必修2初中数学第三章直线与方程知识点
必修2第三章直线与方程第五课:直线的一般式方程

思考已知直线 . l : 3x 5 y 15 0 求它在x轴上的截距.
直线Ax By c 0在坐标轴上截距如何 计算?如何求斜率?
能力提高: 设直线l方程为(a 1) x y 2 a 0 (a是常数). (1).若l在两坐标轴上截距相等 ,求直线l的方程. (2).当l不经过第二象限时, 求实数a的范围.
思考1: 以上三个方程是否都是二元一次方程?
所有的直线方程是否都是二元 一次方程?
思考依据: (1).斜率存在.(2).斜率不存在
思考2: 对于任意一个二元一次方程 Ax By C 0( A、B不同时为零) 能否表示一条直线?
依据:方程系数所具有的几何特征.
A C B 0,方程为y x ( ) B B C B 0,则:A 0,方程为x A
3.一般式方程与其他形式方程的转化
(一)把直线方程的点斜式、两点式和截距式转
化为一般式,把握直线方程一般式的特点
注意:直线的斜截式方程一般不需要转化.
适应性练习: 根据下列条件,写出直线的方程, 并化为一般式. 4 (1).过点A(6, 4),斜率为 . 3 (2).经过点P (3, 2),Q(5, 4). 3 (3).在x、y轴上截距分别是 、 3. 2
(1).4 x 3 y 12 0. (2).x y 1 0. (3).2 x y 3 0.
直线方程一般式的再认识:
-----------(1)、含参数的一般式方程
直线: (a 1) x y 2 a 0 判断无论a为何值,直线恒过哪个定点?
必修2第三章直线与方程 第四章圆与方程 知识清单

C1 C2
② l1 与 l2 重合
A1B2
A2 B1且A1C2
A2C1且B1C2
B2C1 ,记忆方法:
A1 A2
B1 B2
C1 C2
③ l1 与 l2 相交
A1B2
A2B1 ,记忆方法:
A1 A2
B1 B2
④ l1 ⊥ l2 A1 A2 B1B2 0
⑤特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率, 另一条直线的倾斜角为 0° 时,两直线互相垂直;当两条直线的斜率都不存在时,两直线平行。
x x1 x2 x1
.( x1
x2 , y1
y2 ),所以用两点式方程不能表示和坐标
轴垂直的直线。
④直线方程的截距式: x y 1 (a 0,b 0) . a , b 表示截距,它们可以是正,也可以是负. ab
所以用截距式方程时,它不能表示和坐标轴垂直的直线以及过原点的直线。
巧妙记忆:关于哪个轴对称,哪个就不变,
② l 关于 y 轴对称的直线方程: Ax By C 0 ;
关于原点对称都变。
③ l 关于原点对称的直线方程: Ax By C 0 ;
④ l 关于 y=x 对称的直线方程: Bx Ay C 0 ;
⑤ l 关于 y=-x 对称的直线方程: Bx Ay C 0 ;
C1 C2 。(前提条件是 x,y 的系数必须分别相同) A2 B2
10、直线系方程:
①与 Ax By C 0 平行的直线系方程: Ax By m 0 ;
武老师 13639399715
必修二第三章直线与方程知识点总结及练习(答案)

必修二第三章直线与方程(1)直线的倾斜角定义: x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时 , 我们规定它的倾斜角为0 度。
所以,倾斜角的取值范围是0°≤α< 180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用 k 表示。
即k tan。
斜率反应直线与轴的倾斜程度。
当直线 l与 x 轴平行或重合时 ,α =0° , k = tan0° =0;当直线 l与 x 轴垂直时 ,α = 90 ° , k不存在 .当0,90 时,k 0;当90 ,180时, k 0 ;当90时, k 不存在。
②过两点的直线的斜率公式: k y2y1 (x1x2 )( P1(x1,y1),P2(x2,y2),x1≠ x2 )x2x1注意下边四点: (1)当 x1x2时,公式右侧无心义,直线的斜率不存在,倾斜角为90°;(2)k 与 P1、 P2的次序没关;(3)此后求斜率可不经过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率获得。
(3)直线方程①点斜式:y y1k( x x1 ) 直线斜率k,且过点x1, y1注意:当直线的斜率为= 0°时, k=0,直线的方程是y y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不可以用点斜式表示.但因l 上每一点的横坐标都等于x ,所以它的方程是x=x 。
11②斜截式:y kx b ,直线斜率为k,直线在 y 轴上的截距为b③两点式:y y1x x1( x1 x2 , y1y2)直线两点x1, y1,x2, y2y2y1x2x1④截矩式:xy 1 此中直线l与 x 轴交于点 (a,0) ,与y轴交于点 (0,b) ,即l与 x 轴、y轴a b的截距分别为 a,b 。
高中数学必修2第三章直线与方程知识点归纳及作业

第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围:0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.4、 直线的斜率公式:给定两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,用两点的坐标来表示直线P 1P 2的斜率: 斜率公式: k=y 2-y 1/x 2-x 1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即(充要条件)注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有l 1∥l 22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12121k k l l =-⇔⊥(充要条件) 3.2.1 直线的点斜式方程1、直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠y-y 1/y-y 2=x-x 1/x-x 22、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
高中数学必修2--第三章《直线与方程》知识点总结与练习

第八章平面解析几何第一节直线的倾斜角与斜率、直线的方程[知识能否忆起]一、直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0,π)_.2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k==.二、直线方程的形式及适用条件[小题能否全取]1.(教材习题改编)直线x+y+m=0(m∈k)的倾斜角为( )A.30°B.60°C.150°D.120°解析:选C 由k=α=-,α∈[0,π)得α=150°.2.(教材习题改编)已知直线l过点P(-2,5),且斜率为-,则直线l的方程为( )A.3x+4y-14=0 B.3x-4y+14=0C.4x+3y-14=0 D.4x-3y+14=0解析:选A 由y-5=-(x+2),得3x+4y-14=0.3.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )A.1 B.4C.1或3 D.1或4解析:选A 由1=,得m+2=4-m,m=1.4.(2012·长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为.解析:==1,==a-3.由于A,B,C三点共线,所以a-3=1,即a=4.答案:45.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则直线l的方程为.解析:由已知得直线l的斜率为k=-.所以l的方程为y-2=-(x+1),即3x+2y-1=0.答案:3x+2y-1=01.求直线方程时要注意判断直线斜率是否存在,每条直线都有倾斜角,但不一定每条直线都存在斜率.2.由斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.用截距式写方程时,应先判断截距是否为0,若不确定,则需要分类讨论.典题导入[例1] (1)(2012·岳阳模拟)经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为,则y=( )A.-1 B.-3C.0 D.2(2)(2012·苏州模拟)直线θ+y+2=0的倾斜角的范围是.[自主解答] (1)===y+2,因此y+2=-1=-3.(2)由题知k=-θ,故k∈,结合正切函数的图象,当k ∈时,直线倾斜角α∈,当k∈时,直线倾斜角α∈,故直线的倾斜角的范围是∪.[答案] (1)B (2)∪由题悟法1.求倾斜角的取值范围的一般步骤:(1)求出斜率k=α的取值范围;(2)利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围.2.求倾斜角时要注意斜率是否存在.以题试法1.(2012·哈尔滨模拟)函数y=x-x的一条对称轴为x =,则直线l:-+c=0的倾斜角为( )A.45°B.60°C.120°D.135°解析:选D 由函数y=f(x)=x-x的一条对称轴为x=知,f(0)=,即-b=a,则直线l的斜率为-1,故倾斜角为135°.2.(2012·金华模拟)已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段相交,则k的取值范围是( )B.(-∞,-2]C.(-∞,-2]∪解析:选D 由题意知直线l恒过定点P(2,1),如右图.若l与线段相交,则≤k≤.∵=-2,=,∴-2≤k≤.典题导入[例2] (1)过点(1,0)且与直线x-2y-2=0平行的直线方程是.(2)(2012·东城模拟)若点P(1,1)为圆(x-3)2+y2=9的弦的中点,则弦所在直线的方程为.[自主解答] (1)设所求直线方程为x-2y+m=0,由直线经过点(1, 0),得1+m=0,m=-1.则所求直线方程为x-2y-1=0.(2)由题意得,×=-1,所以=2,故弦所在直线的方程为y-1=2(x-1),即2x-y-1=0.[答案] (1)x-2y-1=0 (2)2x-y-1=0由题悟法求直线方程的方法主要有以下两种:(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程;(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.以题试法3.(2012·龙岩调研)已知△中,A(1,-4),B(6,6),C(-2,0).求:(1)△中平行于边的中位线所在直线的一般式方程和截距式方程;(2)边的中线所在直线的一般式方程,并化为截距式方程.解:(1)平行于边的中位线就是,中点的连线.因为线段,中点坐标分别为,,所以这条直线的方程为=,整理一般式方程为得6x-8y-13=0,截距式方程为-=1.(2)因为边上的中点为(2,3),所以边上的中线所在直线的方程为=,即一般式方程为7x-y-11=0,截距式方程为-=1.典题导入[例3] (2012·开封模拟)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0与l2:x+y+3=0之间的线段恰被点P 平分,求此直线的方程.[自主解答] 法一:设点A(x,y)在l1上,点B(,)在l2上.由题意知错误!则点B(6-x,-y),解方程组错误!得错误!则k=错误!=8.故所求的直线方程为y=8(x-3),即8x-y-24=0.法二:设所求的直线方程为y=k(x-3),点A,B的坐标分别为(,),(,),由错误!解得错误!由错误!解得错误!∵P(3,0)是线段的中点,∴+=0,即+=0,∴k2-8k=0,解得k=0或k=8.若k=0,则=1,=-3,此时=≠3,∴k=0舍去,故所求的直线方程为y=8(x-3),即8x-y-24=0.由题悟法解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.以题试法4.(2012·东北三校联考)已知直线l过点M(2,1),且分别与x轴,y轴的正半轴交于A,B两点,O为原点.(1)当△面积最小时,求直线l的方程;(2)当·取得最小值时,求直线l的方程.解:(1)设直线l的方程为y-1=k(x-2)(k<0),,B(0,1-2k),△的面积S=(1-2k)=≥(4+4)=4.当且仅当-4k=-,即k=-时,等号成立.故直线l的方程为y-1=-(x-2),即x+2y-4=0.(2)∵=,=,∴·=·=2 ≥2×2=4,当且仅当k2=,即k=-1时取等号,故直线方程为x+y-3=0.[典例] (2012·西安模拟)设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.[尝试解题] (1)当直线过原点时,该直线在x轴和y轴上的截距为零,此时截距相等.故a=2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,得=a-2,即a+1=1,故a=0,方程即为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.(2)将l的方程化为y=-(a+1)x+a-2,则错误!或错误!∴a≤-1.综上可知,a的取值范围是(-∞,-1].——————[易错提醒]———————————————————————————1.与截距有关的直线方程求解时易忽视截距为零的情形.如本例中的截距相等,当直线在x轴与y轴上的截距为零时也满足.2.常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形.注意分类讨论思想的运用.——————————————————————————————————————针对训练过点M(3,-4)且在两坐标轴上的截距互为相反数的直线方程为.解析:①当过原点时,直线方程为y=-x;②当不过原点时,设直线方程为+=1,即x-y=a.代入点(3,-4),得a=7.即直线方程为x-y-7=0.答案:y=-x或x-y-7=01.若k,-1,b三个数成等差数列,则直线y=+b必经过定点( )A.(1,-2) B.(1,2)C.(-1,2) D.(-1,-2)解析:选A 因为k,-1,b三个数成等差数列,所以k+b =-2,即b=-2-k,于是直线方程化为y=-k-2,即y+2=k(x-1),故直线必过定点(1,-2).2.直线2x+11y+16=0关于点P(0,1)对称的直线方程是( )A.2x+11y+38=0 B.2x+11y-38=0C.2x-11y-38=0 D.2x-11y+16=0解析:选B 因为中心对称的两直线互相平行,并且对称中心到两直线的距离相等,故可设所求直线的方程为2x+11y+C =0,由点到直线的距离公式可得=,解得C=16(舍去)或C=-38.3.(2012·衡水模拟)直线l1的斜率为2,l1∥l2,直线l2过点(-1,1)且与y轴交于点P,则P点坐标为( ) A.(3,0) B.(-3,0)C.(0,-3) D.(0,3)解析:选D ∵l1∥l2,且l1斜率为2,∴l2的斜率为2.又l2过(-1,1),∴l2的方程为y-1=2(x+1),整理即得y=2x+3.令x=0,得P(0,3).4.(2013·佛山模拟)直线++c=0同时要经过第一、第二、第四象限,则a,b,c应满足( )A.>0,<0 B.>0,>0C.<0,>0 D.<0,<0解析:选A 由于直线++c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-x-,易知-<0且->0,故>0,<0.5.将直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )A.y=-x+B.y=-x+1C.y=3x-3 D.y=x+1解析:选A 将直线y=3x绕原点逆时针旋转90°得到直线y=-x,再向右平移1个单位,所得直线的方程为y=-(x-1),即y=-x+.6.已知点A(1,-2),B(m,2),且线段的垂直平分线的方程是x+2y-2=0,则实数m的值是( )A.-2 B.-7C.3 D.1解析:选C 线段的中点代入直线x+2y-2=0中,得m=3.7.(2013·贵阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是.解析:设直线l的斜率为k,则方程为y-2=k(x-1),在x轴上的截距为1-,令-3<1-<3,解得k<-1或k>.答案:(-∞,-1)∪8.(2012·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l的方程为.解析:直线l过原点时,l的斜率为-,直线方程为y=-x;l不过原点时,设方程为+=1,将点(-2,3)代入,得a=1,直线方程为x+y=1.综上,l的方程为x+y-1=0或2y+3x=0.答案:x+y-1=0或3x+2y=09.(2012·天津四校联考)不论m取何值,直线(m-1)x-y +2m+1=0恒过定点.解析:把直线方程(m-1)x-y+2m+1=0整理得(x+2)m-(x+y-1)=0,则错误!得错误!答案:(-2,3)10.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程.解:设所求直线方程为+=1,由已知可得错误!解得错误!或错误!故直线l的方程为2x+y+2=0或x+2y-2=0.11.(2012·莆田月考)已知两点A(-1,2),B(m,3).(1)求直线的方程;(2)已知实数m∈,求直线的倾斜角α的取值范围.解:(1)当m=-1时,直线的方程为x=-1;当m≠-1时,直线的方程为y-2=(x+1).(2)①当m=-1时,α=;②当m≠-1时,m+1∈∪(0, ],∴k=∈(-∞,- ]∪,∴α∈∪.综合①②知,直线的倾斜角α∈.12.如图,射线、分别与x轴正半轴成45°和30°角,过点P(1,0)作直线分别交、于A、B两点,当的中点C恰好落在直线y=x上时,求直线的方程.解:由题意可得=45°=1,=(180°-30°)=-,所以直线:y=x,:y=-x.设A(m,m),B(-n,n),所以的中点,由点C在y=x上,且A、P、B三点共线得错误!解得m=,所以A(, ).又P(1,0),所以===,所以:y=(x-1),即直线的方程为(3+)x-2y-3-=0.1.若直线l:y=-与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是( )解析:选B 由错误!解得错误!∵两直线交点在第一象限,∴错误!解得k>错误!.∴直线l的倾斜角的范围是.2.(2012·洛阳模拟)当过点P(1,2)的直线l被圆C:(x-2)2+(y-1)2=5截得的弦最短时,直线l的方程为.解析:易知圆心C的坐标为(2,1),由圆的几何性质可知,当圆心C与点P的连线与直线l垂直时,直线l被圆C截得的弦最短.由C(2,1),P(1,2)可知直线的斜率为=-1,设直线l的斜率为k,则k×(-1)=-1,得k=1,又直线l过点P,所以直线l的方程为x-y+1=0.答案:x-y+1=03.已知直线l:-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O 为坐标原点,设△的面积为S,求S的最小值及此时直线l的方程.解:(1)证明:法一:直线l的方程可化为y=k(x+2)+1,故无论k取何值,直线l总过定点(-2,1).法二:设直线过定点(x0,y0),则0-y0+1+2k=0对任意k ∈R恒成立,即(x0+2)k-y0+1=0恒成立,∴x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l总过定点(-2,1).(2)直线l的方程为y=+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则错误!解得k的取值范围是[0,+∞).(3)依题意,直线l在x轴上的截距为-,在y轴上的截距为1+2k,∴,B(0,1+2k).又-<0且1+2k>0,∴k>0.故S==×(1+2k)=≥(4+4)=4,当且仅当4k=,即k=时,取等号.故S的最小值为4,此时直线l的方程为x-2y+4=0.1.(2012·郑州模拟)已知直线l1的方向向量为a=(1,3),直线l2的方向向量为b=(-1,k).若直线l2经过点(0,5)且l1⊥l2,则直线l2的方程为( )A.x+3y-5=0 B.x+3y-15=0C.x-3y+5=0 D.x-3y+15=0解析:选B ∵1=3,2=-k,l1⊥l2,∴k=,l2的方程为y=-x+5,即x+3y-15=0.2.(2012·吴忠调研)若过点P(1-a,1+a)与Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围是.解析:k=α==.∵α为钝角,∴<0,即(a-1)(a+2)<0,故-2<a<1.答案:(-2,1)3.已知直线l过点P(3,2),且与x轴,y轴的正半轴分别交于A,B两点如图,求△的面积的最小值及此时直线l的方程.解:设A(a,0),B(0,b),(a>0,b>0),则直线l的方程为+=1,∵l过点P(3,2),∴+=1.∴1=+≥2,即≥24.∴S△=≥12.当且仅当=,即a=6,b=4时,△的面积最小,最小值为12.此时直线l的方程为+=1.即2x+3y-12=0.第二节两直线的位置关系[知识能否忆起]一、两条直线的位置关系二、两条直线的交点设两条直线的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,两条直线的交点坐标就是方程组错误!的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.三、几种距离1.两点间的距离平面上的两点A(x1,y1),B(x2,y2)间的距离公式:d(A,B)==.2.点到直线的距离点P(x1,y1)到直线l:++C=0的距离d=.3.两条平行线间的距离两条平行线++C1=0与++C2=0间的距离d=.[小题能否全取]1.(教材习题改编)已知l1的倾斜角为45°,l2经过点P(-2,-1),Q(3,m).若l1⊥l2,则实数m为( )A.6 B.-6C.5 D.-5解析:选B 由已知得k1=1,k2=.∵l1⊥l2,∴k1k2=-1,∴1×=-1,即m=-6.2.(教材习题改编)点(0,-1)到直线x+2y=3的距离为( )C.5解析:选B d==.3.点(a,b)关于直线x+y+1=0的对称点是( )A.(-a-1,-b-1) B.(-b-1,-a-1)C.(-a,-b) D.(-b,-a)解析:选B 设对称点为(x′,y′),则错误!解得x′=-b-1,y′=-a-1.4.l1:x-y=0与l2:2x-3y+1=0的交点在直线+3y+5=0上,则m的值为( )A.3 B.5C.-5 D.-8解析:选D 由错误!得l1与l2的交点坐标为(1,1).所以m+3+5=0,m=-8.5.与直线4x+3y-5=0平行,并且到它的距离等于3的直线方程是.解析:设所求直线方程为4x+3y+m=0,由3=,得m=10或-20.答案:4x+3y+10=0或4x+3y-20=01.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.2.在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为++C=0的形式,否则会出错.典题导入[例1] (2012·浙江高考)设a∈R,则“a=1”是“直线l1:+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答] 由a=1,可得l1∥l2;反之,由l1∥l2,可得a=1或a=-2.[答案] A在本例中若l1⊥l2,试求a.解:∵l1⊥l2,∴a×1+2×(a+1)=0,∴a=-.由题悟法1.充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.2.(1)若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y =k2x+b2,则直线l1⊥l2的充要条件是k1·k2=-1.(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则l1⊥l2⇔A1A2+B1B2=0.以题试法1.(2012·大同模拟)设a,b,c分别是△中角A,B,C所对的边,则直线A++c=0与-B+C=0的位置关系是( ) A.平行B.重合C.垂直D.相交但不垂直解析:选C 由已知得a≠0,B≠0,所以两直线的斜率分别为k1=-),k2=B),由正弦定理得k1·k2=-)·B)=-1,所以两条直线垂直.典题导入[例2] (2012·浙江高考)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.[自主解答] 因曲线C2:x2+(y+4)2=2到直线l:y=x的距离为-=2-=,所以曲线C1与直线l不能相交,故x2+a>x,即x2+a-x>0.设C1:y=x2+a上一点为(x0,y0),则点(x0,y0)到直线l的距离d===≥=,所以a=.[答案]由题悟法1.点到直线的距离问题可直接代入距离公式去求.注意直线方程为一般式.2.点到与坐标轴垂直的直线的距离,可用距离公式求解.也可用如下方法去求解:(1)点P(x0,y0)到与y轴垂直的直线y=a的距离d=0-.(2)点P(x0,y0)到与x轴垂直的直线x=b的距离d=0-.以题试法2.(2012·通化模拟)若两平行直线3x-2y-1=0,6x++c =0之间的距离为,则c的值是.解析:由题意得=≠,得a=-4,c≠-2,则6x++c=0可化为3x-2y+=0,则=,解得c=2或-6.答案:2或-6典题导入[例3] (2012·成都模拟)在直角坐标系中,A(4,0),B(0,4),从点P(2,0)射出的光线经直线反射后,再射到直线上,最后经直线反射后又回到P点,则光线所经过的路程是( ) A.2 B.6C.3 D.2[自主解答] 如图,设点P关于直线,y轴的对称点分别为D,C,易求得D(4,2),C(-2,0),由对称性知,D,M,N,C共线,则△的周长=++=++===2即为光线所经过的路程.[答案] A由题悟法对称问题主要包括中心对称和轴对称(1)中心对称①点P(x,y)关于O(a,b)的对称点P′(x′,y′)满足错误!②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A(a,b)关于直线++C=0(B≠0)的对称点A′(m,n),则有错误!②直线关于直线的对称可转化为点关于直线的对称问题来解决.以题试法3.(2012·南京调研)与直线3x-4y+5=0关于x轴对称的直线方程为( )A.3x+4y+5=0 B.3x+4y-5=0C.-3x+4y-5=0 D.-3x+4y+5=0解析:选A 与直线3x-4y+5=0关于x轴对称的直线方程是3x-4(-y)+5=0,即3x+4y+5=0.[典例] (2012·银川一中月考)求经过直线l1: 3x+2y-1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x-5y+6=0的直线l的方程.[常规解法] 解方程组错误!得l1,l2的交点坐标为(-1,2).由l3的斜率得l的斜率为-.则由点斜式方程可得l的方程为y-2=-(x+1)即5x+3y -1=0.——————[高手支招]———————————————————————————运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线++C=0平行的直线系方程是++m=0(m∈R且m≠C);(2)与直线++C=0垂直的直线系方程是-+m=0(m∈R);(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.——————————————————————————————————————[巧思妙解] 由于l过l1,l2的交点,故可设l的方程为3x +2y-1+λ(5x+2y+1)=0将其整理,得(3+5λ)x+(2+2λ)y+(-1+λ)=0,其斜率-=-,得λ=.代入直线系方程得l方程5x+3y-1=0.针对训练求与直线2x+6y-11=0平行,且与坐标轴围成的三角形面积为6的直线方程.解:由题意,设所求直线方程为2x+6y+b=0.令x=0,得y=-;令y=0,得x=-,则直线2x+6y+b=0与坐标轴的交点坐标分别为,.又所围成的三角形面积S=··=·=6,所以b2=144,所以b=±12.故所求直线方程为2x+6y+12=0或2x+6y-12=0.即为x+3y+6=0或x+3y-6=0.1.(2012·海淀区期末)已知直线l1:k1x+y+1=0与直线l2:k2x+y-1=0,那么“k1=k2”是“l1∥l2”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C 由k1=k2,1≠-1,得l1∥l2;由l1∥l2知k1×1-k2×1=0,所以k1=k2.故“k1=k2”是“l1∥l2”的充要条件.2.当0<k<时,直线l1:-y=k-1与直线l2:-x=2k 的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限解析:选B 解方程组错误!得两直线的交点坐标为错误!,因为0<k<,所以<0,>0,故交点在第二象限.3.(2012·长沙检测)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为( )C.4 D.8解析:选B ∵直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,即为3x+4y+=0,∴直线l1与直线l2的距离为=.4.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点( )A.(0,4) B.(0,2)C.(-2,4) D.(4,-2)解析:选B 由于直线l1:y=k(x-4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l1:y=k(x-4)与直线l2关于点(2,1)对称,故直线l2恒过定点(0,2).5.已知直线l1:y=2x+3,若直线l2与l1关于直线x+y =0对称,又直线l3⊥l2,则l3的斜率为( )A.-2 B.-D.2解析:选A 依题意得,直线l2的方程是-x=2(-y)+3,即y=x+,其斜率是,由l3⊥l2,得l3的斜率等于-2.6.(2012·岳阳模拟)直线l经过两直线7x+5y-24=0和x-y=0的交点,且过点(5,1).则l的方程是( ) A.3x+y+4=0 B.3x-y+4=0C.x+3y-8=0 D.x-3y-4=0解析:选C 设l的方程为7x+5y-24+λ(x-y)=0,即(7+λ)x+(5-λ)y-24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4的方程为x+3y-8=0.7.(2012·郑州模拟)若直线l1:+2y=0和直线l2:2x+(a+1)y+1=0垂直,则实数a的值为.解析:由2a+2(a+1)=0得a=-.答案:-8.已知平面上三条直线x+2y-1=0,x+1=0,x+=0,如果这三条直线将平面划分为六部分,则实数k的所有取值为.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k=0或2;若三条直线交于一点,也符合要求,此时k=1,故实数k的所有取值为0,1,2.答案:0,1,29.(2013·临沂模拟)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是.解析:由题意得,点到直线的距离为=.又≤3,即|15-3a|≤15,解得,0≤a≤10,所以a∈[0,10].答案:[0,10]10.(2013·舟山模拟)已知+=1(a>0,b>0),求点(0,b)到直线x-2y-a=0的距离的最小值.解:点(0,b)到直线x-2y-a=0的距离为d==(a+2b)=≥(3+2)=,当且仅当a2=2b2,a+b=,即a=1+,b=时取等号.所以点(0,b)到直线x-2y-a=0的距离的最小值为.11.(2012·荆州二检)过点P(1,2)的直线l被两平行线l1:4x+3y+1=0与l2:4x+3y+6=0截得的线段长=,求直线l 的方程.解:设直线l的方程为y-2=k(x-1),由错误!解得;由错误!解得错误!.∵=,∴=,整理,得7k2-48k-7=0,解得k1=7或k2=-.因此,所求直线l的方程为x+7y-15=0或7x-y-5=0.12.已知直线l:3x-y+3=0,求:(1)点P(4,5)关于l的对称点;(2)直线x-y-2=0关于直线l对称的直线方程.解:设P(x,y)关于直线l:3x-y+3=0的对称点为P′(x′,y′).∵′·=-1,即×3=-1.①又′的中点在直线3x-y+3=0上,∴3×-+3=0.②由①②得错误!(1)把x=4,y=5代入③④得x′=-2,y′=7,∴P(4,5)关于直线l的对称点P′的坐标为(-2,7).(2)用③④分别代换x-y-2=0中的x,y,得关于l的对称直线方程为--2=0,化简得7x+y+22=0.1.点P到点A(1,0)和直线x=-1的距离相等,且点P到直线y=x的距离为,这样的点P的个数是( )A.1 B.2C.3 D.4解析:选C ∵点P到点A和定直线距离相等,∴P点轨迹为抛物线,方程为y2=4x.设P(t2,2t),则=,解得t1=1,t2=1+,t3=1-,故P点有三个.2.(2012·福建模拟)若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是( )A.2 B.2C.4 D.2解析:选C 设原点到点(m,n)的距离为d,所以d2=m2+n2,又因为(m,n)在直线4x+3y-10=0上,所以原点到直线4x +3y-10=0的距离为d的最小值,此时d==2,所以m2+n2的最小值为4.3.在直线l:3x-y-1=0上求一点P,使得P到A(4,1)和B(0,4)的距离之差最大.解:如图所示,设点B关于l的对称点为B′,连接′并延长交l于P,此时的P满足-的值最大.设B′的坐标为(a,b),则′·=-1,即3·=-1.则a+3b-12=0.①又由于线段′的中点坐标为,且在直线l上,则3×--1=0,即3a-b-6=0.②解①②,得a=3,b=3,即B′(3,3).于是′的方程为=,即2x+y-9=0.解错误!得错误!即l与′的交点坐标为P(2,5).1.点(1,θ)(其中0≤θ≤π)到直线θ+θ-1=0的距离是,那么θ等于( )或或解析:选B 由已知得θ+2θ-1|,2θ+2θ)=,即θ-2θ|=,∴42θ-4 θ-1=0或42θ-4 θ+1=0,∴θ=或θ=.∵0≤θ≤π,∴0≤θ≤1,∴θ=,即θ=或.2.已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( )A.x-2y+1=0 B.x-2y-1=0C.x+y-1=0 D.x+2y-1=0解析:选B l1与l2关于l对称,则l1上任一点关于l的对称点都在l2上,故l与l1的交点(1,0)在l2上.又易知(0,-2)为l1上一点,设其关于l的对称点(x,y),则错误!得错误!即(1,0),(-1,-1)为l2上两点,可得l2方程为x-2y-1=0.3.光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y +7=0后反射,求反射光线所在的直线方程.解:法一:由错误!得错误!即反射点M的坐标为(-1,2).又取直线x-2y+5=0上一点P(-5,0),设P关于直线l 的对称点P′(x0,y0),由′⊥l可知,′=-=.而′的中点Q的坐标为,Q点在l上,即3·-2·+7=0.由错误!得错误!根据直线的两点式方程可得所求反射光线所在直线的方程为29x-2y+33=0.法二:设直线x-2y+5=0上任意一点P(x0,y0)关于直线l 的对称点为P′(x,y),则=-,又′的中点在l上,即3×-2×+7=0,由错误!可得P点的坐标为x0=,y0=,代入方程x-2y+5=0中,化简得29x-2y+33=0,故所求反射光线所在的直线方程为29x-2y+33=0.。
必修②第三章直线与方程

§3.1直线的倾斜角与斜率1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.一、课前准备(预习教材P 90~ P 91,找出疑惑之处)复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学※ 学习探究新知1:当直线与轴相交时,取轴作为基准,轴正向与直线向上方向之间所成的角l x x x l 叫做直线的倾斜角.αl 关键:①直线向上方向;②轴的正方向;③小于平角的正角.x 注意:当直线与轴平行或重合时,我们规定它的倾斜角为0度..x 试试:请描出下列各直线的倾斜角.反思:直线倾斜角的范围?探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?新知2:一条直线的倾斜角的正切值叫做这条直线的斜率.记为.()2παα≠tan k α=试试:已知各直线倾斜角,则其斜率的值为⑴当时,则 ;0o α=k ⑵当时,则 ;090o o α<<k ⑶当时,则 ;90oα=k ⑷当时,则 .090180o α<<k 新知3:已知直线上两点的直线的斜率公式:.111222(,),(,)P x y P x y 12()x x ≠2121y y k x x -=-探究任务三:1.已知直线上两点运用上述公式计算直线的斜率时,与两点坐标的顺序1212(,),(,),A a a B b b ,A B 有关吗?2.当直线平行于轴时,或与轴重合时,上述公式还需要适用吗?为什么?y y ※ 典型例题例1 已知直线的倾斜角,求直线的斜率:⑴;30οα=⑵;135οα=⑶;60οα=⑷90οα=变式:已知直线的斜率,求其倾斜角.⑴;0k =⑵;1k =⑶;k =⑷不存在.k 例2 求经过两点的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝(2,3),(4,7)A B 角.2...[0,180)︒的坐标来111222(,),(,)P x y P x y 时,直线的斜率是不存在的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列叙述中不正确的是( ).A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都惟一对应一个倾斜角C .与坐标轴垂直的直线的倾斜角为或0o 90οD .若直线的倾斜角为,则直线的斜率为αtan α2. 经过两点的直线的倾斜角( ).(2,0),(5,3)A B --A . B . C . D .45ο135ο90ο60ο3. 过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( ).A.1 B.4 C.1或3 D.1或44. 直线经过二、三、四象限,的倾斜角为,斜率为,则为 角;的取值范围 .l αk αk 5. 已知直线l 1的倾斜角为1,则l 1关于x 轴对称的直线l 2的倾斜角为________.α2α1.已知点,若直线l 过点(2,3),(3,2)A B --(1,1)P 且与线段相交,求直线l 的斜率的取值范围.AB k 2. 已知直线过两点,求此直线的斜率和倾斜角.l 2211(2,()),(2,())A t B t t t-+-=12//l l ⇔1k 2k .如果,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?12l l ⊥.121k k =-⇔121k k =-,试判断直线与的位置关系, 并证明你的结论.(4,0),(3,1),(1,2)B P Q ---BA PQ 三点,求点D 的坐标,使直线,且.1),(2,2),(3,0)B C CD AB ⊥//CB AD4变式:已知,试判断三角形的形状.(5,1),(1,1),(2,3)A B C -ABC ※ 动手试试练1. 试确定的值,使过点的直线与过点的直线m (,1),(1,)A m B m -(1,2),(5,0)P Q -⑴平行; ⑵垂直练2. 已知点,在坐标轴上有一点,若,求点的坐标.(3,4)A B 2AB k =B 三、总结提升:※ 学习小结:1.或的斜率都不存在且不重合.1212//l l k k ⇔=12,l l 2.或且的斜率不存在,或且的斜率不存在.12121l l k k ⊥⇔=-A 10k =2l 20k =1l※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是( ).A .若,则12l l ⊥121k k =-A B .若直线,则两直线的斜率相等12//l l C .若直线、的斜率均不存在,则1l 2l 12l l ⊥D .若两直线的斜率不相等,则两直线不平行2. 过点和点的直线与直线的位置关系是( ).(1,2)A (3,2)B -1y =A .相交 B.平行 C.重合 D.以上都不对3. 经过与的直线与斜率为的直线互助垂直,则值为().(,3)m (2,)m l 4-m A . B . C . D .75-75145-1454. 已知三点在同一直线上,则的值为.(,2),(5,1),(4,2)A a B C a -a 5. 顺次连结,所组成的图形是.(4,3),(2,5),(6,3),(3,0)A B C D --1.若已知直线上的点满足,直线上的点满足,1l 260ax y ++=2l 2(1)10(1)x a y a a +-+-=≠试求为何值时,⑴;⑵.a 12//l l 12l l ⊥2. 已知定点,以为直径的端点,作圆与轴有交点,求交点的坐标.(1,3),(4,2)A B -,A B x C C§ 3.2.1直线的点斜式方程1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系.一、课前准备:(预习教材P 101~ P 104,找出疑惑之处)复习1.已知直线都有斜率,如果,则12,l l 12//l l;如果,则.12l l ⊥2.若三点在同一直线上,则的值为.(3,1),(2,),(8,11)A B k C -k 3.已知长方形的三个顶点的坐标分别为,则第四个顶点的坐标 ABCD (0,1),(1,0),(3,2)A B C D .4.直线的倾斜角与斜率有何关系?什么样的直线没有斜率?二、新课导学:※ 学习探究问题1:在直线坐标系内确定一条直线,应知道哪些条件?新知1:已知直线经过点,且斜率为,则方程为直线的点斜式方l 00(,)P x y k 00()y y k x x -=-程.问题2:直线的点斜式方程能否表示坐标平面上的所有直线呢?问题3:⑴轴所在直线的方程是,轴所在直线的方程是.x y ⑵经过点且平行于轴(即垂直于轴)的直线方程是.000(,)P x y x y ⑶经过点且平行于轴(即垂直于轴)的直线方程是.000(,)P x y y x 问题4:已知直线的斜率为,且与轴的交点为,求直线的方程.l k y (0,)b l新知2:直线与轴交点的纵坐标叫做直线在轴上的截距(intercept ).直线l y (0,)b b l y 叫做直线的斜截式方程.y kx b =+注意:截距就是函数图象与轴交点的纵坐标.b y 问题5:能否用斜截式表示平面内的所有直线? 斜截式与我们学过的一次函数表达式比较你会得出什么结论.※ 典型例题例1 直线过点,且倾斜角为,求直线的点斜式和斜截式方程,并画出直线.(1,2)-135οl l 变式:⑴直线过点,且平行于轴的直线方程 (1,2)-x ;⑵直线过点,且平行于轴的直线方程;(1,2)-x ⑶直线过点,且过原点的直线方程.(1,2)-例2 写出下列直线的斜截式方程,并画出图形:⑴,在轴上的距截是-2;y ⑵ 斜角是,在轴上的距截是0135y变式:已知直线的方程,求直线的斜率及纵截距.3260x y+-=※动手试试练1. 求经过点,且与直线平行的直线方程.(1,2)23y x=-练2. 求直线与坐标轴所围成的三角形的面积.48y x=+三、总结提升:※学习小结1.直线的方程:⑴点斜式;⑵斜截式;这两个公式都只能在斜率存00()y y k x x-=-y kx b=+.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 过点,倾斜角为的直线方程是().(4,2)-135οA B20y++-=360y+++=C.D.40x--=40x+-=2. 已知直线的方程是,则().21y x+=--A.直线经过点,斜率为(2,1)-1-B.直线经过点,斜率为(2,1)--1C.直线经过点,斜率为(1,2)--1-D.直线经过点,斜率为(1,2)-1-3. 直线,当变化时,所有直线恒过定点().130kx y k-+-=kA.B.(3,1)C.D.(0,0)(1,3)(1,3)--4. 直线的倾斜角比直线的倾斜角大,且直线的纵截距为3,则直线的方程.l12y=+45οl5. 已知点,则线段的垂直平分线的方程.(1,2),(3,1)AB AB1. 已知三角形的三个顶点,求这个三角形的三边所在的直线方程.(2,2),(3,2),(3,0)A B C-2. 直线过点且与轴、轴分别交于两点,若恰为线段的中点,求直线l(2,3)P-x y,A B P AB的方程.l6§ 3.2.2直线的两点式方程1.掌握直线方程的两点的形式特点及适用范围;2.了解直线方程截距式的形式特点及适用范围.一、课前准备:(预习教材P105~ P106,找出疑惑之处)复习1:直线过点,斜率是1,则直线方程为;直线的倾斜角(2,3)-为,纵截距为,则直线方程为.60ο3-2.与直线垂直且过点的直线方程为21y x=+(1,2).3.方程表示过点,斜率是,倾斜角是,在y轴上的截()331--=+xy__________________距是的直线.______4.已知直线经过两点,求直线的方程.l12(1,2),(3,5)P P l二、新课导学:※学习探究新知1:已知直线上两点且,则通过这两点的直线方程为112222(,),(,)P x x P x y1212(,)x x y y≠≠,由于这个直线方程由两点确定,所以我们把它叫直线的两点1112122121(,)y y x xx x y yy y x x--=≠≠--式方程,简称两点式(two-point form).问题1:哪些直线不能用两点式表示?例已知直线过,求直线的方程并画出图象.(1,0),(0,2)A B-新知2:已知直线与轴的交点为,与轴的交点为,其中,则直l x(,0)A a y(0,)B b0,0a b≠≠线的方程叫做直线的截距式方程.l1=+byax注意:直线与轴交点(,0)的横坐标叫做直线在轴上的截距;直线与y轴交点(0,)x a a x b的纵坐标叫做直线在轴上的截距.b y问题3:,表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?a b问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?※典型例题例1求过下列两点的直线的两点式方程,再化为截距式方程.⑴;(2,1),(0,3)A B-⑵.(4,5),(0,0)A B--例2 已知三角形的三个顶点,(5,0),(3,3)A B--,求边所在直线的方程,以及该边上中线所在直线的方程.(0,2)C BC,则.(,)M x y 2121,22x x y y x y ++==的值为( ).b 需满足条件( ),,A B C 的直线方程 .取到最小值时,求直线的方||||PA PB ⋅l .§ 3.2.3直线的一般式方程1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.一、课前准备:(预习教材P 107~ P 109,找出疑惑之处)复习1:⑴已知直线经过原点和点,则直线的方程 .(0,4)⑵在轴上截距为,在轴上的截距为3的直线方程 .x 1-y ⑶已知点,则线段的垂直平分线方程是.(1,2),(3,1)A B AB 复习2:平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?,x y 二、新课导学:※ 学习探究新知:关于的二元一次方程(A ,B 不同时为0)叫做直线的一般式方程,,x y 0Ax By C ++=简称一般式(general form ).注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题4:在方程中,为何值时,方程表示的直线⑴平行于轴;⑵平行0Ax By C ++=,,A B C x 于轴;⑶与轴重合;⑷与重合.y x y ※ 典型例题例1 已知直线经过点,斜率为,求直线的点斜式和一般式方程.(6,4)A -12例2 把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上l 260x y -+=l x y 的截距,并画出图形.变式:求下列直线的斜率和在轴上的截距,并画出图形⑴;⑵;⑶y 350x y +-=145x y-=;⑷;⑸.20x y +=7640x y -+=270y -=10※ 动手试试练1.根据下列各条件写出直线的方程,并且化成一般式:⑴ 斜率是,经过点;12-(8,2)A -⑵ 经过点,平行于轴;(4,2)B x ⑶ 在轴和轴上的截距分别是;x y 3,32-⑷ 经过两点.12(3,2),(5,4)P P --练2.设A 、B 是轴上的两点,点P 的横坐标为2,x 且|PA |=|PB |,若直线PA 的方程为,求直线PB 的方10x y -+=程三、总结提升:※ 学习小结1.通过对直线方程的四种特殊形式的复习和变形,概括出直线方程的一般形式:(A 、B 不全为0);0Ax By C ++=2.点在直线上00(,)x y 0Ax By C ++=⇔00Ax By +※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1 斜率为,在轴上截距为2的直线的一般式方程是( ).3-x A . B .360x y ++=320x y -+=C .D .360x y +-=320x y --=2. 若方程表示一条直线,则( ).0Ax By C ++= A . B .1A ≠0B ≠C . D .0AB ≠220A B +≠3. 已知直线和的夹角的平分线为,如果的方程是,那么的1l 2l y x =1l 0(0)ax by c ab ++=>2l 方程为( ).A .B .0bx ay c ++=0ax by c -+=C .D .0bx ay c +-=0bx ay c -+=4. 直线在轴上的截距为,在轴上的截距为,则.270x y ++=x a y b a b +=5. 直线与直线1:2(1)40l x m y +++=2:3l mx y+平行,则. 20-=m =1. 菱形的两条对角线长分别等于8和6,并且分别位于轴和轴上,求菱形各边所在的直线x y 的方程.2.光线由点射出,在直线上进行反射,已知反射光线过点,(1,4)A -:2360l x y +-=62(3,13B 求反射光线所在直线的方程.§ 3.1两条直线的交点坐标1.掌握判断两直线相交的方法;会求两直线交点坐标; 2.体会判断两直线相交中的数形结合思想.一、课前准备:(预习教材P 112~ P 114,找出疑惑之处)1.经过点,且与直线垂直的直线.(1,2)A -210x y +-+2.点斜式、斜截式、两点式和截距式能否表示垂直于坐标轴的直线?3.平面直角系中两条直线的位置关系有几种?二、新课导学:※ 学习探究问题1:已知两直线方程,,如何判断这两条直线的1111:0l A x B y C ++=222:l A x B y +20C +=位置关系?问题2:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?※ 典型例题例1 求下列两直线,1:3420l x y +-=2:22l x y ++的交点坐标.0=变式:判断下列各对直线的位置关系.如果相交,求出交点坐标.⑴,;1:0l x y -=2:33100l x y +-=⑵,;1:30l x y -=2:630l x y -=⑶,.1:3450l x y +-=2:68100l x y +-=例2 求经过两直线和的交点且与直线平行的直线方程.2330x y --=20x y ++=310x y +-=变式:求经过两直线和的交点且与直线垂直的直线方程.2330x y --=20x y ++=310x y +-=例3 已知两点,求经过两直线和的交点和线段(2,1),(4,3)A B -2310x y -+=3210x y +-=中点的直线的方程.AB l ※ 动手试试练1. 求直线关于直线对称的直线方程.20x y --=330x y -+=练2. 已知直线的方程为,直线1l 30Ax y C ++=2l 的方程为,若的交点在轴上,求的值.2340x y -+=12,l l y C 三、总结提升:※ 学习小结1.两直线的交点问题.一般地,将两条直线的方程联立,得方程组,若方程1112220A x B y C A x B y C ++=⎧⎨++=⎩组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行..※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两直线的交点坐标为( ).12:210,:220l x y l x y ++=-++=A . B . C . D .13(,)2413(,)24-13(,24--13(,)24-2. 两条直线和的位置关系是( ).320x y n ++=2310x y -+=A .平行 B .相交且垂直 C .相交但不垂直 D .与的值有关n 3. 与直线关于点对称的直线方程是( ).2360x y +-=(1,1)-A .B .3220x y -+=2370x y ++=C .D .32120x y --=2380x y ++=4. 光线从射到轴上的一点后被轴反射,则反射光线所在的直线方程.(2,3)M -x (1,0)P x 5. 已知点,则点关于点的对称点的坐标.(5,8),(4,1)AB A BC 1. 直线与直线的交点在第四象限,求的取值范围.54210x y m +--=230x y m +-=m 2. 已知为实数,两直线:,:相交于一点,求证交点不可能在a 1l 10ax y ++=2l 0x y a +-=第一象限及轴上.x§ 3.3.2两点间的距离1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性. 3.体会事物之间的内在联系,,能用代数方法解决几何问题.一、课前准备:(预习教材P 115~ P 116,找出疑惑之处)1.直线,无论取任意实数,它都过点.0mx y m +-=m 2.若直线与直线的交点为,则.111:1l a x b y +=222:1l a x b y +=(2,1)-112a b -=3.当为何值时,直线过直线k 3y kx =+2x y-与的交点?10+=5y x =+二、新课导学:※ 学习探究问题1:已知数轴上两点,怎么求的距离?,A B ,A B 问题2:怎么求坐标平面上两点的距离?及的中点坐标?,A B ,A B 新知:已知平面上两点,则.111222(,),(,)P x y P xy 12PP 特殊地:与原点的距离为.(,)P xy OP =※ 典型例题例1 已知点求线段的长及中点坐标.(8,10),(4,4)A B -AB 变式:已知点,在轴上求一点,使,并求的值.(1,2),A B -x PA PB =PA 2 证明平行四边行四条边的平方和等于两条对角线的平方和.变式:证明直角三角形斜边上的中点到三个顶点的距离相等.).D. 较差10分)计分:).D .3 )三角形.=10和2-=10相交于一点,则的值( ).y x y a .1-,使,则.P PA PB =PA =P (1,0)后被轴反射,则反射光线所在的直线的方程 x 3的交点,且垂直于第一条直线.0,:相交于一点,求证交点不可01=++y 2l 0=-+a y x.的坐标为,直线方程P 00(,)x y 中,如果,或,怎样用点的坐标和直线的方程直接求点P 到直0A =0B =.到直线的距离.(1,0)B -34-1x y -0=:,:1l 2380x y +-=2l 23x y +,1l 10Ax By C ++=2:l平行且到的距离为2的直线方程.1260y -+=l ). C. 一般 D. 较差5分钟 满分:10分)计分:的距离( )12530x y +-=C . D .14132813).B.240x y +-=D.350x y +-= ).B .0x y +=D .0x y -=2-1=0和3x -2+1=0的距离y y 距离为1,且与点距离为2的直线共有条.(1,2)A (3,1)B ,一边所在直线的方程为,求其他三边所在的直(1,0)G -350x y +-=的,求菱形各边和两条对角线所在直线的倾斜角和斜率.ABCD 60O BAD ∠=中,,ABC ∆(1,1),(5,1)A B .求45O .和的交点,且在两坐标轴上的截距相等的直线方3260x y ++=2570x y +-=,1:40l ax by -+=2:(1)l a x y-+的值.,a b ,并且直线与直线垂直;⑵直线与直线平行,并且坐标原点到3,1)-1l 2l 1l 2l .例5 过点作直线分别交轴、轴正半轴于两点,当面积最小时,求直线(4,2)P l x y ,A B AOB ∆的方程.l ※ 动手试试练1. 设直线的方程为,根据下列条件分别求的值.l (2)3m x y m ++=m ⑴在轴上的截距为;l x 2-⑵斜率为.1-练2.已知直线经过点且与两坐标轴围成单位面积的三角形,求该直线的方程.l (2,2)-三、总结提升:※ 学习小结1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般 式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差5分钟 满分:10分)计分:1. 点关于直线对称的点的坐标是().(3,9)3100x y +-=A .B.(1,3)--(17,9)-C .D .(1,3)-(17,9)-2.方程所表示的直线( ).(1)210()a x y a a R --++=∈A .恒过定点 B .恒过定点(2,3)-(2,3)C .恒过点和D .都是平行直线 (2,3)-(2,3)3.已知点到直线的距离等于1,则( ).(3,)m 40x +-=m= A B .C .D4.已知在过和的直线上,则.(3,)P a (2,1)M -(3,4)N -a =5. 将直线绕点按顺时针方向旋转,所得的直线方程是.2)y x =-(2,0)30o 1.已知直线12:220,:1l x ay a l ax y +--=+-a -.0=⑴若,试求的值;12//l l a ⑵若,试求的值12l l ⊥a 2.两平行直线分别过点和,12,l l 1(1,0)P (0,5)P ⑴若与的距离为5,求两直线的方程;1l 2l ⑵设与之间的距离是,求的取值范围.1l 2l d d。
必修二 第三章 直线的方程知识与方法

高中数学 知识与方法必修二 第二章 直线的方程1、直线的倾斜角与斜率:(1)直线的倾斜角:x 轴正向与直线l 向上方向之间所成的角。
当直线l 与x 轴平行或重合时,倾斜角为0. 直线l 的倾斜角α的范围:[)0π,. (2)斜率:[)tan ,0k ααπ=∈, 当2πα=时,直线的斜率k 不存在。
直线经过两点()()111222P x y P x y ,,,,其斜率为: ()211221y y k x x x x -=≠- 倾斜角α 0 02πα<<2π 2παπ<< 斜率k 0 0k >,递增 不存在 0k <,递增横截距:直线与x 轴交点(),0a 的横坐标a 纵截距:直线与y 轴交点()0,b 的纵坐标b注意:①截距不是距离,而是实数.可以大于0,可以小于0,也可以等于0。
②令0x =,求出y 即为纵截距;令0y =求出x 即为横截距;当直线过原点时,0a b ==。
名称 方程常数的几何意义适用范围点斜式 00()y y k x x -=-()0,x y 是直线上一定点,k 是斜率与x 轴不垂直的直线 斜截式 y kx b =+ k 是斜率,b 为纵截距与x 轴不垂直的直线 两点式 112121y y x x y y x x --=-- ()()1122,,,x y x y 是直线上两定点与x 轴、y 轴都不垂直的直线截距式 1x y a b+=,a b 分别是直线的非零横截距,非零纵截距 与x 轴、y 轴都不垂直且不过原点的直线 一般式()2200Ax By C A B ++=+≠ A B C 、、为系数坐标平面内任意直线几种特殊直线的方程:①当斜率k 不存在时:0x x =,特别的y 轴所在直线0x = ②当斜率0k =时:0y y =,特别的x 轴所在直线0y = ③过原点的直线:y kx =(k 存在) 求直线的方程(待定系数法):①过点00(,)P x y 的直线,可设点斜式方程:()00y y k x x -=-(注意讨论k 是否存在); ②斜率为k 的直线,可设为斜截式:y kx b =+; ③与直线y kx b =+平行的直线可设为:y kx m =+;与直线0Ax By C ++=平行的直线可设为:0Ax By C ++=’④与y kx b =+垂直的直线可设为:1y x m k=-+;与0Ax By C ++=垂直的直线可设为:0Bx Ay C -+=’⑤过两直线1110Ax B y C ++=与2220A x B y C ++=的交点的直线可设为:111Ax B y C +++2220)A x B y C R λλ++=∈(),((不含直线2220A x B y C ++=) 3、中点与距离公式:①中点坐标公式:11(,)M x y ,22(,)N x y ,则线段MN 的中点1122,22x y x y P ++⎛⎫⎪⎝⎭; ②两点间的距离:11(,)M x y ,22(,)N x y,MN 原点O(0,0)与任一点P(x ,y)的距离|OP|=x 2+y 2.; ③点到直线距离: 00(,)P x y ,:0l Ax By C ++=,则d ;④两平行直线间的距离:11:0l Ax By C ++=,22:0l Ax By C ++=,则d =;4、两条直线的位置关系(1)111222:,:l y k x b l y k x b =+=+①121212,l l k k b b ⇔=≠∥;②12121l l k k ⊥⇔=-注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
高中数学必修2第三章直线与方程总结

第三章 直线与方程 知识点 总结代县中学高二数学组一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。
当 α=0°时,k=0当0<α<90°时,k.>0当α=90°时,k 不存在当90°<α<180°,k<03、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。
4、直线与直线的位置关系:判断方法一:222111:,:b x k y l b x k y l +=+=①平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直②垂直:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
③重合: 斜率都存在时:2121,b b k k ==;④相交:斜率21k k ≠(前提是斜率都存在)判断方法二:11112222:0,:0l A x B y C l A x B y C ++=++=,①1l ∥2l ⇔ 122112211221A B A B B C B C =≠≠且或A C A C ,当(A ,B ,C 不为0时)212121C C B B A A ≠= ②1l ⊥2l ⇔12120A A B B +=③重合:A 1B 2=A 2B 1且B 1C 2=B 2C 1或A 1C 2=A 2C 1,212121C C B B A A == ④相交:A 1B 2≠A 2B 1 ,2121B B A A ≠ 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0在距离公式当中会经常用到直线的“一般式方程”。
直线与方程知识点总结

直线与方程知识点总结直线是我们在数学学习中经常接触到的一个概念,而直线的方程则是描述直线位置的重要工具。
在本文中,我们将对直线与方程的相关知识点进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。
首先,我们来看一下直线的一般方程。
一般来说,直线的一般方程可以写作Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
这个方程描述了平面上所有满足这个关系的点的集合,也就是直线的位置。
在实际应用中,我们可以通过这个方程来描述各种各样的直线,从而解决各种问题。
其次,我们需要了解直线的斜率和截距。
直线的斜率是描述直线倾斜程度的一个重要参数,通常用k来表示。
斜率的计算公式为k = (y2 y1) / (x2 x1),其中(x1, y1)和(x2, y2)是直线上的两个点。
而直线的截距则是直线与坐标轴的交点坐标,分别记为x轴截距和y轴截距。
通过斜率和截距,我们可以更直观地理解直线的性质和特点。
另外,我们还需要掌握直线的点斜式和斜截式方程。
点斜式方程是描述直线的一种常用形式,它的形式为y y1 = k(x x1),其中(x1, y1)是直线上的一个点,k是直线的斜率。
而斜截式方程则是另一种描述直线的形式,它的形式为y = kx + b,其中k是直线的斜率,b是直线与y轴的交点坐标。
这两种方程形式在不同情况下都有其独特的应用,我们需要根据具体问题选择合适的形式来描述直线。
最后,我们需要了解直线的平行和垂直关系。
两条直线平行的条件是它们的斜率相等,而两条直线垂直的条件是它们的斜率的乘积为-1。
通过这些条件,我们可以判断两条直线之间的相对位置关系,从而解决各种与直线相关的问题。
总的来说,直线与方程是数学中的重要知识点,它们在几何、代数、应用问题等方面都有着广泛的应用。
通过对直线的斜率、截距、方程形式以及相对位置关系的理解,我们可以更好地理解和运用直线的相关知识,解决各种实际问题。
希望本文的知识点总结能够帮助大家更好地掌握这一部分内容,提高数学学习的效果。
数学必修2第三章知识点小结

第三章直线与方程知识点总结1、直线倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:⑴一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,常用小写字母k 表示,也就是 k = tan α。
①直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ②当直线l 与x 轴垂直时, α= 90°, k 不存在.当[)90,0∈α时,0≥k ,k 随着α的增大而增大; 当() 180,90∈α时,0<k ,k 随着α的增大而增大; 当90=α时,k 不存在。
由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.⑵过两点),(),(222111y x P y x P、的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与21P P 、的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率,再求倾斜角。
※三点共线的条件:如果所给三点中任意两点的连线都有斜率且都相等,那么这三点共线;反之,三点共线,任意两点连线的斜率不一定相等。
解决此类问题要先考虑斜率是否存在。
4、直线方程的五种形式(注意各种直线方程之间的转化)注意:①在平时解题或高考解题时,所求出的直线方程,一般要求写成一般式。
②各式的适用范围6、两条直线的交点当0:1111=++C y B x A l 0:2222=++C y B x A l 相交时,交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程知识点一、基础知识回顾1.倾斜角与斜率 知识点1:当直线l 与x 轴相交时, x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.注意: 当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.知识点2:直线的倾斜角(90)αα≠︒的正切值叫做这条直线的斜率.记为tan k α=. 注意: 当直线的倾斜角90οα=时,直线的斜率是不存在的知识点3:已知直线上两点111222(,),(,)P x y P x y 12()x x ≠的直线的斜率公式:2121y y k x x -=-. 知识点4:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k .知识点5:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =-注意:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合.2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或20k =且1l 的斜率不存在. 2.直 线 的 方 程知识点6:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 注意:⑴x 轴所在直线的方程是 ,y 轴所在直线的方程是 . ⑵经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是 . ⑶经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是 . 知识点7:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程.注意:截距b 就是函数图象与y 轴交点的纵坐标.知识点8:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,叫做直线的两点式方程. 知识点9:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程为1=+bya x ,叫做直线的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.知识点10:关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程. 注意:(1)直线一般式能表示平面内的任何一条直线(2)点00(,)x y 在直线0Ax By C ++=上⇔00Ax By +0C += 3、直线的交点坐标与距离知识点11: 两直线的交点问题.一般地,将两条直线的方程联立,得方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行.知识点12:已知平面上两点111222(,),(,)P x y P x y ,则12PP =特殊地:(,)P x y 与原点的距离为OP 知识点13:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =.知识点14:已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l 的距离为d =知识点15:巧妙假设直线方程:(1)与10Ax By C ++=平行的直线可以假设成:20Ax By C ++=(C 1和C 2不相等) (2)与0Ax By C ++=垂直的直线可以假设成:Bx -Ay+m=0 (3)过1l :A 1x+B 1y+C 1=0和2:l A 2x+B 2y+C 2=0交点的直线可以假设成A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0(该方程不包括直线2:l )知识点16:1l :A 1x+B 1y+C 1=0和2:l A 2x+B 2y+C 2=0垂直等价于:A 1A 2+B 1B 2=0(A 1和B 1不全为零;A 2和B 2不全为零;)知识点17:中点坐标公式:1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,则2121,22x x y y x y ++==. 例题解析例1. 在第一象限的ABC ∆中,(1,1),(5,1)A B ,60,45O O A B ∠=∠=.求 ⑴AB 边的方程;⑵AC 和BC 所在直线的方程.例2.点(3,9)关于直线3100x y +-=对称的点的坐标是( ). A .(1,3)-- B.(17,9)- C .(1,3)- D .(17,9)-思考:(1)点关于点的对称点如何求? (2)线关于点的对称线如何求? (3)线关于线的对称线如何求?例3. 求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.例4.方程(1)210()a x y a a R --++=∈所表示的直线( ). A .恒过定点(2,3)- B .恒过定点(2,3) C .恒过点(2,3)-和(2,3) D .都是平行直线 例5.已知直线12:220,:1l x ay a l ax y +--=+-a -0=. ⑴若12//l l ,试求a 的值;⑵若12l l ⊥,试求a 的值例6 .已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值. ⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.例7. 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.例8点P(x,y)在x+y-4=0上,则x 2+y 2最小值为多少?巩固练习:1.已知点(3,)m 到直线40x -=的距离等于1,则m =( ).A B . C . D 2.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a = .3.将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是 .4.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P , ⑴若1l 与2l 的距离为5,求两直线的方程; ⑵设1l 与2l 之间的距离是d ,求d 的取值范围。
5.设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值.⑴l 在x 轴上的截距为2-;⑵斜率为1-.达标测试一、选择题(每题3分,共36分)1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.213, B.--213, C.--123, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )A.重合B.平行C.垂直D.相交但不垂直3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )(A )2x -3y =0; (B )x +y +5=0; (C )2x -3y =0或x +y +5=0 (D )x +y +5或x -y +5=0 4.直线x=3的倾斜角是( ) A.0 B.2πC.πD.不存在 5.圆x 2+y 2+4x=0的圆心坐标和半径分别是( ) A.(-2,0),2 B.(-2,0),4 C.(2,0),2 D.(2,0),4 6.点(-1,2)关于直线y = x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2) (D )(3,-2)7.点(2,1)到直线3x -4y + 2 = 0的距离是(A )54 (B )45(C )254 (D )425 8.直线x - y + 3 = 0的倾斜角是( )(A )30° (B )45° (C )60° (D )90° 9.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为(A )3x +4y -5=0 (B )3x +4y +5=0 (C )-3x +4y -5=0 (D )-3x +4y +5=010.设a 、b 、c 分别为 ABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系( )(A )平行; (B )重合; (C )垂直; (D )相交但不垂直11.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )(A )-;31(B )-3;(C );31(D )312.直线,31k y kx =+-当k 变动时,所有直线都通过定点( ) (A )(0,0) (B )(0,1) (C )(3,1) (D )(2,1) 二、填空题(每题4分,共16分) 13.直线过原点且倾角的正弦值是54,则直线方程为 14.直线mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为 15.如果三条直线mx +y +3=0,x -y -2=0,2x -y +2=0不能成为一个三角形三边所在的直线,那么m 的一个..值是_______. 16.已知两条直线l 1:y =x ;l 2:ax -y =0(a ∈R ),当两直线夹角在(0,12π)变动时,则a 的取值范围为 三、解答题(共48分)17. ABC ∆中,点A (),1,4-AB 的中点为M (),2,3重心为P (),2,4求边BC 的长(12分)18.若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值(12分)20.若直线062=++y ax 和直线0)1()1(2=-+++a y a a x 垂直,求a 的值(12分)21.如图,在∆ABC 中,∠C=90O,P 为三角形内的一点,且PCA PBC PAB S S S ∆∆∆==,求证:│PA │2+│PB │2=5│PC │2(12分)。