放射治疗技术PPT课件
合集下载
近距离放射治疗 ppt课件

巴黎系统
使用低强度放射源连续照射。宫腔源强度 约10~16mgRa,阴道使用三个独立的源容器 ,一个在宫颈口,另两个分别紧贴两侧的阴 道穹隆。所有源的总强度约为40~70mgRa, 总治疗时间为6~8天。
以上两个系统的剂量计算以mgRa· h为单位,即放射源的总强度(毫克镭当
量)与治疗的总时间(小时)的乘积。
控后装。
按放射源在治疗时的运动状态可分为固定式、步进式、
摆动式等。
按剂量率的划分,可分为低剂量率(0.4~2Gy/h)、中
剂量率(2~12Gy/h)和高剂量率(>12Gy/h)。
现代近距离放疗的特点
使用高强度微型Ir-192放射源,使源 容器(特别是针状容器)可以更细小,病人 损伤小,可以达到治疗全身多个部位肿瘤。 程控步进/步退电机驱动,可以任意 控制放射源的驻留位置和驻留时间,以实 现理想的剂量分布。
面插植,以及直接用插植的几何形状等予以描述。
靶区的描述:组织间照射需要明确肿瘤区(GTV)、临床靶区
(CTV)和治疗区(TV),对计划靶区则少有重视。
组织间插植放疗剂量系统
ICRU58#报告
剂量模式:
最小靶剂量(MTD):是临床靶区内所接受的最小剂量,一
般位于临床靶区的周边范围。
平均中心剂量(MCD):是中心平面内相邻放射源之间最小 剂量的算术平均值。 高剂量区:为150%平均中心剂量曲线所包括的最大体积。
放射源强度的表示方法
空气比释动能强度(Sk)与显活度Aapp的关系为: Sk= Aapp · Г 式中Г
δ δ
为空气比释动能率常数。
放射源周围的剂量分布
放射源周围剂量学特点
点源遵守平方反比定律 线源在近源处时剂量衰减大于平方反 比,在距源大于2倍线源长度时基本遵循 平方反比定律(径向) 影响因素:辐射路径不同 斜过滤效应 基本不受能量影响 基本不使用“均匀性”概念
使用低强度放射源连续照射。宫腔源强度 约10~16mgRa,阴道使用三个独立的源容器 ,一个在宫颈口,另两个分别紧贴两侧的阴 道穹隆。所有源的总强度约为40~70mgRa, 总治疗时间为6~8天。
以上两个系统的剂量计算以mgRa· h为单位,即放射源的总强度(毫克镭当
量)与治疗的总时间(小时)的乘积。
控后装。
按放射源在治疗时的运动状态可分为固定式、步进式、
摆动式等。
按剂量率的划分,可分为低剂量率(0.4~2Gy/h)、中
剂量率(2~12Gy/h)和高剂量率(>12Gy/h)。
现代近距离放疗的特点
使用高强度微型Ir-192放射源,使源 容器(特别是针状容器)可以更细小,病人 损伤小,可以达到治疗全身多个部位肿瘤。 程控步进/步退电机驱动,可以任意 控制放射源的驻留位置和驻留时间,以实 现理想的剂量分布。
面插植,以及直接用插植的几何形状等予以描述。
靶区的描述:组织间照射需要明确肿瘤区(GTV)、临床靶区
(CTV)和治疗区(TV),对计划靶区则少有重视。
组织间插植放疗剂量系统
ICRU58#报告
剂量模式:
最小靶剂量(MTD):是临床靶区内所接受的最小剂量,一
般位于临床靶区的周边范围。
平均中心剂量(MCD):是中心平面内相邻放射源之间最小 剂量的算术平均值。 高剂量区:为150%平均中心剂量曲线所包括的最大体积。
放射源强度的表示方法
空气比释动能强度(Sk)与显活度Aapp的关系为: Sk= Aapp · Г 式中Г
δ δ
为空气比释动能率常数。
放射源周围的剂量分布
放射源周围剂量学特点
点源遵守平方反比定律 线源在近源处时剂量衰减大于平方反 比,在距源大于2倍线源长度时基本遵循 平方反比定律(径向) 影响因素:辐射路径不同 斜过滤效应 基本不受能量影响 基本不使用“均匀性”概念
放射治疗技术ppt课件

颅外各系统恶性肿瘤:如鼻咽癌、肺癌、肺转移 癌、肝癌、胰腺癌、腹、盆腔单发转移癌等。
有些病变可单独采用FSRT给予肿瘤根治,多数 肿瘤需要与常规外照射配合,作为对肿瘤靶区追 加剂量的一种有效手段。
立体定向放疗的局限性
受肿瘤体积、形状限制 靶区边缘定位的精确度尚待提高 靶区周围重要组织放射耐受性有限
IMRT比常规治疗多保护15%~20%的正常组织, 同时可增加20%~40%的靶区肿瘤剂量。
促使 IMRT 得以实现的最重要的技术突破是强大 的计算机程序,这种高精度的放疗技术使肿瘤放 射治疗跨入了新时代。
普通放疗
调强放疗
乳腺癌
115% 110% 105% 100% 95% 90%
Wedges
调强放射治疗可以做到给肿瘤内不同区域以 不同的剂量(物理调强)。
目前影像学还不能提供上述细胞生物活动的 信息,随着影像学的发展,如PET、fMRI、 MRS、分子显像、基因显像等技术的出现,将 为今后肿瘤“生物调强”放射治疗奠定基础。
生物靶区示意图
在不远的将来,“生物调强”放疗技术 将使肿瘤放射治疗迈上新的台阶。
三维适形放射治疗(3DCRT)是立体定向放射治 疗技术的扩展。
利用多叶光栅或适形挡铅技术、将照射野的形状 由普通放疗的方形或矩形调整为肿瘤的形状。
使照射的高剂量区在人体内的三维立体空间上与 肿瘤的实际形状相一致。
提高了肿瘤的照射剂量,保护了肿瘤周围的正常 组织,降低放射性并发症,提高肿瘤的控制率。
44调强放疗普通放疗451151101051009590imrtwedges46前列腺癌4748igrtigrt是一种四维放射治疗技术它在三维放疗技术的基础上加入了时间因数的概念充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差在患者进行治疗过程中利用影像设备对肿瘤及正常器官进行实时监控并根据器官位置的变化调整治疗条件使照射野紧紧追随靶区使之能做到真正意义上的精确治疗
有些病变可单独采用FSRT给予肿瘤根治,多数 肿瘤需要与常规外照射配合,作为对肿瘤靶区追 加剂量的一种有效手段。
立体定向放疗的局限性
受肿瘤体积、形状限制 靶区边缘定位的精确度尚待提高 靶区周围重要组织放射耐受性有限
IMRT比常规治疗多保护15%~20%的正常组织, 同时可增加20%~40%的靶区肿瘤剂量。
促使 IMRT 得以实现的最重要的技术突破是强大 的计算机程序,这种高精度的放疗技术使肿瘤放 射治疗跨入了新时代。
普通放疗
调强放疗
乳腺癌
115% 110% 105% 100% 95% 90%
Wedges
调强放射治疗可以做到给肿瘤内不同区域以 不同的剂量(物理调强)。
目前影像学还不能提供上述细胞生物活动的 信息,随着影像学的发展,如PET、fMRI、 MRS、分子显像、基因显像等技术的出现,将 为今后肿瘤“生物调强”放射治疗奠定基础。
生物靶区示意图
在不远的将来,“生物调强”放疗技术 将使肿瘤放射治疗迈上新的台阶。
三维适形放射治疗(3DCRT)是立体定向放射治 疗技术的扩展。
利用多叶光栅或适形挡铅技术、将照射野的形状 由普通放疗的方形或矩形调整为肿瘤的形状。
使照射的高剂量区在人体内的三维立体空间上与 肿瘤的实际形状相一致。
提高了肿瘤的照射剂量,保护了肿瘤周围的正常 组织,降低放射性并发症,提高肿瘤的控制率。
44调强放疗普通放疗451151101051009590imrtwedges46前列腺癌4748igrtigrt是一种四维放射治疗技术它在三维放疗技术的基础上加入了时间因数的概念充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差在患者进行治疗过程中利用影像设备对肿瘤及正常器官进行实时监控并根据器官位置的变化调整治疗条件使照射野紧紧追随靶区使之能做到真正意义上的精确治疗
放射治疗ppt课件

提高治疗效果和患者的生存质量。
06
CATALOGUE
放射治疗的案例分享
肿瘤放射治疗的成功案例
肺癌放射治疗
一位60岁的男性患者,因肺癌接 受了放射治疗,经过几个疗程的 治疗后,肿瘤明显缩小,症状得 到缓解,生活质量得到提高。
乳腺癌放射治疗
一位45岁的女性患者,因乳腺癌 接受了放射治疗,治疗过程中未 出现明显副作用,肿瘤得到控制 ,延长了生存期。
放射物理学
研究放射线的物理性质、剂量分布和测量技术, 以及放射治疗设备的性能和质量控制。
临床放射治疗
研究放射治疗在各种肿瘤中的适应症、剂量和照 射技术,以及与其他治疗手段的联合应用。
放射治疗的新技术和新方法
调强放疗(IMRT)
通过调整射线的强度,实现高剂量区 的精确投照,降低对周围正常组织的 损伤。
放射治疗的适应症和禁忌症
适应症
放射治疗适用于多种疾病,尤其 对于无法通过手术、药物治疗的
肿瘤患者具有重要意义。
禁忌症
对于某些特定情况,如急性炎症、 严重心肝肾功能不全等,应避免或 慎重选择放射治疗。
注意事项
在选择放射治疗前,需充分评估患 者的病情和身体状况,制定个性化 的治疗方案。
04
CATALOGUE
调强放疗缺点
设备成本较高,治疗费用较贵, 技术要求高。
调强放疗优点
剂量分布均匀,正常组织损伤小 。
立体定向放疗缺点
设备成本高,治疗费用昂贵。
03
CATALOGUE
放射治疗的应用
肿瘤放射治疗
肿瘤类型
治疗方式
放射治疗适用于多种肿瘤类型,如肺 癌、乳腺癌、结直肠癌等。
包括根治性放疗、姑息性放疗和辅助 放疗等。
放疗技术 ppt课件

征谱线,同时也达到滤掉低能部分的目的;④从理论上讲
,滤过越多,谱线分布对治疗越好,但过多的滤过会使强 度大大下降,不经济,要注意综合考虑。
第二节 远距离60Co治疗机
•自1951年第一台钴-60(一般用60Co表示)远距离治疗机 在加拿大生产以来,经过几十年的发展,一直是我国最主 要的放射治疗设备,近年来第一的位置才逐渐让位给医用 电子直线加速器。据统计,目前我国仍然有约400台60Co治 疗机在服役。 •60Co源的半衰期为5.27年,衰变产生的两条射线的能量为 1.17和1.33MeV,平均能量为1.25MeV。外照射所用的60Co 源活度一般为()量级,临床上为便于计算,常用距源1米 处单位时间的照射量或空气比释动能来表示钴-60治疗机的 源活度。
•滤过板使用时的注意事项包括:①不同X射线能量范围用 不同的滤过板,100kV以下的用铝,以上的用铜或铜加铝 或复合过滤;②同一管电压的X射线,滤过板不同,所生X 射线半价层也不同;③使用复合滤过板时要注意放置的次
序,沿射线方向,应先放原子序数大的,后放原子序数小
的,这样放置的主要目的是为了过滤掉滤板本身产生的特
X射线管
X射线治疗机(WEIDA )
Energy: 6MeV(X-ray)
Dose Date : 2GY/min Field size: 2X2~35X35cm
•四、X线的能谱的特点 •X线管放射的X线组成很复杂,是一束波长不等的混合能 谱,从最长波长到最短波长是连续的。
•从图5-2中看出X射线有两种成分,分别为特征辐射和轫 致辐射。轫致辐射是X射线谱中主要成分,自最大能量以 下,在任一能量范围内光子均有一定的强度。特征辐射指
在连续谱上一些突出的峰值,即在某些特定能量处强度最 大处。
,滤过越多,谱线分布对治疗越好,但过多的滤过会使强 度大大下降,不经济,要注意综合考虑。
第二节 远距离60Co治疗机
•自1951年第一台钴-60(一般用60Co表示)远距离治疗机 在加拿大生产以来,经过几十年的发展,一直是我国最主 要的放射治疗设备,近年来第一的位置才逐渐让位给医用 电子直线加速器。据统计,目前我国仍然有约400台60Co治 疗机在服役。 •60Co源的半衰期为5.27年,衰变产生的两条射线的能量为 1.17和1.33MeV,平均能量为1.25MeV。外照射所用的60Co 源活度一般为()量级,临床上为便于计算,常用距源1米 处单位时间的照射量或空气比释动能来表示钴-60治疗机的 源活度。
•滤过板使用时的注意事项包括:①不同X射线能量范围用 不同的滤过板,100kV以下的用铝,以上的用铜或铜加铝 或复合过滤;②同一管电压的X射线,滤过板不同,所生X 射线半价层也不同;③使用复合滤过板时要注意放置的次
序,沿射线方向,应先放原子序数大的,后放原子序数小
的,这样放置的主要目的是为了过滤掉滤板本身产生的特
X射线管
X射线治疗机(WEIDA )
Energy: 6MeV(X-ray)
Dose Date : 2GY/min Field size: 2X2~35X35cm
•四、X线的能谱的特点 •X线管放射的X线组成很复杂,是一束波长不等的混合能 谱,从最长波长到最短波长是连续的。
•从图5-2中看出X射线有两种成分,分别为特征辐射和轫 致辐射。轫致辐射是X射线谱中主要成分,自最大能量以 下,在任一能量范围内光子均有一定的强度。特征辐射指
在连续谱上一些突出的峰值,即在某些特定能量处强度最 大处。
放疗基本ppt课件

放射治疗有两种照射方式:一种是远距离放疗(外照射),
即将放射源与病人身体保持一定距离进行照射,射线从病
人体表穿透进人体内一定深度,达到治疗肿瘤的目的;另
一种是近距离放疗(内照射),即将放射源密封置于肿瘤
内或肿瘤表面,如放入人体的天然腔内或组织内(如舌、
鼻、咽、食管、气管和子宫体等部位)进行照射,即采用
脊髓压迫症 脊髓压迫症发展迅速,一旦截瘫很难恢复正
常。原发性或转移性肿瘤是脊髓压迫症的常见原因,肺癌、
乳腺癌、前列腺癌、多发性骨髓瘤和,淋巴瘤最易转移至
脊椎,导致脊髓压迫。95%以上的脊椎转移瘤均在髓外,
对不能手术的髓外肿瘤应尽快采取放射治疗,同时也应使
用大剂量皮质类固醇,促使水肿消退,防止放疗水肿发生。
定义:减少总的照射次数,增加每次照射的剂量。较常用 的是每周照射3次,隔日照射,每次靶区剂量为3.0~ 5.0Gy。
(2)生物学基础:
根据早、晚反应组织的曲线即α/β比,晚反应组织的 损伤主要与每次分割的剂量有关,所以,超分割照射能 减轻晚反应组织如脊髓、脑、肺、肾等正常组织的损伤, 使其耐受量可增加15~25%。
早反应组织损伤基本不变或略有增加,肿瘤病灶的控制 率可增加10%。
每天2次分割照射,间. 隔时间至少4小时以上,以利正28 常 组织细胞完成亚致死性损伤的修复。
(2)生物学基础:缩短放疗总时间,以减少在放疗期间 肿瘤细胞的增殖,其结果可加重早期反应,晚期反应也可 加重或稍有改变。
(3)临床应用:多用于肿瘤倍增时间短,病程发展快, 而可一在般症情状况缓又解较 后好 改的 为病 常人 规. 。 分如 割果 照病 射人 。在治疗中反应较重29 ,
4、大剂量分割
放疗基本规范 (1)
放疗技术第一章1_PPT课件

适形放射治疗
1965年日本学者高桥及松田等人首先提出了原体照射的 概念即 conformal radiation therapy,CRT
目前使用的三维适形放射治疗(3一dimensional Conformal radiation therapy,3一DCRT)就是在这个基 础上发展起来的。
瑞典放射物理学家Brahme教授首先提出了调强的概念。 由此发展出调强适形放疗。
医生在放疗专用计算机计划系统中制定放射治疗计划,理论的治疗 计划需要在实际的条件下进行验证是否可行,制定完成的放疗计划需 要在治疗室进行复位,对计划进行复核。
在治疗室拍摄验证片确定无误后即可开始进行治疗。为了保证病 人的放疗计划的质量,我们会进行一系列的措施,这包括:对每个治 疗计划进行讨论复核、剂量验证等。另外我们会定期检查维护机器设 备,使其维持在最佳的工作状态。
瑞典放射物理瑞典放射物理学家Brahme教授首先提出了调强的概念学家Brahme教授 首先提出了调强的概念
近距离治疗的发展
20世纪70年代至80年代,放射物理学、剂量学、计算机技 术以及影像技术的发展,极大地提高了近距离治疗的精度, 改善了正常组织的防护和剂量分布。
后装技术的进一步发展及低能192铱源的使用,明显地减少 了操作人员的受线量,也方便了病人的护理。
放疗实施
上述准备工作全部完成且核对无误,才可实施真正的放射治疗。任 何一个环节出现超过允许程度的误差,医生、物理师、技师还要寻找 原因,予以纠正,保证准确无误后方可继续治疗。
放射治疗一般由2-3位技师共同完成,一位在操作室输入放射治疗 参数,另外两位在机房内进行摆位,按照标记线摆好病人,加入挡块 ,楔形板,凡士林油纱等需要的辅助器材之后就可以离开机房。治疗 中开启病人监视ห้องสมุดไป่ตู้统和对讲系统,密切监视病人体位是否移动,如果 发现病人体位移动或发出求助信息,应立即停止治疗并做相应处理, 纠正后再行照射。
放疗 PPT课件.ppt

脱氧核糖核酸(DNA)
腺嘌呤
腺嘧啶
鸟嘌呤
胞嘧啶
2.染色体DNA是关键靶
染色体特别是DNA是引起细胞死亡的主要靶的证 据:
微幅射研究显示,用放射线杀死细胞时,单独 照射细胞质所需的照射剂量要比单独照射细胞 核大得多。
放射性核素(如 3H、125I)参入核DNA可有效地 造成DNA损伤并杀灭细胞。
整个有丝分裂过程分为前期、中期、后期和末期四个 时期。此外,G0期细胞,指那些处于休眠状态不参 加周期分裂活动的细胞。一旦机体需要或接到某种信 号后,这些细胞就能开始准备DNA的合成而变成G1 期细胞。
细胞周期
细胞增殖周期为: A G1期-S期-G2-M期 B G2期-G1期-S期-M期 C M期-S期-G1期-G2期 D S期-M期-G1期-G2 E G1期-G2期-S期-M期
(一)、细胞的放射敏感性
各种细胞对电离辐射的敏感程度有很大的差异, 主要表现为以下三个方面:
(1)、不同细胞群体的放射敏感性 (2)、不同细胞周期时相的放射敏感性 (3)、不同环境中细胞的放射敏感性
(1)、不同细胞群体的放射敏感性
可分三类:
a.不断分裂和更新的细胞群体---辐射敏感 b.不分裂的细胞群体---辐射抗拒性 c.一般状态下基本不分裂的细胞群体---辐射相 对不敏感(但可受刺激后转化)
正常细胞周期调控机制
细胞周期中S期和M期是最活跃的时相,G1向S过渡期 和G2向M过渡期最关键。
G1时相调控机制(R点)。 S时相调控机制。 G2/M时相调控机制。
肿瘤内细胞放射敏感性的差异
细胞时相的敏感性差
异
1.0
Survival fraction
G2/M期敏感 G1/S期抗拒 照射后增殖周期中的 细胞(时相)分布不 同
放射治疗及放疗基本流程ppt课件

为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
主要内容
❖ 放射治疗概念及地位 ❖ 放射治疗的适应症 ❖ 放射治疗方式 ❖ 放射治疗技术及进展 ❖ 放疗病例展示 ❖ 放射治疗流程
Company Logo
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
是利用放射性核素所产生的α、β、γ射线 及X射线治疗机和各类加速器所产生的不同质的X 射线,各类加速器所产生的电子束、质子束、负 л介子和其他重粒子等来治疗恶性肿瘤的一种治 疗方法。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
部分恶性肿瘤单纯放疗的5年生存率
食管癌(中晚期) (3年)
宫颈癌(各期) (I期)
鼻咽癌(各期) (I期)
何杰金氏病 直肠癌 (早期) 喉癌(I期) %
8-16% 30 %(+/-) 65 % 96 % 53 % 94 % 80 %+ 80 %+ 81-97%
放射线杀灭肿瘤的机制
放射线是高速运动的粒子流,具有一定的能 量,当它照射到有机体时,可使生物大分子断裂 ,尤其是细胞遗传物质DNA分子断裂,使得DNA复 制受阻,造成细胞不能增殖或死亡。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
主要内容
❖ 放射治疗概念及地位 ❖ 放射治疗的适应症 ❖ 放射治疗方式 ❖ 放射治疗技术及进展 ❖ 放疗病例展示 ❖ 放射治疗流程
Company Logo
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
是利用放射性核素所产生的α、β、γ射线 及X射线治疗机和各类加速器所产生的不同质的X 射线,各类加速器所产生的电子束、质子束、负 л介子和其他重粒子等来治疗恶性肿瘤的一种治 疗方法。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
部分恶性肿瘤单纯放疗的5年生存率
食管癌(中晚期) (3年)
宫颈癌(各期) (I期)
鼻咽癌(各期) (I期)
何杰金氏病 直肠癌 (早期) 喉癌(I期) %
8-16% 30 %(+/-) 65 % 96 % 53 % 94 % 80 %+ 80 %+ 81-97%
放射线杀灭肿瘤的机制
放射线是高速运动的粒子流,具有一定的能 量,当它照射到有机体时,可使生物大分子断裂 ,尤其是细胞遗传物质DNA分子断裂,使得DNA复 制受阻,造成细胞不能增殖或死亡。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
放射治疗剂量学ppt课件

小结
对近距离放射治疗,由于放射源在靠近肿瘤的 位置对其进行局部、大剂量照射,因此其剂量 学体系的建立必须考虑放射源的形态、放射的 精确定位、治疗方案的可重复性,目前近距离 插值放射治疗剂量学体系多采用巴黎系统而宫 颈癌及子宫体癌多采用曼
1
A Γ dI L y
2
1
e
t sec
d
三、腔内治疗剂量学
传统(或经典)的腔内治疗方法主要有 三大系统,即斯得哥尔摩系统、巴黎系
统和曼彻斯特系统。
四、组织间治疗剂量学
组织间治疗亦称为插植治疗,是根据靶区 的形状和范围,将一定规格的多个放射源, 按特定的排列法则,直接插植入肿瘤部位, 以期在肿瘤部位产生高剂量照射,为了使 治疗部位获得满意的剂量,必须根据放射 源周围的剂量分布特点,按一定的规则排 列放射源。 当前在世界范围内有较大影响的是曼彻斯 特系统和巴黎系统。
二、放射治疗物理学有关的名 词
(一)射线源 (二)射线中心轴 (三)照射野 (四)参考点 (五)校准点 (六)源-皮距 (七)源-瘤距 (八)源-轴距 (九)人体体模
三、射线中心轴上百分深度剂 量 百分深度剂量:体模内射野中心轴上任一深
度d处的吸收剂量Dd与参考点深度d0吸收剂 量D0之比的百分数。
第二节 放射治疗剂量计算实 例
根据肿瘤治疗剂量DT=200cGy,由PDD得 到最大剂量深度处的吸收剂量,即处方剂 DT 200 Dm 100 % 100 %cGy 308 .6cGy 量: PDD 0.648
最后计算得到开机照射时间:
308 .6 T min 2.71 min 114 Dm
Dd TMR Dm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、注意放射治疗过程中全身放射反应,血象和胃肠道 反应。
13
第四节 相邻野照射技术
一、临床应用 临床工作中遇到肿瘤靶区体积过大,需要一个
或者几个照射野才能完成照射,此时必须采用相 邻野照射。如腹主动脉旁淋巴结区照射和纵膈区 照射野等等。
14
射线束中心轴平行相邻照射野 偏转入射角解决方案
15
二、定位技术及摆位要求 治疗体位选择要从有利于治疗的角度考虑,避免患者
的体位发生改变,常用平卧位。 1、头颈部肿瘤 仰卧位,枕后和颈后垫固定枕,两平行相对
野照射。 2、乳腺肿瘤 仰卧位,胸骨上下轴水平于切线野和治疗床
面平行。治疗锁骨上区野摆位时须将头转向照射野的对侧。
16
三、放射源的选择及照射剂量 相邻野照射时:4MV~8MV的X线, 60钴的
射线,5MeV~15MeV的电子线,剂量1.8~ 2Gy/次,5次/周。照射总剂量依肿瘤部位和治疗 目的而不同,预防剂量:全脑全脊髓照射36Gy, 乳腺癌锁骨上区50Gy,等等。
18
第六节 等中心与成角照射技术
一、临床应用 等中心照射技术(SAD)是临床常用的照射方法,摆
位简单、患者舒适、重复性好的特点。 成角照射技术是将治疗机架旋转到一定角度之后,再
核对源皮距而进行的一种放射治疗方法,放射线束与治疗 者失状面形成一定夹角。
19
(一)、常用成角照射的种类
源皮距成角照射;等中心成角照射;切线成角照射;水 平成角照射;反向成角照射;多野交叉成角照射。
17
四、注意事项 相邻照射野衔接原则:1、相邻部位避开肿瘤或重要敏感器
官;2、表浅种肿瘤用相邻野照射时相交在深部组织处, 但如果深部组织处有敏感组织时就不能用体表相邻野间隔 的方法,必须保持体表两照射野没有间隔,用挡块或转动 入射角度的方法解决;3、深部肿瘤相邻野相交时要避开 重要敏感器官;4、治疗过程中衔接处接受照射移动2~3 次;5、注意治疗剂量分布的均匀性;6、增大源皮距扩大 照射野,避免照射野的接野。
(二)、成角照射技术的特点
1、可以避开重要器官,减少重要器官及正常组织的受照射 剂量,提高肿瘤靶区的治疗剂量。
2、为了减少正常组织的受照射剂量,提高靶区治疗剂量, 采用多野成角交叉照射。
3、可采用水平成角照射或反向成角照射使体表野与照射部 位保持一致。
4、为复发患者提供再次放射治疗的机会。
5
第二节 固定源皮距照射技术
一、临床应用
固定源皮距(SSD)照射技术:即是将放射源到皮肤的
距离固定,将机架的旋转中心放在照射野皮肤的表面某一 点,而将肿瘤或者治疗靶区的中心放在放射源S与放射线 在皮肤的入射点的连线的延长线上。
本技术的要点:机架转角一定要准确,同时患者体位要正
确。同时避免肿瘤的中心偏出照射野。
治疗总剂量达50~55Gy/6~8周,脊髓野全长应给予
25~G30Gy/4~5周。
12
四、注意事项
1、照射野的间隔空隙在整个治疗过程中要移动2~3次。 2、一般将侧野的下界向上移动。 3、为保证移动过程中照射野的纵向中心轴不变,头部
野的上界要外放足够的距离,腰部野的下界外放距 离也需加长。
4、治疗初期剂量不宜过高,以免引起急性放射性脑脊 髓病。
临床常用照射技术
.
1
学习目标 在放射治疗过程中定位技术和摆位
技术的水平可直接影响到放射治疗的效果,保证 治疗效果和避免重要器官组织的损伤。本章要求 重点掌握照射技术的基本原理和方法及其定位和 摆位的要求。
2
第一节 体位固定技术
体位固定技术是治疗计划设计与执行过程中 极其重要的一个环节。在高精度的各种治疗、设 计、扫描等设备做了大量的前期准备工作后,对 高精度的计划设计和高精度的治疗忠实执行时才 有意义。每天必须保证肿瘤定位、治疗计划设计、 模拟确认、重复治疗的摆位过程中体位一致。
本方法优点:简便易行;不受治疗机器某些功能限制;照
射野可大可小,调节方便;使用各类肿瘤治疗;或者可以
6
采取各种体位进行垂直照射。
二、定位技术及摆位要求
(一)、定位技术
常规宫颈癌体外垂直照射 采用前后野对穿照射,前野仰卧位,后野俯
卧位,体中线要与治疗床中线相重合,头部放正, 不垫枕,两肩自然放松,两臂贴于体侧,两腿并 拢伸直。
7
宫颈癌前野照射
下界为耻骨 联合下缘水平
外界为股骨头1/3以内
前野上界 髂骨脊水平
8
(二)、摆位要求
1、根据治疗要求,借助解剖标志,安放好患者体位。
2、打开标尺灯,使灯光野中心“+”字线对准体表照射野中 心,升床至治疗高度。
3、打开射野指示灯,调节X轴及Y轴上的准直器,使灯光野 与照射野范围重合。
10
四、放射治疗时的注意事项
1、在长期使用过程中,托架要牢固,安全可靠, 不能发生变形或者松动、老化断裂。
2、在治疗过程中,铅挡块摆位要精确,患者治疗 体位要准确,照射靶区要清楚,灯光野要清晰; 铅挡块不可平放或者倒放。
3、摆位过程中要注意机架角度的准确性及患者体 位的准确性。
11
第三节 全脑、全脊髓照射技术
4、在灯光野下,用铅块档至靶区形状。
5、摆好位置后出治疗室再次核对医嘱:患者基本信息、前
后体位、固定装置、填充物、照射剂量等
9
三、放射源的选择及照射剂量 (一)、放射源的选择 根据肿瘤解剖部位、病理类型、分化程度、临床分期等,一般选择高能
X射线或60钴的γ 射线。 (二)、剂量选择 剂量选择考虑以下因素: 1、根治性放射治疗 2、姑息性放射治疗 3、术前放射治疗 4、术中放射治疗 5、术后放射治疗
一、临床应用
适用于髓母细胞瘤、松果体区的生殖细胞瘤、分化差 的室管膜瘤、易沿蛛网膜下腔循环转移者。
二、定位技术及摆位要求
患者俯卧位,头面部垫船形枕,尽量将颈部拉直,体中线与 治疗床的中线一致。
三、放射源的选择及照射剂量
一般选用6MV~8MV X线,照射头部野时,机架处
于水平位,照射至25Gy/4~5周时,在缩野照射原发灶,
3
一、治疗体位的确定 前野照射或者侧野照射:体位一般采用仰卧位。 不论是什么体位,首先要满足:患者舒适体位;容易摆位;
满足最佳布野要求;必要是一定要使用治疗体位固定器。
4
二、治疗固定器
治疗固定器分为常规摆位设备和三维坐 标定位设备等。
13
第四节 相邻野照射技术
一、临床应用 临床工作中遇到肿瘤靶区体积过大,需要一个
或者几个照射野才能完成照射,此时必须采用相 邻野照射。如腹主动脉旁淋巴结区照射和纵膈区 照射野等等。
14
射线束中心轴平行相邻照射野 偏转入射角解决方案
15
二、定位技术及摆位要求 治疗体位选择要从有利于治疗的角度考虑,避免患者
的体位发生改变,常用平卧位。 1、头颈部肿瘤 仰卧位,枕后和颈后垫固定枕,两平行相对
野照射。 2、乳腺肿瘤 仰卧位,胸骨上下轴水平于切线野和治疗床
面平行。治疗锁骨上区野摆位时须将头转向照射野的对侧。
16
三、放射源的选择及照射剂量 相邻野照射时:4MV~8MV的X线, 60钴的
射线,5MeV~15MeV的电子线,剂量1.8~ 2Gy/次,5次/周。照射总剂量依肿瘤部位和治疗 目的而不同,预防剂量:全脑全脊髓照射36Gy, 乳腺癌锁骨上区50Gy,等等。
18
第六节 等中心与成角照射技术
一、临床应用 等中心照射技术(SAD)是临床常用的照射方法,摆
位简单、患者舒适、重复性好的特点。 成角照射技术是将治疗机架旋转到一定角度之后,再
核对源皮距而进行的一种放射治疗方法,放射线束与治疗 者失状面形成一定夹角。
19
(一)、常用成角照射的种类
源皮距成角照射;等中心成角照射;切线成角照射;水 平成角照射;反向成角照射;多野交叉成角照射。
17
四、注意事项 相邻照射野衔接原则:1、相邻部位避开肿瘤或重要敏感器
官;2、表浅种肿瘤用相邻野照射时相交在深部组织处, 但如果深部组织处有敏感组织时就不能用体表相邻野间隔 的方法,必须保持体表两照射野没有间隔,用挡块或转动 入射角度的方法解决;3、深部肿瘤相邻野相交时要避开 重要敏感器官;4、治疗过程中衔接处接受照射移动2~3 次;5、注意治疗剂量分布的均匀性;6、增大源皮距扩大 照射野,避免照射野的接野。
(二)、成角照射技术的特点
1、可以避开重要器官,减少重要器官及正常组织的受照射 剂量,提高肿瘤靶区的治疗剂量。
2、为了减少正常组织的受照射剂量,提高靶区治疗剂量, 采用多野成角交叉照射。
3、可采用水平成角照射或反向成角照射使体表野与照射部 位保持一致。
4、为复发患者提供再次放射治疗的机会。
5
第二节 固定源皮距照射技术
一、临床应用
固定源皮距(SSD)照射技术:即是将放射源到皮肤的
距离固定,将机架的旋转中心放在照射野皮肤的表面某一 点,而将肿瘤或者治疗靶区的中心放在放射源S与放射线 在皮肤的入射点的连线的延长线上。
本技术的要点:机架转角一定要准确,同时患者体位要正
确。同时避免肿瘤的中心偏出照射野。
治疗总剂量达50~55Gy/6~8周,脊髓野全长应给予
25~G30Gy/4~5周。
12
四、注意事项
1、照射野的间隔空隙在整个治疗过程中要移动2~3次。 2、一般将侧野的下界向上移动。 3、为保证移动过程中照射野的纵向中心轴不变,头部
野的上界要外放足够的距离,腰部野的下界外放距 离也需加长。
4、治疗初期剂量不宜过高,以免引起急性放射性脑脊 髓病。
临床常用照射技术
.
1
学习目标 在放射治疗过程中定位技术和摆位
技术的水平可直接影响到放射治疗的效果,保证 治疗效果和避免重要器官组织的损伤。本章要求 重点掌握照射技术的基本原理和方法及其定位和 摆位的要求。
2
第一节 体位固定技术
体位固定技术是治疗计划设计与执行过程中 极其重要的一个环节。在高精度的各种治疗、设 计、扫描等设备做了大量的前期准备工作后,对 高精度的计划设计和高精度的治疗忠实执行时才 有意义。每天必须保证肿瘤定位、治疗计划设计、 模拟确认、重复治疗的摆位过程中体位一致。
本方法优点:简便易行;不受治疗机器某些功能限制;照
射野可大可小,调节方便;使用各类肿瘤治疗;或者可以
6
采取各种体位进行垂直照射。
二、定位技术及摆位要求
(一)、定位技术
常规宫颈癌体外垂直照射 采用前后野对穿照射,前野仰卧位,后野俯
卧位,体中线要与治疗床中线相重合,头部放正, 不垫枕,两肩自然放松,两臂贴于体侧,两腿并 拢伸直。
7
宫颈癌前野照射
下界为耻骨 联合下缘水平
外界为股骨头1/3以内
前野上界 髂骨脊水平
8
(二)、摆位要求
1、根据治疗要求,借助解剖标志,安放好患者体位。
2、打开标尺灯,使灯光野中心“+”字线对准体表照射野中 心,升床至治疗高度。
3、打开射野指示灯,调节X轴及Y轴上的准直器,使灯光野 与照射野范围重合。
10
四、放射治疗时的注意事项
1、在长期使用过程中,托架要牢固,安全可靠, 不能发生变形或者松动、老化断裂。
2、在治疗过程中,铅挡块摆位要精确,患者治疗 体位要准确,照射靶区要清楚,灯光野要清晰; 铅挡块不可平放或者倒放。
3、摆位过程中要注意机架角度的准确性及患者体 位的准确性。
11
第三节 全脑、全脊髓照射技术
4、在灯光野下,用铅块档至靶区形状。
5、摆好位置后出治疗室再次核对医嘱:患者基本信息、前
后体位、固定装置、填充物、照射剂量等
9
三、放射源的选择及照射剂量 (一)、放射源的选择 根据肿瘤解剖部位、病理类型、分化程度、临床分期等,一般选择高能
X射线或60钴的γ 射线。 (二)、剂量选择 剂量选择考虑以下因素: 1、根治性放射治疗 2、姑息性放射治疗 3、术前放射治疗 4、术中放射治疗 5、术后放射治疗
一、临床应用
适用于髓母细胞瘤、松果体区的生殖细胞瘤、分化差 的室管膜瘤、易沿蛛网膜下腔循环转移者。
二、定位技术及摆位要求
患者俯卧位,头面部垫船形枕,尽量将颈部拉直,体中线与 治疗床的中线一致。
三、放射源的选择及照射剂量
一般选用6MV~8MV X线,照射头部野时,机架处
于水平位,照射至25Gy/4~5周时,在缩野照射原发灶,
3
一、治疗体位的确定 前野照射或者侧野照射:体位一般采用仰卧位。 不论是什么体位,首先要满足:患者舒适体位;容易摆位;
满足最佳布野要求;必要是一定要使用治疗体位固定器。
4
二、治疗固定器
治疗固定器分为常规摆位设备和三维坐 标定位设备等。