列方程解决简单的实际问题(1)练习题及答案

合集下载

人教版五年级上册数学《列方程解决问题》专项练习(含答案)

人教版五年级上册数学《列方程解决问题》专项练习(含答案)

人教版五年级上册数学《列方程解决问题》专项练习(含答案)一、1.列方程解答.一个三角形的面积是9.6平方米,它的底是1.2米,它的高是多少米?2.列方程解答.(1)如果用S表示路程,u表示速度,t表示时间,完成下面公式.S=________U=________t=________(2)甲、乙两地相距4.8千米,小刚步行从甲地出发,4小时可以到达乙地.你能利用上面的公式计算小刚平均每小时行________千米吗?3.按下图方式摆放餐桌和椅子,n张餐桌可坐多少人?(1)列表试试看.(2)摆10张桌子可以坐多少人?(3)有62人用餐,需要摆多少张桌子?4.小象出生后,体重平均每年增加200千克,现在,这只大象有几岁了?5.已知图形B的周长是6米,求宽是多少米?6.已知图形A的面积是2.16m2,求宽是多少米.7.看图列方程求x.8.看图列方程求x.9.已知1个正方形需要4根棒,2个正方形需要7根棒,3个正方形需要10根棒,问:15个正方形需要多少根棒?10.有一间教室占地158m2,已知宽为15m,问:教室长约为多少米?(用四舍五入法,保留一位小数)参考答案一、列方程解应用题73771.【答案】解:方程解:解:设高为x米1.2x÷2=9.6x=16算术方法解:9.6×2÷1.2=16(米)【考点】三角形的面积,列方程解含有一个未知数的应用题【解析】【解答】解:设高为x米,1.2x÷2=9.61.2x÷2×2=9.6×21.2x=19.21.2x÷1.2=19.2×1.2x=16答:它的高是16米.【分析】根据题意可知,设它的高是x米,用底×高÷2=三角形的面积,据此列方程解答.2.【答案】(1)ut;;(2)1.2【考点】用字母表示数,含字母式子的化简与求值【解析】【解答】(1)如果用S表示路程,u表示速度,t表示时间,S=ut,U=,t=.(2)4.8÷4=1.2(千米)故答案为:(1)S=ut;;;(2)1.2。

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

人教版八年级上册第2课时列分式方程解决实际问题(348)1.某公司在工程招标时,接到甲、乙两个工程队的投标书.甲工程队每施工一天,需付工程款1.5万元,乙工程队每施工一天,需付工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需多少天;(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得选哪一种施工方案划算?请说明理由.2.某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书知,甲队单独完成这项工程所需天数是乙队单独.若由甲队先做20天,剩下的工程再由甲、乙两队完成这项工程所需天数的23合作60天可完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?3.小明准备利用暑假从距上海2160千米的某地去“上海迪斯尼乐园”参观游览,如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.4.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.5.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)6.“郁郁林间桑葚紫,茫茫水面稻苗青”说的就是味甜汁多,酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150千克,到了第三天,他发现剩余的桑葚卖相已不太好,于是果断地以低于进价20%的价格将剩余的全部售出,小李一共获利750元,设小李共购进桑葚x千克.(1)根据题意完成下表:(用含x的式子表示)(2)求小李共购进多少千克的桑葚.7.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.8.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙两工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A.6B.7C.8D.99.哈尔滨市政府欲将一块地建成湿地公园,动用了一台甲型挖土机,4天挖完了这块地的13,后又加一台乙型挖土机,两台挖土机同时工作,结果又用两天就挖完了整片地,那么乙型挖土机单独挖完这块地需要天.10.园林部门计划在一定时间内完成植树任务,甲队独做正好按期完成,乙队独做则要误期3天.现两队合作2天后,余下任务由乙队独做,正好按期完成任务.则原计划多少天完成植树任务?11.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x −180(1+50%)x=1 B.180(1+50%)x−180x=1C.180x −180(1−50%)x=1 D.180(1−50%)x−180x=112.某村电路发生断电,该地供电局组织电工进行抢修.供电局距离该村15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达.已知吉普车速度是抢修车速度的1.5倍,则抢修车的速度是13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.400x =300x−30B.400x−30=300xC.400x+30=300xD.400x=300x+3014.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.参考答案1(1)【答案】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得4x +4x+5+x−4x+5=1,解得x=20.经检验,x=20是原分式方程的解且符合题意.x+5=25.答:甲队单独完成此项工程需20天,乙队单独完成此项工程需25天.(2)【答案】解:选方案③划算.理由如下:这三种施工方案需要的工程款:方案①:1.5×20=30(万元);方案②:1.1×(20+5)+5×0.3=29(万元);方案③:1.5×4+1.1×20=28(万元).∵30>29>28,∴方案③最节省工程款.2(1)【答案】解:设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得2023x+60(123x+1x)=1,解得x=180.经检验,x=180是原分式方程的解且符合题意.2 3x=23×180=120.答:甲、乙两队单独完成这项工程分别需120天和180天. (2)【答案】解:设甲、乙两队合作完成这项工程需要y天.则y(1120+1180)=1,解得y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000,∴预算的施工费用不够用,需追加预算152万元.3.【答案】:解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得2160x=2160x+6×1.6,解得x =10.经检验,x =10是原方程的根且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.4.【答案】:解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 依题意得1200x−12001.5x=10,解得x =40.经检验,x =40是原方程的根,且符合题意.1.5x =60.答:甲工厂每天加工40件新产品,乙工厂每天加工60件新产品.5.【答案】:解:设例子中的A 4厚型纸每页的质量为x 克. 由题意,得400x=2×160x−0.8,解得x =4.经检验,x =4为原方程的解,且符合题意. 答:例子中的A 4厚型纸每页的质量为4克. 6(1)【答案】3000(1+40%)x;3000(1−20%)x;x −150(2)【答案】解:根据题意,得150·3000(1+40%)x+(x −150)·3000(1−20%)x−3000=750解得x =200.经检验,x =200是原方程的解且符合题意. 答:小李共购进200千克桑葚. 7(1)【答案】解:设每本软面笔记本花费x元,则每本硬面笔记本花费(x+1.2)元.由题意,得12 x =21x+1.2,解得x=1.6.此时121.6=211.6+1.2=7.5(不符合题意),所以小明和小丽不能买到相同数量的笔记本.(2)【答案】解:存在.设每本软面笔记本花费m元(1≤m≤12,且m为整数),则每本硬面笔记本花费(m+a)元.由题意,得12m =21m+a,解得a=34m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,128=2114=1.5(不符合题意).∴a的值为3或9.8.【答案】:D【解析】:设甲工程队计划完成此项目的天数为x天,由题意,得x−3x +x−6x=1,解得x=9,经检验,x=9是原分式方程的根,且符合题意.故选D9.【答案】:4【解析】:∵一台甲型挖土机4天挖完了这块地的13,∴甲型挖土机12天全部挖完这块地,故甲1天完成总工作量的112,设乙型挖土机单独挖这块地需要x天,根据题意可得13+212+2x=1,解得x=4.经检验,x=4是原方程的根,且符合题意.∴乙型挖土机单独挖完这块地需要4天10.【答案】:解:设原计划x天完成植树任务,则乙队单独完成植树任务的时间是(x+3)天.由题意,得2(1x +1x+3)+x−2x+3=1,解得x=6.经检验,x=6是原方程的解且符合题意.答:原计划6天完成植树任务11.【答案】:A12.【答案】:20千米/时【解析】:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意,得15 x −151.5x=1560,解得x=20.经检验,x=20是原方程的解且符合题意.则抢修车的速度为20千米/时13.【答案】:A14.【答案】:解:设骑车学生的速度为x km/h,则汽车的速度为2x km/h.根据题意,得10x =102x+2060,解得x=15.经检验,x=15是原方程的解且符合题意,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.。

1-5列方程解简单实际问题

1-5列方程解简单实际问题

x÷0.8=1.25 解: x = 1.25×0.8
x= 1
2.
解:设白键有 x 个。 x-16 = 36 x = 36+16 x = 52
答:白键有52 个。
3.某市居民用电每千瓦·时的价格是0.52元。芳芳加上个月 付电费23.4元,用电多少千瓦·时?
解:设用电 x 千瓦·时。 0.52x= 23.4 x = 23.4÷0.52 x = 45
解:设小红去年的体重是x千克。
x+2.5 = 36 x = 36-2.5 x = 33.5
36-x = 2.5
36-x+x = 2.5 + x
36 = 2.5 + x 2.5+x = 36
x = 33.5
列方程解决实际问题时要注意什么?
先弄清题意,找 要根据题中数 求出答案后,
出未知量,并用 量之间的相等 还要检验结
去年的体重+2.5千克=今年的体重36千克
x+2.5=36
今年的体重36千克-去年的体重=2.5千克 36 -x=2.5
今年的体重36千克-2.5千克=去年的体重
36 -2.5=x
重36千克。
小红去年的体重 是多少千克?
根据“去年的体重+2.5=今年的体重”列出方程。 去年的体重不知道,可以设去年体重为x千克。
解:设小红去年的体重是x千克。 x + 2.5 = 36 x = 36 - 2.5 x = 33.5
重36千克。
小红去年的体重 是多少千克?
根据“今年的体重-去年的体重=2.5”可以怎样列出方程? 解:设小红去年的体重是x千克。 36-x = 2.5 36-x+x = 2.5 + x 36 = 2.5 + x 2.5+x = 36 x = 33.5 答:小红去年的体重是 33.5 千克。

五年级数学下册典型例题系列之第七单元列方程解决鸡兔同笼问题专项练习(解析版)北师大版

五年级数学下册典型例题系列之第七单元列方程解决鸡兔同笼问题专项练习(解析版)北师大版

五年级数学下册典型例题系列之第七单元列方程解决鸡兔同笼问题专项练习(解析版)1.疫情防控,人人有责!某小区买消毒水给小区消毒,花费410元正好购买了以下两种消毒水共15瓶:A种38元/瓶,B种22元/瓶,这两种消毒水分别购买了多少瓶?【答案】A种5瓶;B种10瓶【解析】【分析】根据题意,设A种消毒水买了x瓶,B种消毒水买了(15-x)瓶。

根据瓶数×单价=总价,表示出两种消毒水的钱数,然后相加等于410,列方程解答即可。

【详解】解:设A种消毒水买了x瓶,B种消毒水买了(15-x)瓶。

38x+22(15-x)=41038x+330-22x=41016x=80x=5B种消毒水:15-5=10(瓶)答:这两种消毒水分别购买了5瓶和10瓶。

【点睛】此题有两个未知数,利用方程解答较简单。

2.工厂男工和女工共30人。

男工每天能加工零件30个,女工每天能加工零件35个。

某天全天共加工零件1000个。

工厂里男工和女工各多少人?【答案】男工10人;女工20人【解析】【分析】根据题意,已知男工和女工共30人,设女工有x人,则男工有(30﹣x)人,x 人女工加工零件个数是35x个,(30-x)人男工加工零件个数30×(30-x);女工和男工全天加工1000个;列方程:35x+30×(30-x)=1000;解方程,即可解答。

【详解】解:设女工有x人,则男工有(30﹣x)人35x+30×(30﹣x)=100035x+900﹣30x=10005x=1000-9005x=100x=20男工有30﹣20=10(人)答:工厂里有男工10人,女工20人。

【点睛】本题考查方程的实际应用,根据题意,找出相关的量,列方程,解方程。

3.绿水青山就是金山银山,某小学六年级毕业前夕,有21人参加了植树活动,男生每人栽了3棵树,女生每人栽了2棵树,一共栽了54棵树。

参加植树活动的男、女生各有多少人?【答案】男生有12人;女生有9人【解析】【分析】根据题意可知,男生和女生一共21人,设男生有x人,则女生有21-x人,男生每人栽了3棵树,x人栽了3x棵树,女生有21-x人,每人栽了2棵树,女生一共栽了(21-x)×2棵树,男生女生一共栽了54棵树,列方程:3x+(21-x)×2=54,解方程,即可解答。

1.3、一元二次方程解决实际问题

1.3、一元二次方程解决实际问题

一元二次方程解决实际问题重点、难点: 1. 重点:(1)认识方程是刻画实际问题的一个有效的数学模型,经历列一元二次方程解决简单实际问题的过程;(2)能用图表分析具体问题的数量关系,会用运动、变化的观点考察数量的关系,掌握列一元二次方程解应用题的基本操作步骤;(3)会从具体实例中发现一般的规律,知道二次项系数为1的一元二次方程的根与系数的关系。

2. 难点:(1)将实际问题转化为熟悉的数学问题,运用一元二次方程探索和解决实际问题; (2)懂得二次项系数为1的一元二次方程的根与系数之间的关系,理解一元二次方程根与系数关系的推导过程。

知识梳理:(一)列一元二次方程解应用题1. 应用一元二次方程解决实际问题的步骤:在日常生活实践中,许多问题都可以通过建立一元二次方程这个模型来进行求解,然后回到实际问题中去进行解释和检验。

首先要把实际问题加以分析,抽象成数学问题,然后用数学知识去解决它。

应用一元二次方程解决实际问题的步骤可归结为:“设、找、列、解、验、答”。

(1)设:是指设未知数,可分为直接设和间接设。

所谓直接设,就是指问什么设什么;在直接设未知数比较难列出方程或者列出的方程比较复杂时,可考虑间接设未知数。

(2)找:是指读懂题目,审清题意,明确已知条件和未知条件,找出它们之间的等量关系。

(3)列:是指根据等量关系列出方程。

(4)解:是指求出所列方程的解。

(5)验:分为两步。

一是检验解出的数值是否是方程的解,二是检验方程的解是否符合实际情况。

(6)答:就是书写答案,一定要遵循“问什么答什么,怎么问就怎么答”的原则。

以上几个步骤中,审题是基础,找出等量关系是解决问题的关键,能否恰当设元直接影响着列方程和解方程的难易,所以要根据不同的具体情况把握好解题的每一步。

一元二次方程解应用题应注意:(1)写未知数时必须写清单位,用对单位;列方程时,方程两边必须单位一致;答必须写清单位。

(2)注意语言和代数式的转化,要把用语言给出的条件用代数式表示出来。

实际问题与一元二次方程练习题(含答案)

实际问题与一元二次方程练习题(含答案)

实际问题与一元二次方程1.(2013.铜仁)某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克。

经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

现商场要保证每天盈利6000元,那么每千克应涨价多少元?解:设每千克应涨价x元,依题意列方程(500-20x)(10+x)=6000 整理得:x2-15x+50=0(x-5)(x-10)=0 x1=5 x2=10 答:---------。

2.若方程(m+1)x2m1 +4x+2=0是关于x的一元二次方程,则m= 1 。

3.如右图,将边长为4的正方形,沿两边剪去两个边长为x的矩形,剩余部分的面积为9,可列出方程为 (4-x)2=9 。

4.某工厂2013年的年产值为200万元,由于技术改进,每年的产值有所增长,预计到2015年该工厂的年产值为242万元,求每年平均增长率。

解:设每年平均增长率为x,依题意列方程 200(1+x)2=242x1=0.1=10% x2=-2.1 (舍去) 答:--------------。

5.(2013.凤阳)某学校计划在一块长8米,宽6米的矩形草坪的中央划出面积为16平方米的矩形地块栽花,使这矩形草坪四周的草地宽度都一样,求四周草地的宽度应为多少?。

解:设四周草地的宽度为x米,依题意列方程 (8-2x)(6-2x)=16 化为一般形式为 x2-7x+8=0 解:略答:-------。

6.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。

为了迎接“六.一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。

经市场调查发现,每件童装每降价4元,平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?。

解:设每件童装应降价x元,依题意列方程 (40-x)(20+2x)=1200x2-30x+200=0 解得:x1=20 x2=10为了尽量减少库存,所以取x1=20 答:--------。

人教版五年级数学上实际问题与方程(一)练习题及答案

人教版五年级数学上实际问题与方程(一)练习题及答案
9x151238x749494x17555x90三故宫的面积是72万平方米比天安门广场面积的16万平方米天安门广场的面积是多少万平方米
5.7 实际问题与方程(一)
一、看图列方程并求解。
二、解方程并检验。
9X+15=123 8X-7=49 49-4X=17 55+5X=90
三、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米,天安门广场的面积是多少万平方米?
四、1.解:设大象最快能达到每小时x千米。
2x+30=110
2x-10=110x=60
四、猎豹是世界上跑得最快的动物,能达到每小时110千米,比大象的2倍还多30千米。比汽车的2倍少10千米。
1.大象最快能达到每小时多少千米?
2.汽车每小时行多少千米?
答案:
一、50 + 2x=150x=504×+2=74 x=18
二、x=12 x=7 x=8 x=7
三、解:设天安门广场的面积是x万平方米。2x-16=72 x=44

完整版)五年级列方程解决实际问题的练习题

完整版)五年级列方程解决实际问题的练习题

完整版)五年级列方程解决实际问题的练习题训练1:列方程解决实际问题1.学校今年栽梧桐树128棵,比樟树棵数的3倍少22棵。

学校今年栽樟树多少棵?设学校栽樟树的棵数为x,则有:x = 3 × (128 + 22) - 22解得:x = 370学校今年栽樟树370棵。

2.学校饲养小组今年养兔子25只,比去年养的只数的3倍少8只,去年养兔子多少只?设去年养的兔子只数为x,则有:25 = 3x - 8解得:x = 11去年养了11只兔子。

训练2:列方程求比一个数的几倍多几的数是多少的实际问题1.上海“东方明珠”电视塔高468米,比一座普通住宅楼的31倍多3米,这幢普通住宅楼高多少米?设普通住宅楼的高度为x,则有:468 = 31x + 3解得:x = 15这幢普通住宅楼高15米。

2.今天促销,售出女装125件,比男装的4倍还多5件。

今天售出的男装多少件?设售出男装的件数为x,则有:125 = 4x + 5解得:x = 30今天售出的男装30件。

训练3:年龄问题1.爸爸的年龄是XXX的3.7倍,XXX比爸爸小27岁。

爸爸和XXX各多少岁?设XXX的年龄为x,则有:爸爸的年龄 = 3.7x3.7x - x = 27解得:x = 9XXX今年9岁,爸爸今年33岁。

2.去年XXX比他爸爸小28岁,今年爸爸的年龄是XXX 的8倍。

XXX今年多少岁?设XXX今年的年龄为x,则有:去年爸爸的年龄 = x + 28今年爸爸的年龄 = 8x8x - (x + 28) = 28解得:x = 4XXX今年4岁。

3.妈妈今年的年龄是儿子的3倍,妈妈比儿子大24岁。

儿子和妈妈今年分别是多少岁?设儿子今年的年龄为x,则有:妈妈的年龄 = 3x3x - x = 24解得:x = 8儿子今年8岁,妈妈今年24岁。

训练4:行程问题1.两地相距660千米,甲车每小时行32千米,乙车每小时行34千米,两车分别从两地同时出发相向而行,经过几小时相遇?设两车相遇的时间为x,则有:32x + 34x = 660解得:x = 15两车15小时后相遇。

列方程解决简单的实际问题(1)

列方程解决简单的实际问题(1)

第四课时:列方程解决简单的实际问题(1)教学内容:教科书第8~9页例7,完成随后的“练一练”和练习二第1~4题。

教学目标:1、在具体情境中掌握列方程解决简单的实际问题的基本方法和一般步骤。

2、培养从不同角度分析问题、发展思维灵活性。

3、培养良好的作业习惯,自觉进行检验。

教学重难点:理解列方程解决实际问题的基本思考方法。

教学方法与手段:挂图,实物投影仪。

教学过程:一、情景导入1、同学们,我们每年都在长高,体重也在增加。

(出示例7)小红称得体重36千克,她说:“我比去年增加了2.5千克。

”你知道小红去年的体重是多少千克吗?2、学生用以前的知识解答:36-2.5=33.5(千克)3、揭示课题今天我们要学习用一种新的本领来解答这道题,新本领就是:列方程解决简单的实际问题。

(板书课题)二、教学新授(一)教学例71、出示情景图,弄清题意。

2、说说题中的数量关系(按条件叙述的顺序进行思考)(板书:去年的体重+2.5=今年的体重/今年的体重-去年的体重=2.5)3、强调:小红去年的体重不知道,我们可以高为x千克,再列方程解答。

4、示范列方程解应用题的过程。

解:设小红去年的体重是x千克。

X+2.5=365、完成书上的填空。

6、你是怎样检验的?7、问:还可以怎样列方程?在小组里交流。

追问:这样列方程是根据哪个数量关系?8、列方程解决实际问题时要注意什么?(二)完成“练一练”⑴读题,读懂题意。

⑵说说题中的数量关系,并在书上填空。

⑶列方程解答。

指名板演。

⑷交流:注意书写格式。

三、巩固练习1、“练习二” 1解方程。

(作业)①说说x在方程中各是什么数。

②做在草稿上,指名板演。

③交流,指导纠错2、“练习二” 2①读题,说说题意。

②说说数量关系,根据数量关系列方程解答。

③交流: x-36=163、“练习二” 3和4(作业)①读题,说说题意。

②说说数量关系,根据数量关系列方程解答。

③交流,引导纠错。

四、课堂总结这节课主要学习了什么知识?通过这节课的学习,你有哪些收获?指出:列方程解应用题时,要把未知量与已知量结合起来进行列式。

列方程解决实际问题(1)练习

列方程解决实际问题(1)练习
第11题:在本题中出现了两个问题,那
学程预设
导学策略
调整与反思
三、课堂总结。(预设2分钟)
么我们在写设句时要注意什么?
第13题,引导学生阅读题中的文字说明,了解“摄氏温度”和“华氏温度”之间的联系。
通过今天的练习,你有什么收获?
作业
设计
四、当堂检测,评价反思。(预设10分钟)
1、练习一第9、10、12题。
“列方程解决实际问题(1)练习”教学计划
(主备人:倪勤)
施教时期 年 月 日
教学内容
书P3页“练习一”第6-13题
共几课时
课型Biblioteka 练习课第几课时教学


1、使学生在解决实际问题的过程中,进一步理解并掌握形如ax±b=c的方程的解法,能够熟练的列方程解决两步计算的实际问题。
2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。
3、根据学生的质疑,顺势揭示课题,认定学习目标。
【板块二】
1、第7题小结:在一题目中,可能会有几个不同的相等关系,我们应该选择合适的等量关系来列方程。
2、第8题小结:在解决实际问题时,我们可以选择合适的方法整理已知条件,理清题目的数量关系。
3、(1)教师巡视学生练习,适时帮助学困生。
(2)集体交流:
2、练习第8题。
(1)引导学生用自己喜欢的方法将与杨树和松树有关的信息分别列表整理。
(2)生独立解决后再要求说说数量之间有怎样的数量关系,是根据什么样的数量列出的方程。最后核对得数。
3、学生独立练习第11、13题。(指名上黑板)
【板块一】
1、组织交流。
2、这些方程,有什么共同特点吗?

苏教版六年级数学第一单元列方程解决实际问题(一)

苏教版六年级数学第一单元列方程解决实际问题(一)

苏教版六年级数学——第一单元列方程解决实际问题(一)教学内容:第2-3页练习一第6-13题。

教学目的:1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如axb=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、提高分析数量关系的能力,培养学生思维的灵活性。

3、在积极参与数学活动的过程中,树立学好数学的信心。

教学重点、难点:引导学生独立分析问题,找出题目中的等量关系。

教学对策:在积极参与数学活动的过程中,树立学好数学的信心。

教学准备:教学光盘教学过程:一、复习准备1、解方程(练习一第6题的第1、3小题)4x+12=50 2.3x-1.02=0.36学生独立完成,再指名学生板演并讲评,集体订正。

二、尝试练习师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

出示:30x2=360学生独立尝试完成,全班交流。

指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?三、巩固练习1、出示练习一第7题。

(1)分析数量关系提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah2。

联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。

你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x2=0.39。

第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。

板书:3x+18=19.8。

(2)学生独立计算,并检验答案是否正确,全班核对。

小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

2、练习一第8题。

学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。

(提示学生可从得数的合理性来初步检验)3、练习一第9题。

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。

一元一次方程的应用题(含解析)

一元一次方程的应用题(含解析)

一元一次方程的应用题(一)考试要求:内容基本要求略高要求较高要求一元一了解一元一次方会根据具体问题列出一元一次方能运用整式的加减运算次方程程的有关概念程对多项式进行变形,进一步解决有关问题一元一理解一元一次方能熟练掌握一元一次方程的解会运用一元一次方程解次方程程解法中的各个法;会求含有字母系数(无需讨论)决简单的实际问题的解法步骤的一元一次方程的解例题精讲:应用题是中学数学中的一类重要问题,一般通过对问题中量的关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的方法一般来讲,有以下几种:直接设未知数解应用题:直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;间接设未知数解应用题:设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;引入辅助未知数解应用题:设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为 x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)模块一和差倍分问题【例1】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的 3 倍;“朝天龙”的条数是“珍珠”的 2 倍,且“朝天龙”比“水泡”少 1 条,这三种金鱼各有几条呢?【解析】设“珍珠”的条数为x条,则“水泡”“朝天龙”的条数分别为3x条、2x条.依题意得:3x2x1,x1,从而3x3,2x2.【答案】3,2,1x【巩固】甲队有 32 人,乙队有 28 人,现从乙队抽人到甲队,使甲队是乙队人数的 2 倍,依题意,列出方程为【解析】略【答案】32 2(28 ).x x 【巩固】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有 2 吨运不走;若每辆汽车装 4 吨货物,那么装完这批货物后,还可以装其他货物 1 吨,问汽车有 多少辆?这批货物有多少吨?【解析】设有汽车 辆.依题意得:3.5 2 4 1,解之得: 6 ,41 23,故汽车 x x x x x 有 6 辆,货物有 23 吨.【答案】6 ; 23【例2】 ⑴ 甲仓库有粮120吨.乙仓库有粮90 吨.从甲仓库调运剂后甲仓库存粮是乙仓库的一半.吨到乙仓库,调 ⑵ 甲乙两个圆柱体容器,底面积比为5∶3,甲容器水深20c m ,乙容器水深10c m , 再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?1【解析】⑴ 从甲仓库调运 吨到乙仓库,依题意得120 (90) ,解得 x 50 . x x x 2⑵ 设这时水深 cm ,依题意得 5( 20) 3( 10),解得 35 .若学生不好理x x x x 解,不妨多设一个底面积比为5 ∶3 .方程为5 (20) 3 ( 10) 即可. a a a x a x 【答案】50 ;352【巩固】某公司有甲乙两个工程队,甲队人数比乙队人数的 多 28 人.现因任务需要,从3乙队调走 20 人到甲队,这时甲队人数是乙队人数的 2 倍,则甲乙两队原来的人数 分别是多少人?2【解析】设乙队原来有 x 人,则甲队有 28 人.依题意可列:x 32 2 x 20 x 28 20 ,解得: 66x 3【答案】72,66【巩固】甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2 倍少189千米,乙铁路长比丙铁路少8 千米,求甲铁路的长. 【解析】设丙铁路长为 千米,则乙铁路长x 8 千米,甲铁路长2 x 8 189 千x 米.依题意可列: x x 8 2 x 8189 1191【答案】499,344,352【巩固】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长1 1度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 ,此时cm 3 木桶中水的深度是5. cm1【解析】设此时木桶中水的深度为 c m ,依题意得,两根铁棒的长度为 [ (1 )]cm 和x x 31 1 1[x (1 )]cm ,故[x (1 )] [x (1 )] 55,解得 20.x 5 3 5【答案】20【例3】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有 100 只吧!”牧羊人答道:“如果这群 羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只 羊也算进去,才刚好凑满 100 只.”问牧羊人的这群羊共有多少只?1 2 14【解析】设这群羊共有 只,依题意,有2 1100 ,解之得 36 .x x x x x 【答案】36模块二 行程问题追击问题解决追击问题的一个最基本的公式:追击时间 速度差 追击的路程.于此相关 的问题都可以应用这一公式进行解答.【例4】 敌我两军相距 32 千米,敌军以每小时 6 千米的速度逃窜,我军同时以每小时 16 千米的速度追击在相距 2 千米的地方发生战斗,问战斗是从 开始追击后几小时发生的?【解析】根据追击问题的基本公式:追击时间 速度差 追击的路程.设战斗是从开始追击后 小时发生的.则依题意可列:166 x 32 2 , x 解得: 3. x 【答案】3【巩固】环城自行车赛,最快的人在开始 48 分钟后遇到最慢的人,已知最快的人的速度是3最慢的人速度的 倍,环城一周是 20 千米,求两个人的速度。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (84)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (84)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,甲、乙两种商品的进价和售价如表:(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原售价销售,乙商品在原售价上打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,求第二次乙种商品是按原价打几折销售?【答案】(1)两种商品全部卖完后可获得1950元利润;(2)9折【解析】【分析】(1)设第一次购进乙种商品x件,则甲种商品的件数是(2x-30)件,根据题意列出方程求出其解就可以;(2)设第二次甲种商品的售价为每件y元,根据第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,建立方程求出其解即可.【详解】(1)设第一次购进乙种商品x件,则甲种商品的件数是(2x﹣30)件,根据题意列方程,得:30x+22(2x﹣30)=6000,解得:x=90,所以甲商品的件数为:2x﹣30=2×90﹣30=150(件),可获得的利润为:(29﹣22)×150+(40﹣30)×90=1950(元).答:两种商品全部卖完后可获得1950元利润;(2)设第二次乙种商品是按原价打y折销售,根据题意列方程,得:y﹣30)×90×3=1950+720,(29﹣22)×150+(40×10解得:y=9,答:第二次乙种商品是按原价打9折销售.【点睛】本题考查了列一元一次方程解实际问题的运用及一元一次方程的解法的运用.解答时根据题意建立方程是关键.解题时注意利润=售价-进价的运用.32.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段达到节水的目的,如表是调控后的价目表.价目表注:水费按月结算.(1)若该户居民8月份用水8吨,则该用户8月应交水费元;若该户居民9月份应交水费26元,则该用户9月份用水量为吨;(2)若该户居民10月份应交水费30元,求该用户10月份用水量;(3)若该户居民11月、12月共用水18吨,共交水费52元,求11月、12月各应交水费多少元?【答案】(1)20;9.5;(2)该用户10月份用水量为10.25吨;(3)11月份交16元,12月份交36元或11月份交36元,12月份交16元.【解析】【分析】(1)因为用水量为8 吨,所以计算单价分为两段,列式计算即可;先计算用水量为6吨和10吨的总价,与26对比,发现9月份用水量x的取值范围,从而列出方程求解;(2)与(1)类似,由题意得出水费30元,用水量超过了10吨,列方程求未知数即可;(3)设该户居民11月、12月共应交的水费为W元,由题意表示出11月用水量;分三种情况进行讨论:当0≤a≤6时,当6<a≤8时,当8<a<9时,列式表示即可.【详解】解:(1)6×2+(8﹣6)×4=20,答:该用户8月应交水费20元;设该用户9月份用水量为x吨,2×6=12,2×6+(10﹣6)×4=28,∵12<26<28,∵6<x<10,则6×2+4(x﹣6)=26,x=9.5,答:该用户9月份用水量为9.5吨;故答案是:20;9.5;(2)该用户10月份用水量为y吨,则y>10,根据题意得:6×2+(10﹣6)×4+8(y﹣10)=30,y=10.25;(3)设11月份用水x吨,12月份用水(18﹣x)吨,∵当0≤x≤6时,18﹣x>10,由题意得:2x+2×6+4×4+8[(18﹣x)﹣10]=52.即:﹣6x+92=52,(舍去),解得x=203∵当6<x≤8时,18﹣x≥10,2×6+4(x﹣6)+2×6+4×4+8[(18﹣x)﹣10]=52,解得x=7,18﹣x=11.故11月份的水费是:6×2+1×4=16(元)12月份的水费是:6×2+4×4+1×8=36(元).同理可得:11月份交36元,12月份交16元.答:11月份交16元,12月份交36元或11月份交36元,12月份交16元.【点睛】本题考查了一元一次方程的应用,居民交水费问题,明确单价、用水量、总价的关系;因为单价分三种,较为麻烦,容易出错,因此计算时要耐心细致;首先要弄清每个单价部分的最大值,这样才能知道某月水费价格与水量之间的关系,尤其是第(3)问,不但要注意11月的用水量的范围,还要注意12月的用水量的范围.33.在“十一”期间,小明,小亮等同学随家长共15人一同到游乐园游玩,售票员告诉他们:大人门票每张50元,学生门票是6折优惠.结果小明他们共花了650元.那么小明他们一共去了几个家长,几个学生?【答案】小明他们一共去了10个家长,5个学生.【解析】【分析】设小明他们一共去了x个家长,(15﹣x)个学生,根据题意总价=家长总票价+学生总票价,列出方程解答即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,可得:50x+50×0.6×(15﹣x)=650,解得:x=10.答:小明他们一共去了10个家长,5个学生.【点睛】考查利用一元一次方程解决实际问题,关键在于找等量关系列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.34.商场举行优惠活动,活动规则如下:①一次性购物不超过60元不享受任何优惠;②一次性购物超过60元但不超过180元,一律打九折;③一次性购物超过180元,一律打八折.(1)小刚和朋友在活动中各自单独购买了原价为a,b元()<<<的商品,则他们实际付款金额之和为元.a b60,60180(2)小明在商场分别购买了两次商品,共花费193.2元,其中第二次商品原价是第一次商品原价的4倍,那么这两次商品原价总和是多少元?【答案】(1)a+0.9b;(2)210元或230元【解析】【分析】(1)根据小刚花的钱不优惠,他的朋友打九折计算即可;(2)分三种情况求解即可.【详解】解:(1)由题意得他们实际付款金额之和为(a+0.9b)元.故答案为:a+0.9b;(2)设第一次购物的原价是x元,则第二次购物4x元.①当60<4x≤180,即15<x≤45时,由题意得x+4x×0.9=193.2,解得x=42,∴4x=168,∴x+4x=210,即这两次商品原价总和是210元;②当180<4x<240,即45<x<60时,由题意得x+4x×0.8=193.2,解得x=46,∴4x=184,∴x+4x=230,即这两次商品原价总和是230元;③当x>60时,4x>240,不合题意.综上可知,这两次商品原价总和是210元或230元.【点睛】本题考查了列代数式,一元一次方程的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.35.已知:如图,点A在原点左侧,点B在原点右侧,且点A到原点的距离是点B到原点距离的2倍,AB=15.(1)点A表示的数为________,点B表示的数为________;(2)点P从点A出发,以每秒1个单位长度的速度向点B方向运动;同时,点Q从点B出发,先向点A方向运动,当与点P重合后,马上改变方向与点P同向而行且速度始终为每秒2个单位长度。

五年级-简易方程解决问题(应用题)含答案

五年级-简易方程解决问题(应用题)含答案
25. 根据“17比x的2倍少6,”列出下列方程:①17 − 2x = 6,②2x − 17 = 6,③ 2x + 6 = 17,④2x − 6 = 17,其中正确的是()
A. ①和③ B. ①和④ C. ②和③ D. ②和④
26. 恒丰果园收了780千克苹果,平均每筐装x千克,装了30筐后,还剩下15千克没装。下列方程 中()是错误的。 A. 780−30x=15 B. 30x+15=780 C. 30x−15=780 D. 780−15=30x
17. 正方形的一组对边增加6厘米,另一组对边减少4厘米,结果得到的⻓方形与原来的正方形面积 相等,原来正方形的面积是()平方厘米。 A. 9 B. 10 C. 20 D. 144
18. 郑州市目前最大的公园−−郑州园博园,它的总面积为6180亩,比人⺠公园的13倍还多304 亩。如果把人⺠公园的面积设为x亩,那么,下面方程的是() A. 13x+304=6180 B. 13x−304=6180 C. 13x=6180+304
47. 两人同时从两地相向而行,甲每时16千米,乙每时65千米。甲离出发点62.4千米处与乙相遇。 AB两地相距多少?使用解方程和算式两种方法。
48. 某人领得工资2400元,有20元、50元、100元三种人⺠币,共50张,其中20元与50元的张数 一样多。那么20元、50元、100元各有多少张?
49. 两个队参加数学对抗赛,甲队的平均分是75分,乙队的平均分是73分,两队同学的平均分是 73.5分。已知乙队比甲队多6人,那么乙队有多少人?
19. 从30里减去x与2的积,差是14,求x,正确的解是() A. x = 6 B. x = 8 C. x = 7
20. 五年级种树60棵,比四年级种的2倍少4棵。四年级种树()

五年级上册列方程解决问题练习题(一)含答案

五年级上册列方程解决问题练习题(一)含答案

五年级上册列方程解决问题练习题(一)含答案一、数量关系1.设这个数为x,则方程为4x+2.3=7.8.2.设这个数为x,则方程为5(x+2.3)=34.5.3.设这个数为x,则方程为(x-2.3)/2.4=4.5.4.设每支彩笔为x元,则方程为3x+2(1.5)=12.5.设每支彩笔为x元,则方程为3x+2=10.二、列方程解决问题1.设每本笔记本为x元,则方程为2(12.4)+3x=29.3.2.设儿子今年为x岁,则爸爸为4x岁,方程为x+4x=40.3.设乙车每小时行x千米,则方程为4(45)+4(x)=400.4.设经过x小时两车相遇,则方程为80x+70x=450.5.设桃树的棵树为x,则梨树的棵树为x/2-40,方程为x+(x/2-40)=250.6.设文艺书的本数为x,则科技书的本数为2x+47,方程为2x+47+x=495.7.设文艺书的本数为x,则科技书的本数为2x+47,方程为2x+47+x=495+x。

8.设宽为x,则长为2x,方程为2x+2x+x+x=72.9.设梨的重量为x千克,则苹果的重量为1.8x+720,方程为1.8x+x+720=总重量。

10.设下层的书本数为x,则上层的书本数为3x,方程为3x-20=x+20.5.假设果园里有梨树x棵,则桃树有2x+40棵。

根据题意,24x+40+x=250,解得x=70,代入可得桃树有180棵。

改写为:果园里有70棵梨树,180棵桃树。

6.假设文艺书有x本,则2x+47=495,解得x=224.改写为:文艺书有224本。

7.假设文艺书有x本,则2x+47=495,解得x=224.文艺书和科技书一共有x+495=719本。

改写为:文艺书和科技书一共有719本。

8.设这个长方形框架的宽为x,则长为2x cm。

根据题意,2(2x+x)=72,解得x=12,代入可得长为24cm。

改写为:这个长方形框架的宽为12cm,长为24cm。

9.设梨是x千克,则苹果为1.8x千克。

列方程解决问题例1

列方程解决问题例1
2.解一解。(P75第2题)
解:设平均每秒大约有x个婴儿出生。 60 x=300 60 x ÷ 60=300 ÷ 60 x=5 答:平均每秒大约有5个婴儿出生。
四、课堂总结
用方程解决问题(1)
1. 学会用方程解决简单的实际问题;
2. 掌握列方程解决实际问题的步骤和书 写格式;
五、布置课外作业
1.P72第12题余下题目;
小明的妈妈用20元买了一些牛奶,牛奶每盒2.5元,小明的妈
妈买了多少盒牛奶?
0.08+x-0.08=1.53-0.08 x=1.45 答:小明去年身高1.45米。
三、巩固新知 拓展应用
1.做一做 列方程解决下面的问题。
(2)
半小时=30分
解:设一个滴水的水龙头 每分钟浪费x千克水。
30x=1.8 30x÷30=1.8÷30 x=0.06
答:一个滴水的水龙头每分 钟浪费0.06千克水。
找回的钱数 ) ③付出的钱数-应付的钱数=( 现有的本数 ) ④原有的本数+又买来的本数=(
一、创设情境 导入新知
问题:1. 从图中能得到哪些数学信息? 2. 怎样理解“超过原纪录0.06米”?
3. 在这个情境中,有哪几个数量?
二、合作交流 探究新知
(一)明确问题 提出要求
学校原跳远记录是多少米?
2.《同步导学与优化训练》第36页内容。
3.《学练优》第37页内容。
课堂作业
1.根据题意写出等量关系,再列方程。
①一堆沙有40吨,用去x吨后,还剩下5吨。

方程:(
) ○ (
)=(


②一头大象重x吨,一头蓝鲸的重量是大象的24倍,蓝鲸重132吨。

方程:(

小学七年级数学上册解题技巧专题:列一元一次方程解决实际问题(含答案)

小学七年级数学上册解题技巧专题:列一元一次方程解决实际问题(含答案)

小学七年级数学上册解题技巧专题:列一元一次方程解决实际问题——快速有效寻找等量关系◆类型一 利用基本数量关系寻找相等关系(路程,工程,利率,周长,面积,体积等公式)1.(杭州中考)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )A .54-x =20%×108B .54-x =20%×(108+x )C .54+x =20%×162D .108-x =20%(54+x )2.一个长方形的周长为16cm ,长与宽的差是1cm ,那么长与宽分别为( )A .5cm ,3cmB .4.5cm ,3.5cmC .6cm ,4cmD .10cm ,6cm3.某小组每天需生产50个零件才能在规定时间内完成一项生产任务,实际上该小组每天比原计划多生产6个零件,结果比规定时间提前3天并超额生产了120个零件,若设该小组需完成的零件数为x 个,则可列方程为( )A .x +12050-x 50+6=3 B .x 50-x 50+6=3 C .x 50-x +12050+6=3 D .x +12050+6-x 50=3 4.已知小王用2000元买了债券,一年后的本息和为2100元,则小王买的债券的年利率是 %.5.两地相距450千米,甲、乙两车分别从A ,B 两地同时出发,相向而行,已知甲车的速度为120千米/时,乙车的速度为80千米/时,经过多少小时两车相距50千米?6.某药业集团生产的某种药品包装盒的表面展开图如图所示.如果长方体盒子的长比宽多4cm ,求这种药品包装盒的体积.◆类型二 抓住问题中的“关键词”寻找相等关系(“共有”“比……多……”“是……倍”等)7.(简阳校级期中)有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )A .2小时B .3小时C .125小时D .52小时 8.(淄博中考)把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为( )A .70cmB .65cmC .35cmD .35cm 或65cm9.(哈尔滨中考)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有 幅.10.如图是一张日历表,涂阴影的8个数字的和是134,则中间的数a 是 .11.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?12.(江西中考)情境:试根据图中的信息,解答下列问题:(1)购买6根跳绳需 元,购买12根跳绳需 元.(2)小红比小明多买2根跳绳,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.◆类型三抓住问题中的“用不同方式表示同一个量”寻找相等关系13.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每相邻两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用光.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x14.有一种足球是由32块黑色和白色相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x块,则黑皮有(32-x)块,每块白皮有6条边,共6x条边,因每块白皮有三条边和黑皮连在一起,故黑皮共有3x条边,要求出白皮、黑皮的块数,列出的方程正确的是()A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x15.用一个底面是20cm×20cm的正方体容器(已装满水)向一个长、宽、高分别为16cm,10cm和5cm的长方体铁盒内倒水,当铁盒装满水时,正方体容器中水的高度下降cm.16.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少名学生?17.有一些相同的房间需要粉刷墙面,一天3名一级技工粉刷8个房间,结果还有50平方米没有刷完;同样时间5名二级技工刷完10个房间外,还多刷了另外的40平方米.已知每名一级技工比二级技工一天多刷10平方米,求每个房间需要粉刷的墙面面积.参考答案与解析1.B 2.B 3.C 4.55.解:设经过x 小时两车相距50千米,依题意有(120+80)x =450-50或(120+80)x =450+50,解得x =2或2.5.答:经过2小时或2.5小时两车相距50千米.6.解:设长方体宽为x cm ,则长为(x +4)cm ,高为12[13-(x +4)]cm ,由题意,得2x +[13-(x +4)]=14,解得x =5,所以x +4=9,12[13-(x +4)]=2,9×5×2=90(cm 3). 答:这种药品包装盒的体积为90cm 3.7.C 8.A 9.69 10.1711.解:设该企业捐给乙校矿泉水x 件,则有x +(2x -400)=2000,解得x =800,所以2000-800=1200.答:该企业捐给甲校矿泉水1200件,捐给乙校矿泉水800件.12.解:(1)150 240 解析:6×25=150(元),12×25×0.8=240(元);(2)有这种可能,设小红购买跳绳x 根,则25×80%x =25(x -2)-5,解得x =11.答:小红购买跳绳11根.13.A 14.B 15.216.解:设这个班有x 名学生,则有3x +20=4x -25,解得x =45.答:这个班共有45名学生.17.解:设每个房间需要粉刷的墙面面积为x 平方米,则有8x -503-10x +405=10,解得x =52.答:每个房间需要粉刷的墙面面积为52平方米.综合滚动练习:一元一次方程的解法及其应用1.B 2.A 3.C 4.B 5.D 6.B 7.D 8.D9.3 10.2 11.50°12.20 解析:设良马x 天可以追上驽马,则(240-150)x =150×12,解得x =20. 13.1.8m 1.2m14.40 解析:因为56>0.50×100=50,所以该居民用电量超过了基本用电量a 度,根据题意,得0.50a +(100-a )×[0.50×(1+20%)]=56,解得a =40.15.解:(1)x =-7;(6分)(2)x =-3.(12分)16.解:设笔的价格为x 元/支,笔记本的价格为3x 元/本.(2分)由题意,得10x +5×3x =30,(6分)解得x =1.2,所以3x =3.6.(9分)答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.(10分)17.解:设正方形纸片的边长为x cm ,(2分)根据题意,得4x =5(x -4),(5分)解得x =20.(7分)所以4x =4×20=80(cm 2).(9分)答:每次剪下的纸条的面积是80cm2.(10分)18.解:(1)设一个水瓶x元,则一个水杯(48-x)元,(2分)根据题意,得3x+4(48-x)=152,(5分)解得x=40,(7分)则48-x=8.(9分)答:一个水瓶40元,一个水杯8元;(10分)(2)甲商场所需费用为(40×5+8×20)×80%=288(元);(14分)乙商场所需费用为5×40+(20-5×2)×8=280(元),(18分)因为288>280,(19分)所以选择乙商场购买更合算.(20分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 方程
第1课时列方程解决简单的实际问题(1)
不夯实基础,难建成高楼。

1. 填一填。

(1)同城水果店运来苹果24筐,梨比苹果的x倍少6筐,梨运来( )筐。

(2)外婆家养了m只鸡,养的鸭的只数比鸡的1.5倍多10只。

外婆家养了( )只鸭。

2. 解方程。

4x-7.2=10 18+15x=21
2x+2.4=12.4 0.7x+0.63=42
3. 根据题意把方程补充完整。

(1)小明看一本153页的书,他每天看x页,看了5天后还剩63页没看。

________________________=63
________________________=153
(2)妈妈买了20千克大米,每千克2.80元,又买了15千克面粉,每千克x元,一共用去131.80元。

________________________=131.80
________________________=2.80×20
4. 王师傅要加工600个零件,8天后还余下120个没有加工,平均每天加工多少个零件?
重点难点,一网打尽。

5. 列出方程,并求出方程的解。

(1)20比一个数的8倍少2.4,求这个数。

(2)48加上某数的2倍得146,这个数是多少?
6. 看图列出方程,并求出方程的解。

(1)
(2)
7. 列方程解决问题。

(1)果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?
(2)王阿姨买了11个暖水瓶,付了200元钱,找回35元,每个暖水瓶多少元?
(3)在2010年广州亚运会上中国一共获得199枚金牌,比1982年在新德里亚运会上获得的金牌枚数的3倍多16枚,1982年新德里亚运会上中国获得了多少枚金牌?
举一反三,应用创新,方能一显身手!
8. 在下面的里填上适当的数,使每个方程的解都是x=2。

+5x=25 5x-=7.3
2.3x×=92 2.9x÷=0.58
1 方程
第1课时
1.(1)24x—6 (2)1.5m+10
2. x=4.3 x=0.2 x=5 x=59.1
3. (1)153-5x5x+63 (2)2.80×20+15x131.80-15x
4. 设平均每天加工x个零件。

600-8x=120 x=60
5. (1)2.8 (2)49
6. (1)2x+1.2=4.8 x=1.8 (2)4x+1.5=3.9 x=0.6
7. (1)设梨树有x棵。

3x-270=30 x=100
(2)设每个暖水瓶x元。

200-11x=35 x=15
(3)设1982年新德里亚运会上中国获得了x枚金牌。

3x+16=199 x=61
8. 15 2.7 8 25 提示:将x=2代入方程,□作为未知数求解。

相关文档
最新文档