Matlab课后习题

合集下载

Matlab课后习题解答

Matlab课后习题解答
0.70
0.80
0.95
电阻y
15
18
19
21
22.6
23.8
26
>> x=[0.1,0.3,0.4,0.55,0.7,0.8,0.95];
y=[15,18,19,21,22.6,23.8,26];
p1=polyfit(x,y,1);
p3=polyfit(x,y,3);
p5=polyfit(x,y,5);
if x>=90
disp('优秀');
elseif x>=80
disp('良好');
elseif x>=60
disp('及格');
else
disp('不及格');
end
>> x=85
x =
85
良好
Q3:编写函数,计算
>> sum=0;
>> for i=1:50
a=1;
for j=1:i
a=a*j;
end
ans =
0
(4)
>> syms n
>> limit(sqrt(n+2)-2*sqrt(n+1)+sqrt(n),n,inf)
ans =
0
Q2:用MATLAB软件求下列函数极限:
(1)
>> syms x
>> limit((((1+x)^(1/3)-1)/x),x,0)
ans =
1/3
(4)
>> syms x
(2)
>> syms x

matlab课后习题及答案

matlab课后习题及答案

第一章 5题已知a=4.96,b=8.11,计算)ln(b a eba +-的值。

解:clear clc a=4.96; b=8.11;exp(a-b)/log(a+b) ans =0.0167 6题已知三角形的三边a=9.6,b=13.7, c=19.4,求三角形的面积。

提示:利用海伦公式area =))()((c s b s a s s ---计算,其中S=(A+B+C)/2. 解:clear clc a=9.6; b=13.7; c=19.4; s=(a+b+c)/2area=sqrt(s*(s-a)*(s-b)*(s-c)) s =21.3500 第二章 8题已知S=1+2+2^2+2^3+……+2^63,求S 的值 解:clear clc S=0;for i=0:1:63 S=S+2^i; end S S =1.8447e+019 9题分别用for 和while 循环结构编写程序,计算∑=-1001n 1n 2)(的值。

解:clear clc s=0;for n=1:100 s=s+(2*n-1); end s s =10000 clear clc n=1; s=0;while n<=100 s=s+(2*n-1); n=n+1; end s s =10000 第三章 2题在同一坐标下绘制函数x ,,2x-,2x xsin(x)在()∏∈,0x 的曲线。

解:clear clcx=0:0.2:pi; y1=x; y2=x.^2; y3=-(x.^2); y4=x.*sin(x);plot(x,y1,'-' ,x,y2,'-' ,x,y3,'-' ,x,y4,'-')0.511.522.53-10-8-6-4-202468109题用不同的线型和颜色在同一坐标内绘制曲线y1=2ex5.0 、y2=sin(2∏x )的图形。

matlab课后习题答案(附图)

matlab课后习题答案(附图)

matlab课后习题答案(附图)习题2.1画出下列常见曲线的图形y (1)⽴⽅抛物线3x命令:syms x y;ezplot('x.^(1/3)')(2)⾼斯曲线y=e^(-X^2);命令:clearsyms x y;ezplot('exp(-x*x)')(3)笛卡尔曲线命令:>> clear>> syms x y;>> a=1;>> ezplot(x^3+y^3-3*a*x*y)(4)蔓叶线命令:>> clear>> syms x y;>> a=1ezplot(y^2-(x^3)/(a-x))(5)摆线:()()tsin-=,=-by1命令:>> clear>> t=0:0.1:2*pi;>> x=t-sin(t);>>y=2*(1-cos(t)); >> plot(x,y)7螺旋线命令:>> clear >> t=0:0.1:2*pi; >> x=cos(t); >> y=sin(t); >> z=t;>>plot3(x,y,z)(8)阿基⽶德螺线命令:clear>> theta=0:0.1:2*pi;>> rho1=(theta);>> subplot(1,2,1),polar(theta,rho1)(9) 对数螺线命令:cleartheta=0:0.1:2*pi;rho1=exp(theta);subplot(1,2,1),polar(theta,rho1)(12)⼼形线命令:>> clear >> theta=0:0.1:2*pi; >> rho1=1+cos(theta); >> subplot(1,2,1),polar(theta,rho1)练习2.21. 求出下列极限值(1)nnn n3→命令:>>syms n>>limit((n^3+3^n)^(1/n)) ans = 3(2))121(lim n n n n ++-+∞→命令:>>syms n>>limit((n+2)^(1/2)-2*(n+1)^(1/2)+n^(1/2),n,inf) ans = 0(3)x x x 2cot lim 0→命令:syms x ;>> limit(x*cot(2*x),x,0) ans = 1/2 (4))(coslimcm xx ∞→命令:syms x m ; limit((cos(m/x))^x,x,inf) ans = 1(5))111(lim 1--→exx x命令:syms x>> limit(1/x-1/(exp(x)-1),x,1) ans =(exp(1)-2)/(exp(1)-1) (6))(2lim x x xx -+∞>> limit((x^2+x)^(1/2)-x,x,inf)ans = 1/2练习2.41. 求下列不定积分,并⽤diff 验证:(1)+x dxcos 1>>Clear >> syms x y >> y=1/(1+cos(x)); >> f=int(y,x) f =tan(1/2*x) >> y=tan(1/2*x); >> yx=diff(y ,x); >> y1=simple(yx) y1 =1/2+1/2*tan(1/2*x)^2 (2)+exdx1clear syms x yy=1/(1+exp(x));f=int(y,x) f =-log(1+exp(x))+log(exp(x)) syms x yy=-log(1+exp(x))+log(exp(x)); yx=diff(y,x); y1=simple(yx) y1 = 1/(1+exp(x)) (3)dx x x ?sin 2syms x yy=x*sin(x)^2; >> f=int(y,x) f =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2 clearsyms x y y=x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2; yx=diff(y,x); >> y1=simple(yx) y1 = x*sin(x)^2 (4)xdx ?sec3syms x y y=sec(x)^3;f=int(y,x) f =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)) clear syms x yy=1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)); yx=diff(y,x); y1=simple(yx) y1 =1/cos(x)^32. 求下列积分的数值解 1)dx x-10clearsyms xy=int(x^(-x),x,0,1) y =int(x^(-x),x = 0 .. 1) vpa(y,10) ans =1.291285997 2)xdx e x cos3202?πclearsyms xy=int(exp(2*x)*cos(x)^3,x, clear syms xy=int((1/(2*pi)^(1/2))*exp(-x^2/2),x,0,1) y =7186705221432913/36028797018963968*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/0,2*pi) y =22/65*exp(pi)^4-22/65vpa(ans,10)(3)dx xe21221-π>> clear >> syms x>> y=int(1/(2*pi)^(1/2)*exp(-x^2/2),0,1); >> vpa(y,14) ans =.341344746068552(4)>> clear >> syms x>> y=int(x*log(x^4)*asin(1/x^2),1,3); Warning: Explicit integral could not be found. > In sym.int at 58 >> vpa(y,14) ans = 2.45977212823752(5) >> clear >> syms x1判断下列级数的收敛性,若收敛,求出其收敛值。

matlab课后习题答案(1-9章)

matlab课后习题答案(1-9章)

1 数字1.5e2,1.5e3 中的哪个与1500相同吗?1.5e32 请指出如下5个变量名中,哪些是合法的?abcd-2xyz_33chan a 变量ABCDefgh 2、5是合法的。

3 在MATLAB 环境中,比1大的最小数是多少? 1+eps4 设 a = -8 , 运行以下三条指令,问运行结果相同吗?为什么?w1=a^(2/3) w2=(a^2)^(1/3) w3=(a^(1/3))^2w1 = -2.0000 + 3.4641i ;w2 = 4.0000 ;w3 =-2.0000 + 3.4641i 5 指令clear, clf, clc 各有什么用处?clear 清除工作空间中所有的变量。

clf 清除当前图形。

clc 清除命令窗口中所有显示。

第二章1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度”对象,还是“符号”符号对象?3/7+0.1双; sym(3/7+0.1)符; sym('3/7+0.1') 符;; vpa(sym(3/7+0.1)) 符;2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认为是自由符号变量. sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') symvar(sym('sin(w*t)'),1) w a z3 (1)试写出求三阶方程05.443=-x 正实根的程序。

注意:只要正实根,不要出现其他根。

(2)试求二阶方程022=+-a ax x 在0>a 时的根。

(1)reset(symengine)syms x positive solve(x^3-44.5) ans =(2^(2/3)*89^(1/3))/2(2)求五阶方程022=+-a ax x 的实根 syms a positive %注意:关于x 的假设没有去除 solve(x^2-a*x+a^2)Warning: Explicit solution could not be found. > In solve at 83 ans =[ empty sym ]syms x clear syms a positivesolve(x^2-a*x+a^2) ans =a/2 + (3^(1/2)*a*i)/2 a/2 - (3^(1/2)*a*i)/24 观察一个数(在此用@记述)在以下四条不同指令作用下的异同。

MATLAB课后习题

MATLAB课后习题

5、利用rand函数产生(0,1)间的均匀分布的10*10随机矩阵A,然后统计A中大于等于的元素的个数。

解:A=rand(10);B=A >= ;C=sum(B);count=sum(C)运行结果(每次运行结果是不同的,仅作参考):count=326、利用randn函数产生均值为0,方差为1的10*10随机矩阵A,然后统计A中大于且小于的元素的个数。

%解:A=randn(10);B=(A<&(A>;C=sum(sum(B))运行结果(每次运行结果是不同的,仅作参考):C=481、解:if and(a<1,b<=语句1;elseif and(a<1,b>`语句2;elseif and(a>=1,b<=语句3;else语句4;2、有一矩阵A,找出矩阵中值等于1的元素,并将它们重新排列成列向量B。

解:A=2*rand(4);k=find(A<=1);¥A(k)=[];%删除下标为k的元素B=A'运行结果(每次运行结果是不同的,仅作参考)B =)3、在一测量矩阵A(100*3)中,存在有奇异值(假设大于100的置认为是奇异值),编程实现删去奇异值所在的行。

解:A=120*randn(10,3);[i,j]=find(A>100);A(i,:)=[] %删去存在奇异值的行【4、在给定的100*100矩阵中,删去整行为0的行,删去整列为0的列。

解:A=diag([1 2 3 4],1)B=any(A)[i,j]=find(B==0)A(:,i)=[] %删除全为0的列B=any(A')[i,j]=find(B==0)A(j,:)=[] %删除全为0的行—运行结果:初始值:A =0 1 0 0 00 0 2 0 00 0 0 3 00 0 0 0 40 0 0 0 0操作后:A =1 0 0 0;0 2 0 00 0 3 00 0 0 41、将窗口分割成四格,分别绘制正弦、余弦、正切和余切函数曲线,并加上适当的标注。

完整word版,Matlab课后习题

完整word版,Matlab课后习题

习题 11. 执行下列指令,观察其运算结果, 理解其意义: (1) [1 2;3 4]+10-2i(2) [1 2; 3 4].*[0.1 0.2; 0.3 0.4] (3) [1 2; 3 4].\[20 10;9 2] (4) [1 2; 3 4].^2 (5) exp([1 2; 3 4]) (6)log([1 10 100]) (7)prod([1 2;3 4])(8)[a,b]=min([10 20;30 40]) (9)abs([1 2;3 4]-pi)(10) [1 2;3 4]>=[4,3;2 1](11)find([10 20;30 40]>=[40,30;20 10])(12) [a,b]=find([10 20;30 40]>=[40,30;20 10]) (提示:a 为行号,b 为列号) (13) all([1 2;3 4]>1) (14) any([1 2;3 4]>1) (15) linspace(3,4,5) (16) A=[1 2;3 4];A(:,2)2. 执行下列指令,观察其运算结果、变量类型和字节数,理解其意义: (1) clear; a=1,b=num2str(a),c=a>0, a= =b, a= =c, b= =c (2) clear; fun='abs(x)',x=-2,eval(fun),double(fun)3. 本金K 以每年n 次,每次p %的增值率(n 与p 的乘积为每年增值额的百分比)增加,当增加到rK 时所花费的时间为)01.01ln(ln p n rT +=(单位:年)用MA TLAB 表达式写出该公式并用下列数据计算:r =2, p =0.5, n =12.4.已知函数f (x )=x 4-2x 在(-2, 2)内有两个根。

取步长h =0.05, 通过计算函数值求得函数的最小值点和两个根的近似解。

matlab课后习题及答案详解

matlab课后习题及答案详解

matlab课后习题及答案详解第1章练习题1.安装matlab时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?在安装matlab时,安装内容由选择组件窗口中个复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即matlab选项)必须安装。

第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可。

2.matlab操作方式桌面存有几个窗口?如何并使某个窗口瓦解桌面沦为单一制窗口?又如何将瓦解过来的窗口再次置放至桌面上?与其他计算机语言相比较,matlab语言注重的特点就是什么?matlab系统由那些部分共同组成?在matlab操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的close按钮,一个是可以使窗口成为独立窗口的undock按钮,点击undock按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的view菜单中选择dock……菜单项就可以将独立的窗口重新防止的桌面上。

matlab具备功能强大、使用方便、输出简便、库函数多样、开放性弱等特点。

matlab系统主要由开发环境、matlab数学函数库、matlab语言、图形功能和应用程序接口五个部分组成。

3.如何设置当前目录和搜寻路径,在当前目录上的文件和在搜寻路径上的文件存有什么区别?命令历史窗口除了可以观测前面键入的命令外,除了什么用途?当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file菜单中的setpath菜单项来完成。

在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被matlab运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。

命令历史窗口除了用作查阅以前键入的命令外,还可以轻易执行命令历史窗口中选取的内容、将选取的内容拷贝到剪贴板中、将选取内容轻易拷贝到m文件中。

MATLAB-实用教程-课后习题标准答案

MATLAB-实用教程-课后习题标准答案

MATLAB-实用教程-课后习题标准答案第二章1.计算复数3+4i与5-6i的乘积。

a=3+4ib=5-6ic=a*b2.构建结构体Students,属性包含Name、age和Email,数据包括{’Zhang’,18,[‘’,’’]}、{’Wang’,21,[]}和{’Li’,[],[]},构建后读取所有Name属性值,并且修改’Zhang’的Age 属性值为19。

Students(1).Age=18Students(1).Email='',''Students(2).Name='Wang'Students(2).Age=21Students(2).Email=[]Students(3).Name='Li'Students(3).Age=[]Students(3).Email=[]/doc/805835364.html,Student(1).Age(1)=19Student.Age3.用满矩阵和稀疏矩阵存储方式分别构造下属矩阵:A=[0 1 0 0 0;1 0 0 0 0;0 0 0 0 0;0 0 0 1 0]A=[0 1 0 0 0;1 0 0 0 0;0 0 0 0 0;0 0 0 1 0]S=sparse(A)S=sparse([2,1,4],[1,2,4],[1,1,1],4,5)4.采用向量构造符得到向量[1,5,9....,41].A=1:4:415.按水平和竖直方向分别合并下述两个矩阵:A=[1 0 0;1 1 0;0 01],B=[2 3 4;5 6 7;8 9 10]A=[1 0 0;1 1 0;0 0 1]B=[2 3 4;5 6 7;8 9 10]C=[A B]D=[A;B]6.分别删除第五题两个结果的第2行。

A=[1 0 0;1 1 0;0 0 1]B=[2 3 4;5 6 7;8 9 10]C=[A B]D=[A;B]C(2,:)=[]D(2,:)=[]7.分别将第5题两个结果的第2行最后3列的数值改为[11 12 13]。

matlab课后习题答案

matlab课后习题答案

习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。

因此,矩阵是MATLAB最基本、最重要的数据对象。

2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。

(2)A./B和B.\A的值是否相等?答:相等。

(3)A/B和B\A的值是否相等?答:不相等。

(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。

3.写出完成下列操作的命令。

(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。

答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。

答:A(7)=[](3)将矩阵A的每个元素值加30。

答:A=A+30;(4)求矩阵A的大小和维数。

答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。

答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34矩阵。

答:reshape(x,3,4);(7)求一个字符串的ASCII码。

答:abs(‘123’); 或double(‘123’);(8)求一个ASCII码所对应的字符。

答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5.已知完成下列操作:(1)取出A的前3行构成矩阵B,前两列构成矩阵C,右下角32⨯子矩阵构成矩阵D,B与C 的乘积构成矩阵E。

matlab课后习题答案

matlab课后习题答案

第2章 MATLAB 矩阵运算基础2.1 在MA TLAB 中如何建立矩阵⎥⎦⎤⎢⎣⎡194375,并将其赋予变量a ? >> a=[5 7 3;4 9 1]2.5 计算矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡897473535与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡638976242之和。

>> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6];>> a+bans =7 7 7 9 14 13 15 12 142.6 求⎥⎦⎤⎢⎣⎡+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。

>> x=[4+8i 3+5i 2-7i 1+4i 7-5i;3+2i 7-6i 9+4i 3-9i 4+4i]; >> x’ans =4.0000 - 8.0000i 3.0000 - 2.0000i 3.0000 -5.0000i 7.0000 +6.0000i 2.0000 +7.0000i 9.0000 - 4.0000i 1.0000 - 4.0000i 3.0000 + 9.0000i 7.0000 + 5.0000i 4.0000 - 4.0000i2.7 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。

>> a=[6 9 3;2 7 5];>> b=[2 4 1;4 6 8]; >> a.*b ans =12 36 3 8 42 402.9 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。

>> A=[4 9 2;7 6 4;3 5 7];>> B=[37 26 28]’;-0.5118 4.0427 1.33182.10 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。

MATLAB课后习题及练习7.6

MATLAB课后习题及练习7.6

7.6 课后作业1.分别绘制下列函数图形:(1) r=3(1-cosθ) (极坐标)>> t=0:.01:2*pi;>> figure>> polar(t,abs(3*(1-cos(t))));运行结果:(2) y (t)=1.25e-0.25t +cos(3t)>> x=0:pi/180:2*pi;>> y1=1.25*exp(-0.25*x);y2=cos(3*x);>> plot(x,y1+y2)运行结果:2 .绘制函数y (t)=1-2e-tsint (0 ≤t≤8)的图形,且在x 轴上标注“Time”,y 轴上标注“Amplitude”,图形的标题为“Decaying Oscillating Exponential”。

>> x=0:0.01:8;>> y=1-2*exp(-1*x).*sin(x);>> figure>> plot(x,y)>> xlabel('Time');ylabel('Amplitude');>> title('Decaying Oscillating Exponential');运行结果:3 .在同一图中绘制下列两条曲线(x ∈[0,25]内) :(1) y 1(t)=2.6e(-0.5x) cos(0.6x)+0.8 ;(2) y 2(t)=1.6cos(3x)+sin(x)要求用不同的颜色和线型分别表示y 1(t) 和y 2(t) ,并给图形加注解。

>> x=0:0.1:25;>> y1=2.6*exp(-0.5*x).*cos(0.6*x)+0.8;>> y2=1.6*cos(3*x)+sin(x);>> figure>> plot(x,y1,'r-X',x,y2,'b--.');>> legend('y1=2.6*exp(-0.5*x).*cos(0.6*x)+0.8','y2=1.6*cos(3*x)+sin(x)')4 .在一个图形窗口下绘制两个子图,分别显示下列曲线:(1)y =sin2xcos3x ;(2) y =0.4 x要求给x 轴、y 轴加标注,每个子图加标题。

习题六(Matlab数值计算)课后习题

习题六(Matlab数值计算)课后习题

习题六(Matlab数值计算)课后习题1、利⽤MATLAB 提供的randn 函数⽣成符合正态分布的10×5随机矩阵A,进⾏如下操作:(1)A 各列元素的均值和标准⽅差。

(2)A 的最⼤元素和最⼩元素。

(3)求A 每⾏元素的和以及全部元素之和。

(4)分别对A 的每列元素按升序、每⾏元素按降序排序。

A=randn(10,5);disp('各列元素的均值:');mean(A)disp('各列元素的标准⽅差:');std(A)disp('A 的最⼤元素:');max(max(A))disp('A 的最⼩元素:');min(min(A))disp('A 每⾏元素之和:');sum(A,2)disp('全部元素之和:');sum(sum(A))disp('每列元素按升序:');Y=sort(A)disp('每⾏元素按降序:');Y=sort(A,2,'descend')各列元素的均值:ans =-0.1095 0.1282 -0.2646 0.3030 -0.2464各列元素的标准⽅差:ans =0.9264 1.2631 0.8129 0.8842 1.3151A 的最⼤元素:ans =2.5855A 的最⼩元素:ans =-1.9330A 每⾏元素之和:ans =-2.29701.25450.06615.0489-0.69881.1002-2.9310-2.0595-1.68780.3112全部元素之和:ans =-1.8932每列元素按升序:Y =-1.2141 -1.4916 -1.4224 -1.1658 -1.9330-1.1135 -1.0891 -1.4023 -0.8045 -1.7947-0.8637 -1.0616 -0.7648 -0.2437 -1.1480-0.7697 -0.7423 -0.6156 0.1978 -0.6669-0.2256 0.0326 -0.1961 0.2157 -0.4390-0.0068 0.0859 -0.1924 0.2916 -0.08250.0774 0.5525 -0.1774 0.6966 0.10490.3714 1.1006 0.4882 0.8351 0.18731.1174 1.5442 0.7481 1.4193 0.72231.53262.3505 0.8886 1.5877 2.5855每⾏元素按降序:Y =1.4193 -0.6156 -0.8637 -1.0891 -1.14800.7481 0.2916 0.1049 0.0774 0.03260.7223 0.5525 0.1978 -0.1924 -1.21412.5855 1.5877 1.1006 0.8886 -1.11351.5442 -0.0068 -0.6669 -0.7648 -0.80451.5326 0.6966 0.1873 0.0859 -1.40230.8351 -0.0825 -0.7697 -1.4224 -1.49160.4882 0.3714 -0.2437 -0.7423 -1.93300.2157 -0.1774 -0.2256 -0.4390 -1.06162.3505 1.1174 -0.1961 -1.1658 -1.79472、按要求对指定函数进⾏插值和拟合。

MATLAB课后题答案整理

MATLAB课后题答案整理

第一章1.利用MATLAB 的帮助功能分别查询inv 、plot 、max 、round 等函数的功能及用法。

Help+函数2.简述MATLAB 的主要功能。

①数值计算和符号计算功能。

②绘图功能。

③编程语言功能。

④扩展功能。

3.help 命令和lookfor 命令有何区别?Help 命令只搜索出那些与关键字完全匹配的结果,lookfor 命令对搜索范围内的M 文件进行关键字搜索,条件比较宽松。

Lookfor 命令只对M 文件的第一行进行关键字搜索。

若在lookfor 命令后加上-all 选项,则可对M 文件进行全文搜索。

第二章1(1))1034245.01(26-⨯+⨯=ww=sqrt(2)*(1+0.34245*10^(-6)) w = 1.4142(2)ac b e abc c b a x ++-+++=)tan(22ππ,其中a=3.5,b=5,c=-9.8。

a=3.5;b=5;c=-9.8;x=(2*pi*a+(b+c)/(pi+a*b*c)-exp(2))/(tan(b+c)+a) x =0.9829(3)])48333.0()41[(22απβππα---=y ,其中α=3.32,β=-7.9。

a=3.32;b=-7.9;y=2*pi*a^2*((1-pi/4)*b-(0.8333-pi/4)*a) y = -128.4271(4))1ln(2122t t e z t ++=,其中t=]65.05312[--i 。

t=[2,1-3i;5,-0.65];z=0.5*exp(2*t)*log(t+sqrt(1+t.*t)) z = 1.0e+004 * 0.0048 + 0.0002i 0.0048 - 0.0034i1.58992.0090 - 1.3580i2.已知]023352138[],7613870451[--=--=B A 求下列表达式的值。

(1)B A 6+和I B A +-2。

matlab仿真课后习题

matlab仿真课后习题

第一章习题3.请指出以下的变量名(函数名、M文件名)中,哪些是合法的Abc 2004x lil-1 wu_2004 a&b _xyz 解:合法的变量名有:Abc wu_20044.指令窗操作(1)求[12+2×(7-4)]÷32的运算结果解:>> [12+2*(7-4)]/3^2ans =2(2)输入矩阵A=[1,2,3;4,5,6;7,8,9],观察输出。

解:>> A=[1,2,3;4,5,6;7,8,9]A =1 2 34 5 67 8 9(3)输入以下指令,观察运算结果;clear;x=-8::8;y=x';X=ones(size(y))*x;Y=y*ones(size(x));R=sqrt(X.^2+Y.^2)+eps;Z=sin(R)./R;mesh(X,Y,Z);colormap(hot)xlabel('x'),ylabel('y'),zlabel('z')解:7.指令行编辑(1)依次键入以下字符并运行:y1=2*sin*pi)/(1+sqrt(5))解:>>y1=2*sin*pi)/(1+sqrt(5))y1 =(2)通过反复按键盘的箭头键,实现指令回调和编辑,进行新的计算;y2=2*cos*pi)/(1+sqrt(5))解:>>y2=2*cos*pi)/(1+sqrt(5))y2 =11.编写题4中(3)的M脚本文件,并运行之。

解:第二章习题1.在指令窗中键入x=1::2和y=2::1,观察所生成的数组。

解:>> x=1::2 x =>> y=2::1 y =Empty matrix: 1-by-02.要求在[0,2π]上产生50个等距采样数据的一维数组,试用两种不同的指令实现。

解: y1=0:2*pi/49:2*pi y2=linspace(0,2*pi,50)3.计算e -2t sint ,其中t 为[0,2π]上生成的10个等距采样的数组。

MATLAB仿真课后习题答案

MATLAB仿真课后习题答案

MATLAB仿真课后习题答案MATLAB仿真课后习题答案第一章1.要求在闭区间[0,2Π]上产生具有10个等间距采样点的一维数组。

试用两种不同的指令实现。

解答:方法1:a=0:2*pi/9:2*pi方法2:a1=linspace(0,2*pi,10)4.任意建立矩阵A,然后找出在[10,20]区间的元素的位置。

解答:A=[4,15,-45,10,6;56,0,17,-45,0]A =4 15 -45 10 656 0 17 -45 0>> find(A>=10&A<=20)ans =367第二章M文件的2种形式:命令文件和函数文件。

命令文件没有输入输出参数,执行时只需在命令窗口中键入文件名回车即可;而函数文件是一条以function语句作为引导。

即文件的第一行为function[返回参数1,返回参数2,…]=函数名(输入参数1,输入参数2,…)。

这一行的有无是区分命令文件与函数文件的重要标志。

函数文件可以接受输入变量,还可以返回输出变量,执行时需在命令窗口中以固定格式调用函数方可。

习题22-1.编写程序,建立向量N=[1,2,3,4,5],然后利用向量N产生下列向量:(1) 2,4,6,8,10(2) 1/2, 1, 3/2, 2, 5/2(3) 1, 1/2, 1/3, 1/4, 1/5(4) 1, 1/4, 1/9, 1/16, 1/25解答:>> N1=2*N >> N2=N/2 >> N3=1./N >> N4=1./N.^2 2-2从键盘输入一个3位数的整数,将它反向输出。

如输入639,输出936。

输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。

其中90~100分为A,80~89分为B,70~79分为C,60~69分为D,60分以下为E。

要求:(1)分别用if语句和switch语句实现。

(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。

MATLAB课后习题分解

MATLAB课后习题分解

第一部分 MATLAB 运算基础1. 先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1) 0122sin 851z e=+(2) 21ln(2z x =,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--(4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.52. 已知:1234413134787,2033657327A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1) A+6*B 和A-B+I (其中I 为单位矩阵) (2) A*B 和A.*B (3) A^3和A.^3 (4) A/B 及B\A(5) [A,B]和[A([1,3],:);B^2]3. 设有矩阵A 和B123453166789101769,111213141502341617181920970212223242541311A B ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1) 求它们的乘积C 。

(2) 将矩阵C 的右下角3×2子矩阵赋给D 。

(3) 查看MATLAB 工作空间的使用情况。

4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

第二部分 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。

2. 产生5阶希尔伯特矩阵H 和5阶帕斯卡矩阵P ,且求其行列式的值Hh 和Hp 以及它们的条件数Th 和Tp ,判断哪个矩阵性能更好。

数学实验(MATLAB)课后习题答案

数学实验(MATLAB)课后习题答案

数学实验练习2.1画出下列常见曲线的图形。

(其中a=1,b=2,c=3)1、立方抛物线3xy=解:x=-5:0.1:0;y=(-x).^(1/3);y=-y;x=0:0.1:5;y=[y,x.^(1/3)];x=[-5:0.1:0,0:0.1:5];plot(x,y)2、高斯曲线2x e=y-解:fplot('exp(-x.^2)',[-5,5])3、笛卡儿曲线)3(13,1333222axy y x t at y t at x =++=+=解:ezplot('x.^3+y.^3-3*x*y',[-5,5])xyx.3+y.3-3 x y = 0或t=-5:0.1:5; x=3*t./(1+t.^2); y=3*t.^2./(1+t.^2); plot(x,y)4、蔓叶线)(1,1322322xa x y t at y t at x -=+=+=解:ezplot('y.^2-x.^3/(1-x)',[-5,5])xyy.2-x.3/(1-x) = 0或t=-5:0.1:5; x=t.^2./(1+t.^2); y=t.^3./(1+t.^2); plot(x,y)5、摆线)cos 1(),sin (t b y t t a x -=-= 解:t=0:0.1:2*pi;x=t-sin(t); y=2*(1-cos(t)); plot(x,y)6、星形线)(sin ,cos 32323233a y x t a y t a x =+== 解:t=0:0.1:2*pi; x=cos(t).^3; y=sin(t).^3;plot(x,y)或ezplot('x.^(2/3)+y.^(2/3)-1',[-1,1])xyx.2/3+y.2/3-1 = 07、螺旋线ct z t b y t a x ===,sin ,cos 解:t=0:0.1:2*pi; x=cos(t); y=2*sin(t); z=3*t; plot3(x,y,z) grid on8、阿基米德螺线θa r = 解:x =0:0.1:2*pi; r=x; polar(x,r)902701809、对数螺线θa e r = 解:x =0:0.1:2*pi; r=exp(x); polar(x,r)90270180010、双纽线))()((2cos 22222222y x a y x a r -=+=θ 解:x=0:0.1:2*pi; r=sqrt(cos(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-(x.^2-y.^2)',[-1,1]) grid onxy(x.2+y.2).2-(x.2-y.2) = 011、双纽线)2)((2sin 222222xy a y x a r =+=θ 解:x=0:0.1:2*pi; r=sqrt(sin(2*x)); polar(x,r)90270或ezplot('(x.^2+y.^2).^2-2*x*y',[-1,1]) grid onxy(x.2+y.2).2-2 x y = 012、心形线)cos 1(θ+=a r 解:x =0:0.1:2*pi; r=1+cos(x); polar(x,r)90270练习2.21、求出下列极限值。

matlab课后习题参考答案

matlab课后习题参考答案

Matlab课后习题部分参考答案习题二2.student=struct('name',{'zhang','wang','li'},'age',{18,21,[] },'email',{['zh ang@','zhang@'],'',''})5、a=[1 0 0;1 1 0;0 0 1];b=[2 3 4;5 6 7;8 9 10];c=[a b]d=[a;b]c =1 0 023 41 1 0 5 6 70 0 1 8 9 10d =1 0 01 1 00 0 12 3 45 6 78 9 1010、reshape(c,2,9)1 0 1 0 1 5 3 9 71 0 0 02 8 6 4 10 reshape(d,2,9)ans =1 0 5 0 0 6 0 1 71 2 8 1 3 9 0 4 10 (注意:重新排列矩阵,是将原来的矩阵按列排序)11、a.’12、a+b a.*ba\b (即inv(a)*b,考试时,要求能自己手算出a的逆)ans =2 3 43 3 38 9 1013、c=4*ones(3);a>=cb>=c14.strcat('The picture is ','very good')a=['The picture is ','very good']18.double('very good')1.norm(A),det(A),rank(A)2.b=[1 1 1 1 1];c=b';a=[17,24,1,8,50;23,5,7,14,49;4,6,13,20,43;10,12,19,21,62;11,18,25,2,56]; x=a\c习题四1、a=14*rand(1,10)-5;for i=1:9max=i;for j=i+1:10if a(j)>a(max)max=j;endendtemp=a(i);a(i)=a(max);a(max)=temp;enda将上述脚本保存为script41.m2、function y=function42(n)3*randn(1,n)+3;for i=1:n-1max=i;for j=i+1:nif a(j)>a(max)max=j;endendtemp=a(i);a(i)=a(max);a(max)=temp;endy=a;将上述函数保存为function42.m 3、r=input(‘please input 1/2: ’);if r= =1script41;elsen=input(‘please input the length: ’);y=funtion42(n);end4.function f=function1(x,y)if y==1f=sin(x);elseif y==2f=cos(x);elsef=sin(x).*cos(x);end在命令窗口调用函数f=function1(1,3) 5.function result=function3(x,n)result=0;for i=1:nresult=result+sin(x.*i)+(-1).^i.*cos(i.*x); endfunction result=function4(n,t)result=0;A=[1 2 3;0 1 2;0 0 1];for i=1:nresult=result+A*i.*exp(A*i.*t);end习题五3.x1=-2:0.01:2;x2=-2:0.01:2;y1=x1.*sin(x2);y2=x2.*cos(x1);plot3(x1,x2,y 1,'-d',x1,x2,y2,'-d')14、x=8*rand(1,100)-2;y=reshape(x,10,10);save mydata.mat yclearclcload mydatak=y>ones(10);totel=0;for i=1:100if k(i)==1totel=totel+1;endend15、x=rand(5); %生成5*5均匀分布的随机矩阵(该处只作举例,未按题目要求)fid=fopen(‘text.txt’,’w’);count=fwrite(fid,x,’int32’); closestatus=fclose(fid);清除内存,关闭所有窗口fid=fopen(‘text.txt’,’r’);x=fread(fid,[5,5],’int32’); closestatus=fclose(fid); inv(x)16.随便生成一个矩阵,x1=-1:0.2:0.8;x2=-1:0.2:0.8;y1=x1.*sin(x2);y2=x2.*cos(x1);a=reshape([y1;y2],10,10);fid=fopen('table.txt','w'); fprintf (fid,‘%f’,a); fclose(fid) ;清除内存,关闭所有窗口a=fscanf('table.txt','%f') ; exp(a) ;fclose(fid) ;习题六1.c=ploy2str(A);B=[2,0,0,1,3,5];2.x=1:10;B=ployval(A,x);。

matlab课后习题答案

matlab课后习题答案

习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。

因此,矩阵是MATLAB最基本、最重要的数据对象。

2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。

(2)A./B和B.\A的值是否相等?答:相等。

(3)A/B和B\A的值是否相等?答:不相等。

(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。

3.写出完成下列操作的命令。

(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。

答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。

答:A(7)=[](3)将矩阵A的每个元素值加30。

答:A=A+30;(4)求矩阵A的大小和维数。

答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。

答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34矩阵。

答:reshape(x,3,4);(7)求一个字符串的ASCII码。

答:abs(‘123’); 或double(‘123’);(8) 求一个ASCII 码所对应的字符。

答:char(49);4. 下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5. 已知23100.7780414565532503269.5454 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦ 完成下列操作:(1) 取出A 的前3行构成矩阵B ,前两列构成矩阵C ,右下角32⨯子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 。

MATLAB课后习题集附标准答案

MATLAB课后习题集附标准答案

第2章MATLAB概论1、与其他计算机语言相比较,MA TLAB 语言突出的特点是什么?答:起点高、人机界面适合科技人员、强大而简易的作图功能、智能化程度高、功能丰富,可扩展性强.2、MA TLAB 系统由那些部分组成?答:开发环境、MATLAB数学函数库、MATLAB语言、图形功能、应用程序接口3、安装MATLAB 时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?答:在安装MATLAB时,安装内容由选择组件窗口中各复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即MATLAB选项)必须安装. 第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可. 矚慫润厲钐瘗睞枥庑赖。

4、MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?聞創沟燴鐺險爱氇谴净。

答:在MATLAB 操作桌面上有五个窗口,在每个窗口的右下角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口称为独立的Undock 按钮,点击Undock 按钮就可以使该窗口脱离桌面称为独立窗口,在独立窗口的view 菜单中选择Dock,菜单项就可以将独立的窗口重新防止的桌面上.残骛楼諍锩瀨濟溆塹籟。

5、如何启动M 文件编辑/调试器?答:在操作桌面上选择“建立新文件”或“打开文件”操作时,M 文件编辑/调试器将被启动.在命令窗口中键入edit 命令时也可以启动M 文件编辑/调试器.酽锕极額閉镇桧猪訣锥。

6、存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可.彈贸摄尔霁毙攬砖卤庑。

7、命令历史窗口除了可以观察前面键入的命令外,还有什么用途?答:命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中. 謀荞抟箧飆鐸怼类蒋薔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 11. 执行下列指令,观察其运算结果, 理解其意义: (1) [1 2;3 4]+10-2i(2) [1 2; 3 4].*[0.1 0.2; 0.3 0.4] (3) [1 2; 3 4].\[20 10;9 2] (4) [1 2; 3 4].^2 (5) exp([1 2; 3 4]) (6)log([1 10 100]) (7)prod([1 2;3 4])(8)[a,b]=min([10 20;30 40]) (9)abs([1 2;3 4]-pi)(10) [1 2;3 4]>=[4,3;2 1](11)find([10 20;30 40]>=[40,30;20 10])(12) [a,b]=find([10 20;30 40]>=[40,30;20 10]) (提示:a 为行号,b 为列号) (13) all([1 2;3 4]>1) (14) any([1 2;3 4]>1) (15) linspace(3,4,5) (16) A=[1 2;3 4];A(:,2)2. 执行下列指令,观察其运算结果、变量类型和字节数,理解其意义: (1) clear; a=1,b=num2str(a),c=a>0, a= =b, a= =c, b= =c (2) clear; fun='abs(x)',x=-2,eval(fun),double(fun)3. 本金K 以每年n 次,每次p %的增值率(n 与p 的乘积为每年增值额的百分比)增加,当增加到rK 时所花费的时间为)01.01ln(ln p n rT +=(单位:年)用MA TLAB 表达式写出该公式并用下列数据计算:r =2, p =0.5, n =12.4.已知函数f (x )=x 4-2x 在(-2, 2)内有两个根。

取步长h =0.05, 通过计算函数值求得函数的最小值点和两个根的近似解。

(提示:求近似根等价于求函数绝对值的最小值点)∆5. (1)用z=magic(10)得到10阶魔方矩阵; (2) 求z 的各列元素之和;(3) 求z 的对角线元素之和(提示:先用diag(z)提取z 的对角线);(4) 将z的第二列除以3;(5) 将z的第3行元素加到第8行。

6. 先不用MA TLAB判断下面语句将显示什么结果?size(B)又得出什么结果?B1={1:9;' David Beckham '};B2={180:-10:100; [100,80,75,;77,60,92;67 28 90;100 89 78]};B=[B1, B2];B{1,2}(8)D=cell2struct(B,{'f1','f2'},2);[a,b]=D.f1然后用MA TLAB验证你的判断。

进一步,察看变量类型和字节数,并用Workspace工具栏显示B和D的具体内容。

习题 21. 设x 为一个长度为n 的数组,编程求下列均值和标准差][11,12121x n x n s x n x ni i ni i --==∑∑==, n >1 2. 求满足∑=+mn n 0)1ln(>100的最小m 值。

3. 用循环语句形成Fibonacci 数列 F 1 = F 2 =1, F k = F k -1 + F k -2 , k =3,4,…。

并验证极限2511+→-k k F F . (提示:计算至两边误差小于精度 10-8) 4. 分别用for 和while 循环结构编写程序,求出∑==610123i iK 。

并考虑一种避免循环语句的程序设计,比较不同算法的运行时间。

6. 作出下列函数图象(i) 曲线y = x 2 sin (x 2 - x - 2), -2 ≤ x ≤ 2 (要求分别使用plot 或fplot 完成) (ii) 椭圆x 2/4 + y 2/9 = 1(iii) 抛物面z = x 2 + y 2 , ⎪x ⎢<3, ⎪y ⎢<3(iv) 曲面 z =x 4+3x 2+y 2-2x -2y -2x 2y +6, |x |<3, -3<y <13 (v) 空间曲线x =sin t , y =cos t , z =cos(2t ), 0<t <2π(vi) 半球面 x=2sin φcos θ, y=2sin φsin θ, z=2cos φ, 0≤θ≤3600, 0≤φ≤900 (vii) 三条曲线合成图y 1=sin x , y 2=sin x sin(10x ), y 3= -sin x , 0<x <π7.作下列分段函数图⎪⎩⎪⎨⎧-<-≤>=1.11.11.1||1.11.1x x x x y8. 查询trapz 的功能和用法:查找trapz.m 文件所在目录,查看trapz.m 的程序结构,查看trapz.m 文件所在目录还有哪些文件?∆9. 用MA TLAB 函数表示下列函数,并作图。

⎪⎩⎪⎨⎧≤+--≤-----=-1 )5.175.375.0exp(5457.01<1- )6exp(7575.01> )5.175.375.0exp(5457.0),(222222x+y x x y x+y x y x+y x x y y x p∆10. 已知连续时间Lyapunov 方程为AX +XA’= -C其中A =⎪⎪⎪⎭⎫⎝⎛087654321, C =⎪⎪⎪⎭⎫ ⎝⎛--------165622562452252. 试通过lookfor 和help 的帮助用MA TLAB 求解。

习题 31. 设a=(1,2,3),b=(2,4,3), 分别计算a./b, a.\b, a/b, a\b, 分析结果的意义。

2. 用矩阵除法解下列线性方程组,并判断解的意义(1)411326153921123---⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪⎪⎪=-⎛⎝⎫⎭⎪⎪⎪xxx(2)433326153121123---⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪⎪⎪=--⎛⎝⎫⎭⎪⎪⎪xxx(3)41321511112-⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪=⎛⎝⎫⎭⎪⎪⎪xx(4)2111121111211231234--⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪⎪⎪⎪=⎛⎝⎫⎭⎪⎪⎪xxxx3. 求第2题第(4)小题的通解。

4. (人口流动趋势)对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势,每年农村居民的5%移居城镇而城镇居民的1%迁出,现在总人口的20%位于城镇。

假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,那么(1)一年以后住在城镇人口所占比例是多少?两年以后呢?十年以后呢?(2)很多年以后呢?(3)如果现在总人口70%位于城镇,很多年以后城镇人口所占比例是多少?(4)计算转移矩阵的最大特征值及对应的特征向量,与问题(2)(3)有何关系?5. (经济预测)在某经济年度内,各经济部门的投入产出表如下表3.5(单位:亿元)假设某经济年度工业,农业及第三产业的最后需求均为17亿元,预测该经济年度工业,农业及第三产业的产出(提示:对于一个特定的经济系统而言,直接消耗矩阵和Leontief 矩阵可视作不变)。

6. 求下列矩阵的行列式、逆、特征值和特征向量(1)⎪⎪⎪⎭⎫⎝⎛---351623114 (2)⎪⎪⎪⎭⎫⎝⎛---021120111 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛1097591086781075675 (4) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛5165165165 阶方阵n , n 分别为5, 50, 和500.7. 判断第6题各小题是否可以相似对角化,如果是,求出对角矩阵和对应的相似变换矩阵。

8. 判断第6题各小题是否为正定矩阵。

9. 求下列向量组的秩和它的一个最大线性无关组,并将其余向量用该最大无关组线性表示。

α1= (4, -3, 1,3), α2= (2, -1, 3, 5), α3= (1, -1, -1, -1), α4= (3, -2, 3, 4), α5= (7, -6, -7, 0)10.(二次型标准化)用正交变换化下列二次型为标准形 f (x 1, x 2, x 3) = x 12 - 4 x 1 x 2 + 4 x 1 x 3 -2 x 22 +8 x 2 x 3 -2 x 32∆11.(电路网)图3.1是连接三个电压已知终端的电路网,求a, b, c 点的电压。

∆12. (Hamilton-Carley 定理)就矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛087654321验证下列性质 (i) 设λ1, λ2, …, λn 为n 阶方阵A 的特征值,则λii n=∑1=aiii n=∑1(A 的迹),λii n=∏1= (-1)n ⎪A ⎢;(ii) 设f (x )为A 的特征多项式, 则f (A ) = 0。

习题 41 求下列多项式的所有根, 并进行验算。

(1) x 2+x +1; (2) 3x 5-4x 3+2x -1; (3) 5x 23-6x 7+8x 6-5x 2;(4) (2x +3)3-4 (提示:先用conv 展开)2 求方程05.01)1ln(22=---+-x x x x x 的正根。

3 用MATLAB 指令求解第一章习题4。

4 (超越方程) 超越方程的解有时是很复杂的,作出f (x ) = x sin (1/x )在[ - 0.1, 0.1]内的图,可见在x = 0附近f (x ) = 0有无穷多个解,并设法求出它们的近似解,使计算结果误差不超过0.01。

5 求解下列非线性方程组在原点附近的根⎪⎩⎪⎨⎧=---=--=++016216020236436922322222z y x x z y x z y x6 求解下列方程组在区域 0<α, β<1内的解⎩⎨⎧-=+=βαββααsin 2.0cos 7.0cos 2.0sin 7.07 (椭园的交点) 两个椭圆可能具有0~4个交点,求下列两个椭园的所有交点坐标(x - 2) 2 + (y - 3 + 2x ) 2 = 52 (x -3)2 + (y /3) 2 = 48 作出下列函数图形,观察所有的局部极大, 局部极小和全局最大, 全局最小值点的粗略位置; 并用MATLAB 函数fminbnd 和fminsearch 求各极值点的确切位置 (1) f(x )=x 2sin(x 2-x -2), [-2,2]; (2) f(x )=3x 5-20x 3+10, [-3, 3];(3) f(x )=⎪ x 3-x 2-x -2⎢ [0, 3].9 考虑函数 f (x,y )= y 3/9+3x 2y +9x 2+y 2+xy +9 (1)作出f (x,y )在-2<x <1, -7<y <1的图,观察极值点的位置; (2) 用MATLAB 函数fminsearch 求极值点和极值。

相关文档
最新文档