人教版高一数学必修2第三章直线与方程单元测试题及答案

合集下载

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析必修2第三章《直线与方程》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是()A。

30° B。

45° C。

60° D。

90°2.如果直线ax+2y+2=与直线3x-y-2=平行,则系数a为()A。

-3 B。

-6 C。

-2/3 D。

2/33.下列叙述中不正确的是()A。

若直线的斜率存在,则必有倾斜角与之对应。

B。

每一条直线都有唯一对应的倾斜角。

C。

与坐标轴垂直的直线的倾斜角为0°或90°。

D。

若直线的倾斜角为α,则直线的斜率为tanα。

4.在同一直角坐标系中,表示直线y=ax与直线y=x+a的图象(如图所示)正确的是(选项不清晰,无法判断)5.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于()A。

2 B。

3 C。

9 D。

-96.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是()A。

x+y+1=0 B。

4x-3y=0 C。

4x+3y=0 D。

4x+3y=0或x+y+1=07.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是()A。

4 B。

13 C。

15 D。

178.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB 相交,则l的斜率k的取值范围是()A。

k≥3/4或k≤-4/3 B。

-4/3≤k≤3/4 C。

-3≤k≤4 D。

以上都不对9.已知直线l1:ax+4y-2=与直线l2:2x-5y+b=互相垂直,垂足为(1,c),则a+b+c的值为()A。

-4 B。

20 C。

高一数学必修2《第三章_直线与方程》基础测验(含答案)

高一数学必修2《第三章_直线与方程》基础测验(含答案)

小太阳英教中心高一数学《第三章 直线与方程》基础测验一、选择题(共10小题,每小题4.5分,共45分)1、若A (-2,3),B (3,-2),C (m ,21)三点共线,则m 的值为( ) A 、2 B 、-2 C 、21 D 、21-2、直线01025=--y x 与坐标轴围成的三角形的面积为( )A 、-5B 、5C 、-10D 、103、若直线04)2(=-+-y x m 的倾斜角是钝角,则m 的取值范围是( )A 、2- mB 、2 mC 、2- mD 、2 m4、如果直线04)2()52(=+-++y a x a 与直线01)3()2(=-++-y a x a 相互垂直,则a 的值等于( )A 、2B 、-2C 、2或-2D 、0或2或-25、过A (4,1)且在两坐标轴上的截距相等的直线方程是 ( )A 、05=-+y xB 、05=--y xC 、0405=-=-+y x y x 或D 、0405=+=--y x y x 或6、若A (-1,2),B (0,-1),直线A B ∥l 且l 过点 C (-2,3),则直线l 的方程为( )A 、033=-+y xB 、033=-+y xC 、033=++y xD 、033=+-y x7、点(-4,3)与直线024301032=-+=+-y x y x 和的交点的距离是( )A 、5B 、5C 、52D 、108、已知第一象限的点(a ,2)到直线03=+-y x 的距离为1,则a 为( )A 、2B 、22-C 、12+D 、12-9、若直线l :0433=-+-=y x kx y 和直线的交点位于第二象限,则直线l 的倾斜角的取值范围是( )A 、【ππ,2)B 、(ππ,2)C 、(32,2ππ)D 、(ππ,3) 10、两点A (m+2,n+2)和B (n-m ,-n )关于直线1134=+y x 对称,则m,n 的值为( )A 、m=-1,n=2B 、m=4,n=-2C 、m=2,n=4D 、m=4,n=2二、填空题(共6空,每空4分,共24分)11、若直线l与过(3-,9)与(326,-15)两点的直线平行,则l的倾斜角是0。

《必修2》第三章“直线与方程”测试题(含标准答案)

《必修2》第三章“直线与方程”测试题(含标准答案)

《必修2》第三章“直线与方程”测试题一.选择题:1. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D 2.若直线20x ay ++=和2310x y ++=互相垂直,则a =( ) A .32-B .32C .23-D .23 3.过11(,)x y 和22(,)x y 两点的直线的方程是( )111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=4.直线2350x y +-=关于直线y x =对称的直线方程为( )A 、3x+2y-5=0B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=0 5 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )AB 3- CD 36)ABCD7 已知0,0ab bc <<,则直线ax by c +=通过( )A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限8.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=09.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A 5B 4C 10D 810 直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A23B32 C 32-D 23-二.填空题:11. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 12 方程1=+y x 表示的图形所围成的封闭区域的面积为_________13 点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________14 直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l的方程是15 已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 23y x =-+三、解答题16.求过点(5,4)A --的直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为517. 一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点为(0,0)时,求此直线方程18.直线13y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值19.已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。

人教版数学高一-A高一必修2第三章《直线与方程》章节测试

人教版数学高一-A高一必修2第三章《直线与方程》章节测试
A3x-y-8=0 B 3x+y+4=0
C 3x-y+6=0 D 3x+y+2=0
6.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|,
则L的方程是( )
Ax-2y+3=0 B 2x-y-3=0
C 2x+y-5=0 D x+2y-4=0
7.直线mx-y+2m+1=0经过一定点,则该点的坐标是
的距离是 的直线的方程.
16.直线x+m2y+6=0与直线(m-2)x+3my+2m=0,没有公共点,求实数m的值.
*17.已知直线 被两平行直线 所截得的线段长A;2.B;3.B;4.D;5.B;6.D;7.A;8.C;9.A;10.A.
11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13. ;14.2x-y+5=0;
15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0.
16.m=0或m=-1;17.x=1或3x-4y-3=0.
人教版A高一必修2第三章《直线与方程》章节测试
一、选择题(本大题共10小题,每小题5分,共50分)
1.若直线过点(1,2),(4,2+ ),则此直线的倾斜角是( )
A 30°B 45°C 60°D 90°
2.如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=
A、-3 B、-6 C、 D、
13.直线5x+12y+3=0与直线10x+24y+5=0的距离是.
14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为.

人教A版高中数学必修二第三章《直线与方程》检测题含答案.docx

人教A版高中数学必修二第三章《直线与方程》检测题含答案.docx

第三章《直线与方程》检测题一、选择题(每小题只有一个正确答案)1. 不论刃为何值,直线(m —\)x+ (2/7?—l)y=/77—5恒过定点()( \\ A. 1,—— B. (-2,0) C. (2,3) D. (9, -4) I 2丿 '2.x — y — 3 S 02. 已知不等式组x + y-3>0表示的平面区域为M,若以原点为圆心的圆0与M 无公x — 2y + 3 n 0共点,则圆。

的半径的取值范围为()A. (0,—)B. (3匹,+8)C. (0,VK)U(3^,+8)D. (0,—)U(3V2,+oo) 3. 若直线厶:x+ay+6=0与厶:U-2)%+3y+2a=0平行,则厶与厶之间的距离为 ()A. V2B.吨C. V3D.出3 84. 若点A (l,l)关于直线y = kx + b 的对称点是3(-3,3),则直线y = kx + b 在y 轴上 的截距是( )A. 1B. 2C. 3D. 45. 已知直线/I :x-y-l=0,动直线?2:(k + l)x +炒+ k = 0(kw/?),则下列结论够 误的是( )A.存在k, I 、使得厶的倾斜角为90。

B.对任意的k, I 、与厶都有公共点C.对任意的4人与厶都不重合D.对任意的人与厶都不垂皐 3(-3,-2),直线1过点且与线段AB 相交,则1的斜 率k 的取值范围( A. k> — ^ik<-4 43 C. — 一 <^<4 D.4 7.图中的直线/,,/2,/3的斜率分别是,则有( )B. k y <k }< k 2C. k 3<k 2< k 、D. k 2<k y < k 、6.设点 A (2,—3),)B. -4<k<-4 以上都不对A. ky<k 2< k 3TV TV 27V 5 7TA. 3 B . 6 c. 3 D . 69. 直线3x + y-4 = 0的斜率和在y 轴上的截距分别是()A. 一3,4B. 3,-4C. -3,-4D. 3,410. 过点(一2, 1),且平行于向量v=(2, 1)的直线方程为()A. % — 2y + 4 = 0B. % 4- 2y — 4 = 0C. % — 2y — 4 = 0D. % + 2y + 4 =11・过点水3, 3)且垂直于直线4x + 2y - 7 = 0的直线方程为A. y = -x + 2B. y = —2x + 7 C ・ y = -x + - D. y = -x - 丿 2 J 丿 22 丿 2212. 在平面直角坐标系中,己知A (l,-2), B (3,0),那么线段A3中点的坐标为(). A.(2,-1) B.(2,1) C.(4,-2) D. (-1,2)二、填空题13. 已知G,b,c 为直角三角形的三边长,C 为斜边长,若点在直线Z :Q + by + 2c = 0上,则加2 +/?2的最小值为 __________ ・14. me R ,动直线 l }\x + my -1 =()过定点 动直线 /2: nix - y- 2m + A /3 = 0 定点3,若直线1与人相交于点P (异于点A,B),则\PAB 周长的最大值为15. ______________________________________________________________ 过点(2, —3)且在两坐标轴上的截距互为相反数的直线方程为 ________________________ 16. 定义点POoJo)到直线上似+ By + C = 0(护+ B 2^ 0)的有向距离为d =已知点Pi ,P2到直线2的有向距离分别是心,〃2,给出以下命题: ① 若di — d.2 - ② 若心+ d = =0,则直线P1P2与直线2平行;=0,则直线EE 与直线/平行;③若心+ 〃2 = 0,则直线RE 与直线2垂直;④若didzVO,则直线ED 与直线2相交; 其中正确命题的序号是 ___________________ •三、解答题17. 求符合下列条件的直线方程:(1) 过点P(3,—2),且与直线4% 4- y - 2 = 0平行;(2) 过点P(3,—2),且与直线4% 4- y - 2 = 0垂直;(3) 过点P(3,-2),且在两坐标轴上的截距相等.18.己知ZMBC的三个顶点坐标分别为>1(-4,-2), B(4,2), C(1 , 3).(1)求边上的高所在直线的一般式方程;(2)求边4B上的中线所在直线的一般式方程.19.已知直线/ :3x + 2y-2 + 22x + 4y + 22 = 0(1)求证:直线1过定点。

2020年高一下学期人教版必修二第三章 直线与方程(单元检测)含答案

2020年高一下学期人教版必修二第三章 直线与方程(单元检测)含答案

第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .23.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .234.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=05.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3D .⎝⎛⎭⎫-12,-3 6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=07.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .5268.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=09.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-3410.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A.-4 B.-2 C.0 D.211.如图1,已知点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到点P,则光线所经过的路程为()图1A.210 B.10C.2 3 D.3 312.直线l过点P(1,3),且与x,y轴正半轴围成的三角形的面积等于6的直线方程是()A.3x+y-6=0 B.x+3y-10=0C.3x-y=0 D.x-3y+8=0二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知点A(2,1),B(-2,3),C(0,1),则△ABC中,BC边上的中线长为________.14.直线l与直线y=1,x-y-7=0分别交于A,B两点,线段AB的中点为M(1,-1),则直线l的斜率为________.15.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为________.16.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l的倾斜角为135°,且经过点P(1,1).(1)求直线l的方程;(2)求点A(3,4)关于直线l的对称点A′的坐标.18.((本小题满分12分)已知两条直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,当m为何值时,l1与l2:(1)相交;(2)平行;(3)重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图221. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°【答案】D [由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.] 2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .2【答案】A [由-2-33-(-2)=m +212-3,得m =12.选A.]3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .23【答案】B [两直线平行,斜率相等,所以-a2=3,所以a =-6.选B.]4.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=0【答案】B [因为3x -4y +6=0的斜率为34,所以与其垂直的直线的斜率为-43.故所求方程为y +1=-43(x -4),即4x +3y -13=0.]5.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3 D .⎝⎛⎭⎫-12,-3 【答案】D [直线2x -my +1-3m =0可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3.即当m 变动时,所有直线都通过定点⎝⎛⎭⎫-12,-3. 选D.]6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=0【答案】D [k AB =4-32-3=-1,故直线l 的斜率为1,AB 的中点为⎝⎛⎭⎫52,72, 故l 的方程为y -72=x -52,即x -y +1=0.]7.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .526【答案】C [5x +12y +3=0可化为10x +24y +6=0.由平行线间的距离公式可得d =|6-5|102+242=126.]8.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=0【答案】A [因为点(x ,y )关于x 轴对称的点的坐标为(x ,-y ),所以只需将已知直线中的变量y 变为-y 即可,即为3x +5y +4=0.]9.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-34【答案】C [如图.计算得:k P A =43,k PB =34,由题意得34≤k ≤43.]10.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2【答案】B [因为l 的斜率为tan 135°=-1,所以l 1的斜率为1,所以k AB =2-(-1)3-a =1,解得a =0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2.]11.如图1,已知点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程为( )图1A .210B .10C .2 3D .3 3【答案】A [设点P 关于直线AB 的对称点为P 1,点P 关于y 轴的对称点为P 2,则|P 1P 2|即为所求路程.又直线AB 的方程为x +y -4=0,所以P 1(4,2),P 2(-2,0),故|P 1P 2|=210.]12.直线l 过点P (1,3),且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是( )A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0【答案】A [设直线方程为x a +yb =1(a >0,b >0),由题意有⎩⎪⎨⎪⎧ab =12,1a +3b=1,∴⎩⎪⎨⎪⎧a =2,b =6.∴x 2+y6=1.化为一般式为3x +y -6=0.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 【答案】10 [BC 中点为(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10.]14.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为________. 【答案】-23 [设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1), ∴k AB =-3-14-(-2)=-23.]15.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.【答案】2x +3y -2=0 [由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,得交点A (-2,2),因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23,由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.]16.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 【答案】(2,4) [设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 即为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M (2,4).]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标. 【答案】(1)∵k =tan 135°=-1, ∴l :y -1=-(x -1),即x +y -2=0. (2)设A ′(a ,b ),则⎩⎪⎨⎪⎧b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18. (本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时,l 1与l 2: (1)相交;(2)平行;(3)重合.【答案】当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m 23m ,得m =-1或m =3,由1m -2=62m ,得m =3.故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5. 【答案】设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为d . 由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5.由已知易得,直线AB 的方程为x -2y +3=0, 所以d =|a +3|1+(-2)2=25, 解得a =7或a =-13(舍去), 所以点P 的坐标为(7,0).20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图2【答案】由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3, 所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.21. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.【答案】(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为y -2=x -3, 即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.【答案】如图,作点M 关于直线l 的对称点M 1,再作点M 关于y 轴的对称点M 2,连接M 1M 2,M 1M 2与直线l 及y 轴分别交于P ,Q 两点,由轴对称及平面几何的知识,知这样得到的△MPQ 的周长最小. 由点M (3,5)及直线l ,可求得点M 1的坐标为(5,1), 点M 关于y 轴的对称点M 2的坐标为(-3,5), 可得直线M 1M 2的方程为x +2y -7=0. 令x =0,得M 1M 2与y 轴的交点Q ⎝⎛⎭⎫0,72. 解方程组⎩⎪⎨⎪⎧x +2y -7=0,x -2y +2=0,得交点P ⎝⎛⎭⎫52,94. 综上,点P ⎝⎛⎭⎫52,94,Q ⎝⎛⎭⎫0,72即为所求.。

人教版数学高一第三章直线与方程单元测试精选(含答案)3

人教版数学高一第三章直线与方程单元测试精选(含答案)3

d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积


【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;

高中数学必修二第三章《直线与方程》单元测试卷及答案

高中数学必修二第三章《直线与方程》单元测试卷及答案

高中数学必修二第三章《直线与方程》单元测试卷及答案((2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k12.直线x+2y-5=0与2x+4y+a=0之间的距离为5,则a等于()A.0 B.-20 C.0或-20 D.0或-103.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值是()A.-3 B.2 C.-3或2 D.3或-24.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过定点A(0,b)的直线都可以用方程y=kx+b表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示5.点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=07.过点M(2,1)的直线与x轴,y轴分别交于P,Q两点,且|MP|=|MQ|,则l的方程是()A.x-2y+3=0 B.2x-y-3=0C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A .x +y =0 B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线2x +(t -2)y +3-2t =0,分别根据下列条件,求t 的值: (1)过点(1,1);(2)直线在y 轴上的截距为-3.18.(12分)直线l 过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距, 不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.单元测试二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 经过两点()()1,2,2,1P Q -,那么直线l 的斜率为( )A .3-B .13-C .13D .32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0D .x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6C .32D .234.直线2x a -2y b =1在y 轴上的截距为( ) A .|b |B .-b 2C .b 2D .±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0B .-4C .-8D .46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( )A .-2B .-7C .3D .18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0D .19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4B .-2C .0D .212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3), 则点B 的坐标可能是( ) A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为 M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0. (1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.21.(12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当-2+3≤k≤0时,求折痕长的最大值.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l的斜率121213k-==--,故选C.2.【答案】D【解析】由题意k=tan45°=1,∴直线l的方程为y-2=1·(x+1),即x-y+3=0,故选D.3.【答案】B【解析】由题意得a·(-1)-2×3=0,∴a=-6,故选B.4.【答案】B【解析】令x=0,则y=-b2,故选B.5.【答案】C【解析】根据题意可知k AC=k AB,即12283--=223a---,解得a=-8,故选C.6.【答案】D【解析】Ax+By+C=0可化为y=-ABx-CB,由AB<0,BC<0,得-AB>0,-CB>0,故直线Ax+By+C=0经过第一、二、三象限,不经过第四象限.故选D.7.【答案】C【解析】由已知条件可知线段AB 的中点(12m+,0)在直线x +2y -2=0上, 把中点坐标代入直线方程,解得m =3,故选C . 8.【答案】C【解析】解340250x y x y -+=⎧⎨-+=⎩得19737x y ⎧=-⎪⎪⎨⎪=⎪⎩,即直线l 1,l 2的交点是(-197,37),由两点式可得所求直线的方程是3x +19y =0,故选C . 9.【答案】C【解析】直线方程变形为k (3x +y -1)+(2y -x )=0,则直线通过定点(27,17). 故选C . 10.【答案】D【解析】将“关于直线对称的两条直线”转化为“关于直线对称的两点”:在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,故选D . 11.【答案】B【解析】因为l 的斜率为tan135°=-1,所以l 1的斜率为1,所以k AB =()213a---=1,解得a=0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2,故选B . 12.【答案】A【解析】设B (x ,y ),根据题意可得1AC BC k k BC AC ⋅=-⎧⎪⎨=⎪⎩,即3431303y x --⎧⋅=-⎪--=⎩⎪⎨⎪⎧ x =2y =0或⎩⎪⎨⎪⎧x =4y =6, 所以B (2,0)或B (4,6).故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】-23【解析】设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =()3142----=-23.14.【答案】x +6y -16=0【解析】直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6, 所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.【答案】3 2【解析】依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=32.16.【答案】①⑤【解析】两平行线间的距离为d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°, 所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0. 【解析】(1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0, d|3245|n ⨯-+⨯+=3,解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0. 18.【答案】3x -y +2=0.【解析】解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +(1+4λ)=0,由所求直线垂直于直线x +3y +4=0, 得-13·(-3+λ3λ-2)=-1,解得λ=310,故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.【答案】P (1,-4)或P (277,-87).【解析】解法1:设点P (x ,y ).因为|P A |=|PB |,① 又点P 到直线l 的距离等于2,所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|P A |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5,所以设点P (x ,x -5). 因为点P 到直线l 的距离等于2,所以()|4352|5x x +--=2,解得x =1或x =277,所以P (1,-4)或P (277,-87).20.【答案】(1)2x -y +1=0;(2)2x -y +1=0;(3)110.【解析】(1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=52,由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎨⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255,∴S △BDE =12·d ·|BE |=110. 21.【答案】)存在,3x +4y -12=0.【解析】设直线方程为x a +yb =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12 ① 又∵直线过点P (43,2),∵43a +2b=1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎨⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0,若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0. 22.【答案】(1)y =kx +k 22+12;(2)2(6-2).【解析】(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k ,故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-163.此时,折痕长度的最大值为32-163=2(6-2).而2(6-2)>2,故折痕长度的最大值为2(6-2).。

2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析

2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析

2019-2020学年高中数学必修二《第3章直线与方程》测试卷一.选择题(共30小题)
1.直线y﹣3=﹣(x+4)的斜率为k,在y轴上的截距为b,则有()A.k =﹣,b=3B.k =﹣,b=﹣2C.k =﹣,b=﹣3D.k =﹣,b=﹣3 2.若直线过点(1,2),(4,2+)则此直线的倾斜角是()
A .
B .
C .
D .
3.已知点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()
A.k ≥B.k≤﹣2C.k或k≤﹣2D.﹣2≤k ≤
4.若点A(﹣2,﹣3),B(﹣3,﹣2),直线L过点P(1,1)且与线段AB相交,则L的斜率k的取值范围是()
A.k ≤或k ≥B.k ≤﹣或k ≥﹣
C .≤k ≤
D .﹣≤k ≤﹣
5.与直线垂直,且过(2,0)点的直线方程是()
A.y=﹣2x+4B .C.y=﹣2x﹣4D .
6.已知O为△ABC 内一点,且,,若B,O,D三点共线,则t 的值为()
A .
B .
C .
D .
7.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1B.﹣2C.1或﹣2D.﹣1或2
8.下列说法正确的是()
A.一条直线的斜率为k=tanα,则这条直线的倾斜角是α
B.过点A(x1,y1)和点B(x2,y2)的直线的方程为=
C.若两直线平行,则它们的斜率相等
D.若两直线斜率之积等于﹣1,则两直线垂直
第1 页共18 页。

第06讲:必修2第三章《直线与方程》单元检测题-高中数学单元检测题及详细解析.doc

第06讲:必修2第三章《直线与方程》单元检测题-高中数学单元检测题及详细解析.doc

必修2第三章《直线与方程》单元检测题本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分.考试时间120分钟.第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共6()分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2), (4,2+萌),则此直线的倾斜角是()A.30°B. 45。

C. 60°D. 90°2.如果直线处+2y+2=0与直线3匕一丿一2=0平行,则系数。

为()3 2A.—3B. —6C. —2D.亍3.下列叙述屮不正确的是()A.若直线的斜率存在,则必有倾斜角与之对应B.每一条直线都有唯一对应的倾斜角C.与坐标轴垂直的直线的倾斜角为0。

或90。

D.若直线的倾斜角为u,则直线的斜率为怡z4.在同一直角坐标系中,表示直线),=做与直线>,=兀+。

的图象(如图所示)正确的是()5.若三点A(3,l), B(—2, b), C(&11)在同一直线上,则实数b等于()A. 2B. 3C. 9D. -96.过点(3, —4)且在两坐标轴上的截距相等的直线的方程是()A.卄),+1=0B.4兀一3)=0C.4x+3y=0D.4兀+3y=0 或x+y+l=07.已知点4(兀,5)关于点(1, y)的对称点为(一2, 一3),则点P(x, y)到原点的距离是()A. 4 B・竝C・飒 D. 08.设点4(2, -3), 3( — 3, -2),直线过P(l,l)且与线段43相交,则/的斜率殳的取值范围是()3 3A. &玄或 4B. —3C. 一3才WRW4 D・以上都不对9.已知直线1\: ov+4y—2=0与直线2x—5y-\~b=0互相垂直,垂足为(1, c),则a + b+c的值为( )A. -4B. 20C. 0D. 2410.如果4(1,3)关于直线/的对称点为B(—5,1),则直线I的方程是()A. 3兀+y+4=0B. x—3y+8 = 0C. x+3y—4=QD. 3x~y+S=011.直线mx+ny+3=0在y轴上截距为一3,而且它的倾斜角是直线伍一y=3也倾斜角的2倍,则( )A. m = _甫,n= 1B. 〃?=—羽,n=~3C. » n =—3D. ~*^3, ~ 112.过点A(0,彳)与B(7,0)的直线厶与过点(2,1),⑶R+1)的直线人和两坐标轴围成的四边形内接于一个圆,则实数£等于()A. —3B. 3C. —6D. 6第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知厶:2x+my+1 = 0与人:y=3兀一1,若两直线平行,则加的值为____________ .14.若直线加被两平行线厶:x-y+\=0与念x-y+3=0所截得的线段的长为2迈,则加的倾斜角可以是________ •(写出所有正确答案的序号)① 15。

高一数学人教A版必修2单元检测:第三章直线与方程 含解析

高一数学人教A版必修2单元检测:第三章直线与方程 含解析

数学人教A 版必修2第三章直线与方程单元检测(时间:90分钟,满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2 (x +1)B .y -2 (x -1)C . -3y +60D . -y +202.直线3x -2y +5=0与直线x +3y +10=0的位置关系是( )A .相交B .平行C .重合D .异面3.已知直线l 上的两点A (-4,1)与B (x ,-3),并且直线l 的倾斜角为135°,则x 的值是( )A .-8B .-4C .0D .84.已知直线l 与过点M (),N )的直线垂直,则直线l 的倾斜角是( )A .3πB .4πC .32πD .43π5.点P (2,5)到直线y x 的距离d 等于( )A .0B .52C . 52-D . 52- 6.如果A (3,1),B (-2,k ),C (8,11)三点在同一条直线上,那么k 的值是( )A .-6B .-7C .-8D .-97.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点的直线方程是( )A .y =-2x +4B .y =12x +4C .y =-2x -83D .y =12x -838.不论m 为何值,直线(m -1)x +(2m -1)y =m -5恒过定点( )A .11,2⎛⎫- ⎪⎝⎭ B .(-2,0) C .(2,3) D .(9,-4)9.点M (1,4)关于直线l :x -y +1=0对称的点的坐标是( )A .(4,1)B .(2,3)C .(3,2)D .(-1,6)10.函数y ( )A .0BC .13D .不存在二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.已知点A(-1,2),B(-4,6),则|AB|等于__________.12.平行直线l1:x-y+1=0与l2:3x-3y+1=0的距离等于__________.13.若直线l经过点P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线l的方程为__________或__________.14.直线3x-5y+1=0关于直线y=x对称的直线方程是__________.15.已知点A(3,1),点M在直线x-y=0上,点N在x轴上,则△AMN周长的最小值是__________.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?17.(15分)(1)已知△ABC的三个顶点为A(0,5),B(1,-2),C(-6,4),求BC边上的高所在直线的方程;(2)设直线l的方程为(a-1)x+y-2-a=0(a∈R),若直线l在两坐标轴上的截距相等,求直线l的方程.参考答案1.答案:C2.答案:A3.答案:C4.答案:B5.答案:B6.答案:D7.答案:C8.答案:D9.答案:C10. 答案:B11.答案:512. 答案:313. 答案:x+y-5=0x-y+1=014.答案:5x-3y-1=015.答案:16.解:(1)直线l1的斜率k1=-1,直线l2的斜率k2=a2-2.因为l1∥l2,所以a2-2=-1且2a≠2,解得a=-1.所以当a=-1时,直线l1:y=-x+2a与直线l2:y=(a2-2)x +2平行.(2)直线l1的斜率k1=2a-1,l2的斜率k2=4,因为l1⊥l2,所以k1k2=-1,即4(2a-1)=-1,解得a=38.所以当a=38时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直.17. 解:(1)∵BC边所在直线的斜率k BC=241(6)----=-67,∴BC边上的高所在直线的斜率k=76.∴BC边上的高所在直线的方程为y=76x+5,即7x-6y+30=0.(2)令x =0,y =2+a ;令y =0,当a ≠1时,x =21aa +-.∵直线l 在两个坐标轴上的截距相等,∴2+a =21aa +-,解得a =-2或a =2.当a =1时,直线l 的方程为y =3,此时在x 轴上的截距不存在,不合题意. ∴直线l 的方程为x +y -4=0或3x -y =0.。

必修2第三章直线与方程测试题

必修2第三章直线与方程测试题

第三章 直线与方程测试题(一)一 •选择题(每小题5分,共12小题,共60分)1 •若直线过点C.3,3)且倾斜角为300,则该直线的方程为()B.y=—^x 4 C.y=—^x —4 D. y333. 如果直线x by ^0经过直线5x -6y -17二0与直线4x • 3y • 2 = 0的交点,那么b 等于 (). A. 2B. 3C. 4D. 52 2 04. 直线(2m -5m - 2)x 「(m -4)y - 5m = 0的倾斜角是45,则m 的值为()。

A.2B. 3C. - 3D. - 225.两条直线3x 2y ^0和(m • 1)x-3y • 2 -3m = 0的位置关系是()A.平行B.相交C.重合D.与m 有关 7直线x -2y • b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是()A. [-2,2]E. (-::,一2] [2,::)C . [ -2,0) (0,2]D.(-::,::)A.2.如果 A(3,1)、 B (-2,k )、C (8,11),在同一直线上,那k 的值是(A. -6B. —7C. -8D. -9*6•到直线2x y ^0的距离为—的点的集合是(5A.直线 2x y -2 = 0B. 直线2x y = 0C.直线 2x ■ y = 0 或直线 2x ■ y - 2 = 0 D. 直线2x y = 0或直线2x y 2 = 0*8 •若直线I 与两直线y , x - y -7 =0分别交于M , N 两点,且MN 的中点是P (1,-1),则直线1的斜率是()22厂3 3A .B .—C .D.—3 32210•直线x -2y ・1 = 0关于直线x =1对称的直线方程是( )A . x 2y -1 = 0B . 2x y -1 = 0C . 2x y -3=0D . x 2y -3=0共有 ( )A . 1个B . 2个*12 .若y =a|x|的图象与直线y =x ,a (a 0),有两个不同交点,则 a 的取值范围是 ()A . 0 :: a :: 10B . a 1C . a 0 且 a =1D . a =1二.填空题(每小题5分,共4小题,共20分)13.经过点(-2, -3),在x 轴、y 轴上截距相等的直线方程是 _____________________ ; 或 ______________________ 。

高中数学 第三章 直线与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题

高中数学 第三章 直线与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题

第三章 单元质量测评对应学生用书P77 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.斜率为2的直线的倾斜角α所在的X 围是( ) A .0°<α<45° B.45°<α<90° C .90°<α<135° D.135°<α<180° 答案 B解析 ∵k=2>1,即tanα>1,∴45°<α<90°. 2.在x 轴上的截距为2且倾斜角为135°的直线方程为( ) A .y =-x +2 B .y =-x -2 C .y =x +2 D .y =x -2 答案 A解析 由题可知直线方程为y =tan135°·(x-2),即y =-x +2. 3.若三点A(4,3),B(5,a),C(6,b)共线,则下列结论正确的是( ) A .2a -b =3 B .b -a =1 C .a =3,b =5 D .a -2b =3 答案 A解析 由k AB =k AC 可得2a -b =3,故选A .4.若实数m ,n 满足2m -n =1,则直线mx -3y +n =0必过定点( ) A .⎝ ⎛⎭⎪⎫2,13 B .⎝ ⎛⎭⎪⎫-2,13C .⎝ ⎛⎭⎪⎫2,-13D .⎝ ⎛⎭⎪⎫-2,-13答案 D解析 由已知得n =2m -1,代入直线mx -3y +n =0得mx -3y +2m -1=0,即(x +2)m+(-3y -1)=0,由⎩⎪⎨⎪⎧x +2=0,-3y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =-13,所以此直线必过定点⎝⎛⎭⎪⎫-2,-13,故选D .5.设点A(-2,3),B(3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值X 围是( )A .⎝ ⎛⎦⎥⎤-∞,52∪⎣⎢⎡⎭⎪⎫43,+∞ B .⎝ ⎛⎭⎪⎫-43,52C .⎣⎢⎡⎦⎥⎤-52,43 D .⎝ ⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞ 答案 B解析 直线ax +y +2=0过定点C(0,-2),k AC =-52,k BC =43.由图可知直线与线段没有交点时,斜率-a 的取值X 围为-52<-a <43,解得a∈⎝ ⎛⎭⎪⎫-43,52.6.和直线5x -4y +1=0关于x 轴对称的直线方程为( ) A .5x +4y +1=0 B .5x +4y -1=0 C .-5x +4y -1=0 D .-5x +4y +1=0 答案 A解析 设所求直线上的任一点为(x′,y′),则此点关于x 轴对称的点的坐标为(x′,-y′).因为点(x′,-y′)在直线5x -4y +1=0上,所以5x′+4y′+1=0,即所求直线方程为5x +4y +1=0.7.已知直线x =2及x =4与函数y =log 2x 图象的交点分别为A ,B ,与函数y =lg x 图象的交点分别为C ,D ,则直线AB 与CD( )A .平行B .垂直C .不确定D .相交 答案 D解析 易知A(2,1),B(4,2),原点O(0,0),∴k OA =k OB =12,∴直线AB 过原点,同理,C(2,lg 2),D(4,2lg 2),k OC =k OD =lg 22≠12,∴直线CD 过原点,且与AB 相交.8.过点M(1,-2)的直线与x 轴、y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为 ( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P(x 0,0),Q(0,y 0).∵M(1,-2)为线段PQ 的中点,∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1,即2x -y -4=0.故选B .9.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n)到原点的距离的最小值为( )A . 5B . 6C .2 3D .2 5 答案 A解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2.把(1,2)代入mx +ny +5=0可得m +2n +5=0, ∴m=-5-2n ,∴点(m ,n)到原点的距离d = m 2+n 2=5+2n 2+n 2=5n +22+5≥5,当n =-2时等号成立,此时m =-1.∴点(m ,n)到原点的距离的最小值为5.故选A .10.点F(3m +3,0)到直线3x -3my =0的距离为( ) A . 3 B .3m C .3 D .3m 答案 A解析 由点到直线的距离公式得点F(3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3=3.11.若直线l 经过点A(1,2),且在x 轴上的截距的取值X 围是(-3,3),则其斜率的取值X 围是( )A .⎝⎛⎭⎪⎫-1,15 B .⎝⎛⎭⎪⎫-∞,12∪(1,+∞) C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 在平面直角坐标系中作出点A(1,2),B(-3,0),C(3,0),过点A ,B 作直线AB ,过点A ,C 作直线AC ,如图所示,则直线AB 在x 轴上的截距为-3,直线AC 在x 轴上的截距为3.因为k AB =2-01--3=12,k AC =2-01-3=-1,所以直线l 的斜率的取值X 围为(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞.12.已知△ABC 的边AB 所在的直线方程是x +y -3=0,边AC 所在的直线方程是x -2y +3=0,边BC 所在的直线方程是2x -y -3=0.若△ABC 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 联立直线方程,易得A(1,2),B(2,1).如图所示,当两条平行直线间的距离最小时,两平行直线分别过点A ,B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A ,B 两点的平行直线间的距离,易得|AB|=2,即两条平行直线间的距离的最小值是2.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P(3,3),则直线l 的方程为________.答案 x =3解析 直线y =x +1的斜率为1,倾斜角为45°.直线l 的倾斜角是已知直线y =x +1的倾斜角的2倍,所以直线l 的倾斜角为90°,直线l 的斜率不存在,所以直线l 的方程为x =3.14.直线x 3+y4=t 被两坐标轴截得的线段长度为1,则t =________.答案 ±15解析 直线与x ,y 轴的交点分别为(3t ,0)和(0,4t),所以线段长为3t2+4t2=1,解得t =±15.15.已知点A(2,4),B(6,-4),点P 在直线3x -4y +3=0上,若满足|PA|2+|PB|2=λ的点P 有且仅有1个,则实数λ的值为________.答案 58解析 设点P 的坐标为(a ,b).∵A(2,4),B(6,-4),∴|PA|2+|PB|2=[(a -2)2+(b -4)2]+[(a -6)2+(b +4)2]=λ,即2a 2+2b 2-16a +72=λ.又∵点P 在直线3x -4y +3=0上,∴3a-4b +3=0,∴509b 2-803b +90=λ.又∵满足|PA|2+|PB|2=λ的点P 有且仅有1个,∴Δ=⎝ ⎛⎭⎪⎫-8032-4×509×(90-λ)=0,解得λ=58.16.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则a 的值为________.答案 -12解析 因为y =|x -a|-1=⎩⎪⎨⎪⎧x -a -1,x≥a,-x +a -1,x<a ,所以该函数的大致图象如图所示.又直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则2a =-1,即a =-12.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知Rt△ABC 的顶点坐标A(-3,0),直角顶点B(-1,-22),顶点C 在x 轴上.(1)求点C 的坐标; (2)求斜边所在直线的方程.解 (1)解法一:依题意,Rt△ABC 的直角顶点坐标为B(-1,-22), ∴AB⊥BC,∴k AB ·k BC =-1.又∵A(-3,0),∴k AB =0+22-3--1=-2,∴k BC =-1k AB =22,∴边BC 所在的直线的方程为y +22=22(x +1),即x -2y -3=0. ∵直线BC 的方程为x -2y -3=0,点C 在x 轴上,由y =0,得x =3,即C(3,0). 解法二:设点C(c ,0),由已知可得k AB ·k BC =-1,即0+22-3--1·0+22c +1=-1,解得c =3,所以点C 的坐标为(3,0). (2)由B 为直角顶点,知AC 为直角三角形ABC 的斜边. ∵A(-3,0),C(3,0),∴斜边所在直线的方程为y =0.18.(本小题满分12分)点M(x 1,y 1)在函数y =-2x +8的图象上,当x 1∈[2,5]时,求y 1+1x 1+1的取值X 围. 解y 1+1x 1+1=y 1--1x 1--1的几何意义是过M(x 1,y 1),N(-1,-1)两点的直线的斜率.点M 在直线y =-2x +8的线段AB 上运动,其中A(2,4),B(5,-2).∵k NA =53,k NB =-16,∴-16≤y 1+1x 1+1≤53,∴y 1+1x 1+1的取值X 围为⎣⎢⎡⎦⎥⎤-16,53. 19.(本小题满分12分)已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S .解 (1)联立两直线方程⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,则两直线的交点为P(-2,2).∵直线x -2y -1=0的斜率为k 1=12,所求直线垂直于直线x -2y -1=0,那么所求直线的斜率k =-112=-2,∴所求直线方程为y -2=-2(x +2),即2x +y +2=0.(2)对于方程2x +y +2=0,令y =0则x =-1,则直线与x 轴交点坐标A(-1,0), 令x =0则y =-2,则直线与y 轴交点坐标B(0,-2), 直线l 与坐标轴围成的三角形为直角三角形AOB , ∴S=12|OA||OB|=12×1×2=1.20.(本小题满分12分)一条光线经过点P(2,3)射在直线l :x +y +1=0上,反射后经过点Q(1,1),求:(1)入射光线所在直线的方程; (2)这条光线从P 到Q 所经路线的长度.解 (1)设点Q′(x′,y′)为点Q 关于直线l 的对称点,QQ′交l 于点M .∵k l =-1,∴k QQ′=1, ∴QQ′所在直线的方程为y -1=1·(x-1), 即x -y =0.由⎩⎪⎨⎪⎧x +y +1=0,x -y =0,解得⎩⎪⎨⎪⎧x =-12,y =-12,∴交点M ⎝ ⎛⎭⎪⎫-12,-12,∴⎩⎪⎨⎪⎧1+x′2=-12,1+y′2=-12.解得⎩⎪⎨⎪⎧x′=-2,y′=-2,∴Q′(-2,-2).设入射光线与l 交于点N ,则P ,N ,Q′三点共线, 又∵P(2,3),Q′(-2,-2),∴入射光线所在直线的方程为y --23--2=x --22--2,即5x -4y +2=0.(2)|PN|+|NQ|=|PN|+|NQ′|=|PQ′| =[2--2]2+[3--2]2=41,即这条光线从P 到Q 所经路线的长度为41.21.(本小题满分12分)设直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.解 设直线x -y -1=0与l 1,l 2的交点分别为C(x C ,y C ),D(x D ,y D ),则⎩⎪⎨⎪⎧x C +2y C -1=0,x C -y C -1=0,解得⎩⎪⎨⎪⎧x C =1,y C =0,∴C(1,0)⎩⎪⎨⎪⎧x D +2y D -3=0,x D -y D -1=0,解得⎩⎪⎨⎪⎧x D =53,y D=23,∴D ⎝ ⎛⎭⎪⎫53,23. 则C ,D 的中点坐标为⎝ ⎛⎭⎪⎫43,13, 即直线l 经过点⎝ ⎛⎭⎪⎫43,13. 又直线l 经过点(-1,1),由两点式得直线l 的方程为 y -131-13=x -43-1-43,即2x +7y -5=0. 22.(本小题满分12分)已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2的方程等价于2x -y -12=0,所以两条平行线l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+-12=7510,即⎪⎪⎪⎪⎪⎪a +12=72.又因为a >0,解得a =3.(2)假设存在点P ,设点P(x 0,y 0),若点P 满足条件②,则点P 在与l 1,l 2平行的直线l′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪⎪⎪c +125,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若P 点满足条件③,由点到直线的距离公式, 得|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0. 若点P 满足条件①,则3x 0+2=0不合适. 解方程组⎩⎪⎨⎪⎧ 2x 0-y 0+132=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=-3,y 0=12.不符合点P 在第一象限,舍去.解方程组⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=19,y 0=3718.符合条件①.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2第三章《直线与方程》单元测试题
(时间:90 满分:120分)
班别 座号 姓名 成绩
一、选择题(本大题共10小题,每小题5分,共50分)
1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90° 2.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.21
3, B.--
213, C.--1
2
3, D.-2,-3 3. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=
A 、 -3
B 、-6
C 、2
3- D 、3
2
4.点P (-1,2)到直线8x-6y+15=0的距离为( )
(A )2 (B )2
1 (C )1 (D )2
7
5.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )
A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=0
6.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )
A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)
8. 直线0202=++=++n y x m y x 和的位置关系是 (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l
1、l
2、l 3的斜率分别为k 1、k 2、k 3,
则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2
C. k 1<k 2<k 3
D. k 3<k 2<k 1
10.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边
AB 上的中线所在的直线方程为( )
(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0
选择题答题表
二、填空题(本大题共4小题,每小题5分,共30分) 11线过原点且倾角的正弦值是
5
4
,则直线方程为 . 12已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 13过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 14直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 15原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 16mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为 . 三、解答题(本大题共3小题,每小题10分,共40分) 17若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值.
18直线062=++y ax 和直线0)1()1(2
=-+++a y a a x 垂直,求a 的值.
19 ①求平行于直线3x+4y-12=0,且与它的 距离是7的直线的方程;
②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是105
3
的直线的方程.
20线x+m 2
y+6=0与直线(m-2)x+3my+2m=0没有公共点,求实数m 的值.
参考答案:
1.A ;
2.B ;
3.B ;
4.D ;
5.B ;
6.D ;
7.A ;
8.C ;
9.A ;10.A. 11. x y 34±
=;12.x+y-3=0或2x-y=0;1426
1; 15.-y+5=0; 16.
mn
21 17.点共线说明AC AB k k =,即可求出a
18.示:斜率互为负倒数,或一直线斜率为0,另一直线斜率不存在 19.(1)
(2)3x-y+9=0或3x-y-3=0. 20.0或m=-1;。

相关文档
最新文档