高中数学计数原理知识点总结及练习教案课程学生
高中数学计数原理知识点总结及练习教案-学生_图文.
明轩教育您身边的个性化辅导专家电话:二十一:住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解. 例 21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 . 排列组合易错题正误解析 1 没有理解两个基本原理出错排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提. 例 1 从 6 台原装计算机和 5 台组装计算机中任意选取 5 台,其中至少有原装与组装计算机各两台,则不同的取法有种. 例2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有((A) A4 3 )种. (B)4 3 (C) 3 4 3 (D) C 4 2 判断不出是排列还是组合出错在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合. 例 3 有大小形状相同的 3 个红色小球和 5 个白色小球,排成一排,共有多少种不同的排列方法? 3 重复计算出错在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。
例4 5 本不同的书全部分给 4 个学生,每个学生至少一本,不同的分法种数为((B)240 种(C)120 种(D)96 种))(A)480 种例5 种. (A)5040 4 遗漏计算出错某交通岗共有 3 人,从周一到周日的七天中,每天安排一人值班,每人至少值 2 天,其不同的排法共有((B)1260 (C)210 (D)630 0 ) 1, 3 在排列组合问题中还可能由于考虑问题不够全面,因为遗漏某些情况,而出错。
例6 用数字 0,1,2,3,4 组成没有重复数字的比 1000 大的奇数共有((B)48 个(C)66 个(D)72 个(A)36 个 2 3 1 4 5 5 忽视题设条件出错在解决排列组合问题时一定要注意题目中的每一句话甚至每一个字和符号,不然就可能多解或者漏解. 例7 如图,一个地区分为 5 个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有 4 种.(以数字作答)种颜色可供选择,则不同的着色方法共有例 8 已知是关于 x 的一元二次方程,其中 a 、,求解集不同的一元二次方程的个数. 6 未考虑特殊情况出错在排列组合中要特别注意一些特殊情况,一有疏漏就会出错. 例9 现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是()(A1024种 (B1023种 (C1536种 (D1535种 6明轩教育 7 题意的理解偏差出错例 10 (A)您身边的个性化辅导专家电话:现有 8 个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有()种. 3 5 8 6 3 3 3 8 4 (B)(C)(D)解题策略的选择不当出错例 11 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自). (C)37 种(D)48 种由选择,则不同的分配方案有((A)16 种(B)18 种排列与组合习题 1.6 个人分乘两辆不同的汽车,每辆车最多坐 4 人,则不同的乘车方法数为( A.40 B.50 C.60 D.70 2.有 6 个座位连成一排,现有 3 人就坐,则恰有两个空座位相邻的不同坐法有( A.36 种 B.48 种 C.72 种 D.96 种 3.只用 1,2,3 三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( A.6 个 B.9 个 C.18 个 D.36 个 4.男女学生共有 8 人,从男生中选取 2 人,从女生中选取 1 人,共有 30 种不同的选法,其中女生有( A.2 人或 3 人 B.3 人或 4 人 C.3 人 D.4 人 5.某幢楼从二楼到三楼的楼梯共 10 级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用 8 步走完,则方法有( A.45 种 B.36 种 C.28 种 D.25 种 6.某公司招聘来 8 名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( A.24 种 B.36 种 C.38 种 D.108 种 7.已知集合 A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( A.33 B.34 C.35 D.36 8.由 1、2、3、4、5、6 组成没有重复数字且 1、3 都不与 5 相邻的六位偶数的个数是( A.72 B.96 C.108 D.144 9.如果在一周内(周一至周日安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( A.50 种B.60 种 C.120 种 D.210 种 10.安排 7 位工作人员在 5 月 1 日到 5 月 7 日值班,每人值班一天,其中甲、乙二人都不能安排在 5 月 1 日和 2 日,不同的安排方法共有________种.(用数字作答 11.今有 2 个红球、3 个黄球、4 个白球,同色球不加以区分,将这 9 个球排成一列有________种不同的排法.(用数字作答12.将 6 位志愿者分成 4 组,其中两个组各 2 人,另两个组各 1 人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答. 13.要在如图所示的花圃中的 5 个区域中种入 4 种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答. 14. 将标号为 1,2,3,4,5,6 的 6 张卡片放入 3 个不同的信封中.若每个信封放 2 张,其中标号为 1,2 的卡片放入 7明轩教育同一信封,则不同的方法共有((A)12 种(B)18 种您身边的个性化辅导专家)(C)36 种(D)54 种电话: 15. 某单位安排 7 位员工在 10 月 1 日至 7 日值班,每天 1 人,每人值班 1 天,若 7 位员工中的甲、乙排在相邻两天,丙不排在 10 月 1 日,丁不排在 10 月 7 日,则不同的安排方案共有 A. 504 种 B. (B)96 960 种 C. 1008 种(D)144 ) D. 1108 种 16. 由 1、2、3、4、5、6 组成没有重复数字且 1、3 都不与 5 相邻的六位偶数的个数是(A)72 (C) 108 17. 在某种信息传输过程中,用 4 个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有 0 和 1,则与信息 0110 至多有两个对应位置上的数字相同的信息个数为( A.10 B.11 C.12 D.15 18. 现安排甲、乙、丙、丁、戌 5 名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
计数原理知识点总结高中
计数原理知识点总结高中一、基本原理计数原理的基本原理包括加法原理和乘法原理。
1. 加法原理加法原理是指当一个事件可以分解为几个不相容的部分时,这个事件的总数等于各部分的事件数之和。
加法原理可以用于求解排列组合等问题。
举例: 一个班上有男生20人、女生25人,那么班上的学生总数为20+25=45人。
2. 乘法原理乘法原理是指当一个事件要发生的步骤可以划分为若干个子事件时,这个事件发生的总次数等于各子事件发生次数的乘积。
举例: 要在4x4的格子中按照某种规则走,从左上角到右下角,每一步只能向右或者向下移动,那么一共有6步,每一步有两种选择,那么总共有2^6=64种不同的走法。
二、排列组合排列和组合是计数原理中的两个重要概念,它们是用来计算不同元素的排列和组合的方法。
1. 排列在数学中,排列的定义是指从若干不同的元素中取出一部分进行排列,排列的顺序是有意义的。
对于n个元素中取出m个元素进行排列,共有n(n-1)(n-2)...(n-m+1)种排列,记作A(n,m)。
2. 组合组合是指从若干不同的元素中取出一部分进行组合,组合的顺序是没有意义的。
对于n个元素中取出m个元素进行组合,共有C(n,m) = n!/((n-m)!m!)种组合。
排列和组合在实际问题中有着广泛的应用,比如在组合学、密码学等领域,都会涉及到排列和组合的计算。
因此,掌握排列和组合的相关知识是非常重要的。
三、分配原理分配原理是指把若干个不同的物体分给若干个相异的盒子的方法,它与排列和组合有着密切的联系。
分配原理也是计数原理中的重要内容之一,可以在实际问题中得到广泛的应用。
举例: 有10个苹果和3个盒子,要求将这10个苹果分给这3个盒子,每个盒子至少有一个苹果,求分法的总数。
按照分配原理,将10个苹果放入3个盒子,总共有${{10-1}\choose{3-1}}=36$种不同的分法。
分配原理在实际问题中也有着广泛的应用,比如在计算机科学中的任务调度、网络流量控制等方面都会用到分配原理的相关知识。
《计数基本原理》高二数学教案
《计数基本原理》高二数学教案《计数基本原理》高二数学教案作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。
我们应该怎么写教案呢?以下是帮大家整理的《计数基本原理》高二数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、教材分析1、教材的地位和作用计数的基本原理包括分类计数及分步计数原理,这两个原理是学习排列组合的基础,是推导排列数、组合数的重要理论,同时也给出了分析解决排列与组合问题的思维方法。
因此,在整章书中的作用非常重要。
2、教材的重点、难点和关键教学重点:分类计数原理及分步计数原理的区别及应用教学难点:对复杂事件的分类及分步。
二、学情分析和学法指导学情分析:学生基础差,学习主动性差,缺乏学习兴趣。
基于以上情况,我设计了如下的学法指导。
学法指导:从培养学生的兴趣入手,使学生在学习过程中学会观察问题、探究问题,自主归纳总结进而得出结论。
三、教学目标分析根据以上两点,我制定了如下的教学目标:1、知识目标:掌握计数的基本原理,并能用它们分析和解决一些简单的应用问题。
2、能力目标:通过计数基本原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力。
3、情感目标通过各种贴近学生生活的`素材,激发学生学习兴趣,培养学生爱国热情.四、教学方法在课堂上,让学生积极主动参与是关键。
正所谓:“学问之道,问而得,不如求得之深固也”学习任何东西最好的途径是让自己去发现。
本节课采用启发式的教学方法,启发学生积极思考,积极探索,创设一个以学生为主体,教师为主导,师生互动、合作交流、共同探索的教与学的情境。
最后我来具体谈一谈这一堂课的教学过程:根据上述情况,我设计了如下六个环节的教学过程。
五、教学过程1、创设情境——引入课题首先,我会给出以下一组图片激发学生的学习兴趣及爱国热情。
看到图片,有的学生马上脱口而出:“中国女排”。
我说:“对,这正是中国女排在去年的雅典奥运会上夺冠的画面,好,现在假使你是一名统计员,我给出如下比赛规则:分成两个小组,每个小组6支队伍进行循环赛,决出4强,再由这四支对进行淘汰赛,那么请问,夺冠的中国女排总共进行了多少场比赛?这时,学生觉得这个问题很困难。
《计数基本原理》高二数学教案
《计数基本原理》高二数学教案教学目标:1. 了解计数基本原理的概念和应用;2. 学会使用计数基本原理解决问题;3. 培养学生的逻辑思维和分析问题的能力。
教学重点:1. 计数基本原理的应用;2. 分析问题的能力。
教学难点:1. 解决复杂问题的能力;2. 运用计数基本原理解决实际问题。
教学准备:1. 教师准备计数基本原理的教学案例和练习题;2. 学生需要准备纸和笔。
教学步骤:Step 1 引入新知识(5分钟)教师通过一个问题引入计数基本原理的概念。
例如:有 3 种不同的颜色的袜子和 4 个不同的颜色的鞋子,问有多少种不同的搭配方式?Step 2 讲解计数基本原理(10分钟)教师讲解计数基本原理的概念和原理,并用例题进行说明。
计数基本原理的概念:计数基本原理是指对一个事物完成两个过程的可能数分别为 m 和 n(m,n≥1), 那么这两个过程一共有 m × n 种可能性。
计数基本原理的应用:1. 分步计数:如果一个过程可以分解为多个步骤,且每个步骤的可能性都可以通过计数基本原理求解,那么整个过程的可能性数就是各个步骤可能性数的乘积。
2. 互不干扰情况:如果两个或多个过程之间没有关联,那么这些过程的可能性数就是各个过程可能性数的乘积。
Step 3 练习(20分钟)教师出示一些计数问题的案例,让学生以小组形式讨论并解决问题。
例如:1. 一批货物分别来自 A、B、C 三个地方,请问可能的收货方案有多少种?2. 某商品有 5 种不同的颜色和 4 个不同的尺码,请问这个商品可能有多少种不同的组合?教师引导学生通过分步计数和互不干扰情况来解决问题,并在解题过程中注重培养学生的逻辑思维和分析问题的能力。
Step 4 拓展练习(10分钟)教师出示更复杂的计数问题,并让学生尝试解决。
例如:1. 甲、乙、丙、丁四人排队,甲不能站第一位,乙不能站第二位,丙不能站第三位,请问可能的排队方案有多少种?2. 某公司的总经理要从 5 个候选人中选出 3 人组成一个工作组,请问可能的组合数有多少种?Step 5 总结和评价(5分钟)教师总结计数基本原理的应用和解题方法,并对学生的解题过程进行评价。
高中数学知识点总结 计数原理
高中数学知识点总结计数原理一、分类加法计数原理和分步乘法计数原理1.分类加法计数原理和分步乘法计数原理【注意】区分分类与分步的依据在于“一次性”完成.若能“一次性”完成,则不需分步,只需分类;否则就分步处理.2.两个计数原理的区别与联系123,,,,{}n a a a a 的子集有2n 个,真子集有21n -个.二、排列1.排列的定义一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 特别提醒确定一个具体问题是否为排列问题的方法:(1)首先要保证元素的无重复性,即是从n 个不同元素中取出m (m ≤n )个不同的元素,否则不是排列问题.(2)其次要保证元素的有序性,即安排这m 个元素时是有顺序的,有序的就是排列,无序的不是排列.而检验它是否有顺序的依据是变换元素的位置,看结果是否发生变化,有变化就是有顺序,无变化就是无顺序.2.解决排列应用问题的步骤:(1)分清问题是否与元素的顺序有关,若与顺序有关则是排列问题.(2)注意对元素或位置有无特殊要求.(3)借助排列数公式计算. 特别提醒当问题的正面分类较多或计算较复杂,而问题的反面分类较少或计算更简便时往往使用“间接法”.含“至多”、“至少”类词语的排列(组合)问题,是需要分类问题,常用间接法(即排除法)解答.这时可以先不考虑特殊元素(位置),而列出所有元素的全排列数,从中再减去不满足特殊元素(位置)要求的排列数,即排除法.3.排列数、排列数公式从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.特别提醒排列与排列数是两个不同的概念,一个排列是指“按照一定的顺序排成一列”,它是具体的一件事,排列数是指“从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数”,它是一个数.三、组合1.组合的定义一般地,从n 个不同元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.特别提醒解答排列、组合综合问题的一般思路和注意点:(1)一般思路:“先选后排”,也就是把符合题意的元素都选出来,再对元素或位置进行排列.(2)注意点:①元素是否有序是区分排列与组合的基本方法,元素无序是组合问题,元素有序是排列问题.②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.3.组合数的性质性质1:C C m n m n n-=. 性质1表明从n 个不同元素中取出m 个元素的组合,与剩下的n m -个元素的组合是一一对应关系.性质2:11C C C m m m n n n-+=+. 性质2表明从1n +个不同元素中任取m 个元素的组合,可以分为两类:第1类,取出的m 个元素中不含某个元素a 的组合,只需在除去元素a 的其余n 个元素中任取m 个即可,有C mn 个组合;第2类,取出的m 个元素中含有某个元素a 的组合,只需在除去a 的其余n 个元素中任取1m -个后再取出元素a 即可,有1C m n-个组合.四、二项式定理1.二项式定理 011()C C C C ()n n n k n k k n n n n n na b a a b a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式,共有n +1项,其中各项的系数C ({0,1,2,,})kn k n ∈L 叫做二项式系数.二项展开式中的C k n k k n a b -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第1k +项:1C k n k k k nT a b -+=. 2.二项式系数的性质(4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即2131C C C C 2n n n n n -++=++=L L . 特别提醒求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k,再将k 的值代回通项求解,注意k的取值范围(0,1,2,,L).k n(1)第m项::此时k+1=m,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程.(3)有理项:令通项中“变元”的幂指数为整数建立方程.。
高中数学的计数原理教案
高中数学的计数原理教案
教学对象:高中生
教学目标:掌握计数原理的基本概念及应用方法,能够解决相关问题教学步骤:
一、导入(10分钟)
1. 引入计数原理的概念,让学生回顾一下之前所学的排列与组合知识;
2. 引入计数原理的重要性,介绍计数原理在数学中的应用;
3. 提出一个简单的排列与组合问题,让学生思考如何解决。
二、理论讲解(20分钟)
1. 讲解计数原理的基本概念:乘法原理和加法原理;
2. 讲解排列和组合的区别与联系,引入二项式定理的概念;
3. 通过实例演示计数原理的应用方法。
三、练习与讨论(20分钟)
1. 学生进行打卡练习,解决一些基本的计数问题;
2. 学生互相讨论解题思路,分析其中的问题和解决方法;
3. 有选择性地让学生上台解题,展示不同的解题思路。
四、拓展应用(15分钟)
1. 带领学生应用计数原理解决更加复杂的问题;
2. 引导学生思考计数原理在实际生活中的应用场景;
3. 提出一个挑战性问题,鼓励学生尝试解决。
五、课堂小结(5分钟)
1. 对本节课的重点内容进行总结归纳;
2. 强调计数原理的重要性及实际应用;
3. 鼓励学生多加练习,巩固所学知识。
教学反馈:提醒学生在课后加强练习,加深对计数原理的理解和掌握,及时反馈学生在课上的表现。
高中数学计数原理知识点总结
高中数学计数原理知识点总结高中数学计数原理知识点总结如下:1. 计数原理:分类加法计数原理:完成一件事情,有n类方式,第一类有m1种方法,第二类有m2种方法,……,第n类有mn种方法,则完成这件事情共有N=m1+m2+...+mn种方法。
分步乘法计数原理:完成一件事情,需要分成n个步骤,第一步有m1种方法,第二步有m2种方法,……,第n步有mn种方法,则完成这件事情共有N=m1×m2×...×mn种方法。
2. 排列:从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。
所有排列的个数记作A(n,m)或anm,规定0≤m≤n。
3. 组合:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个元素中取出m个元素的一个组合。
所有组合的个数记作C(n,m)或cnm,规定0≤m≤n。
C(n,m)=n!/(n-m)!C(n,m)=C(n,n-m)C(n,k)=C(n-1,k-1)+C(n-1,k)4. 二项式定理:(a+b)n的展开式为:二项式系数:C(n,k)=n!/[(n-k)!k!]展开式一共有n+1项各项系数为二项式系数各项次数之和等于(a+b)的次数5. 特殊项的二项式定理:当a=b=1时,(1+1)n=2n的展开式为:当k=0时,项为:1当k=1时,项为:n+1当k=2时,项为:C(n,2)+3C(n,3)/2!当k=3时,项为:C(n,3)+8C(n,4)/3!当k=4时,项为:C(n,4)+15C(n,5)/4!以上是高中数学计数原理知识点总结。
希望对您有帮助。
高中数学计数原理知识点总结及练习教案-学生(1)
教师:学生:时间:_ 2016 _年_ _月日段第__ 次课教师学生姓名上课日期月日学科数学年级高二教材版本人教版类型知识讲解:√考题讲解:√本人课时统计第()课时共()课时学案主题选修2-3第一章《计数原理》复习课时数量第()课时授课时段教学目标1.明确分类和分步计数原理及应用;2.掌握排列组合概念和计算,以及二项式定理和应用教学重点、难点排列组合及计数原理的应用。
掌握二项式定理和应用。
教学过程知识点复习【知识点梳理】计数原理基本知识点1.分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有1m种不同的方法,在第二类办法中有2m种不同的方法,……,在第n类办法中有nm种不同的方法那么完成这件事共有12nN m m m=+++种不同的方法2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有1m种不同的方法,做第二步有2m种不同的方法,……,做第n步有nm种不同的方法,那么完成这件事有12nN m m m=⨯⨯⨯种不同的方法3.排列的概念:从n个不同元素中,任取m(m n≤)个元素(这里的被取元素各不相同)按照一定..的顺序...排成一列,叫做从n个不同元素中取出m个元素的一个排列....4.排列数的定义:从n个不同元素中,任取m(m n≤)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示5.排列数公式:(1)(2)(1)mnA n n n n m=---+(,,m n N m n*∈≤)6 阶乘:!n表示正整数1到n的连乘积,叫做n的阶乘规定0!1=.7.排列数的另一个计算公式:mnA=!()!nn m-.8 组合的概念:一般地,从n个不同元素中取出m()m n≤个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合9.组合数的概念:从n个不同元素中取出m()m n≤个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数....用符号mnC表示.10.组合数公式:(1)(2)(1)mm nn mA n n n n mC---+==或!nC mn=),,(nmNmn≤∈*且11 组合数的性质1:m n n m n C C -=.规定:10=n C ;12.组合数的性质2:m n C 1+=m n C +1-m nC 1.二项式定理及其特例:(1)01()()n n nr n r r n nn n n n a b C a C a b C a b C b n N -*+=+++++∈,(2)1(1)1n r rn n n x C x C x x +=+++++.2.二项展开式的通项公式:1r n r rr n T C a b -+=3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性4.二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和 5.二项式系数的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n mn n C C -=).直线2nr =是图象的对称轴.(2)增减性与最大值:当n 是偶数时,中间一项2nnC 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++,令1x =,则0122n r nn n n n n C C C C C =++++++[特别提醒]1. 在运用二项式定理时一定要牢记通项公式1r n r rr n T C a b -+=,注意()n a b +与()n b a +虽然相同,但具体到它们展开式的某一面时却是不相同的,所以我们一定要注意顺序问题。
计数原理教案
计数原理教案计数原理是数学中的一个重要概念,也是许多数学问题的基础。
通过计数原理,我们可以解决许多与排列、组合、概率等相关的问题。
本节课将围绕计数原理展开讲解,帮助学生深入理解这一概念,并掌握相关的解题方法。
一、基本概念。
1. 计数原理的概念。
计数原理是指在一系列事件中,每个事件发生的可能性个数的乘积等于所有事件发生的可能性个数的总数。
计数原理包括加法原理和乘法原理两种基本形式。
2. 加法原理。
加法原理是指如果一个事件可以分解成若干个互不相容的事件之一,那么这个事件发生的可能性个数等于各个互不相容事件发生的可能性个数之和。
3. 乘法原理。
乘法原理是指如果一个事件发生的可能性个数等于m,另一个事件发生的可能性个数等于n,那么这两个事件同时发生的可能性个数等于m与n的乘积。
二、排列与组合。
1. 排列的概念与计算方法。
排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列。
排列的计算方法是n(n-1)(n-2)...(n-m+1)。
2. 组合的概念与计算方法。
组合是指从n个不同元素中取出m(m≤n)个元素,不考虑元素的顺序。
组合的计算方法是C(n,m)=n!/(m!(n-m)!)。
三、应用实例分析。
1. 生日问题。
假设有5个人,问他们的生日都不相同的概率是多少?这是一个典型的排列问题,根据排列的计算方法可得出答案。
2. 球的排列组合问题。
有红、黄、蓝三种颜色的球各3个,问排成一排有多少种不同的排列方式?这是一个典型的排列问题,根据排列的计算方法可得出答案。
3. 奖学金发放问题。
某班级有10名同学,奖学金要发给其中的3名同学,问有多少种不同的发放方式?这是一个典型的组合问题,根据组合的计算方法可得出答案。
四、练习与作业。
1. 请同学们结合课上所学知识,完成《计数原理》相关练习题。
2. 布置作业,请同学们自行查阅相关资料,总结排列与组合的应用实例,并写出解题思路。
五、课堂小结。
本节课我们学习了计数原理的基本概念,包括加法原理和乘法原理,以及排列与组合的概念和计算方法。
高中数学计数原理技巧教案
高中数学计数原理技巧教案教学目标:1. 理解计数原理的基本概念和计数方法。
2. 掌握使用计数原理解决实际问题的技巧。
3. 培养学生的逻辑思维能力和问题解决能力。
教学重点:1. 计数原理的基本概念和计数方法。
2. 使用计数原理解决实际问题。
教学难点:1. 理解计数原理的抽象概念。
2. 掌握运用计数原理解决复杂问题的技巧。
教学步骤:一、导入:通过一个生活中的例子引入计数原理的概念,让学生了解计数原理的重要性和应用场景。
二、讲解:介绍计数原理的基本概念和计数方法,包括排列、组合等概念,让学生理解计数原理的运用方式。
三、示范:通过几个简单的例题演示如何运用计数原理解决问题,引导学生理解计数原理的具体应用。
四、练习:让学生进行一些练习题,巩固所学知识,培养他们的解决问题能力。
五、拓展:提供一些拓展题目,让学生进一步挑战自己的思维,培养他们的创新能力。
六、总结:总结本节课的重点内容,强调计数原理在实际生活中的应用,激发学生对数学的兴趣。
教学资源:1. 课件:包含计数原理的基本概念和例题讲解。
2. 教科书:提供相关知识点和例题练习。
3. 习题册:供学生练习使用。
教学反馈:1. 课堂提问:通过提问学生解题思路和答题情况,及时纠正错误。
2. 作业批改:批改学生的练习作业,评价学生的学习情况。
3. 学生讨论:鼓励学生在小组讨论中互相学习,共同进步。
教学延伸:1. 学生作业:布置适量的作业帮助学生巩固所学知识。
2. 实际应用:鼓励学生找出生活中的实际问题,运用计数原理解决。
教学评估:1. 调查问卷:收集学生对本课内容的理解和学习体会。
2. 开放题测试:考察学生对计数原理的理解和应用能力。
3. 作业表现:评价学生在作业中的表现,指导学生的学习方向。
教学反思:通过对本课内容的反思,不断改进教学方法和手段,提高教学效果,帮助学生更好地理解和运用计数原理。
《计数基本原理》高二数学教案
《计数基本原理》高二数学教案一、教学目标1.理解分类计数原理与分步计数原理的基本概念。
2.能够运用分类计数原理与分步计数原理解决实际问题。
3.培养学生的逻辑思维能力及解决问题的能力。
二、教学重难点1.教学重点:分类计数原理与分步计数原理的理解和应用。
2.教学难点:实际问题的分析及解题策略的运用。
三、教学过程第一环节:导入新课1.引导学生回顾排列组合的基本概念,如排列数、组合数等。
2.提问:在实际问题中,如何运用排列组合知识进行计数?第二环节:新课讲解1.讲解分类计数原理:当完成一个任务有几种不同的分类方式时,每种分类方式中的方法数相加即为总方法数。
举例讲解:从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?2.讲解分步计数原理:当完成一个任务需要分成几个步骤时,每个步骤中的方法数相乘即为总方法数。
举例讲解:从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?3.对比讲解分类计数原理与分步计数原理的区别和联系。
第三环节:案例分析1.分析案例1:从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?引导学生运用分类计数原理进行解答。
2.分析案例2:从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?引导学生运用分步计数原理进行解答。
第四环节:课堂练习(1)从A、B、C三个班级中各选一名学生参加比赛,共有多少种选法?(2)从A、B、C三个班级中各选一名学生参加比赛,且要求选出的学生依次站在一排拍毕业照,共有多少种排法?2.老师对学生的解答进行点评,指出错误和不足之处。
第五环节:巩固拓展1.引导学生思考:如何运用分类计数原理与分步计数原理解决更复杂的问题?2.举例讲解:某学校举办运动会,有100名学生报名参加,其中跳远项目有20人报名,100米短跑项目有30人报名,200米短跑项目有50人报名。
现在需要从这三个项目中各选一名运动员参加比赛,共有多少种选法?第六环节:课堂小结2.强调在实际问题中,如何灵活运用这两个原理进行计数。
第六章 高考数学 计数原理知识总结
第六章 计数原理()()1212_...__...._.12.n n n N m m m n N m m m ⎧⎧⇒⎪⎨=+++⎩⎪⎪⎧⎪⇒⎨⎪=⨯⨯⨯⎫⎪⎩⇒⎬⎨⎭⎪⎪⇒⎪⎪⎪⎪⎩⇒定义:完成一件事有类不同方案分类加法计算原理公式:定义:完成一件事需要个步骤分步乘法计数原理公式:分类加法计算原理与分步乘法计算原理区别:一个分类,一个分步两个计算原理的关系及综合应用综合应用明确是先分类还是先分步;确定分类标准和分步程序排列排列计数原理排列与组合11(1)(2)...(1)______.:______.,:mn mmn n m m m n m m m m n n n n nA n n n n m A C A C C C C C --+⎧⎪=---+⎪⎨⎪⎪⎩⎧=⎪⎪⎪==+⎨⎪⎪⎪⎩的定义:按一定的顺序排成一列排列数及其公式:排烈应用题:元素分析法、位置分析法、捆绑法、插空法、整体法组合的定义合成一组组合数及其公式:组合组合数的性质:组合应用题:直接法、间接法、隔板法排列、组合综合应用题先分组后012..""2m n mn n n n n n n n C C C C C C -⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎧⎧⇒⎪⎪⎨⎩⎪⎪⎪⎪⎧=⎪⎪⇒⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎪+++⋅⋅⋅+=⎩⎩⎪⎪⎪⎪⎩排列二项式定理的内容:二项式定理二项展开式的通项对称性;二项式定理增减性与最大值;杨辉三角形与二项式系数的性质各二项式系数的和;知识点一、计数原理1.分类加法计数原理概念:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,…,在第n 类方案中有n m种不同的方法,那么完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法(也称加法原理)特征:(1)任何一类方案都能完成这件事;(2)各类方案之间相互独立;(3)分类要做到“不重不漏”2.分步乘法计数原理概念:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法(也称乘法原理)特征:(1)任何一步都不能单独完成这件事;(2)各步之间相互依存;(3)分步要做到“步骤完整”知识点二、排列1.排列:一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列2.排列数:从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号mn A 表示 3.排列数公式:()()()()!121!mn n A n n n n m n m =--⋅⋅⋅-+=-(*,m n N ∈,且m n ≤)知识点三、组合1.组合:一般地,从n 个不同的元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合2.组合数:从n 个不同元素中取出()m m n ≤个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号mn C 表示3.组合数公式:()()()()121!!!!mmn nm n n n n n m A n C A m m n m --⋅⋅⋅-+===-(*,m n N ∈,且m n ≤)4.组合数的性质:(1)m n m n n C C -=;(2)11m m m n n n C C C -+=+知识点四、二项式定理1.二项式定理概念:一般地,对于任意的正整数n , 都有()()01102*nnn n k n k k n nn n n n n a b C a C aC a b C a b C b n N ---+=+++⋅⋅⋅++⋅⋅⋅+∈. 这个公式称为二项式定理,等号右边的式子称为()n a b +的二项展开式,()na b +的二项展开式共有1n +项,其中各项的系数{}()0,1,2,,kn C k n ∈⋅⋅⋅叫做二项式系数,k n k k n C a b -称为二项展开式的第1k +项,又称为二项展开式的通项 2.二项展开式的特征: (1)二项展开式共有1n +项;(2)二项式系数依次为组合数012,,,,,,knn n n n n C C C C C ⋅⋅⋅⋅⋅⋅; (3)各项次数都等于二项式的幂指数n ;(4)字母a 的指数由n 开始按降幂排列到0,b 的指数由0开始按升幂排列到n 3.二项式系数与项的系数的区别:二项式系数为项的系数指该项中除字母外的部分 4.二项式系数的性质对称性:与首末两端“等距离”的两个二项式系数相等 增减性:当12n k +<时,二项式系数是逐渐增大的,由对称性知它的后半部分是逐渐减小的最大值:当n 是偶数时,中间一项的二项式系数2n nC 取得最大值;当n 是奇数时,中间两项的二项式系数1122,n n nnCC-+相等,且同时取得最大值5.二项式系数和:(1)二项展开式中各二项式系数之和为2n;(2)在二项展开式中奇数项的二项式系数之和与偶数项的二项式系数之和相等且都等于12n -.类型一:两个基本计数原理的实际应用问题例1 在某种信息传输过程中,4个数字组成的一个排列 (数字允许重复)表示一个信息,不同的排列表示不同的信息.若所用数字只有0和1,则与信息0110至多有2个对位置上的数字相同的信息个数为( )A .10B .11C .12D .15解析:方法1:分有0个时应位置上的数字相同、1个对应位显上的数字相同、2个时应位五上的数字相同讨论:(1)若有0个对应位五上的数字相同.则信息为1001,共有1个. (2)若有1个叶应位丑上的数字相同1101,1011,1000.共有4个. (3)若有2个时应位置上的数字相同,又分为以下情况①若位笠一与二对应相同,则信息为0101; ②若位五一与三时应相同,则信息为0011; ③若位五一与四对应相同,则信忽为0000; ④若位且二与三对应相同,则信息为1111; ⑤若位里二与四时应相同,则信忠为1100;⑥若位置三与四时应相同、则信.息为1010.共有6个.故与信息0110至多有2个对应位置上的数字相同的信息个数为14611.++= 方法2:若有0个对应位置上的数字相同.共有1个;若有1个对应位置上的数字相同。
高中数学计数原理教案
高中数学计数原理教案
教学内容:计数原理
教学对象:高中学生
教学时间:一节课
教学目标:
1. 了解计数原理的概念和基本原理;
2. 能够应用计数原理解决相关问题;
3. 培养学生的逻辑思维和问题解决能力。
教学重点:
1. 计数原理的基本概念和原理;
2. 计数原理在实际问题中的应用。
教学难点:
1. 计数原理的具体运用;
2. 解决实际问题时的逻辑思维能力。
教学准备:
1. 计算器;
2. 实例题目。
教学过程:
一、导入(5分钟)
教师引导学生回顾排列、组合的概念,并提出计数原理的概念。
通过一个简单的例子引导学生了解计数原理的基本原理。
二、讲解(15分钟)
1. 计数原理的概念和原理;
2. 巴斯卡三角形及其应用;
3. 实例分析和解决。
三、练习(15分钟)
教师布置几道相关计数原理的练习题,学生针对每道题进行思考并给出答案,教师引导学生讨论解题方法,帮助学生掌握计数原理的运用技巧。
四、总结(5分钟)
教师对本节课的教学内容进行总结和回顾,强化学生对计数原理的理解和运用。
五、作业(5分钟)
布置相关练习题作为课后作业,加深学生对计数原理的掌握和应用。
【教学反思】
本节课主要通过讲解概念、实例分析和练习训练,帮助学生掌握计数原理的基本原理和运用技巧。
在以后的教学中,可以结合实际问题,进一步提高学生的问题解决能力和创新思维。
计数原理知识点总结与训练
计数原理知识点总结与训练计数原理是概率论的重要基础理论之一,它是研究集合中元素的个数的方法和原则。
计数原理包括乘法法则、加法法则、排列组合、容斥原理和鸽巢原理等,这些原理在概率论、组合数学、统计学等方面都有广泛的应用。
1.乘法法则乘法法则用于计算多个步骤的组合问题。
如果一个过程有m个独立的步骤,第i个步骤有ni种可能的选择,则整个过程的总方案数为n1 *n2 * ... * nm。
2.加法法则加法法则用于计算多个互斥事件的总数。
如果事件A和事件B是互斥的,则发生A或发生B的总数为P(A)+P(B)。
3.排列排列是从n个元素中选取r个元素,按照一定的顺序进行组合的方法。
排列可以分为有重复元素的排列和没有重复元素的排列。
有重复元素的排列可以通过分别计算每个元素的出现次数,再用乘法法则计算总数。
没有重复元素的排列可以使用公式P(n,r)=n!/(n-r)!进行计算。
4.组合组合是从n个元素中选取r个元素,不考虑其顺序的方法。
组合可以分为有重复元素的组合和没有重复元素的组合。
有重复元素的组合可以通过求出每个元素的出现次数,再用乘法法则计算总数。
没有重复元素的组合可以使用公式C(n,r)=n!/[(n-r)!*r!]进行计算。
5.容斥原理容斥原理是用于解决包含关系的概率问题。
如果A和B是两个事件,则A和B同时发生的概率为P(A∩B)=P(A)+P(B)-P(A∪B)。
这个原理可以推广到多个事件的情况,即若Ai为事件,i=1,2,...,n,则P(A1∪A2∪...∪An)=∑(P(Ai))-∑(P(Ai∩Aj))+∑(P(Ai∩Aj∩Ak))-...+(-1)^(n+1)*P(A1∩A2∩...∩An)。
6.鸽巢原理鸽巢原理是概率论中的重要原理之一,它是说如果有n个鸽子放进n 个巢子,且n个鸽子多于n个巢子,则至少有一个巢子里有两只鸽子。
这个原理也可以表达为,如果有n+1个物体放进n个盒子,那么必然有一个盒子里放了至少两个物体。
(完整版)高中数学计数原理知识点总结及练习教案-学生.docx
教:学生:: _ 2016_年 __月日段第 __次教学生姓名上日期月日学科数学年高二教材版本人教版型知解:√考解:√本人第()共()学案主修 2-3 第一章《数原理》复数量第()授段教学目1.明确分和分步数原理及用;2.掌握排列合概念和算,以及二式定理和用教学重点、排列合及数原理的用。
点掌握二式定理和用。
知点复【知点梳理】数原理基本知点1. 分数原理:做一件事情,完成它可以有n 法,在第一法中有m1种不同的方法,在第二法中有 m2种不同的方法,⋯⋯,在第n 法中有m n种不同的方法那么完成件事共有N m1 m2L m n种不同的方法2.分步数原理:做一件事情,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,⋯⋯,做第n 步有m n种不同的方法,那么完成件事有N m1 m2L m种n不同的方法3.排列的概念:从n个不同元素中,任取m (m n )个元素(里的被取元素各不相同)按照一定..的序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.......4.排列数的定:从n个不同元素中,任取m ( m n )个元素的所有排列的个数叫做从n 个元素中教学程A n m表示取出 m 元素的排列数,用符号5.排列数公式:A n m n( n1)(n 2)L( n m 1) ( m, n N ,m n )6乘: n! 表示正整数1到n的乘,叫做n的乘定 0! 1.7.排列数的另一个算公式:A n m=n!.(n m)!8 合的概念:一般地,从n个不同元素中取出m m n 个元素并成一,叫做从n 个不同元素中取出 m 个元素的一个合9m m n个元素的所有合的个数,叫做从 n 个不同元素.合数的概念:从 n 个不同元素中取出中取出 m 个元素的合数.用符号m表示....C nm A n m n(n1)(n2)L(n m1)m n!N ,且m n) 10.合数公式:C n或 C n( n, mA m m m!m! (n m)!11 合数的性 1: C n m C n n m . 定: C n 01;12. 合数的性2: C n m 1 = C n m +C n m 11.二 式定理及其特例:(1) (a b)n C n 0a n C n 1a n b L C n r a n r b r L C n n b n (nN ) ,(2) (1 x)n1 C n 1 x L C n r x rLx n .2.二 展开式的通 公式:T r1C n r a n r b r3.求常数 、有理 和系数最大的 ,要根据通 公式r 的限制;求有理 要注意到指数及 数的整数性4.二 式系数表( 三角)(a b)n 展开式的二 式系数,当n 依次取 1,2,3 ⋯ ,二 式系数表,表中每行两端都是1,除 以外1的每一个数都等于它肩上两个数的和 5.二 式系数的性 :(1) 称性.与首末两端“等距离”的两个二 式系数相等(∵C nmC n n m ).直 rn是 象的2称 .nn 1n 1(2)增减性与最大 : 当 n是偶数 , 中 一 C n 2 取得最大 ; 当 n 是奇数 , 中 两 C n 2,C n2取得最大 . (3)各二 式系数和:∵ (1 x)n1 C n 1 x L C n r x rL x n ,令 x 1 , 2n C n 0C n 1 C n 2L C n r L C n n[特 提醒]1. 在运用二 式定理 一定要牢 通 公式Tr 1 C n r a n r b r ,注意 ( a b) n 与 (b a)n 然相同,但具 体到它 展开式的某一面 却是不相同的,所以我 一定要注意 序 。
高中数学 第一章 计数原理 1.3 二项式定理 1.3.3 二项式定理习题课教案 3数学教案
1.3.3 二项式定理习题课教学目标知识与技能1.能熟练地掌握二项式定理的展开式及其有关概念.2.会用二项式定理解决与二项展开式有关的简单问题.3.能熟练掌握杨辉三角及二项式系数的有关性质.4.会用二项式系数的性质解决一些简单问题,并能熟练地使用赋值法.过程与方法1.能解决二项展开式的有关概念问题:项、二项式系数、系数、有理项、无理项、常数项、整数项等.2.能用二项式定理解决诸如整除、近似值、求和等有关问题.3.能用二项式系数的有关性质,解决诸如:最值、二项式系数和、系数和等问题.情感、态度与价值观1.培养学生对整个数学知识的驾驭能力,能在一定高度上进行数学知识的应用.2.培养学生观察、归纳的能力以及分析问题与解决问题的能力.3.进一步提升学生学好数学用好数学的积极性,进一步提升学生学习数学的兴趣.重点难点教学重点:掌握二项展开式,掌握二项式系数的有关性质,掌握解决二项式定理性质等有关问题的方法.教学难点:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题.教学过程复习巩顾前面我们学习了二项式定理,请回顾:1.(a+b)n=________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的______________,其中C r n(r=0,1,2,…,n)叫做______________,通项是指展开式的第__________________项,共有____________项.其中二项式系数是____________,系数是____________.2.二项式系数的四个性质(杨辉三角的规律) (1)对称性:____________________. (2)性质2:______________________.(3)二项式系数的最大值________________________.(4)二项式系数之和____________________,所用方法是____________________. 答案:1.(a +b)n=C 0n a n+C 1n an -1b +C 2n an -2b 2+…+C r n an -r b r+…+C n n b n(n∈N )、展开式、二项式系数、r +1、n +1、C rn 、变量前的常数2.(1)C mn =Cn -mn (2)C rn +1=C r -1n +C rn(3)当n 是偶数时,中间的一项取得最大值,即C n2n 最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即C n -12n =C n +12n 最大(4)C 0n +C 1n +C 2n +…+C rn +…+C nn =2n赋值法典型示例类型一:二项展开式的有关概念 例1试求:(1)(x 3-2x 2)5的展开式中x 5的系数;(2)(2x 2-1x)6的展开式中的常数项;(3)在(3x +32)100的展开式中,系数为有理数的项的个数.思路分析:理解二项展开式的有关概念,什么是二项式系数,什么是系数,什么是项,什么是常数项、有理项、无理项等,其实都是由通项入手,根据变量的系数、指数进行判断,当指数为0时是常数项,当指数是整数时是有理项,当指数是分数时是无理项.解:(1)T r +1=C r5(x 3)5-r(-2x2)r =(-2)r C r 5x 15-5r ,依题意15-5r =5,解得r =2.故(-2)2C 25=40为所求x 5的系数.(2)T r +1=C r 6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r ,依题意12-3r =0,解得r =4.故(-1)4·22C 26=60为所求的常数项.(3)T r +1=C r 100(3x)100-r(32)r =C r100·350-r 2·2r 3x 100-r ,要使x 的系数为有理数,指数50-r 2与r 3都必须是整数,因此r 应是6的倍数,即r =6k(k∈Z ),又0≤6k≤100,解得0≤k≤1623(k∈Z ),∴x 的系数为有理数的项共有17项.点评:求二项展开式中具有某特定性质的项,关键是确定r 的值或取值范围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.【巩固练习】试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(|x|+1|x|-2)3的展开式中的常数项.解:(1)∵(x+2)10=x 10+20x 9+180x 8+…,∴(x+2)10(x 2-1)的展开式中x 10的系数是-1+180=179.(2)∵(|x|+1|x|-2)3=(|x|-1|x|)6,∴所求展开式中的常数项是-C 36=-20.类型二:二项展开式的有关应用——简单应用例2求(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数. 解:∵(x-1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5=x -1{1-[-x -1]5}1-[-x -1]=x -1+x -16x ,∴所求展开式中x 2的系数就是(x -1)6的展开式中x 3的系数-C 36=-20.点评:这是一组将一个二项式扩展为若干个二项式相乘或相加,或扩展为简单的三项展开式的问题,求解的关键在于转化为二项展开式的问题,转化时要注意分析题目中式子的结构特征.能够最大限度地考查学生对知识的把握程度.【巩固练习】(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中x 3项的系数是( ) A .74 B .121 C .-74 D .-121解析:先求和:(1-x)5+(1-x)6+(1-x)7+(1-x)8=1-x 5[1-1-x4]1-1-x=1-x5[4x -6x 2+4x 3-x 4]x,分子的展开式中x 4的系数,即为原式的展开式中x 3项的系数,(-1)×1+4×(-C 15)-6C 25+4×(-C 35)=-1-20-60-40=-121,所以选D.答案:D类型三:二项展开式的有关应用:整除、不等式、近似值等问题 例3证明:(1)2≤(1+1n)n <3,其中n∈N *;(2)证明:对任意非负整数n,33n-26n -1可被676整除.思路分析:对于二项式中的不等式,通过展开式,分析其中的特殊项,可以证明一些简单的不等式问题;对于整除问题同样如此,关键是把二项式拆成676的形式;对于比较麻烦的数列问题,我们经常采用的方法就是数学归纳法,本题也不例外.证明:(1)(1+1n )n =1+C 1n ·1n +C 2n (1n )2+…≥2(当且仅当n =1时取等号).当n =1时,(1+1n)n=2<3显然成立;当n≥2时,(1+1n )n =C 0n +C 1n ·1n +C 2n ·1n 2+…+C nn ·1n n =2+n(n -1)2!1n 2+n(n -1)(n -2)3!1n 3+…+n(n -1)…2·1n !1n n =2+12!n n n -1n +13!n n n -1n n -2n +…+1n !n n n -1n …2n 1n <2+12!+13!+…1n !<2+11×2+12×3+…+1n(n -1)=2+(1-12)+(12-13)+…+(1n -1-1n )=3-1n <3.综上所述:2≤(1+1n)n <3,其中n∈N *.(2)当n =0,n =1时33n-26n -1=0,显然33n-26n -1可被676整除.当n≥2时,33n-26n -1=27n-26n -1=(1+26)n-26n -1=1+26n +C 2n ·262+…+C nn ·26n-26n -1=C 2n ·262+C 3n ·263+…+C nn 26n=676(C 2n +26C 3n +…+26n -2C nn).综上所述:对任意非负整数n,33n-26n -1可被676整除.点评:用二项式定理解决整除问题是二项式定理的一大特色,这是二项展开式的一种基本应用,通过对二项式的拆解,我们可以解决一些看似很难但易解决的问题.【巩固练习】已知m ,n 是正整数,f(x)=(1+x)m+(1+x)n的展开式中x 的系数为7,(1)试求f(x)中的x 2的系数的最小值;(2)对于使f(x)中的x 2的系数为最小的m ,n ,求出此时x 3的系数; (3)利用上述结果,求f(0.003)的近似值(精确到0.01). 解:根据题意得:C 1m +C 1n =7,即m +n =7.(*)(1)x 2的系数为C 2m+C 2n=m(m -1)2+n(n -1)2=m 2+n 2-m -n2.将(*)变形为n =7-m 代入上式得:x 2的系数为m 2-7m +21=(m -72)2+354.故当m =3或4时,x 2的系数的最小值为9.(2)当m =3,n =4或m =4,n =3时,x 3的系数为C 33+C 34=5. (3)f(0.003)≈2.02.类型四:二项式系数的最大值、系数的最大值问题 例4求(x -1)9的展开式中系数最大的项.思路分析:二项式系数最大的项我们可以根据公式求解,但是系数最大的项怎么求呢?观察本题中二项式系数与系数之间的关系,我们发现它们只不过相差一个负号而已,所以可以通过二项式系数的大小反映系数的大小,只不过要注意正负号.解:T r +1=(-1)r C r 9x 9-r .∵C 49=C 59=126,而(-1)4=1,(-1)5=-1,∴T 5=126x 5是所求系数最大的项.点评:此类问题仍然是利用二项展开式的通项公式来求解,但在解题过程中要注意一些常用方法和数学思想的应用.【巩固练习】 求(x +124x)8展开式中系数最大的项.解:记第r 项系数为T r ,设第k 项系数最大,则有⎩⎪⎨⎪⎧T k ≥T k -1,T k ≥T k +1,又T r =C r -182-r +1,那么有⎩⎪⎨⎪⎧C k -182-k +1≥C k -282-k +2,C k -182-k +1≥C k 82-k,即⎩⎪⎨⎪⎧8!(k -1)!(9-k)!≥8!(k -2)!(10-k)!×2,8!(k -1)!(9-k)!×2≥8!k !(8-k)!,∴⎩⎪⎨⎪⎧1k -1≥2k -2,29-k ≥1k .解得3≤k≤4,∴系数最大的项为第3项T 3=7x 52和第4项T 4=7x 72.类型五:二项式系数之和、系数之和等问题例5若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值等于__________;思路分析:注意到与系数的和差有关,所以可以用赋值法求得奇数项的系数之和与偶数项的系数之和,注意使用平方差公式.解:令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4,由此可得(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4)=[(3+2)(3-2)]4=1.点评:在二项式系数的性质应用中,尤其是系数和的问题,我们经常使用赋值法,这是一种奇妙的方法,可以帮助我们在不用计算每一个系数的前提下,求出各个系数的和.【巩固练习】已知(1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7, 求(1)a 0+a 1+…+a 7的值;(2)a 0+a 2+a 4+a 6及a 1+a 3+a 5+a 7的值; (3)各项二项式系数和.解:(1)令x =1,则a 0+a 1+…+a 7=-1.(2)令x =-1,则a 0-a 1+a 2-a 3+…+a 6-a 7=2 187. 则a 1+a 3+a 5+a 7=-1 094;a 0+a 2+a 4+a 6=1 093. (3)各项二项式系数和C 07+C 17+…+C 77=27=128. 【拓展实例】例1(1+3x)6(1+14x)10的展开式中的常数项为( )A .1B .46C .4 245D .4 246思路分析:对于非一般的二项式问题,要注意转化成二项式问题解决.本题虽然有两个式子相乘,只要我们写出整个式子的通项,令指数为0,即可求得常数项.解:先求(1+3x)6的展开式中的通项.T r +1=C r 6(x 13)r =C r 6x r3,r =0,1,2,3,4,5,6.再求(1+14x )10的展开式中的通项.T k +1=C k10(x -14)k =C k 10x -k 4,k =0,1,2,3,4,…,10.两通项相乘得:C r 6x r 3C k10x -k 4=C r 6C k 10x r 3-k 4,令r 3-k 4=0,得4r =3k ,这样一来,(r ,k)只有三组:(0,0),(3,4),(6,8)满足要求.故常数项为:1+C 36C 410+C 66C 810=4 246.点评:对于乘积的式子或者三项的式子的展开问题,我们可以通过化归思想,将其转化成二项展开式问题.要注意本题中,常数项的位置有三处.【巩固练习】已知(1+x +x 2)(x +1x 3)n 的展开式中没有..常数项,n∈N *,且2≤n≤8,则n =______. 解析:依题意(x +1x 3)n ,对n∈N *,且2≤n≤8中,只有n =5时,其展开式既不出现常数项,也不会出现与x 、x 2乘积为常数的项.故填5.答案:5 【变练演编】(1)对于9100你能编出什么样的整除问题? 如9100被________整除的余数是________.(2)(2x 2-1x )6的展开式中的常数项是第____________项,整数项是第______________项,x 的最高次项是第______________项,二项式系数之和是______________,系数之和是______________.将你能得到的所有正确的答案一一列举出来.答案:(1)这是一个开放性的问题,学生可以有多种答案,比如说9100被8整除的余数是1,9100被80整除的余数是1等等.(2)T r +1=C r6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r .依题意12-3r =0,解得r =4,所以常数项是第5项;整数项是第1,2,3,4,5项;x 的最高次项是第1项;二项式系数之和为64;系数之和为1.设计意图:变练演编——这种开放性的设计,能够有效地提高学生学习的积极性,使得编题不仅仅是老师的专利,学生在编题解题的过程中,领悟知识,提高能力,增长兴趣,增强信心,不仅有助于训练同学们的常规思维,还能培养同学们的逆向思维,最终提高学生的数学成绩.【达标检测】1)12展开式中的常数项为( )1.(x-3xA.-1 320 B.1 320 C.-220 D.2202.(1-x)6(1+x)4的展开式中x的系数是( )A.-4 B.-3 C.3 D.43.若(1-2x)2 005=a0+a1x+a2x2+…+a2 005x2 005(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 005)=________(用数字作答).答案:1.C 2.B 3.2 003反考老师:即由学生出题,教师现场解答(约8分钟).(活动设计:请学生到黑板板书题目,要求别太烦琐,且与本节习题课内容相符.一般不多于3道题,教师尽可能全部解答,具体解答数目视题目难度和时间而定.教师要边做边讲,以向学生现场展示解题思路的发现过程和解题能力.做完后,请学生给“阅卷”)课堂小结活动设计:先给学生1~2分钟的时间默写本节的主要基础知识、方法,例题、题目类型、解题规律等;然后用精练的、精确的语言概括本节的知识脉络,思想方法,解题规律等.活动成果:(板书)1.知识收获:二项式定理、二项展开式、二项式系数的性质.2.方法收获:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题.3.思维收获:合作意识,创新精神,增加了学习数学的积极性,提升学习数学的兴趣.设计意图:通过学生自己总结所学、所识、所想,不但能充分体现新课程的理念,还能充分发挥学生在课堂上的“主人翁”精神,真正体现了学生的主体地位.不仅可以使学生更好地掌握本节所学,而且还能提高学生学习的主动性,提高学生学习数学的兴趣,久而久之,学生的数学水平与数学素养必定会得到长足的提高!补充练习【基础练习】1.计算1-3C 1n +9C 2n -27C 3n +…+(-1)n 3n C nn . 2.(x +1x -2)3的展开式中,常数项是________.3.已知(3x -13x2)n ,n∈N *的展开式中各项系数和为128,则展开式中1x3的系数是( )A .7B .-7C .21D .-21 4.求(x -13x)10的展开式中有理项共有________项.1.解:原式=C 0n +C 1n (-3)1+C 2n (-3)2+C 3n (-3)3+…+C 3n (-3)n=(1-3)n=(-2)n. 2.解析:(x +1x -2)3=[(x -1)2x ]3=(x -1)6x 3. 上述式子展开后常数项只有一项C 36x3-13x3,即-20.3.解析:由已知条件可得:(3-1)n=128,n =7. ∵T r +1=(-1)r C r7(3x)7-r(13x2)r =(-1)r C r 737-rx7-53r.令7-5r3=-3,则有:r =6.所以二项展开式中1x 3的系数是:T 7=(-1)6C 6737-6=21,故选C.4.解析:∵T r +1=C r10(x)10-r(-13x)r =C r 10(-1)rx5-56r.∴当r =0,6时,所对应的项是有理项.故展开式中有理项有2项. 【拓展练习】5.已知(1+kx 2)6(k 是正整数)的展开式中,x 8的系数小于120,则k =____________. 6.设n∈N ,则C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=____________.5.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r 6(kx 2)r =C r 6k r x 2r,我们知道x 8的系数为C 46k 4=15k 4,即15k 4<120,也即k 4<8,而k 是正整数,故k 只能取1.6.解:C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=16C 0n +C 1n +C 2n 6+…+C n n 6n -1-16C 0n =16(C 0n +C 1n 6+C 2n 62+…+C n n 6n -1)=16[(1+6)n-1]=16(7n -1).设计说明二项式定理的内容,是各地高考中经常要考查的内容之一,其形式主要是选择题和填空题,题型往往相对稳定,思路方法常常是利用二项展开式的通项公式、二项式系数的有关性质等.常见的二项式问题有:求二项展开式中某一项或某一项的系数,求所有项系数的和或奇(偶)数项系数和,求展开式的项数,求常数项,求近似值,证明不等式等.实际教学的过程中,要努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生发挥其创造意识,以使他们能在创造的氛围中学习.二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘方的展开式.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习、深化作用,又可以为进一步学习概率统计做好必要的知识储备.所以有必要掌握好二项式定理的相关内容.备课资料 二项式定理 同步练习选择题1.已知C 7n +1-C 7n =C 8n ,那么n 等于( )A .14B .12C .13D .15 2.C 0n +3C 1n +9C 2n …+3n C nn 的值等于( )A .4nB .3·4nC.4n3-1 D .4n-133.C 111+C 311+…+C 911的值为( )A .2 048B .1 024C .1 023D .5124.(x +1)(2x +1)(3x +1)……(nx+1)展开式中x 的一次项系数为( )A .C n -1nB .C 2nC .C 2n +1D .不能用组合数表示5.设(1+x +x 2)n =a 0+a 1x +a 2x 2+…a 2n x 2n ,则a 0+a 1+a 2+…+a 2n 等于 …( )A .22nB .3n C.3n -12 D.3n +12 6.若n 是正奇数,则7n +C 1n 7n -1+C 2n 7n -2+…C n -1n 7被9除的余数为( ) A .2 B .5 C .7 D .87.(1+x)2+(1+x)3+…+(1+x)10展开式中x 4的系数为( )A .C 511B .C 411 C .C 510D .C 410填空题8.(a +b)n 展开式中第r 项为__________.9.11100-1的末位连续零的个数为__________.参考答案1.A 2.A 3.C 4.C 5.B 6.C 7.A5.提示:令x =1即可.8.T r =C r -1n an +1-r b r -1 9.3。
高中数学计数原理讲课教案
高中数学计数原理讲课教案
一、教学目标
1. 了解计数原理的概念和基本思想;
2. 掌握计数原理的应用方法;
3. 能够独立解决计数问题;
4. 培养学生的逻辑思维能力和数学分析能力。
二、教学重点
1. 计数原理的概念和基本思想;
2. 计数原理的应用方法。
三、教学难点
1. 计数原理的应用方法;
2. 计数问题的解决策略。
四、教学内容
1. 计数原理的概念介绍
2. 计数原理的基本思想
3. 计算原理的应用方法
五、教学过程
1. 导入:引导学生思考一个问题:有3个红球、4个蓝球和2个绿球,问一共有多少种不同的排列方式?
2. 讲解:引入计数原理的概念,讲解计数原理的基本思想和应用方法,例如排列、组合等概念。
3. 实践:让学生尝试解决一些计数问题,如:有5本数学书、4本物理书和3本化学书,问从这些书中随机选取一本书,选取一本数学书的概率是多少?
4. 拓展:通过更复杂的例题,让学生进一步理解计数原理的应用,提高他们的计数能力。
5. 总结:对计数原理的概念和应用方法进行总结,强调解决计数问题的关键思路和策略。
六、作业
1. 完成课堂练习题,巩固所学知识;
2. 拓展阅读相关数学问题,提升计数能力。
七、教学反馈
1. 对学生在实践中的表现进行评价和反馈;
2. 对学生提出的问题进行解答和指导。
八、板书设计
1. 计数原理的概念和基本思想;
2. 计数原理的应用方法;
3. 计数问题的解决策略。
高中数学计数原理知识点总结及练习教案课程学生
教师: 学生: 时间:_ 2016 _年_ _月 日 段 第__ 次课n m +种不同的方法分步计数原理:做一件事情,完成它需要分成种不同的方法,……,做第n m ⨯ 种.排列的概念:从n 个不同元素中,任取)个元素(这里的被取元素各不相同)按照一定..排成一列,叫做从n )个元素的所有排列的个数叫做从n 个元素中2)(n m -+的连乘积,叫做n !)!n n m - .个不同元素中取出2)(!n m m -+(r n r r n nn n C a b C b n N -+++∈r rn n C x x +++..二项展开式的通项公式:1r n r rr n T C a b -+=.求常数项、有理项和系数最大的项时,要根据通项公式讨论对.二项式系数表(杨辉三角)展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是r r n n C x x +++,12r nn n n n C C C C ++++++在运用二项式定理时一定要牢记通项公式1r n r n T C a -+=体到它们展开式的某一面时却是不相同的,所以我们一定要注意顺序问题。
另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只是指n m ⨯种不同的方法.分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.可以组成多少个没有重复数字五位奇数. 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A.40B.50C.60D.702.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有() A.6个B.9个C.18个D.36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.368.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72 B.96 C.108 D.1449.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()(A)12种(B)18种(C)36种(D)54种15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A)72(B)96(C)108(D)14417. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
高中数学各类计数原理教案
高中数学各类计数原理教案
一、学习目标
1.了解基本的计数原理;
2.掌握排列、组合、二项式定理的概念;
3.能够应用计数原理解决实际问题。
二、教学重点和难点
1.计数原理的基本概念和应用;
2.排列、组合、二项式定理的计算方法;
3.实际问题的分析和解决。
三、教学内容
1.计数原理的基本概念
(1)基本计数原理
(2)排列
(3)组合
(4)二项式定理
2.计数原理的应用
(1)排列组合的实际应用
(2)二项式定理的应用
四、教学方法
1.讲解理论知识;
2.例题演练;
3.讨论解题思路;
4.引导学生独立思考和解题。
五、教学过程
1.引入:通过一个实际问题引入计数原理的概念,引起学生对计数问题的兴趣。
2.讲解:逐一讲解基本计数原理、排列、组合、二项式定理的概念和计算方法。
3.例题演练:选择一些典型的例题进行讲解和演练,让学生掌握解题思路。
4.课堂练习:布置一些练习题让学生独立完成,检验他们对计数原理的掌握程度。
5.拓展应用:引导学生通过思考和讨论,将计数原理应用到更复杂的问题中。
六、教学资料
1.教材相关知识点介绍;
2.相关例题及解析;
3.练习题及答案。
七、课后作业
1.完成教师布置的练习题;
2.独立解决一个实际问题,并写出解题思路和过程。
八、教学反思
1.检查学生对计数原理的理解和掌握情况;
2.总结教学中存在的不足之处,改进教学方法;
3.根据学生的反馈意见,调整教学内容和方式。
以上为高中数学计数原理教案范本,仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师:学生:时间:_ 2016 _年_ _月日段第__ 次课
8解题策略的选择不当出错
例11高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有().
(A)16种(B)18种(C)37种(D)48种
排列与组合习题
1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()
A.40B.50C.60D.70
2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()
A.36种B.48种C.72种D.96种
3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有() A.6个B.9个C.18个D.36个
4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人
5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()
A.45种B.36种C.28种D.25种
6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()
A.24种B.36种C.38种D.108种
7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()
A.33 B.34 C.35 D.36
8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()
A.72 B.96 C.108 D.144
9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()
A.50种B.60种C.120种D.210种
10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)
11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)
12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,
不同的分配方案有________种(用数字作答).
13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种
不同的种法(用数字作答).
14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()
(A)12种(B)18种(C)36种(D)54种
15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有
A. 504种
B. 960种
C. 1008种
D. 1108种
16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是
(A)72(B)96(C)108(D)144
17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()
18. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是()
A.152
19. 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )
(A)150种(B)180种(C)300种(D)345种
20. 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()
21. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()
A. 60
B. 48
C. 42
D. 36
22. 从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位为()
A 85
B 56
C 49
D 28
23. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()
A. 360
B. 188
C. 216
D. 96
24. 12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为()
A.1
55
B.
3
55
C.
1
4
D.
1
3
25. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).
26. 锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。
从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()
A.8
91
B.
25
91
C.
48
91
D.
60
91
27. 将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).
28. 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()
A.10种B.20种C.36种D.52种
29. 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有
(A)30种(B)90种(C)180种(D)270种。