高一数学必修二直线与方程
高一数学必修2 直线与方程 精讲
![高一数学必修2 直线与方程 精讲](https://img.taocdn.com/s3/m/84a99964011ca300a6c390ad.png)
一、直线的一般式方程【知识要点】1. 一般式:0A x B y C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线. 2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=; 与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=;(2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时, 则11112222//A B C l l A B C ⇔=≠; 1l 与2l 重合111222A B C A B C ⇔==; 1l 与2l 相交1122A BA B ⇔≠. 【经典例题】例1、已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时: (1)12l l ⊥; (2)12//l l .例2、(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程;(2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程.例3、已知直线l 的方程为3x +4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.例4、直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交; (2)只与x 轴相交;(3)只与y 轴相交; (4)是x 轴所在直线; (5)是y 轴所在直线.【经典练习】1.如果直线0Ax By C ++=的倾斜角为45︒,则有关系式( ).A. A B =B. 0A B +=C. 1AB =D. 以上均不可能 2.若0a b c -+=,则直线0ax by c ++=必经过一个定点是( ). A. (1,1) B. (1,1)- C. (1,1)- D. (1,1)-- 3.直线1(0)ax by ab +=≠与两坐标轴围成的面积是( ). A .12ab B .1||2ab C .12ab D .12||ab 4. 直线(32-)x +y =3和直线x +(23-)y =2的位置关系是( ). A. 相交不垂直 B. 垂直 C. 平行D. 重合5.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( ).A. 4和3B. -4和3C. -4和-3D. 4和-3 6.若直线x +a y+2=0和2x +3y +1=0互相垂直,则a = .7.过两点(5,7)和(1,3)的直线一般式方程为 ;若点(a ,12)在此直线上,则a = . 8.根据下列各条件写出直线的方程,并且化成一般式: (1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴; (3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).9.已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),且12120A A B B +=. 求证12l l ⊥.10.已知直线1:60l x my ++=,2:(2)320l m x y m -++=,求m 的值,使得:(1)l 1和l 2相交; (2)l 1⊥l 2; (3)l 1//l 2; (4)l 1和l 2重合.二、两条直线的交点坐标【知识要点】1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩.若方程组有惟一解,则两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点, 其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.【经典例题】例1、判断下列各对直线的位置关系. 如果相交,求出交点坐标. (1)直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0; (2)直线l 1: 1nx y n -=-, l 2: 2ny x n -=.例2、求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.例3、已知直线(2)(31)1a y a x -=--. 求证:无论a 为何值时直线总经过第一象限.例4、若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,求直线l 的倾斜角的取值范围.【经典练习】1.直线3510x y +-=与4350x y +-=的交点是( ). A. (2,1)- B. (3,2)- C. (2,1)- D. (3,2)-2.直线1:(21)2l x y -+=与直线2:(21)3l x y ++=的位置关系是( ). A. 平行 B. 相交 C. 垂直 D. 重合3.已知直线12,l l 的方程分别为 1111:0l A x B y C ++=,2222:0l A x B y C ++=,且12l l 与只有一个公共点,则( ).A. 11220A B A B -≠B. 12210A B A B -≠C.1122A B A B ≠D. 1212A AB B ≠ 4.经过直线240x y -+=与50x y -+=的交点,且垂直于直线20x y -=的直线的方程是( ).A. 280x y +-=B. 280x y --=C. 280x y ++=D. 280x y -+= 5.直线a x +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( ). A. 1 B. -1 C. 2 D. -26.直线1l :2x +3y =12与2l :x -2y =4的交点坐标为 .7.(07年上海卷.理2)若直线1210l x my ++=: 与直线231l y x =-:平行,则m = . 8.已知直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0. 求经过l 1和l 2的交点,且与直线l 3: 3x -2y +4=0垂直的直线l 的方程.9.试求直线1:l 20x y --=关于直线2l :330x y -+=对称的直线l 的方程.10.已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0. (1)求证不论λ取何实数值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.三、两点间的距离【知识要点】1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-; 当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,21212||1||PPk x x =+-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量; (2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.【经典例题】例1、在直线20x y -=上求一点P ,使它到点(5,8)M 的距离为5,并求直线PM 的方程.例2、直线2x -y -4=0上有一点P ,求它与两定点A (4,-1),B (3,4)的距离之差的最大值.例3、如图,已知函数2()1f x x =+,设,a b R ∈,且a b ≠,求证|()()|f a f b -<||a b -.oxA (1,a )B (1,b )y【经典练习】1.已知(2,1),(2,5)A B --,则|AB |等于( ). A. 4 B.10 C. 6 D. 2132.已知点(2,1),(,3)A B a --且||5AB =,则a 的值为( ). A. 1 B. -5 C. 1或-5 D. -1或53.点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则||AB 的长为( ). A. 10 B. 5 C. 8 D. 64.已知(1,2),(0,4)A B -,点C 在x 轴上,且AC =BC ,则点C 的坐标为( ). A. 11(,0)2-B. 11(0,)2-C. 11(0,)2D. 11(,0)25.已知点(1,3),(5,1)M N -,点(,)P x y 到M 、N 的距离相等,则点(,)P x y 所满足的方程是( ).A. 380x y +-=B. 340x y --=C. 390x y -+=D. 380x y -+= 6.已知(7,8),(10,4),(2,4)A B C -,则BC 边上的中线AM 的长为 . 7.已知点P (2,-4)与Q (0,8)关于直线l 对称,则直线l 的方程为 . 8.已知点(1,2),(3,4),(5,0)A B C ,判断ABC ∆的类型.9.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.求22PM PN +的最小值,及取最小值时点P 的坐标.四、点到直线的距离及两平行线距离【知识要点】1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022||Ax By C d A B++=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222||C C d A B-=+,推导过程:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222||||Ax By C C C d A BA B++-==++.【经典例题】例1、求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.例2、在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.例3、求证直线L :(2)(1)(64)0m x m y m +-+-+=与点(4,1)P -的距离不等于3.例4、求直线1:2310l x y +-=与2:4650l x y +-=的正中平行直线方程. .【经典练习】1.点(0,5)到直线y =2x 的距离是( ).A. 52B. 5C. 32D. 522.动点P 在直线40x y +-=上,O 为原点,则OP 的最小值为( ).A.10 B. 22 C. 6 D. 23.(03年全国卷)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a =( ). A .2 B .-2C .21-D .21+4.两平行直线51230102450x y x y ++=++=与间的距离是( ).A.213 B. 113C. 126D. 5265.直线l 过点P (1,2),且M (2,3),N (4,-5)到l 的距离相等,则直线l 的方程是( ).A. 4x+y -6=0B. x +4y -6=0C. 2x +3y -7=0或x +4y -6=0D. 3x +2y -7=0或4x+y -6=0 6.两平行直线2y x =和25y x =+间的距离是 .7.与直线l :51260x y -+=平行且到l 的距离为2的直线的方程为 .8.(1)已知点A (a ,6)到直线3x -4y =2的距离d =4,求a 的值.(2)在直线30x y +=求一点P , 使它到原点的距离与到直线320x y +-=的距离相等.五、直线与方程复习【知识要点】理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;能根据两条直线的斜率判定平行或垂直;握直线方程的几种形式(点斜式、两点式及一般式);能用解方程组的方法求两直线的交点坐标;掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.【经典例题】例1、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线PA 的方程为10x y -+=,则直线PB 的方程是( ).A.240x y --=B. 210x y --= 2C.50x y +-=D.270x y +-=例2、一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,求该直线方程.例3、光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),求BC 所在直线的方程.【经典练习】1. 在x 轴和y 轴上的截距分别为-2、3的直线方程是( ). A. 2360x y --= B. 3260x y --=C. 3260x y -+=D. 2360x y -+=2.若直线0Ax By C ++=通过第二、三、四象限,则系数A 、B 、C 需满足条件( ). A. A 、B 、C 同号 B. AC <0,BC <0C. C =0,AB <0D. A =0,BC <03. 到两坐标轴距离相等的点的轨迹方程是( ). A. x -y =0B. x +y =0C. |x |-y =0D. |x |-|y |=04.下列四种说法中的正确的是( ).A. 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B. 经过任意两个不同点111222(,),(,)P x y P x y 的直线都可以用方程121121()()()()y y x x x x y y --=--表示C. 不经过原点的直线都可以用方程1x ya b+=表示 D. 经过定点A (0,b )的直线都可以用方程y =kx +b 表示5.已知点(0,1)P -,点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标是( ).A .(-2,1)B .(2,1)C .(2,3)D .(-2,-1) 6.已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 . 7.点P 在直线x +y -4=0上,O 为原点,则|OP |的最小值是 . 8.求经过直线772400x y x y +-=-=和的交点,且与原点距离为125的直线方程.9.已知点A 的坐标为(4,4)-,直线l 的方程为3x +y -2=0,求:(1)点A 关于直线l 的对称点A ′的坐标; (2)直线l 关于点A 的对称直线l '的方程.第24讲 §3.2.3 直线的一般式方程¤学习目标:根据确定直线位置的几何要素,探索并掌握直线方程的一般式,体会一般式与直线其它方程形式之间的关系.¤知识要点:1. 一般式(general form ):0A x B y C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线.2 与直线:0l Ax By C ++=平行的直线,可设所求方程为'0Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为'0Bx Ay C -+=. 过点00(,)P x y 的直线可写为00()()0A x x B y y -+-=.经过点0M ,且平行于直线l 的直线方程是00()()0A x x B y y -+-=; 经过点0M ,且垂直于直线l 的直线方程是00()()0B x x A y y ---=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠. 如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. ¤例题精讲:【例1】已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时: (1)12l l ⊥; (2)12//l l .解:(1)12l l ⊥时,12120A A B B +=,则110m m ⨯+⨯=,解得m =0.(2)12//l l 时,12211m m m m--=≠--, 解得m =1. 【例2】(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程; (2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程. 解:(1)由题意得所求平行直线方程4(3)(2)0x y -+-=,化为一般式4140x y +-=. (2) 由题意得所求垂直直线方程(3)2(0)0x y ---=,化为一般式230x y --=.【例3】已知直线l 的方程为3x +4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.分析:由两直线平行,所以斜率相等且为34-,再由点斜式求出所求直线的方程. 解:直线l:3x +4y -12=0的斜率为34-, ∵ 所求直线与已知直线平行, ∴所求直线的斜率为34-, 又由于所求直线过点(-1,3),所以,所求直线的方程为:33(1)4y x -=-+,即3490x y +-=.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式00()()0A x x B y y -+-=而直接写出方程,即3(1)4(3)0x y ++-=,再化简而得.【例4】直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.分析:由直线性质,考察相应图形,从斜率、截距等角度,分析系数的特征. 解:(1)当A ≠0,B ≠0,直线与两条坐标轴都相交. (2)当A ≠0,B =0时,直线只与x 轴相交. (3)当A =0,B ≠0时,直线只与y 轴相交.(4)当A =0,B ≠0,C =0,直线是x 轴所在直线. (5)当A ≠0,B =0,C =0时,直线是y 轴所在直线. 点评:结合图形的几何性质,转化为方程形式所满足的代数形式. 对于直线的一般式方程,需要特别注意以上几种特殊位置时的方程形式.第24练 §3.2.3 直线的一般式方程※基础达标1.如果直线0Ax By C ++=的倾斜角为45︒,则有关系式( ).A. A B =B. 0A B +=C. 1AB =D. 以上均不可能 2.若0a b c -+=,则直线0ax by c ++=必经过一个定点是( ). A. (1,1) B. (1,1)- C. (1,1)- D. (1,1)-- 3.直线1(0)ax by ab +=≠与两坐标轴围成的面积是( ). A .12ab B .1||2ab C .12abD .12||ab 4.(2000京皖春)直线(32-)x +y =3和直线x +(23-)y =2的位置关系是( ).A. 相交不垂直B. 垂直C. 平行D. 重合 5.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( ).A. 4和3B. -4和3C. -4和-3D. 4和-3 6.若直线x +a y+2=0和2x +3y +1=0互相垂直,则a = .7.过两点(5,7)和(1,3)的直线一般式方程为 ;若点(a ,12)在此直线上,则a = .※能力提高8.根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴;(3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).9.已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),且12120A A B B +=. 求证12l l ⊥.※探究创新10.已知直线1:60l x my ++=,2:(2)320l m x y m -++=,求m 的值,使得: (1)l 1和l 2相交;(2)l 1⊥l 2;(3)l 1//l 2;(4)l 1和l 2重合.第25讲 §3.3.1 两条直线的交点坐标¤学习目标:进一步掌握两条直线的位置关系,能够根据方程判断两直线的位置关系,理解两直线的交点与方程的解之间的关系,能用解方程组的方法求两直线的交点坐标.¤知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.¤例题精讲:【例1】判断下列各对直线的位置关系. 如果相交,求出交点坐标.(1)直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0; (2)直线l 1: 1nx y n -=-, l 2: 2ny x n -=.解:(1)解方程组231003420x y x y -+=⎧⎨+-=⎩, 得22x y =-⎧⎨=⎩.所以,l 1与l 2相交,交点是(-2,2).(2)解方程组12nx y n ny x n-=-⎧⎨-=⎩,消y 得 22(1)n x n n -=+.当1n =时,方程组无解,所以两直线无公共点,1l //2l .当1n =-时,方程组无数解,所以两直线有无数个公共点,l 1与l 2重合. 当1n ≠且1n ≠-,方程组有惟一解,得到1n x n =-,211n y n -=-, l 1与l 2相交. ∴当1n =时,1l //2l ;当1n =-时,l 1与l 2重合;当1n ≠且1n ≠-,l 1与l 2相交,交点是21(,)11n n n n ---. 【例2】求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.解:设所求直线的方程为28(21x y x y λ+-+-+=,整理为(2)(12)x y λλλ++-+-=.∵ 平行于直线4370x y --=, ∴ (2)(3)(12)40λλ+⨯---⨯=,解得2λ=. 则所求直线方程为4360x y --=.【例3】已知直线(2)(31)1a y a x -=--. 求证:无论a 为何值时直线总经过第一象限. 解:应用过两直线交点的直线系方程,将方程整理为(3)(21)0a x y x y -+-+-=.对任意实数a 恒过直线30x y -=与210x y -+=的交点为(15,35),∴ 直线系恒过第一象限内的定点为(15,35).所以,无论a 为何值时直线总经过第一象限.点评:化为111222()()0A x B y C A x B y C λ+++++=后,解方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩所得到的解,为何就是直线恒过的定点坐标?实质就是方程组的解能使方程成立,即点在直线上.【例4】若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,求直线l 的倾斜角的取值范围.解:如图,直线2x +3y -6=0过点A (3,0),B (0,2),直线l :y =kx 3-必过点(0,-3).当直线l 过A 点时,两直线的交点在x 轴;当直线l 绕C 点逆时针(由位置AC 到位置BC )旋转时,交点在第一象限. 根据303033AC k --==-,得到直线l 的斜率k >33. ∴倾斜角范围为(30,90)︒︒. 点评:此解法利用数形结合的思想,结合平面解析几何中直线的斜率公式,抓住直线的变化情况,迅速、准确的求得结果. 也可以利用方程组的思想,由点在某个象限时坐标的符号特征,列出不等式而求.第25练 §3.3.1 两条直线的交点坐标※基础达标1.直线3510x y +-=与4350x y +-=的交点是( ). A. (2,1)- B. (3,2)- C. (2,1)- D. (3,2)-2.直线1:(21)2l x y -+=与直线2:(21)3l x y ++=的位置关系是( ).A. 平行B. 相交C. 垂直D. 重合3.已知直线12,l l 的方程分别为 1111:0l A x B y C ++=,2222:0l A x B y C ++=,且12l l 与只有一个公共点,则( ).A. 11220A B A B -≠B. 12210A B A B -≠C.1122A B A B ≠D. 1212A AB B ≠ 4.经过直线240x y -+=与50x y -+=的交点,且垂直于直线20x y -=的直线的方程是( ).A. 280x y +-=B. 280x y --=C. 280x y ++=D. 280x y -+= 5.直线a x +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( ).A. 1B. -1C. 2D. -26.直线1l :2x +3y =12与2l :x -2y =4的交点坐标为 .7.(07年上海卷.理2)若直线1210l x my ++=: 与直线231l y x =-:平行,则m = . ※能力提高8.已知直线l 1: 2x -3y +10=0 , l 2: 3x +4y -2=0. 求经过l 1和l 2的交点,且与直线l 3: 3x -2y +4=0垂直的直线l 的方程.9.试求直线1:l 20x y --=关于直线2l :330x y -+=对称的直线l 的方程.※探究创新10.已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0. (1)求证不论λ取何实数值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.第26讲 §3.3.2 两点间的距离¤学习目标:探索并掌握两点间的距离公式. 初步了解解析法证明,初步了解由特殊到一般,再由一般到特殊的思想与“数”和“形”结合转化思想.¤知识要点:1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;当12,P P 在直线y kx b =+上时,21212||1||PPk x x =+-. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.¤例题精讲:【例1】在直线20x y -=上求一点P ,使它到点(5,8)M 的距离为5,并求直线PM 的方程.解:∵ 点P 在直线20x y -=上,∴ 可设(,2)P a a , 根据两点的距离公式得22222(5)(28)5,542640PM a a a a =-+-=-+=即,解得3225a a ==或,∴3264(2,4)(,)55P 或. ∴ 直线PM 的方程为8585643248258555y x y x ----==----或, 即4340247640x y x y -+=--=或.【例2】直线2x -y -4=0上有一点P ,求它与两定点A (4,-1),B (3,4)的距离之差的最大值.解:找A 关于l 的对称点A ′,A ′B 与直线l 的交点即为所求的P 点. 设'(,)A a b , 则12144124022b a a b +⎧⨯=-⎪⎪-⎨+-⎪⨯--=⎪⎩,解得01a b =⎧⎨=⎩, 所以线段22|'|(41)(30)32A B =-+-=. 【例3】已知AO 是△ABC 中BC 边的中线,证明|AB |2+|AC |2=2(|AO |2+|OC |2). 解:以O 为坐标原点,BC 为x 轴,BC 的中垂线为y 轴,建立如图所示坐标系xOy . 设点A (a ,b)、B (-c ,0)、C (c ,0),由两点间距离公式得:|AB |=22()a c b ++,|AC |=22()a c b -+,|AO |=22a b +, |OC |=c .∴ |AB |2+|AC |2=2222()a b c ++, |AO |2+|OC |2=222a b c ++.∴ |AB |2+|AC |2=2(|AO |2+|OC |2).点评:此解体现了解析法的思路. 先建立适当的直角坐标系,将△ABC 的顶点用坐标表示出来,再利用解析几何中的“平面内两点间的距离公式”计算四条线段长,即四个距离,从而完成证明. 还可以作如下推广:平行四边形的性质:平行四边形中,两条对角线的平方和,等于其四边的平方和.三角形的中线长公式:△ABC 的三边长为a 、b 、c ,则边c 上的中线长为2221222a b c +-. y xB (-c ,0) A (a ,b )C (c ,0) O【例4】已知函数2()1f x x =+,设,a b R ∈,且a b ≠,求证|()()|f a f b -<||a b -. 解:由|()()|f a f b -=22|11|a b +-+,在平面直角坐标系xoy 中,取两点(1,),(1,)A a B b ,则2||1,OA a =+ 2||1O B b =+, ||||AB a b =-.△O AB 中,||||||||OA OB AB -<,∴ 22|11|a b +-+<||a b -. 故原不等式成立.点评:此证法为数形结合法,由22a b +联想到平面内点到原点的距离公式,构造两点与三角形,将要证明的不等式转化为三角形中三边的不等关系.第26练 §3.3.2 两点间的距离※基础达标1.已知(2,1),(2,5)A B --,则|AB |等于( ).A. 4B. 10C. 6D. 2132.已知点(2,1),(,3)A B a --且||5AB =,则a 的值为( ).A. 1B. -5C. 1或-5D. -1或5 3.点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则||AB 的长为( ). A. 10 B. 5 C. 8 D. 64.已知(1,2),(0,4)A B -,点C 在x 轴上,且AC =BC ,则点C 的坐标为( ).A. 11(,0)2-B. 11(0,)2-C. 11(0,)2D. 11(,0)25.已知点(1,3),(5,1)M N -,点(,)P x y 到M 、N 的距离相等,则点(,)P x y 所满足的方程是( ).A. 380x y +-=B. 340x y --=C. 390x y -+=D. 380x y -+=6.已知(7,8),(10,4),(2,4)A B C -,则BC 边上的中线AM 的长为 .7.已知点P (2,-4)与Q (0,8)关于直线l 对称,则直线l 的方程为 . ※能力提高8.已知点(1,2),(3,4),(5,0)A B C ,判断ABC ∆的类型.9.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.求22PM PN +的最小值,及取最小值时点P 的坐标.oxA (1,a )B (1,b )y※探究创新10.燕隼(sun )和红隼是同属于隼形目隼科的鸟类.它们的体形大小如鸽,形略似燕,身体的形态特征比较相似.红隼的体形比燕隼略大.通过抽样测量已知燕隼的平均体长约为31厘米,平均翅长约为27厘米;红隼的平均体长约为35厘米,平均翅长约为25厘米. 近日在某地发现了两只形似燕隼或红隼的鸟. 经测量,知道这两只鸟的体长和翅长分别为A (32.65厘米,25.2厘米),B (33.4厘米,26.9厘米). 你能否设计出一种近似的方法,利用这些数据判断这两只鸟是燕隼还是红隼?第27讲 §3.3.3 点到直线的距离及两平行线距离¤学习目标:探索并掌握点到直线的距离公式,会求两条平行直线间的距离. 体会数形结合、转化的数学思想,培养研究探索的能力.¤知识要点:1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022||Ax By C d A B++=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222||C C d A B-=+,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020A x B y C ++=,即002A x B y C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222||||Ax By C C C d A B A B++-==++. ¤例题精讲:【例1】求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.解:设所求直线l 的方程为310(3)0y x x y λ+-+-=, 整理得(31)(3)100x y λλ++--=.由点到直线的距离公式可知,22101(31)(3)d λλ==++-, 解得3λ=±. 代入所设,得到直线l 的方程为14350x x y =-+=或.【例2】在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.解:直线方程化为450x y --=. 设2(,4)P a a , 则点P 到直线的距离为22222|445||4(1/2)4|4(1/2)417174(1)a a a a d ------+===+-.高一数学21 当12a =时,点1(,1)2P 到直线的距离最短,最短距离为41717. 【例3】求证直线L :(2)(1)(64)0m x m y m +-+-+=与点(4,1)P -的距离不等于3. 解:由点线距离公式,得22|(2)4(1)(1)(64)|(2)(1)m m m d m m +-+--+=+++ =22|3|(2)(1)m m m ++++. 假设3d =,得到222(3)9[(2)(1)]m m m +=+++,整理得21748360m m ++=.∵ 248417361400∆=-⨯⨯=-<, ∴ 21748360m m ++=无实根.∴ 3d ≠,即直线L 与点(4,1)P -的距离不等于3.点评:此解妙在反证法思路的运用. 先由点线距离公式求出距离,然后从“距离不等于3”的反面出发,假设距离是3求m ,但求解的结果是m 无解. 从而假设不成立,即距离不等于3.另解:把直线L :(2)(1)(64)0m x m y m +-+-+=按参数m 整理,得(4)260x y m x y --+--=.由{40260x y x y --=--=,解得{22x y ==-. 所以直线L 恒过定点(2,2)Q -. 点P 到直线L 取最大距离时, PQ ⊥L ,即最大距离是PQ =22(24)(21)-+-+=5. ∵ 5<3, ∴直线L 与点(4,1)P -的距离不等于3.点评:此解妙在运用直线系111222()()0A x B y C A x B y C λ+++++=恒过一个定点的知识,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 由运动与变化观点,当直线PQ ⊥L 时,点线距离为最大.【例4】求直线1:2310l x y +-=与2:4650l x y +-=的正中平行直线方程.解:直线1l 的方程化为4620x y +-=. 设正中平行直线的方程为460x y C ++=, 则2222|2||5|4646C C ----=++,即|2||5|C C +=+,解得72C =-. 所以正中平行直线方程为74602x y +-=. 点评:先化一次项系数为相同,巧设正中平行直线方程,利用两组平行线间距离相等而求.结论:两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=的正中平行直线方程为12()/20Ax By C C +++=。
高中数学必修2《第3章:直线与方程(3.2直线的方程)》学生版
![高中数学必修2《第3章:直线与方程(3.2直线的方程)》学生版](https://img.taocdn.com/s3/m/79ca4574ed630b1c59eeb57e.png)
个性化辅导教案学员姓名科目年级授课时间课时 3 授课老师教学目标掌握直线的五种形式,会求点到直线的距离,会处理一些对称的问题重点难点直线的五种形式,点到直线的距离,对称问题第三章:直线与方程3.2直线的方程3.2.1直线的点斜式方程[导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l过定点P(x0,y0),斜率为k,则把方程y-y0=k(x-x0)叫做直线l的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P(x0,y0),倾斜角是90°的直线没有点斜式,其方程为x-x0=0,或x=x0.2.直线的斜截式方程(1)定义:如图所示,直线l的斜率为k,且与y轴的交点为(0,b),则方程y=kx+b叫做直线l的斜截式方程,简称斜截式.(2)说明:一条直线与y轴的交点(0,b)的纵坐标b叫做直线在y轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P(x0,y0)和斜率k;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线.2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b ,不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.直线的点斜式方程[例1] (1)经过点(-5,2)且平行于y 轴的直线方程为________.(2)直线y =x +1绕着其上一点P (3,4)逆时针旋转90°后得直线l ,则直线l 的点斜式方程为________. (3)求过点P (1,2)且与直线y =2x +1平行的直线方程为________. [解析] (1)∵直线平行于y 轴,∴直线不存在斜率,∴方程为x =-5.(2)直线y =x +1的斜率k =1,所以倾斜角为45°.由题意知,直线l 的倾斜角为135°,所以直线l 的斜率k ′=tan 135°=-1,又点P (3,4)在直线l 上,由点斜式方程知,直线l 的方程为y -4=-(x -3).(3)由题意知,所求直线的斜率为2,且过点P (1,2),∴直线方程为y -2=2(x -1),即2x -y =0. [答案] (1)x =-5 (2)y -4=-(x -3) (3)2x -y =0 [类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x =x 0.[活学活用]1.写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行.直线的斜截式方程[例2] (1)倾斜角为150°,在y 轴上的截距是-3的直线的斜截式方程为________.(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] (1)∵倾斜角α=150°,∴斜率k =tan 150°=-33,由斜截式可得所求的直线方程为y =-33x -3.(2)由斜截式方程知直线l 1的斜率k 1=-2, 又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[答案] (1)y =-33x -3 [类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]2.求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.两直线平行与垂直的应用[例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行?[解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2. ∵两直线互相垂直, ∴k 1k 2=a (a +2)=-1, 解得a =-1.故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4, 则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1. 故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]3.(1)若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. (2)若直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行,则a =________.7.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当l 1∥l 2时,求m 的值.[解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m .∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m.由l 1∥l 2,得⎩⎨⎧-m -23=-1m,-23m ≠-6m,解得m =-1.∴m 的值为-1.[易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合.[成功破障]当a为何值时,直线l1:y=-2ax+2a与直线l2:y=(a2-3)x+2平行?[随堂即时演练]1.直线y=2x-3的斜率和在y轴上的截距分别等于()A.2,3B.-3,-3C.-3,2 D.2,-32.直线l经过点P(2,-3),且倾斜角α=45°,则直线的点斜式方程是()A.y+3=x-2 B.y-3=x+2C.y+2=x-3 D.y-2=x+33.过点(-2,-4),倾斜角为60°的直线的点斜式方程是________.4.在y轴上的截距为2,且与直线y=-3x-4平行的直线的斜截式方程为________.5.(1)求经过点(1,1),且与直线y=2x+7平行的直线的方程;(2)求经过点(-2,-2),且与直线y=3x-5垂直的直线的方程.3.2.2 & 3.2.3直线的两点式方程、直线的一般式方程两点式、截距式[导入新知]直线的两点式与截距式方程两点式截距式条件P 1(x 1,y 1)和P 2(x 2,y 2) 其中x 1≠x 2,y 1≠y 2在x 轴上截距a ,在y 轴上截距b 图形方程y -y 1y 2-y 1=x -x 1x 2-x 1x a +y b=1 适用范围不表示垂直于坐标轴的直线不表示垂直于坐标轴的直线及过原点的直线[化解疑难]1.要注意方程y -y 1y 2-y 1=x -x 1x 2-x 1和方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)形式不同,适用范围也不同.前者为分式形式方程,形式对称,但不能表示垂直于坐标轴的直线.后者为整式形式方程,适用于过任何两点的直线方程.2.直线方程的截距式为x a +yb =1,x 项对应的分母是直线在x 轴上的截距,y 项对应的分母是直线在y 轴上的截距,中间以“+”相连,等式的另一端是1,由方程可以直接读出直线在两轴上的截距,如:x 3-y4=1,x 3+y4=-1就不是直线的截距式方程.直线方程的一般式[导入新知]1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示. (2)每个关于x ,y 的二元一次方程都表示一条直线. 2.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.[化解疑难]1.求直线的一般式方程的策略(1)当A ≠0时,方程可化为x +B A y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A B x +y +CB =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程.(2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.2.直线的一般式转化为其他形式的步骤 (1)一般式化为斜截式的步骤 ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -CB .(2)一般式化为截距式的步骤①把常数项移到方程右边,得Ax +By =-C ;②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B=1.由于直线方程的斜截式和截距式是唯一的,而两点式和点斜式不唯一,因此,通常情况下,一般式不化为两点式和点斜式.利用两点式求直线方程[例1] 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程. [解] 由两点式,直线AB 所在直线方程为:y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.[类题通法]求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.[活学活用]1.(1)若直线l 经过点A (2,-1),B (2,7),则直线l 的方程为________. (2)若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________.直线的截距式方程及应用[例2] 直线l 过点P (43,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程.[解] (1)设直线l 的方程为 x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12. 又因为直线l 过点P (43,2),所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎨⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0 或15x +8y -36=0.(2)设直线l 的方程为x a +yb =1(a >0,b >0),由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎪⎨⎪⎧a 2=2,b 2=6, 所以直线l 的方程为3x +4y -12=0或3x +y -6=0. [类题通法]用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便. (2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.(3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.[活学活用]2.求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程.直线方程的一般式应用[例3] (1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值;(2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直? [解] (1)法一:由l 1:2x +(m +1)y +4=0. l 2:mx +3y -2=0. ①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0,显然l 1与l 2不重合,∴l 1∥l 2. 同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2, ∴m 的值为2或-3.(2)法一:由题意,直线l 1⊥l 2,①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直.②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,所以a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 法二:由直线l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1. 将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. [类题通法]1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0, (1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.[活学活用]3.(1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程.3.探究直线在坐标轴上的截距问题[典例] 求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程. [解] 当直线过原点时,它在x 轴、y 轴上的截距都是0, 满足题意.此时,直线的斜率为12,所以直线方程为y =12x .当直线不过原点时,由题意可设直线方程为x a +y b=1,又过点A ,所以4a +2b=1(1).4.截距和是定数问题求过点A (4,2)且在两坐标轴上截距之和为12的直线l 的方程.解:设直线l 的方程为x a +y b=1, 由题意⎩⎪⎨⎪⎧ 4a +2b =1,a +b =12.∴4b +2a =ab ,即4(12-a )+2a =a (12-a ),∴a 2-14a +48=0,解得a =6或a =8.因此⎩⎪⎨⎪⎧ a =6,b =6,或⎩⎪⎨⎪⎧a =8,b =4. ∴所求直线l 的方程为x +y -6=0或x +2y -8=0.[方法感悟]如果题目中出现直线在两坐标轴上的“截距相等”、“截距的绝对值相等”、“截距互为相反数”、“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,可采用截距式求直线方程,但一定要注意考虑“零截距”的情况.[随堂即时演练]1.直线x 3-y 4=1在两坐标轴上的截距之和为( ) A .1B .-1C .7D .-72.直线3x -2y =4的截距式方程是( )A.3x 4-y 2=1 B.x 13-y 12=4 C.3x 4-y -2=1 D.x 43+y -2=1 3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________.4.斜率为2,且经过点A (1,3)的直线的一般式方程为________.5.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程.。
高中数学必修二第三章直线与方程知识点总结
![高中数学必修二第三章直线与方程知识点总结](https://img.taocdn.com/s3/m/8e0a2a71daef5ef7bb0d3cde.png)
高一数学总复习学案 必修2第三章:直线与方程一、知识点 倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;…. 直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:00y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组11122200A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y =-+-.特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为0022d A B=+.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式1222d A B=+,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为001122222d A B A B ==++二、直线方程对应练习 一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( ) A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 值是( )A. 1或3B.1或5C.3或5D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( )A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 12. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <013. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 1C.2D. 22 14. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52-二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________。
直线系方程
![直线系方程](https://img.taocdn.com/s3/m/21ea5602ce84b9d528ea81c758f5f61fb636286d.png)
所以直线恒过定点
7 , 5 2 2
例1.求证:无论m取何实数时,直线 (m-1)x-(m+3)y-(m-11)=0恒过定点, 并求出定点的坐标。
解法2:将方程变为:
x 3 y 11 m( x y 1) 0
解得: x 3 y 11 0
x
y
1
0
即:
过 7 , 5
3.过两直线2x y 8 0和x 2y 1 0的交点,
且平行于直线4 x - 3 y 7 0的直线是 : 4_x_-_3_y_-6_=0
4.过两直线y 2x 3和3x - y 2 0的交点,
且垂直于第一条直线的直线方程是 :x_+_2_y_-_1_1=0
四、一个二次方程表示 两条直线的问题:
高一数学 必修 2
第三章 直线的方程
一、直线系方程的概念
• 直线系: • 具有某种共同性质的所有直
线的集合.它的方程叫直线系 方程。
二、直线系方程的种类1:
1:与直线L:Ax+By+C=0平行的直线系方程 为:
Ax+By+m=0 (其中m≠C,m为待定系 数);y
o x
直线系方程的种类2:
2:与直线L:Ax+By+C=0垂直的直线系方程为: Bx-Ay+m=0 (m为待定系数).
2 2
方法小结:
若证明一条直线恒过定点或求一条直线必 过定点,通常有两种方法: 法一:分离系数法,即将原方程改变成: f(x, y)+mg(x,y)=0的形式,此式的成立与 m的取值无关,故从而解出定点。
法二:从特殊到一般,先由其中的两条特 殊直线求出交点,再证明其余直线均过此 交点。
例2: 求过两直线x-2y+4=0和x+y-2=0的交点, 且满足下列条件的直线L的方程。 (1) 过点(2, 1) (2) 和直线3x-4y+5=0垂直。
(word完整版)新课标高中数学必修2直线与方程
![(word完整版)新课标高中数学必修2直线与方程](https://img.taocdn.com/s3/m/9e7f3deda8114431b80dd86e.png)
3.1知识表直线方程的概念及直线的倾斜角和斜率(1)直线的方程:如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线.(2)直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫这条直线的倾斜角. 倾斜角的取值范围是0 °<a <180 ° .(3)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率. 倾斜角是90°的直线的斜率不存在.过P i( X i, yj , P2(X2, y2)(X2^X i)两点的直线的斜率芯-心特别地是,当为x2,y y2时,直线与x轴垂直,斜率k不存在;当Xi他,y i y?时,直线与y轴垂直,斜率k=0.注意:直线的倾斜角a =90。
时,斜率不存在,即直线与y轴平行或者重合.当a =90°时,斜率k=0;当0 90时,斜率k 0,随着a的增大,斜率k也增大;当90 180时,斜率k 0,随着a的增大,斜率k也增大.这样,可以求解倾斜角a的范围与斜率k取值范围的一些对应问题.倾斜角斜率1. 特殊角与斜率※基础达标1 .若直线X 1的倾斜角为,则等于( ).A. 0 B . 45° C . 90 ° D .不存在2•已知直线I的斜率的绝对值等于.3,则直线的倾斜角为( ).A. 60 °B. 30 °C. 60 °或120°D. 30 °或150°3. 已知直线经过点A(0,4)和点B (1 , 2),则直线AB的斜率为_________________4. 经过两点A(4, 2y 1),B(2, 3)的直线的倾斜角为135°,则y的值等于( )5. 过点P( —2, m)和Qm4)的直线的斜率等于1,则m的值为( ).A.1B.4C.1 或3D.1 或46 .已知两点A( X , —2),耳3 , 0),并且直线AB的斜率为2,则X =7. 已知过两点A(m 2,m 3), B(3 m m,2m)的直线I的倾斜角为45°,求实数m的值.&若三点P ( 2, 3), Q( 3, a ), R4 , b)共线,那么下列成立的是()A. a 4,b 5B. b a 1C. 2a b 3D. a 2b 39. 若A(1 , 2),耳-2 , 3) , C(4 , y)在同一条直线上,则y的值是10. 已知三点A(a, 2)、B(3 , 7)、C(-2 , -9 a)在一条直线上,求实数a的值.11. 光线从点A(2,1)出发射入y轴上点Q再经y轴反射后过点B(4,3),试求点Q的坐标,以及入射光线、反射光线所在直线的斜率.※能力提高12. 已知A(2, 3),B( 3, 2)两点,直线I 过定点P(1,1)且与线段AB 相交,求直线I 的斜率k 的取值范围13. 已知两点 M 2,- 3)、N ( — 3,— 2),直线I 过点R1 , 1)且与线段MN 相交,则直线I 的斜率k 的取值 范围是(A )333B.— 4< k w C.w k w 4 D. — w k w 4444B (3, 0), 过点P (-1,2)的直线I 与线段AB 始终有公共点,求直线15.右图中的直线I 1、I 2、I 3的斜率分别为 k 1、k 2、k 3」y ( ).A . k 1< k 2< k 3B. k 3< k 1< k 2C. k 3< k 2< k 1D. k<k 3< k 2§ 3.1.2 两条直线平行与垂直的判定基础知识:1.两条不重合的直线平行或垂直,则(1) 11 // 12k 1=k 2 (2) I 1丄12 k 1 • k 2= — 1.若I 1和I 2都没有斜率,则I 1与I 2平行或重合.若I 1和I 冲有一条没有斜率而另一条斜率为0,则I 1丄I 2.【例1】四边形 ABC 啲顶点为A(2,2 2.2)、B( 2,2)、C(0,22 2)、D(4,2),试判断四边形 ABCD的形状.【例2】已知 ABC 的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A 的坐标.3 5【例3】(1)已知直线I 1经过点M( -3 , 0)、N( -15,-6 ), I 2经过点R( -2 , 3 )、S (0, 5 ),试判2 2断l 1与I 2是否平行?(2) l 1的倾斜角为45°, I 2经过点P (-2 , -1 )、Q( 3, -6 ),问I 1与I 2是否垂直?【例 4】已知 A( 1, 1), B (2 , 2), C (3 , -3 ),求点 D,使直线 CDL AB 且 CB// AD点评:通过设点D 的坐标,把已知条件中的垂直与平行的两种关系、三点的坐标联系在一起,联系的 纽带是斜率公式.解题的数学思想是方程求解,方程的得到是利用平行与垂直时斜率的关系 .※基础达标1 .下列说法中正确的是( ).A. 平行的两条直线的斜率一定存在且相等B. 平行的两条直线的倾斜角一定相等3A. k > 或 k w — 4414.已知两点A (-2,- 3), 的取值范围•I 的斜率kC. 垂直的两直线的斜率之积为-1D. 只有斜率相等的两条直线才一定平行2. 若直线h、J的倾斜角分别为1、2,且l1 J,则有( ).A. 1290o B. 2190° C. | 2190oD. 12180°3. 经过点P( 2,m)和Q(m,4)的直线平行于斜率等于 1的直线,则 m的值是()A . 4 B. 1C. 1 或 3D. 1 或 44. 若 A( 4,2), B(6, 4), C(12,6),D(2,12),则下面四个结论: ①AB//CD :②AB CD :③AC // BD ; ④ACBD .其中正确的序号依次为( )A. ①③B. ①④C.②③ D.②④5.已知 ABC 的三个顶点坐标为 A(5, 1), B(1,1), C(2,3),则其形状为().A.直角三角形B.锐角三角形 C. 钝角三角形 D. 无法判断6.直线11,12的斜率是方程x 2 3x 1 0的两根,则h 与12的位置关系是.7•若过点A (2, 2),B(5,0)的直线与过点P(2m,1),Q( 1, m)的直线平行,则 m=. ※能力提高&已知矩形 ABCD 的三个顶点的分别为 A(0,1), B(1,0), C(3,2),求第四个顶点 D 的坐标. 9.ABC 的顶点A(5, 1), B(1,1), C(2,m),若 ABC 为直角三角形,求 m 的值.※探究创新10. 已知过原点 O 的一条直线与函数 y =log 8X 的图象交于 A B 两点,分别过点 A B 作y 轴的平行线 与函数y =log 次的图象交于C 、D 两点.(1) 证明:点C D 和原点O 在同一直线上.(2)当BC 平行于x 轴时,求点A 的坐标.必修二3.2知识表线段昭2中点坐标公式(宁§ 3.2.1直线的点斜式方程※基础达标1..写出下列点斜式直线方程:(1)经过点 A(2,5),斜率是 4; y 5 4(x 3) (2)经过点 B(3, 1),倾斜角是 30o. y 1 3(x 3).32. 倾斜角是135o,在y 轴上的截距是3的直线方程是 . 3. 直线y ax b ( a b = 04.已知直线l 过点P(3,4)A. y 4 2(x 3) B. y 4 x 3 C. y 40 D. x 35•过点M 2,1的直线与x 、y 轴分别交于P 、Q 若M 为线段PQ 的中点,则这条直线的方程为 __________________名称 几何条件方程 局限性点斜式 过点(x 0, y o ),斜率为k y — y 0=k(x — X 。
高中数学必修2知识点总结:第三章_直线与方程2
![高中数学必修2知识点总结:第三章_直线与方程2](https://img.taocdn.com/s3/m/4d3d10c1376baf1ffd4fadee.png)
高中数学必修2知识点总结:第三章_直线与方程2直线与方程3.1直线的倾斜角和斜率3.1 倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示, k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. .....4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k = y2-y1/x2-x1 3.1.2 两条直线的平行与垂直1、两条直线的平行① 若两条直线的斜率都存在,则:k1 = k2 = L1∥L2或者..L1与L2重合② 两条不重合直线平行的判定条件:⑴ 两条直线的斜率都不存在;⑵ 两条直线的斜率存在,且k1 = k2...(若已知两条直线的斜率存在且平行,则应k1 = k2 且纵截距不相等;若已知两条直线的斜率不存在且平行,则应横截距不相等)2、两条直线垂直①若两条直线的斜率都存在,则:k1 k2 = - 1 = L1 ⊥ L2 .....②两条直线垂直的判定条件:⑴ 两条直线:一条斜率不存在,另外一条k =0 ;⑵ 两条直线的斜率存在:k1 k2 = - 1 3、利用系数来判断平行与垂直★ 已知L1: A1x+B1y+C1=0 , L2 : A2x+B2y+C2=0 那么:① A1B2-A2B1=0两条直线平行或重合....两条直线相交③ A1A2 + B1B2 = 0..② A1B2-A2B1 ≠0两条直线垂直..★ 如果已知两条直线的一般式方程,则可以通过系数关系求解相应的参数的值。
高中数学必修2第三章直线与方程全套教案
![高中数学必修2第三章直线与方程全套教案](https://img.taocdn.com/s3/m/a6f4b25c3a3567ec102de2bd960590c69ec3d8ef.png)
第三章直线与方程直线的倾斜角和斜率教学目标:知识与技能(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线的倾斜角的唯一性.(3)理解直线的斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式.情感态度与价值观(1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点与难点:直线的倾斜角、斜率的概念和公式.教学用具:计算机教学方法:启发、引导、讨论.教学过程:(一)直线的倾斜角的概念我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值X围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们YXcbaO的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜角......α..(二)直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°-45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x轴垂直;(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x 轴平行或重合. (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA 的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略)分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k 的值; 而当k = tanα<0时, 倾斜角α是钝角; 而当k = tanα>0时, 倾斜角α是锐角; 而当k = tanα=0时, 倾斜角α是0°.略解: 直线AB 的斜率k1=1/7>0, 所以它的倾斜角α是锐角; 直线BC 的斜率k2=-0.5<0, 所以它的倾斜角α是钝角; 直线CA 的斜率k3=1>0, 所以它的倾斜角α是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 与-3的直线a, b, c, l. 分析:要画出经过原点的直线a, 只要再找出a 上的另外一点M. 而M 的坐标可以根据直线a 的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可. 略解: 设直线a 上的另外一点M 的坐标为(x,y),根据斜率公式有 1=(y -0)/(x -0)所以 x = y可令x = 1, 则y = 1, 于是点M 的坐标为(1,1).此时过原点和点 M(1,1), 可作直线a.同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)(五)练习: P91 1. 2. 3. 4. (六)小结:(1)直线的倾斜角和斜率的概念. (2) 直线的斜率公式. (七)课后作业: P94 习题3.1 1. 3. (八)板书设计:两条直线的平行与垂直教学目标 (一)知识教学理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. (二)能力训练通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力,以与数形结合能力.(三)学科渗透通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tanα1=tanα2.即k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2.L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等).例题例1已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5, 因为k1=k2=0.5, 所以直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想:四边形ABCD是平行四边形,再通过计算加以验证)解同上.例3已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2, 因为k1·k2 = -1 所以AB⊥PQ.例4已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习P94 练习 1. 2.课后小结(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.布置作业 P94 习题3.1 5. 8. 板书设计直线的点斜式方程一、教学目标 1、知识与技能〔1〕理解直线方程的点斜式、斜截式的形式特点和适用X 围; 〔2〕能正确利用直线的点斜式、斜截式公式求直线方程。
高一数学必修2第三章《直线与方程》PPT 课件
![高一数学必修2第三章《直线与方程》PPT 课件](https://img.taocdn.com/s3/m/5ba3bc855fbfc77da269b18a.png)
直线的交点个数与直线位置的关系
方程组:
A1x+B1y+C1=0
A2x+B2y+C2=0的解
a=1或-3
求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行;
2x+3y-1=0
(2)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0
.
(3)经过点R(-2,3)且在两坐标轴上截距相等; x+y-1=0或3x+2y=0
已知 △ ABC 的三个顶点坐标是 A ( 1 , - 1 ) , B ( - 1 , 3 ) , C ( 3 , 0 )
2.直线的斜率:
(1)定义:倾斜角不是90°的直线它的倾 斜角α的正切值叫做这条直线的斜率,常 用k表示,即k=tanα.
α=90°的直线斜率不存在;
(2)经过两点P(x1,y1),Q(x2,y2)的直
线的斜率公式
k
y2
y1 (其中x1≠x2).
x2 x1
k=tanα,
当0<α< π 2
时,k>0;
当 π <α<π时,k <0; 2
当α=0时,k=0;
牢记特殊角的斜率 (正切)值!
当α= π 时,k不存在. 2
B
如图,已知A(3,2),B(-4,1),C(0,-1),求直线 AB,BC,CA的斜率,并判断这些直线的倾斜角是锐角 还是钝角.
人教版高一数学必修二第三章 直线与方程教案
![人教版高一数学必修二第三章 直线与方程教案](https://img.taocdn.com/s3/m/7a8714ba0b4e767f5bcfce72.png)
教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。
(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。
定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。
②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。
高一数学必修:直线与方程(知识点)
![高一数学必修:直线与方程(知识点)](https://img.taocdn.com/s3/m/7246332c17fc700abb68a98271fe910ef12daefa.png)
α0°。
则直线的l 与x l 做直线的倾斜角。
当直线轴平行或重合时,我们规定它的倾斜角为倾斜角的取值2.确定一条直线的条件:直线上的一点和这个直线的倾斜角可以惟一确定一条直线。
3.确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角。
4.坡度(倾斜程度):日常生活中,我们用“升高量与前进量的比”表示倾斜面的“坡度”(倾斜程度),即α的正切值叫做这条直线的斜率5.斜率:一条直线的倾斜角,我们用斜率表示直线的倾斜程度。
斜率常用表示,小写字母k注意:倾斜角是90°的直线没有斜率。
的直线的斜率公式(,),(,)6.经过两点≠P x y P x y x x 11122212()为l 1与l 2l l 1k 1=k 2l 1和l 2注意:若直线可能重合时,我们得到⇔∥2或重合8.如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于1⊥2⇔12=--1,那么它们互相垂直,即l l k k 15二、直线的方程(个)-0==0,l l 与x l 的倾斜角为0°时,tan0°=0,即k=0y -y 0=k (x -x 01.直线的点斜式方程(简称点斜式):)【当直线,这是直线轴平行或重合,的方程就是y y y y 或0】注意:直线的点斜式方程仅适用于有斜率的情形,所以在求直线的方程时,应先讨论直线有无斜率。
0,y l x a l 与x 截距:我们把直线轴交点,0()的横坐标a 叫做直线在轴上的截距。
我们把直线与轴交点b () l 在y 的纵坐标b 叫做直线轴上的截距。
注意:截距不是距离,截距是数。
2.直线的斜截式方程(简称斜截式):=+y kx b 注意:直线的斜截式方程仅适用于有斜率的直线。
注意:①直线的两点式方程不适用于没有斜率或斜率为0的直线。
一、直线的倾斜角与斜率1.倾斜角:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的夹角α叫高一数学必修:直线与方程(知识点)②若P x y P x y ,,,111222()()中有=x x 12或=y y 12时,直线PP 12没有两点式方程。
数学必修二第三章直线与方程
![数学必修二第三章直线与方程](https://img.taocdn.com/s3/m/edad8b3feff9aef8941e06d6.png)
*9.直线系过定点问题
含有一个待定系数(参数)的二元一次方程过定点问题 的解法:
(1)特殊值法,利用不论参数取何值,方程都有解, 给方程中的参数取两个特殊值,可得关于x、y的两个 方程,从中解出的x、y的值即为所求定点的坐标.
(2)分离参数法:经过将方程整理为m(A1x+B1y+ C1)+A2x+B2y+C2=0,则该方程表示 的直线一定过直线A1x+B1y+C1=0和 A2x+B2y+C2=0的交点,而交点就 是定点.
一、知识讲解
1.直线方程 (1)坐标平面内,任意一条直线的方程都 是关于x、y的二元一次方程;每一个关于 x、y的二元一次方程都表示一条直线.
特别注意x=a也是一条直线,此 直线垂直于x轴,直线上任意一 点的横坐标都是a
(2)常见表达式的几何意义 ① x2+y2表示动点 P(x,y)到原点(0,0)的距离. (x-1)2+(y+2)2 表示动点 P(x,y)到定点(1,-2)的距离 的平方. ②yx表示动点 P(x,y)与原点连线的斜率. yx+-23表示动点 P(x,y)与定点(3,-2)连线的斜率. ③|x+2y-1|表示动点 P(x,y)到直线 x+2y-1=0 的距 离的 5倍等等.
(6)与直线y=kx+b平行的直线方程可设为y=kx+b1.
(7)与 y=kx+b(k≠0)垂直的直线方程可设为 y=-1kx
+b1.
(8)过两直线l1:A1x+B1y+C1=0与l2:A2x+B2y +C2=0的交点(A1B2-A2B1≠0)的直线方程可设为 (A1x+B1y+C1)+λ(A2y+B2y+C2)=0.
4.直线的方程
方程名称
方程形式
点斜式
y-y1=k(x-x1)
斜截式 两点式 截距式 一般式
高中数学必修2知识点总结:第三章直线与方程
![高中数学必修2知识点总结:第三章直线与方程](https://img.taocdn.com/s3/m/e389dd34a7c30c22590102020740be1e650ecc9b.png)
高中数学必修2知识点总结:第三章直线与方程文章摘要:坐标法是以坐标系为桥梁,把研究几何问题转化成代数问题,通过代数运算研究几何图形*质的方法,是解析几何中最基本的研究方法。
通过坐标系把点与坐标、曲线与方程联系起来,实现空间形式与数量关系的结合。
教材要求:掌握如何在直角坐标系中建立直线的方程;并通过圆的方程研究直线的有关*质,如平行、垂…【编者按】坐标法是以坐标系为桥梁,把研究几何问题转化成代数问题,通过代数运算研究几何图形*质的方法,是解析几何中最基本的研究方法。
通过坐标系把点与坐标、曲线与方程联系起来,实现空间形式与数量关系的结合。
教材要求:掌握如何在直角坐标系中建立直线的方程;并通过圆的方程研究直线的有关*质,如平行、垂直、两条直线的交点、点到直线的距离等。
一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
要点精讲:1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。
高一数学人必修二课件第三章直线的两点式方程直线的一般式方程
![高一数学人必修二课件第三章直线的两点式方程直线的一般式方程](https://img.taocdn.com/s3/m/9fb87602777f5acfa1c7aa00b52acfc789eb9faa.png)
03
直线上任意两点的中点坐标满
足该直线的方程。
04
两条平行直线的斜率相等,即
$k_1 = k_2$。
05
两条垂直直线的斜率互为相反
数的倒数,即 $k_1 cdot k_2
= -1$。
06
02
两点式方程
两点式方程推导
通过已知两点坐标 $(x_1, y_1)$ 和 $(x_2, y_2)$,推导直 线方程。
一般式方程与截距关系
截距定义
直线与坐标轴的交点到原点的距离称为该直线的截距。
一般式方程与截距的关系
直线的一般式方程可以直接反映出该直线在坐标轴上的截距。通过一般式方程 可以求出直线在x轴和y轴上的截距。
04
直线方程求解方法
代入法求解直线方程
已知直线上一点$P(x_0, y_0)$和斜率$k$,则直线方程可表示为$y - y_0 = k(x x_0)$。
直线在坐标轴上的截距可以通 过直线方程求出。
一般式方程形式
综合斜率和截距公式,可以得 到直线的一般式方程。
一般式方程应用
求解直线交点
求解点到直线的距离
两条直线的交点坐标可以通过联立两 条直线的一般式方程求解。
利用点到直线距离公式和直线的一般 式方程,可以求出点到直线的距离。
判断点与直线的位置关系
通过代入点的坐标到直线的一般式方 程中,可以判断点是否在直线上或者 直线的哪一侧。
两点式
已知直线上两点 $(x_1, y_1)$ 和 $(x_2, y_2)$,则直 线可表示 $frac{y y_1}{y_2 - y_1} = frac{x - x_1}{x_2 x_1}$。
截距式
$frac{x}{a} + frac{y}{b} = 1$,其 中 $a$ 是直线在 $x$ 轴上的截距, $b$ 是直线在 $y$ 轴上的截距。
必修二-直线与方程知识点总结
![必修二-直线与方程知识点总结](https://img.taocdn.com/s3/m/f7772dcf09a1284ac850ad02de80d4d8d15a01f8.png)
直线与方程总结 【知识点一:倾斜角与斜率】 (1)直线的倾斜角①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。
②直线与x 轴平行或重合时,规定它的倾斜角为00 ③倾斜角α的范围000180α≤< (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. 记作tan k α=0(90)α≠⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k ==⑵当直线l 与x 轴垂直时, 090α=,k 不存在.②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是2121y y k x x -=-③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)求斜率的一般方法:①已知直线上两点,根据斜率公式212121()y y k x x x x -=≠-求斜率;②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率; (4)利用斜率证明三点共线的方法:已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。
【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直. 【知识点三:直线的方程】(1)直线方程的几种形式问题:过两点111222(,),(,)P x y P x y 的直线是否一定可用两点式方程表示? 【不一定】 (1)若1212x x y y =≠且,直线垂直于x 轴,方程为1x x =; (2)若1212x x y y ≠=且,直线垂直于y 轴,方程为12y y =; (3)若1212x x y y ≠≠且,直线方程可用两点式表示直线的点斜式方程实际上就是我们熟知的一次函数的解析式; 利用斜截式求直线方程时,需要先判断斜率存在与否.用截距式方程表示直线时,要注意以下几点:方程的条件限制为0,0a b ≠≠,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;用截距式方程最便于作图,要注意截距是坐标而不是长度.截距与距离的区别:截距的值有正、负、零。
高一数学必修二直线与方程
![高一数学必修二直线与方程](https://img.taocdn.com/s3/m/6dc03465f5335a8102d220f7.png)
数学必修二——直线与方程(一)直线的斜率1. 坡度:是指斜坡起止点间的高度差与水平距离的比值。
2. 直线的斜率:已知两点如果,那么直线PQ的斜率为练习:直线都经过点P(2,3),又分别经过试计算的斜率。
(1)当直线的斜率为正时,直线从左下方向右上方倾斜(2)当直线的斜率为负时,直线从左上方向右下方倾斜。
(3)当直线的斜率为零时,直线与x轴平行或重合说明:1、如果,那么直线PQ的斜率不存在(与x轴垂直的直线不存在斜率)2、由直线上任意两点确定的斜率总是相等的。
3、直线的倾斜角:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角。
当直线和轴平行或重合时,我们规定直线的倾斜角为0°。
因此,根据定义,我们可以得到倾斜角的取值范围是0°≤<180°。
4、直线倾斜角与斜率的关系:当直线的斜率为正时,直线的倾斜角为锐角,此时有当直线的斜率为负时,直线的倾斜角为钝角,此时有概念辨析:为使大家巩固倾斜角和斜率的概念,我们来看下面的题。
关于直线的倾斜角和斜率,下列哪些说法是正确的:A. 任一条直线都有倾斜角,也都有斜率;B. 直线的倾斜角越大,它的斜率就越大;C. 平行于x轴的直线的倾斜角是0或180°;D. 两直线的倾斜角相等,它们的斜率也相等;E. 直线斜率的范围是(-∞,+∞)。
辨析:上述说法中,E正确,其余均错误,原因是:A. 与x轴垂直的直线倾斜角为90°,但斜率不存在;B.举反例说明,C. 平行于轴的直线的倾斜角为0;D. 如果两直线的倾斜角都是90°,但斜率不存在,也就谈不上相等.说明:①当直线和x轴平行或重合时,我们规定直线的倾斜角为0°;②直线倾斜角的取值范围是;③倾斜角是90°的直线没有斜率。
(二)直线方程1. 直线方程的概念:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
必修2-直线与方程知识点归纳总结
![必修2-直线与方程知识点归纳总结](https://img.taocdn.com/s3/m/b6c69848a26925c52cc5bfaa.png)
第三章 直线与方程直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。
②经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠) ③每条直线都有倾斜角,但并不是每条直线都有斜率。
2、两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程1、直线方程的几种形式 名称方程的形式已知条件局限性点斜式 )(11x x k y y -=- ),(11y x 为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式 b kx y +=k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式121121x x x x y y y y --=--),(2121y y x x ≠≠其中),(),,(2211y x y x 是直线上两定点不包括垂直于x 轴和y 轴的直线截距式 1=+by a xa 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式 0=++C By Ax )不同时为其中0,(B A A ,B ,C 为系数无限制,可表示任何位置的直线注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修二——直线与方程(一)直线的斜率1. 坡度:是指斜坡起止点间的高度差与水平距离的比值。
2. 直线的斜率:已知两点如果,那么直线PQ的斜率为练习:直线都经过点P(2,3),又分别经过试计算的斜率。
(1)当直线的斜率为正时,直线从左下方向右上方倾斜(2)当直线的斜率为负时,直线从左上方向右下方倾斜。
(3)当直线的斜率为零时,直线与x轴平行或重合说明:1、如果,那么直线PQ的斜率不存在(与x轴垂直的直线不存在斜率)2、由直线上任意两点确定的斜率总是相等的。
3、直线的倾斜角:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角。
当直线和轴平行或重合时,我们规定直线的倾斜角为0°。
因此,根据定义,我们可以得到倾斜角的取值范围是0°≤<180°。
4、直线倾斜角与斜率的关系:当直线的斜率为正时,直线的倾斜角为锐角,此时有当直线的斜率为负时,直线的倾斜角为钝角,此时有概念辨析:为使大家巩固倾斜角和斜率的概念,我们来看下面的题。
关于直线的倾斜角和斜率,下列哪些说法是正确的:A. 任一条直线都有倾斜角,也都有斜率;B. 直线的倾斜角越大,它的斜率就越大;C. 平行于x轴的直线的倾斜角是0或180°;D. 两直线的倾斜角相等,它们的斜率也相等;E. 直线斜率的范围是(-∞,+∞)。
辨析:上述说法中,E正确,其余均错误,原因是:A. 与x轴垂直的直线倾斜角为90°,但斜率不存在;B.举反例说明,C. 平行于轴的直线的倾斜角为0;D. 如果两直线的倾斜角都是90°,但斜率不存在,也就谈不上相等.说明:①当直线和x轴平行或重合时,我们规定直线的倾斜角为0°;②直线倾斜角的取值范围是;③倾斜角是90°的直线没有斜率。
(二)直线方程1. 直线方程的概念:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
问题一:已知直线经过点,且斜率为,如何求直线的方程?因为经过直线上一个定点与经过这条直线上任意一点的直线是都惟一的,其斜率都等于。
所以,要把它变成方程.因为前者表示的直线上缺少一个点,而后者才是整条直线的方程.2. 直线的点斜式方程已知直线经过点,且斜率为,直线的方程:为直线方程的点斜式。
直线的斜率时,直线方程为;当直线的斜率不存在时,不能用点斜式求它的方程,这时的直线方程为。
问题二:已知直线经过点P(0,b),并且它的斜率为,求直线的方程?3. 直线的斜截式方程已知直线经过点P(0,b),并且它的斜率为k,直线的方程:为斜截式。
说明:(1)斜截式在形式上与一次函数的表达式一样,它们之间有什么差别?只有当时,斜截式方程才是一次函数的表达式。
(2)斜截式中,表示直线的斜率,b叫做直线在y轴上的截距。
4. 直线方程的两点式已知直线上两点,B(,求直线方程。
首先利用直线的斜率公式求出斜率,然后利用点斜式写出直线方程为:由可以导出,由于这个方程是由直线上两点确定的,所以叫做直线方程的两点式。
注意:倾斜角是0°或90°的直线不能用两点式公式表示。
5. 直线方程的截距式定义:直线与轴交于一点(,0)定义为直线在轴上的截距;直线与y轴交于一点(0,)定义为直线在轴上的截距。
叫做直线方程的截距式。
,表示截距,它们可以是正,也可以是负,也可以为0。
当截距为零时,不能用截距式。
存在存在问题3:是否存在某种形式的直线方程,它能表示平面内的任何一条直线?(其中A、B、C是常数,A、B不全为0)的形式,叫做直线方程的一般式。
探究1:方程总表示直线吗?根据斜率存在不存在的分类标准,即B等于不等于0来进行分类讨论:若方程可化为,它是直线方程的斜截式,表示斜率为,截距为的直线;若B=0,方程变成.由于A、B不全为0,所以,则方程变为,表示垂直于X轴的直线,即斜率不存在的直线.结论:当A、B不全为0时,方程表示直线,并且它可以表示平面内的任何一条直线。
【典型例题】例1. 若三点,,共线,求的值。
解:例2. 已知两点A(-3,4)、B(3,2),过点P(2,-1)的直线与线段AB有公共点,求直线的斜率k的取值范围。
解:k≤-1或k≥3例3. (1)直线在轴上的截距是-1,而且它的倾斜角是直线的倾斜角的2倍,则()A. A=,B=1B. A=-,B=-1C. A=,B=-1D. A=-,B=1解:将直线方程化成斜截式.因为=-1,B=-1,故否定A、D又直线的倾斜角=,∴直线的倾斜角为2=,∴斜率-=-,∴A=-,B=-1,故选B。
(2)若直线通过第二、三、四象限,则系数A、B、C需满足条件()A. A、B、C同号B. AC<0,BC<0C.C=0,AB<0D. A=0,BC<0解:原方程可化为(B≠0)∵直线通过第二、三、四象限∴其斜率小于0,轴上的截距小于0,即-<0,且-<0∴>0,且>0即A、B同号,B、C同号∴A、B、C同号,故选A例4. 根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-,经过点A(8,-2);(2)经过点B(4,2),平行于轴;(3)在轴和轴上的截距分别是,-3;(4)经过两点(3,-2)、(5,-4).解:(1)由点斜式得-(-2)=-(-8)化成一般式得+2-4=0(2)由斜截式得=2,化成一般式得-2=0(3)由截距式得,化成一般式得2--3=0(4)由两点式得,化成一般式得+-1=0例5. 直线方程的系数A、B、C满足什么关系时,这条直线有以下性质?(1)与两条坐标轴都相交;(2)只与轴相交;(3)只与轴相交;(4)是轴所在直线;(5)是轴所在直线。
答:(1)当A≠0,B≠0,直线与两条坐标轴都相交。
(2)当A≠0,B=0时,直线只与轴相交。
(3)当A=0,B≠0时,直线只与轴相交。
(4)当A=0,B≠0,C=0,直线是轴所在直线。
(5)当A≠0,B=0,C=0时,直线是轴所在直线。
例6. 求过点P(2,3),并且在两轴上的截距相等的直线方程。
解:在两轴上的截距都是0时符合题意,此时直线方程为3-2=0若截距不为0,则设直线方程为=1将点P(2,3)代入得=1,解得a=5∴直线方程为=1,即+=5【模拟试题】一、选择题1. 下列四个命题中,真命题是()A. 经过定点的直线都可以用方程表示B. 经过两个不同的点,的直线都可以用方程:来表示C. 与两条坐标轴都相交的直线一定可以用表示D. 经过点Q(0,b)的直线方程都可以表示为y=kx+b2. 直线m(x+y-1)+(3y-4x+5)=0不能化成截距式方程,则m的值为()A. 5B. -3或4C. -3或4或5D. m∈(-∞,-3)∪(4,5)∪(5,+∞)3. 关于直线的斜率,下列说法中正确的是()A. 斜率是正数时,直线必过一,三象限;B. 直线的倾斜角越大,斜率就越大;C. 直线的位置是由斜率确定的;D.所有直线都有斜率4. 若点P(x0,y0)在直线Ax+By+C=0上,则直线方程可表示为()A. A(x-x0)+B(y-y0)=0B. A(x-x0)-B(y-y0)=0C. B(x-x0)+A(y-y0)=0D. B(x-x0)-A(y-y0)=05. 若直线4x-3y-12=0被两坐标轴截得的线段长为,则c的值为()A. 1B.C. ±D. ±16. 过点P(1,1)作直线l,与两坐标轴相交所得三角形面积为10,则直线l有()A. 1条B. 2条C. 3条D. 4条7. 直线(=0)的图象是()8. 若三点(2,3),(3,a),(4,b)在一条直线上,那么()A. a=3,b=5B. b-a=1C. 2a-b=3D. a-2b=3二、填空题9. 若直线过(-2,3)和(6,-5)两点,则直线的斜率为,倾斜角为10. 已知两点A(x,-2),B(3,0),并且直线AB的斜率为,则x=。
11. 对于任意实数k,直线必过一定点,则该定点坐标是________。
12. 直线在轴上截距是它在轴上截距的3倍,则等于_________。
三、解答题13. 求下列直线的斜率和在轴上的截距,并画出图形:(1)3+-5=0;(2)=1;(3)+2=0;(4)7-6+4=0;(5)2-7=014. 求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角。
15. 菱形的两条对角线长分别等于8和6,并且分别位于轴和轴上,求菱形各边所在的直线的方程。
16. 已知直线(1)当B≠0时,斜率是多少?当B=0时呢?(2)系数取什么值时,方程表示通过原点的直线?【试题答案】一、选择题1. B2. C3. A4. A5. B6. D7. C8. C7. 提示:解法一:由已知,直线的斜率为,在轴上的截距为又因为=0∴与互为相反数,即直线的斜率及其在轴上的截距互为相反数图A中,>0,>0;图B中,<0,<0;图C中,>0,=0故排除A、B、C 选D解法二:由于所给直线方程是斜截式,所以其斜率≠0,于是令=0,解得。
又因为=0,∴,∴∴直线在轴上的截距为1,由此可排除A、B、C,故选D。
二、填空题9. -1;135°10. -1 11. (2,3)12. -2三、解答题13. 解:(1)=-3,在轴上截距为5(2)化成斜截式得=-5 ∴=,b=-5。
(3)化成斜截式得=-∴=-,b=0。
(4)化成斜截式得=∴,。
(5)化成斜截式得=∴=0,b=。
图略14. 解:,就是因此,这条直线的斜率是-1,倾斜角是15. 解:设菱形的四个顶点为A、B、C、D,如下图所示。
根据菱形的对角线互相垂直且平分可知:顶点A、B、C、D在坐标轴上,且A、C关于原点对称,B、D也关于原点对称。
所以A(-4,0),C(4,0),B(0,3),D(0,-3)由截距式得:=1,即3x-4y+12=0这是直线AB的方程;由截距式得=1 即3+4y-12=0这是直线BC的方程;由截距式得=1 即3+4y+12=0这是直线AD的方程;由截距式得=1即3-4y-12=0,这是直线CD的方程。
16. 答:(1)当B≠0时,方程可化为斜截式:∴斜率。
当B=0时,A≠0时,方程化为与轴垂直,所以斜率不存在。
(2)若方程表示通过原点的直线,则(0,0)符合直线方程,则C=0。
所以C=0时,方程表示通过原点的直线。