12.(2015春•武昌区期末)如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K= .13. (2015春•江岸区期末)如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E , AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .∠F 的度数为___________A .120°B .135°C .150°D .不能确定14.(2014春•洪山区期末)如图,已知AB ∥DC ∥EO ,∠1=70°,∠2=30°,OG 平分∠BOD ,则∠BOG= .15.(2014春•武昌区期末)如图,AB ∥EF ,则∠A ,∠C ,∠D ,∠E 满足的数量关系是( )A .∠A+∠C+∠D+∠E=360°B .∠A+∠D=∠C+∠EC .∠A ﹣∠C+∠D+∠E=180°D .∠E ﹣∠C+∠D ﹣∠A=90° 16.(2013春•新洲区期末)珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE= 度.M 1FEBA第10题图NM 21FE DCBA17.(3分)(2012春•武昌区期末)如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点E ,EC 延长线交∠ABC 的外角平分线于点D ,若∠D 比∠E 大10°,则∠A 的度数是 .18.(2014春•硚口区期末)如图,BD 平分∠ABC ,AF 平分∠BAD ,∠EAD=2∠DBC ,∠BDC=∠AFB ,下列结论:①AD ∥BC ;②∠AFB=90°;③∠FAG=∠DCG ,其中正确的是( )A .①②③B .①②C .①D .②③19.(2014春•二中期末)如图,点P 的坐标为(0,2),PF ∥CD ,OE 平分∠AOC ,OE ⊥OF 。
七年级(下册)数学压轴题集锦
1、如图,已知(0a ),(,b ),()求点坐标()作±DC ,交y 轴于点,为/求证:FD^Z ADO (m ,b )且(a-)2+|b+3|=0,S =14. 11ABC(3)E 在y 轴负半轴上运动时.连EC.点P 为AC 延长线上一点.EM 平分NAEC.且 PM ,EM,PN ,x 轴于N 点.PQ 平分NAPN.交x 轴于Q 点.则E 在运动过程中.Z MPQ2、如图1.AB//EF,N2=2N1⑴证明NFEC=NFCE;⑵如图25为AC 上一点.N 为FE 延长线上一点.且NFNM=NFMN.贝iNNMC 与NCFM 有何数量关系.并证明。
3、(1)如图.4人8必NABC 、NACB 的三等分线交于点E 、D.若N1=130°.N的平分线,也 o 0。
的大小是否发生变化.若不变.求出其值。
图22=110°.求NA的度数。
(2)如图.△ABC,NABC的三等分线分别与NACB的平分线交于点D,E若N1=110°.N2=130°.求NA的度数。
4、如图.NABC+NADC=180°.OE、OF分别是角平分线.则判断OE、OF的位置关系为?5、已知NA=NC=90°.(1)如图.NABC的平分线与NADC的平分线交于点E.试问BE与DE有何位置关系?说明你的理由。
(2)如图.试问NABC的平分线BE与NADC的外角平分线DF有何位置关系?说明你的理由。
(3)如图.若NABC的外角平分线与NADC的外角平分线交于点E.试问BE与DE有何位置关系?说明你的理由。
6.(1)如图.点E在AC的延长线上.NBAC与NDCE的平分线交于点F.NB=60NF=56°,求NBDC的度数。
(2)如图.点E在CD的延长线上.NBAD与NADE的平分线交于点F.试问NF、NB和NC之间有何数量关系?为什么?7.已知NABC与NADC的平分线交于点E。
初一数学考试压轴题
1、在一个班级中,男生的人数是女生人数的2倍。
如果班级总人数是45人,那么男生有多少人?A. 15人B. 20人C. 30人(答案)D. 35人2、小明从家到学校的距离是2公里,他每天步行上学,往返一次。
一周五天上学,他总共步行多少公里?A. 10公里B. 20公里C. 30公里(答案)D. 40公里3、一个长方形的花坛,长是10米,宽是4米。
现在要在花坛周围铺一条1米宽的小路,这个小路的面积是多少平方米?A. 24平方米B. 32平方米C. 40平方米(答案)D. 48平方米4、小红和小华一起去买书,小红带了40元,小华带了50元。
他们买了一本书,共花了60元,那么他们一共节省了多少元?A. 20元B. 30元C. 40元(答案)D. 50元5、一个正方形的面积是64平方米,那么它的周长是多少米?A. 16米B. 24米C. 32米(答案)D. 40米6、小明有20本书,他送了5本书给小华,剩下的书他又分成了两份,每份有多少本书?A. 5本B. 7本C. 10本(答案)D. 15本7、一桶水重50公斤,如果倒入一个空桶中,两桶水的重量是100公斤。
如果只倒出一半的水,那么两桶水的重量是多少公斤?A. 75公斤B. 80公斤C. 90公斤D. 95公斤(答案)8、小明有5个苹果,小红有3个苹果。
小明给小红2个苹果后,小明和小红各有多少个苹果?A. 小明有3个,小红有5个(答案)B. 小明有2个,小红有6个C. 小明有4个,小红有4个D. 小明有1个,小红有7个。
初中七年级的下册数学几何压轴题集锦
在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。
1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。
2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点E 的坐标。
1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,AB//EF,∠2=2∠1 (1)证明∠FEC=∠FCE;(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图1 图2 3、(1)如图,△ABC,∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
B C B C(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关BCACFA系?说明你的理由。
七年级下册数学压轴题集锦
七年级下册数学压轴题集锦(一)1、如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)2+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ; (3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.2、如图1,AB ∥EF ,∠2=2∠1(1)证明∠FEC =∠FCE ;图1(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM =∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图2B C B3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
BA B6、(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
七年级数学版下册压轴题
七年级数学版下册压轴题第一题:分数的加减乘除运算题目要求:请计算以下数式的值,并将答案化简至最简形式。
1.(1/3) + (2/5)2.(4/7) - (1/5)3.(2/3) × (3/8)4.(5/6) ÷ (1/4)答案及解析1.(1/3) + (2/5)解法:首先最小公倍数为15,将分数的分母变为15,得到(5/15) + (6/15) = 11/15,所以答案为11/15。
2.(4/7) - (1/5)解法:首先最小公倍数为35,将分数的分母变为35,得到(20/35) - (7/35) = 13/35,所以答案为13/35。
3.(2/3) × (3/8)解法:将分数相乘得到(2×3)/(3×8) = 6/24,将6/24化简为最简形式,得到1/4,所以答案为1/4。
4.(5/6) ÷ (1/4)解法:将除法转化为乘法,得到(5/6) × (4/1)= (5×4)/(6×1) = 20/6,将20/6化简为最简形式,得到10/3,所以答案为10/3。
第二题:解一元一次方程题目要求:解下列一元一次方程。
1.2x - 3 = x + 42.3(x + 5) = 6x - 93.2(x + 3) - 4(x - 2) = 5(2x - 1)答案及解析1.2x - 3 = x + 4解法:将方程中的变量合并在一起,得到2x - x = 4 + 3,化简得到x = 7,所以方程的解为x = 7。
2.3(x + 5) = 6x - 9解法:先将方程中的括号展开,得到3x + 15 = 6x - 9,将变量合并在一起,得到3x - 6x = -9 - 15,化简得到-3x = -24,再将方程两边同时除以-3,得到x = 8,所以方程的解为x = 8。
3.2(x + 3) - 4(x - 2) = 5(2x - 1)解法:先将方程中的括号展开,得到2x + 6 - 4x + 8 = 10x - 5,将变量合并在一起,得到-2x + 14 = 10x - 5,将方程中的常数项合并在一起,得到-2x - 10x = -5 - 14,化简得到-12x = -19,再将方程两边同时除以-12,得到x =19/12,所以方程的解为x = 19/12。
七年级下册数学几何压轴题集锦
七年级下册数学几何压轴题集锦(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除在矩形ABCD中,点E为BC边上的一动点,沿AE翻折,△ABE与△AFE重合,射线AF与直线CD交于点G。
1、当BE:EC=3:1时,连结EG,若AB=6,BC=12,求锐角AEG的正弦值。
2、以B为原点,直线BC和直线AB分别为X轴、Y轴建立平面直角坐标系,AB=5,BC=8,当点E从原点出发沿X正半轴运动时,是否存在某一时刻使△AEG成等腰三角形,若存在,求出点E的坐标。
1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B(0,),C(,)且(4),oy=DCFD ADO⊥∠∠∠(1)求C点坐标(2)作DE,交轴于E点,EF为AED的平分线,且DFE90。
求证:平分;(3)E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分∠AEC,且PM⊥EM,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,MPQECA∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,ABB C CB C B CFA(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
AE(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系为什么BBAE7.已知∠ABC与∠ADC的平分线交于点E。
七年级(下册)数学压轴题集锦
1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;(3)E 在y 轴负半轴上运动时.连EC.点P 为AC 延长线上一点.EM 平分∠AEC.且PM ⊥EM,PN ⊥x 轴于N 点.PQ 平分∠APN.交x 轴于Q 点.则E 在运动过程中.MPQECA∠∠的大小是否发生变化.若不变.求出其值。
2、如图1.AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;(2)如图2.M 为AC 上一点.N 为FE 延长线上一点.且∠FNM=∠FMN.则∠NMC 与∠CFM 有何数量关系.并证明。
图1 图2 3、(1)如图.△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D.若∠1=130°.∠B C B C2=110°.求∠A 的度数。
(2)如图.△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°.∠2=130°.求∠A 的度数。
4、如图.∠ABC+∠ADC=180°.OE 、OF 分别是角平分线.则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.BCCFA(1)如图.∠ABC 的平分线与∠ADC 的平分线交于点E.试问BE 与DE 有何位置关系?说明你的理由。
(2)如图.试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图.若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E.试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图.点E 在AC 的延长线上.∠BAC 与∠DCE 的平分线交于点F.∠B=60°,∠F=56°,求∠BDC 的度数。
【初中数学】七年级下册压轴题专项练习(解析版)
一、解答题1.如图,用两个面积为200cm 2七年级下册数学压轴题专题练习(解析版)的小正方形拼成一个大的正方形.(1)则大正方形的边长是;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为360cm 2?2.如图,在9⨯9网格中,每个小正方形的边长均为1,正方形ABCD 的顶点都在网格的格点上.(1)求正方形ABCD 的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.3.已知在4⨯4的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和-8.4.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二、解答题6.如图,MN//GH,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若∠NAO=116︒,∠OBH=144︒.(1)∠AOB=︒;(2)如图2,点C、D是∠NAO、∠GBO角平分线上的两点,且∠CDB=35︒,求∠ACD的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若∠MAE=n∠OAE,∠HBF=n∠OBF,且∠AFB=60︒,求n的值.7.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE 上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.8.如图,已知直线AB//射线CD,∠CEB=100︒.P是射线EB上一动点,过点P作PQ//EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧,求∠PCG的度数;(2)若点P,F,G都在点E的右侧,∠EGC-∠ECG=30︒,求∠CPQ的度数;(3)在点P的运动过程中,是否存在这样的情形,使∠EGC:∠EFC=4:3?若存在,求出∠CPQ的度数;若不存在,请说明理由.9.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足a-30+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).10.问题情境:(1)如图1,AB//CD,∠PAB=128︒,∠PCD=119︒.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE//AB,请你接着完成解答.问题迁移:(2)如图3,AD//BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠PCE=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PF//AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系并证明.三、解答题11.已知:直线l 1∥l 2,A 为直线l 1上的一个定点,过点A 的直线交l 2于点B ,点C 在线段BA 的延长线上.D ,E 为直线l 2上的两个动点,点D 在点E 的左侧,连接AD ,AE ,满足∠AED =∠DAE .点M 在l 2上,且在点B 的左侧(2)射线AF 为∠CAD 的角平分线.①如图2,当点D 在点B 右侧时,用等式表示∠EAF 与∠ABD 之间的数量关系,并证明;②当点D 与点B 不重合,且∠ABM +∠EAF =150°时,直接写出∠EAF 的度数..(1)如图1,若∠BAD =25°,∠AED =50°,直接写出∠ABM 的度数;12.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,∠B =35︒,∠D =37︒,求∠BED 的度数.她是这样做的:过点E 作EF //AB ,则有∠BEF =∠B ,因为AB //CD ,所以EF //CD .①所以∠FED =∠D ,所以∠BEF +∠FED =∠B +∠D ,即∠BED =_;1.小颖求得∠BED的度数为__;2.上述思路中的①的理由是__;3.请你参考她的思考问题的方法,解决问题:已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE 平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=α,∠ADC=β,则∠BED的度数为;(用含有α,β的式子表示).(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).13.如图1,AB//CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.14.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且b//a,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的线.(2)已知,如图3,AB//CD,BE平分∠ABC,CF平分∠BCD.求证:BE//CF(写出每步的依据).15.如图所示,已知AM//BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C、D,且∠CBD=60︒(1)求∠A的度数.(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.四、解答题16.在ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE//AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB.①若∠BAC=100︒,∠C=30︒,则∠AFD=_____;若∠B=40︒,则∠AFD=_____;②试探究∠AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F.试探究∠AFD与B之间的数量关系,并说明理由.17.己知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l//PQ.点D在点C的左边且CD=3(1)直接写出的∆BCD面积 ;(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,试说明∠CEF=∠CFE;(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中∠H的值是否变化?若不变,求出其值;若变化,求出变化范围.∠ABC18.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:. 19.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反3向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO2的度数.20.如果三角形的两个内角α与β满足2α+β=90︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC中,∠ACB=90︒,BD是ABC的角平分线,求证:△ABD是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC中,若∠A=100︒,∠B=70︒,∠C=10︒,则ABC是“准互余三角形”;②若ABC是“准互余三角形”,∠C>90︒,∠A=60︒,则∠B=20︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B,C为直线l上两点,点A在直线l外,且∠ABC=50︒.若P是直线l上一点,且△ABP是“准互余三角形”,请直接写出∠APB的度数.【参考答案】一、解答题1.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm,宽为3x cm,根据题意列出方程,解方程比较4x与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,∴边长为:400=20cm;(2)根据题意设长方形长为4x cm,宽为3x cm,4x⋅3x=360由题:则x2=30x0∴x=30∴长为430430>20∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.2.(1)面积为29,边长为;(2),,,,图见解析.【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为29;(2)A (0,5),B (2,0),C (7,2),D (5,7),图见解析.【分析】(1)面积等于一个7⨯7大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可.【详解】解:(1)正方形的面积S正方形ABCD =72-4⨯⨯2⨯5=29,正方形边长为S =29;(2)建立如图平面直角坐标系,则A (0,5),B (2,0),C (7,2),D (5,7).12【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.3.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD 的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD 的面积为4×4-4×2×3×1=10则正方形ABCD 的边长为10;(2)如下图所示,正方形的面积为4×4-4×2×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点11∴正方形的边长为8∴弧与数轴的左边交点为-8,右边交点为8,实数8和-8在数轴上如图所示.【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.4.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm 2的正方形纸片的边长为a cm∴a 2=400又∵a >0∴a =20又∵要裁出的长方形面积为300cm 2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm )∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm ,则宽为2x cm∴6x 2=300∴x 2=50又∵x >0∴x =52∴长方形纸片的长为152又∵152()2=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片5.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)400=20(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a =±20,∵3a 表示长度,∴a >0,∴a =20,∴这个长方形场地的周长为 2(3a +5a )=16a =1620(m ),∵80=16×5=16×25>1620,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二、解答题6.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得∠NAC=58︒,再根据平行线的性质得到∠CEF=58︒;进一步求得∠DBF=18︒,∠DFB=17︒,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=∠OBH=144°,∠HBF=n∠OBF,得∠FBH=∠FKN=∠F+∠FAK,得【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;n⨯64︒,同理n+1n n⨯144︒,从而∠BKA=∠FBH=⨯144︒,又n+1n+1n n⨯144︒=60︒+⨯64︒,即可求n.n+1n+1(2)分别延长AC、CD交GH于点E、F,∵AC平分∠NAO且∠NAO=116︒,∴∠NAC=58︒,又∵MN//GH,∴∠CEF=58︒;∵OBH144,OBG 36∵BD 平分OBG ,∴DBF18,又∵CDB35,∴DFBCDB DBF 351817;∴ACD DFB AEF 175875;(3)设FB 交MN 于K ,∵NAO116,则MAO 64;∴MAEn 64n 1n n 144,BKA =FBH 144,n+1n 1∵OBH144,∴FBH 在△FAK 中,BKAFKA F ∴n n 1446460,n 1n 1n 6460,n 1∴n 3.经检验:n 3是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.7.(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD解析:(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则当∠ACB =∠B 时,有AD 平分∠EAC ;(2)根据角平分线可得∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则有∠ACB =∠B ;(3)由AC⊥BC ,有∠ACB =90°,则可求∠BAC =40°,由平行线的性质可得AC⊥AD .【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.8.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=2∠QCF+2∠FCE=2∠ECQ=40°;(2)∵AB∥CD111∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=2(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,1则∠ECG=x,∠PCF=∠PCD=∵∠ECD=80°,3 x,233∴x+x+x+x=80°,22解得x=16°,3∴∠CPQ=∠ECP=x+x+x=56°;2②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=2∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,1内错角相等.9.(1)30°;(2)∠DEF+2∠CDF =150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E 作直线EH ∥AB ,由角平分线的性质和平行解析:(1)30°;(2)∠DEF +2∠CDF =150°,理由见解析;(3)2【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E 作直线EH ∥AB ,由角平分线的性质和平行线的性质可求∠DEF =180°﹣30°﹣2x °=150°﹣2x °,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB =2∠Q +∠PCD ,∠CPM =2∠Q ,即可求解.【详解】解:(1)∵∵AB ∥CD ,∴∠AMN =∠MND =60°,∵∠AMN =∠B +∠BEM =60°,∴∠BEM =60°﹣30°=30°;(2)∠DEF +2∠CDF =150°.理由如下:过点E 作直线EH ∥AB ,1α-30+(β﹣60)2=0,∴α=30,β=60,∵DF 平分∠CDE ,∴设∠CDF =∠EDF =x °;∵EH ∥AB ,∴∠DEH =∠EDC =2x °,∴∠DEF =180°﹣30°﹣2x °=150°﹣2x °;∴∠DEF =150°﹣2∠CDF ,即∠DEF +2∠CDF =150°;(3)如图3,设MQ 与CD 交于点E ,∵MQ 平分∠BMT ,QC 平分∠DCP ,∴∠BMT =2∠PMQ ,∠DCP =2∠DCQ ,∵AB ∥CD ,∴∠BME =∠MEC ,∠BMP =∠PND ,∵∠MEC =∠Q +∠DCQ ,∴2∠MEC =2∠Q +2∠DCQ ,∴∠PMB =2∠Q +∠PCD ,∵∠PND =∠PCD +∠CPM =∠PMB ,∴∠CPM =2∠Q ,∴∠Q 与∠CPM 的比值为2,故答案为:2.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.1110.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC=解析:(1)见解析;(2)∠CPD =∠α+180︒-∠β,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),∠CPD =180︒-∠β-∠α;②当P 在BO 之间时(点P 不与点B ,O 重合),∠CPD =∠α-180︒+∠β.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作PF //AD 交CD 于F ,,推出AD //PF //BC ,根据平行线的性质得出BCP 180,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作PE //AB ,AB //CD ,∴PE //AB //CD ,APE PAB =180,∠CPE +∠PCD =180︒,∠PAB =128︒,∠PCD =119︒∴∠APE=52︒,∠CPE=61︒,∴∠APC=52︒+61︒=113︒;(2)∠CPD=∠α+180︒-∠β,理由如下:如图3,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β又∠ADP=∠αCPD DPF CPF=180;(3)①当P在BA延长线时(点P不与点A重合),∠CPD=180︒-∠β-∠α;理由:如图4,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β,又∠ADP=∠α,∴∠CPD=∠CPF-∠DPF=180︒-∠α-∠β;②当P在BO之间时(点P不与点B,O重合),∠CPD=∠α-180︒+∠β.理由:如图5,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β,又∠ADP=∠α∴∠CPD=∠DPF-∠CPF=∠α+∠β-180︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①∠ABD=2∠EAF,见解析;②30或110︒【分析】(1)由平行线的性质可得到:∠DEA=∠EAN,∠MBA=∠BAN,再利用角的等量代换换算即可;(2)①设∠EAF=α,∠AED=∠DAE=β,利用角平分线的定义和角的等量代换表示出∠ABD对比即可;②分类讨论点D在B的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在l1上有一点N在点A的右侧,如图所示:∵l1//l2∴∠DEA=∠EAN,∠MBA=∠BAN∴∠AED=∠DAE=∠EAN=50︒∴∠BAN=∠BAD+∠DAE+∠EAN=25︒+50︒+50︒=125︒∠BAM=125︒(2)①∠ABD=2∠EAF.证明:设∠EAF=α,∠AED=∠DAE=β.∴∠FAD=∠EAF+∠DAE=α+β.∵AF为∠CAD的角平分线,∴∠CAD=2∠FAD=2α+2β.∵l1l2,∴∠EAN=∠AED=β.∴∠CAN=∠CAD-∠DAE-∠EAN=2α+2β-β-β=2α.∴∠ABD=∠CAN=2α=2∠EAF.②当点D在点B右侧时,如图:由①得:∠ABD=2∠EAF又∵∠ABD+∠ABM=180︒∴∠ABM+2∠EAF=180︒∵∠ABM+∠EAF=150︒∴∠EAF=180︒-150︒=30︒当点D在点B左侧,E在B右侧时,如图:∵AF为∠CAD的角平分线1∴∠DAF=∠CAD2∵l1l 2∴∠AED=∠NAE,∠CAN=∠ABE∵∠DAE=∠AED=∠NAE11∴∠DAE=(∠DAE+∠NAE)=∠DAN2211∴∠EAF=∠DAF+∠DAE=(∠CAD+∠DAN)=(360︒-∠CAN)221=180︒-∠ABE2∵∠ABE+∠ABM=180︒11∴∠EAF=180︒-(180︒-∠ABM)=90︒+∠ABM22又∵∠EAF+∠ABM=150︒11∴∠EAF=90︒+⨯(150︒-∠EAF)=165︒-∠EAF22∴∠EAF=110︒当点D和F在点B左侧时,设在l2上有一点G在点B的右侧如图:11此时仍有∠DAE=∠DAN,∠DAF=∠CAD2211(360︒-∠CAN)=180︒-∠ABG22∴11=180︒-(180︒-∠ABM)=90︒+∠ABM22∠EAF=∠DAE+∠DAF=∴∠EAF=110︒综合所述:∠EAF=30︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.12.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B11解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)α+β;(2)2211180-α+β.22【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;11(2)根据BE平分∠ABC,DE平分∠ADC,求出∠ABE=α,∠CDE=β,过点E作2211EF∥AB,根据平行线的性质求出∠BEF=α,∠DEF=180︒-∠CDE=180︒-β,再利用22周角求出答案.【详解】1、过点E作EF//AB,则有∠BEF=∠B,因为AB//CD,所以EF//CD.①所以∠FED=∠D,所以∠BEF+∠FED=∠B+∠D,即∠BED=72;故答案为:72;2、过点E作EF//AB,则有∠BEF=∠B,因为AB//CD,所以EF∥CD(平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE平分∠ABC,DE平分∠ADC,1111∴∠ABE=∠ABC=α,∠CDE=∠ADC=β,2222过点E作EF∥AB,由1可得∠BED=∠BEF+∠FED=∠ABE+∠CDE,11∴∠BED=α+β,2211故答案为:α+β;22(2)∵BE平分∠ABC,DE平分∠ADC,1111∴∠ABE=∠ABC=α,∠CDE=∠ADC=β,22221过点E作EF∥AB,则∠ABE=∠BEF=α,2∵AB//CD,∴EF∥CD,∴∠CDE+∠DEF=180︒,1∴∠DEF=180︒-∠CDE=180︒-β,21111∴∠BED=360︒-∠DEF-∠BEF=360︒-(180︒-β)-α=180-α+β.2222【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.13.(1),见解析;(2);(3)60°【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,1解析:(1)∠BAE+∠CDE=∠AED,见解析;(2)∠AFD=∠AED;(3)60°2【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=1 2∠BAE,∠CDF=2∠CDE,则∠AFD=2(∠BAE+∠CDE),加上(1)的结论得到111∠AFD=2∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用3等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算2出∠BAE的度数.【详解】解:(1)∠BAE+∠CDE=∠AED理由如下:作EF//AB,如图1,AB//CD,∴EF//CD.∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∠BAE、∠CDE的两条平分线交于点F,11∴∠BAF=∠BAE,∠CDF=∠CDE,221∴∠AFD=(∠BAE+∠CDE),2∠BAE+∠CDE=∠AED,1∴∠AFD=∠AED;2(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,11∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED-∠BAE)=2232∠AED-∠BAE,290︒-∠AGD=180︒-2∠AED,3∴90︒-2∠AED+∠BAE=180︒-2∠AED,2∴∠BAE=60︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析【分析】(1)①过P点折纸,使痕迹垂直直线a,然后过P点折纸使痕迹与前面的痕迹垂直,从而得到直线b;②步骤(b)中,折纸实际上是在寻找过点P的直线a的垂线.(2)先根据平行线的性质得到∠ABC=∠BCD,再利用角平分线的定义得到∠2=∠3,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的垂线.故答案为垂;(2)证明:BE平分∠ABC,CF平分∠BCD(已知),∴∠1=∠2,∠3=∠3(角平分线的定义),AB//CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∴2∠2=2∠3(等量代换),∴∠2=∠3(等式性质),∴BE//CF(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.15.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1)∠A=60;(2)不变化,∠APB=2∠ADB,理由见解析;(3)∠ABC=30【分析】(1)结合题意,根据角平分线的性质,得∠ABN;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得∠APB=∠PBN,∠ADB=∠DBN;结合角平分线性质,得∠APB=2∠ADB,即可完成求解;(3)根据平行线的性质,得∠ACB=∠CBN;结合∠ACB=∠ABD,推导得∠ABC=∠DBN;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC,BD分别评分∠ABP和∠PBN,11∴∠CBP=∠ABP,∠DBP=∠PBN,22∴∠ABN=2∠CBD又∵∠CBD=60,∴∠ABN=120∵AM//BN,∴∠A+∠ABN=180∴∠A=60;(2)∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN又∵BD平分∠PBN∴∠PBN=2∠DBN,∴∠APB=2∠ADB;∴∠APB与∠ADB之间的数量关系保持不变;(3)∵AD//BN,∴∠ACB=∠CBN又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∵∠ABC+∠CBN=∠ABD+∠DBN∴∠ABC=∠DBN由(1)可得∠CBD=60,∠ABN=1201∴∠ABC=⨯(120-60)=30.2【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.四、解答题16.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=1︒解析:(1)①115°,110°;②∠AFD=90+∠B,证明见解析;(2)21∠AFD=90︒-∠B,证明见解析.2【解析】【分析】1(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得2∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知1AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,21∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得211111∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三22222角形的内角和定理可求得∠AFD=110°;1②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得211∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,221111∠FMD=∠GAC;由此可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=222211(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得221∠AFD=90°+∠B;21(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得2111∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行2221线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM211111+∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角222221的性质可得∠AFD=∠FDM +∠FMD=90°-∠B.2【详解】(1)①∵AG平分∠BAC,∠BAC=100°,1∴∠CAG=∠BAC=50°;2∵DE//AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,1∴∠FDM=∠EDG=15°;2∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠FDM=∠EDG,22∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;11111∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;22222∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;1②∠AFD=90°+∠B,理由如下:2∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠FDM=∠EDG,22∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;11111∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)22222 1=90°-∠B;211∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-∠B)=90°+∠B;221(2)∠AFD=90°-∠B,理由如下:2如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠NDE=∠EDB,221∴∠FDM=∠NDE=∠EDB,2∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;1∴∠FDM=∠NDE=∠C,211111∴∠FDM +∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;222221∴∠AFD=∠FDM +∠FMD=90°-∠B.2【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.17.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】。
七年级下册数学期末压轴难题试卷(含答案)
七年级下册数学期末压轴难题试卷(含答案)一、选择题1.如图,∠1和∠2是同位角的是( )A .B .C .D .2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D .3.在平面直角坐标系中,点(-1,-3)位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直. ②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行. ④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离. ⑤过一点,有且只有一条直线与已知直线平行. A .2个B .3个C .4个D .5个5.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( )A .①②③B .①②④C .①③④D .②③④7.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2021A 的位置上,则点2021A 的坐标为( ).A .()2019,0B .()2019,1C .()2020,0D .()2020,1二、填空题9.已知170a b -++=,则a +b 为_____.10.已知点P (3,﹣1)关于y 轴的对称点Q 的坐标是_____________. 11.若(,)A a b 在第一、三象限的角平分线上,a 与b 的关系是_________.12.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.13.如图,折叠三角形纸片ABC ,使点B 与点C 重合,折痕为DE ;展平纸片,连接AD .若AB =6cm ,AC =4cm ,则△ABD 与△ACD 的周长之差为____________.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.三、解答题17.计算: (1) 22331(84)6(3)27---÷+- (2)253(52)5---+ 18.求下列各式中的x 的值. (1)21(1)24x -=;(2)32(2)160x --=.19.如图,已知3A ∠=∠,DE BC ⊥,AB BC ⊥,求证:DE 平分CDB ∠.证明:DE BC ⊥,AB BC ⊥ (已知)90DEC ABC ∴∠=∠=︒(垂直的定义)//DE AB ∴( ) 23∴∠=∠( )1∠= (两直线平行,同位角相等)又3A ∠=∠(已知)∴ ( )DE ∴平分CDB ∠(角平分线的定义)20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.(1)将△ ABC先向下平移2个单位长度,再向右平移5个单位长度得到△ A1B1C1,画出△ A1B1C1.(2)求△ A1B1C1的面积.21.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而12-来表示2的小数<<2,于是可用21部分.请解答下列问题:(1)29的整数部分是_______,小数部分是_________;(2)如果10的小数部分为15a,的整数部分为b,求10+-的值.a b二十二、解答题22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)二十三、解答题23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理)24.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.25.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系. 26.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)【参考答案】1.A 解析:A 【分析】根据同位角的定义,逐一判断选项,即可. 【详解】解:A. ∠1和∠2是同位角,故该选项符合题意; B. ∠1和∠2不是同位角,故该选项不符合题意; C. ∠1和∠2不是同位角,故该选项不符合题意; D. ∠1和∠2不是同位角,故该选项不符合题意, 故选 A . 【点睛】本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.2.D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的. 故选:D . 【点睛】解析:D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的. 故选:D . 【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 3.C 【分析】根据平面直角坐标系中象限内点的特征判断即可; 【详解】 ∵10-<,30-<,∴点(-1,-3)位于第三象限;【点睛】本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键.4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确;∵116的算术平方根是14,∴④正确;正确的是②③④,故选:D.【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.7.B【分析】根据平行线的性质和对顶角相等即可得∠2的度数. 【详解】 解:∵//AB CD , ∴∠2=∠FHD , ∵∠FHD =∠1=39°, ∴∠2=39°. 故选:B . 【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.D 【分析】探究规律,利用规律即可解决问题. 【详解】解:由题意,,,,,,,,, 每4个一循环,则2021个纵坐标等于1轴,坐标应该是, 故选:D . 【点睛】本题考查了点的坐标的规律变化解析:D 【分析】探究规律,利用规律即可解决问题. 【详解】解:由题意1(0,1)A ,2(2,1)A ,3(3,0)A ,4(3,0)A ,5(4,1)A ,6(6,1)A ,()77,0A ,8(7,0)A ,9(8,1)A ,⋯每4个一循环,202150541=⨯+则2021个纵坐标等于1轴,坐标应该是(2020,1), 故选:D . 【点睛】本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点P 向右前行4个单位.二、填空题 9.-6 【解析】试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值.点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数 解析:-6【解析】试题分析:∵170a b -++=,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值.点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 10.(-3,-1)【分析】根据关于y 轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q 与点P (3,﹣1)关于y 轴对称,∴Q (-3,-1).故答案为(-3,-1).解析:(-3,-1)【分析】根据关于y 轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q 与点P (3,﹣1)关于y 轴对称,∴Q (-3,-1).故答案为(-3,-1).【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点. 11.a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.12.95°.【分析】延长DE 交AB 于F ,根据两直线平行,同旁内角互补求出∠B ,再根据两直线平行,同位角相等求出∠AFE ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.13.2cm【分析】由折叠的性质可得BD=CD,即可求解.【详解】解:∵折叠三角形纸片ABC,使点B与点C重合,∴BD=CD,∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长解析:2cm【分析】由折叠的性质可得BD=CD,即可求解.【详解】解:∵折叠三角形纸片ABC,使点B与点C重合,∴BD=CD,∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD,∴△ABD与△ACD的周长之差=6-4=2cm,故答案为:2cm.【点睛】本题考查了翻折变换,掌握折叠的性质是本题关键.14.8解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【分析】由M 点的位置易求OM 的长,在根据三角形的面积公式计算可求解.【详解】解:∵M 在y 轴上,纵坐标为4,∴OM =4,∵P (6,﹣4),∴S △OMP =OM•|xP|=×4×6=12解析:【分析】由M 点的位置易求OM 的长,在根据三角形的面积公式计算可求解.【详解】解:∵M 在y 轴上,纵坐标为4,∴OM =4,∵P (6,﹣4),∴S △OMP =12OM •|x P | =12×4×6=12.故答案为12.【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键. 16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1解析:【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1)原式=13--(2-4)÷6+3 =13-+13+3 =3;(2)原式= .故答案为:(1)3;(2).【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键.18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,4x=.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE⊥BC,AB⊥BC(已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE∥AB(同位角相等,两直线解析:见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE⊥BC,AB⊥BC(已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE∥AB(同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等),∠1=∠A(两直线平行,同位角相等).又∵∠A=∠3(已知),∴∠1=∠2(等量代换).∴DE平分∠CDB(角平分线的定义).【点睛】本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.20.(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积.【详解】解:(1)如图所示,三角形A1B1C1即为所求解析:(1)见解析;(2)11 2【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积.解:(1)如图所示,三角形A1B1C1即为所求;(2)如图所示,△A1B1C1的面积=11134132314222⨯-⨯⨯-⨯⨯-⨯⨯=112.【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.21.(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可.【详解】(1)∵5<<6,∴的整数部分是5,小数部分是-5,故解析:(1)529(2)0【分析】(129(21015a、b的值,再代入求出即可.【详解】(1)∵5296,∴29529,故答案为:529;(2)∵3104,∴a10,∵3154,∴b=3,∴10a b+1010.【点睛】二十二、解答题22.选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x米,由题意得:x2=81,解得:x=±9,∵x>0,∴x=9,∴正方形的周长为4×9=36,设建成圆形时圆的半径为r米,由题意得:πr2=81.r解得:=∵r>0.∴=r∴圆的周长=2π≈∵56<,∴3036<,∴建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案.【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.二十三、解答题23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.24.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出解析:(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩,∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.26.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.。
七年级下学期数学期末压轴题
七年级下学期数学期末压轴题精选1.如图1,已知AB∥ CD,点M、N分别是AB、CD上两点,点G在 AB、 CD之间(1)如图 1,点E是AB上方一点,MF均分∠AME,若点 G恰幸好 MF的反向延长线上,且NE均分∠ CNG,2∠E与∠G互余,求∠AME的大小 .EFA BMG C DN图 1(2)如图 2,在( 1)的条件下,若点P是EM上一动点,PQ均分∠ MPN, NH均分∠ PNC,交 AB于点H, PI ∥ NH,当点 P 在线段 EM上运动时,求∠ IPQ 的度数.EPIA BHMQC DN图22.在平面直角坐标系中,点B(0,4), C(-5,4),点 A是 x 轴负半轴上一点,S 四边形AOBC=24.(1)线段BC的长为,点A的坐标为(2)如图 1,EA均分∠ CAO,DA均分∠CAH,CF⊥ AE点 F,试给出∠ ECF与∠ DAH之间满足的数量关系式,并说明原由;DH(3)若点P是在直线CB与直线 AO之间的一点,连接均分CBP,均分AOP,BP、OP,BN ON交于,请依题意画出图形,给出BPO 与BN ON NBNO 之间满足的数量关系式,并说明原由.;yC B EFA O x图 1yC BA O x图 23.如图, AC∥ BD,点 D在点 B 的右侧, BE⊥ AB,∠ EBD、∠ ACD的均分线交于点 F(点 F 不与点 B、C重合).∠ABD = ,∠ACD=n.m C A(1)若点A在点C的右侧,求∠BFC,BFC 1ABE并直接写出2的值;ABD ACDFEB D(2)将( 1)中的线段CD沿BD方向平移,当点C搬动到点A的右侧时,求∠BFC, 并直接写出∠BFC、∠ABD、∠ ACD之间的关系.4.如图, MN∥ AB,点 C、 D在直线 MN上运动,∠ CBD的均分线交射线 AC于点 E.(1)当点D在点C的右侧运动时,①若∠ACB=∠ A,求AEB 的值;ECDB②若∠ ACB比∠ A 大30°,AEB M C DN的值可否发生变化,CDB若不变,求出其值;若变化,请研究∠AEB与∠ CDB之间的关系;A B (2)当点D在点C的左侧运动时,若∠ACB=∠A,请直接写出∠AEB与∠ CDB之间的关系.5. 线段AB ABC ABC放置在平面直角坐标系中,线段AB y D 是直角三角形的斜边,将交轴于点 .(1)如图1,若点C与点O重合,已知A(t, a)、B( t, b),且a b 2 7 ,求点D的坐标;(2)如图2,将ABC沿着AC方向平移,边AB、BC交平行于y轴的直线于E、F,直线EF交x轴于点G,点 H是边 AC上一点,连接FH,①若∠ CFH+∠ CFE=200°,请写出∠ AOD与∠ HFE之间的关系,并证明你的结论;②若 2 CFH+1CFE 200o,请直接写出∠AOD与∠HFE之间的关系.2A yAyDD EBBOFG xHO(C)xC图1图 26. 如图 1,CD∥AB,1ABF EBF ,,2倍与∠ E的余角的和为108 .2CF 均分∠ DCE ∠F 的°(1)求∠ABE的度数;(2)如图 2,点G、H分别是CD、BE上一点,BHI3GHI ,GJ∥HI,GK均分∠DGH,以下结论:①KGJ的值为定值,② KGJ HGJ 的值为定值,有且只有一个结论正确,请判断,并求出其定值.HGJD C D GIAB A KBFJE H图1图2。
(完整版)七年级下册数学几何压轴题集锦(最新整理)
在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。
1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。
2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点E 的坐标。
1、2a b m b a-+b+3=0=14.ABC A S A 如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作D E ,交轴于E 点,E F 为A E D 的平分线,且D FE 90。
求证:平分;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,的大小是否发生变化,若不变,求出其值。
MPQECA ∠∠2、如图1,AB//EF, ∠2=2∠1(1)证明∠FEC=∠FCE;(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图1 图23、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
BCA BCABC(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
AC4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?FEA5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(完整版)七年级下册数学压轴题
人教版2018年七年级数学期末复习专题--压轴题培优1.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.2.如图,已知两条射线OM∥CN,动线段AB的两个端点A.B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.3.已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A.∠APC与∠C之间有什么确定的相等关系?试证明你的结论.(3)如图③,当点P在线段FE的延长线上运动时,(2)中的结论还成立吗?如果成立,说明理由;如果不成立,试探究它们之间新的相等关系并证明.4.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.5.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、
2
a b m b a-+b+3=0=14.ABC
A S
如图,已知(0,),B (0,),C (,)且(4),
o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标
(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;
(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,
MPQ
ECA ∠∠的大小是否发生变化,若不变,求出其值。
x
2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;
(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图1 图2
B C B C
3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
B
C
(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠
A 的度数。
A
C
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?
F
A
5、已知∠A=∠C=90°.
(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
A
E
(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?
E
A
D
7.已知∠ABC 与∠ADC 的平分线交于点E 。
B
B
(1)如图,试探究∠E、∠A与∠C之间的数量关系,并说明理由。
B C
(2)如图,是探究∠E、∠A与∠C之间的数量关系,并说明理由。
B C
8.(1)如图,点E是AB上方一点,MF平分∠AME,若点G恰好在MF的反向延长线上,且NE平分∠CNG,2∠E与∠G互余,求∠AME的大小。
A
(2)如图,在(1)的条件下,若点P是EM上一动点,PQ平分∠MPN,NH平分∠PNC,交AB于点H,PJ//NH,当点P在线段EM上运动时,∠JPQ的度数是否改变?若不变,求出其值;若改变,请说明你的理由。
D
9.如图,已知MA//NB,CA平分∠BAE,CB平分∠ABN,点D是射线AM上一动点,连DC,当D点在射线AM(不包括A点)上滑动时,∠ADC+∠ACD+∠ABC的度数
是否发生变化?若不变,说明理由,并求出度数。
B
N
A
D
10.如图,AB//CD ,PA 平分∠BAC ,PC 平分∠ACD ,过点P 作PM 、PE 交CD 于M ,交AB 于E ,则(1)∠1+∠2+∠3+∠4不变;(2)∠3+∠4-∠1-∠2不变,选择正确的并给予证明。
11.如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;
(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
设从出发起运动了x 秒。
①请用含x 的代数式分别表示P,Q 两点的坐标; ②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?
12.
如图,在平面直角坐标系中,∠ABO=2∠BAO ,P 为x 轴正半轴上一动点,BC 平分∠ABP ,PC 平分∠APF ,OD 平分∠POE 。
x
x
(1)求∠BAO 的度数;
(2)求证:∠C=15°+∠OAP ;
(3)P 在运动中,∠C+∠D 的值是否变化,若发生变化,说明理由,若不变求其值。
x
13.如图,A 为x 轴负半轴上一点,C (0,-2),D (-3,-2)。
(1)求△BCD 的面积;
(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。
(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由。
14.如图,已知点A (-3,2),B (2,0),点C 在x 轴上,将△ABC 沿x 轴折叠,使点A 落在点D 处。
(1)写出D 点的坐标并求AD 的长;
(2)EF 平分∠AED ,若∠ACF-∠AEF=15º,求∠EFB 的度数。
x
x
x
x
y F
G
E
D
B
A
o
C
15.(1)在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD 。
①直接写出图中相等的线段、平行的线段; ②已知A (-3,0)、B (-2,-2),点C 在y 轴的正半轴上,点D 在第一象限内,
且=5,求点C 、D 的坐标;
y D
B
A
o
C
(2)在平面直角坐标系中,如图,已知一定点M (1,0),两个动点E (a ,2a+1)、F (b ,-2b+3),请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM 。
若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由。
y
o
M
16.如图,在直角坐标系中,已知B (b ,0),C (0,a ),且+(2c-8)²=0.
(1)求B 、C 的坐标;
(2)如图,AB//CD ,Q 是CD 上一动点,CP 平分∠DCB ,BQ 与CP 交于点P ,求的值。
y
P
C B
o
D
A
Q
17.如图,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的负方向运动,点B 以每秒n 个单位长度沿y 轴的正方向运动。
(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A 、B 两点的坐标。
y
o
A
B
(2)如图,设∠BAO 的邻补角和∠ABO 的邻补角平分线相交于点P ,问:点A 、B 在运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由。
y
P
o
A
B
(3)如图,延长BA 至E ,在∠ABO 的内部作射线BF 交x 轴于点C ,若∠EAC 、∠FCA 、∠ABC 的平分线相交于点G ,过点G 作BE 的垂线,垂足为H ,试问∠AGH
和∠BGC 的大小关系如何?请写出你的结论并说明理由。
y
B
18、如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )²+|a-b+4|=0,过C 作CBx 轴于B 。
(1)求三角形ABC 的面积。
x
y
C
B
A
o
(2)若过B 作BD//AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。
x
y
E
D
C B
A
o
(3)在y 轴上是否存在点P ,使得ABC 和ACP 的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由。
x
y
C
B
A
o
19.已知:在△ABC 和△XYZ 中,Y+∠Z=95°,将△XYZ 如图摆放,使得∠X 的两条边分别经过点B 和点C 。
(1)将△XYZ 如图1摆放时,则∠ABX+∠ACX= 度;
(2)将△XYZ 如图2摆放时,请求出∠ABX+∠ACX 的度数,并说明理由;
(3)能否将△XYZ 摆放到某个位置时,使得BX 、CX 同时平分∠ABC 和∠ACB ?请写出你的结论。
B
C Z
B
C X。