2012年北京市中考数学模拟试卷(二)

合集下载

2012年北京西城区中考二模数学试卷

2012年北京西城区中考二模数学试卷

2012年北京西城中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.8 的倒数是A.8B.8C.18D.182.在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为 A.3810 B.48010 C.5810 D.60.810 3.若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是A.12O O =5B.12O O =11C.12O O >11D. 5<12O O <114.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E ,若35AD DB ,AE =6,则EC 的长为A . 8B. 10C. 12D. 165.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是20.61S 甲,20.52S 乙,20.53S 丙,20.42S 丁,则射击成绩波动最小的是A. 甲B. 乙C. 丙D. 丁6. 如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD , 则AB 的长是 A . 20B. 16C. 12D. 87.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为A . 4 B. 6 C. 8 D. 108.如图,在矩形ABCD 中,3 AB ,BC=1. 现将矩形ABCD绕点C 顺时针旋转90°得到矩形A B CD ,则AD 边扫过的面积(阴影部分)为 A . 21πB.31π C.41π D. 51π二、填空题(本题共16分,每小题4分)9. 将代数式2610x x 化为2()x m n 的形式(其中m ,n 为常数),结果为 .10.若菱形ABCD 的周长为8,∠BAD =60°,则BD =.11.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .12.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…都在y 轴上,对应的纵坐标分别为1,2,3,….直线1l ,2l ,3l ,…分别经过点1A ,2A ,3A ,…,且都平行于x轴.以点O 为圆心,半径为2的圆与直线1l 在第一象限交于点1B ,以点O 为圆心,半径为3的圆与直线2l 在第一象限交于点2B ,…,依此规律得到一系列点n B (n 为正整数),则点1B 的坐标为 ,点n B 的坐标为 .三、解答题(本题共30分,每小题5分)13.计算:101()(π3)6cos45514.已知2240x x ,求代数式22(2)(6)3x x x x 的值.15.如图,点F ,G 分别在△ADE 的AD ,DE 边上,C ,B 依次为GF 延长线上两点,AB=AD ∠BAF =∠CAE ,∠B=∠D . (1)求证:BC=DE ;(2)若∠B=35°,∠AFB =78°,直接写出∠DGB 的度数.16.已知关于x的一元二次方程(m +1)x2 + 2mx + m 3 = 0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小奇数时,求方程的根.17.如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.18.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:(图中信息不完整)请根据以上信息回答下面问题:(1) 同学们一共随机调查了人;(2) 如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”方式的概率是;(3) 如果该社区有5 000人,估计该社区支持“警示戒烟”方式的市民约有人.四、解答题(本题共20分,每小题5分)19.如图,某天然气公司的主输气管道途经A 小区,继续沿 A 小区的北偏东60 方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M 小区位于北偏东30 方向,测绘员从A 处出发,沿主输气管道步行2000米到达C 处,此时测得M 小区位于北偏西60 方向.现要在主输气管道AC 上选择一个支管道连接点N ,使从N 处到M 小区铺设的管道最短. (1)问:MN 与AC 满足什么位置关系时,从N 到M 小区铺设的管道最短? (2)求∠AMC 的度数和AN 的长.20.如图,在平面直角坐标系xOy 中,直线483y x 与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处. (1)求AB 的长和点C 的坐标; (2)求直线CD 的解析式.21.如图,BC 是⊙O 的直径,A 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线于点D ,取CD 的中点E ,AE 的延长线与BC 的延长线交于点P .(1)求证:AP 是⊙O 的切线;(2)若OC =CP ,AB =33,求CD 的长.22.阅读下列材料小华在学习中发现如下结论:如图1,点A ,A 1,A 2在直线l 上,当直线l ∥BC 时,BC A BC A ABC S S S 21 .请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC ,画出一个..等腰△DBC ,使其面积与△ABC 面积相等;(2)如图3,已知△ABC ,画出两个..Rt △DBC ,使其面积与△ABC 面积相等(要求:所画的两个三角形不全等...);(3)如图4,已知等腰△ABC 中,AB=AC ,画出一个..四边形ABDE ,使其面积与△ABC 面积相等,且一组对边DE=AB ,另一组对边BD ≠AE ,对角∠E =∠B .图2 图3 图4五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.在平面直角坐标系xOy 中,A 为第一象限内的双曲线1k y x(10k )上一点,点A 的横坐标为1,过点A 作平行于 y 轴的直线,与x 轴交于点B ,与双曲线2ky x(20k )交于点C . x 轴上一点(,0)D m 位于直线AC 右侧,AD 的中点为E .(1)当m=4时,求△ACD 的面积(用含1k ,2k 的代数 式表示);(2)若点E 恰好在双曲线1k y x(10k )上,求m 的值;(3)设线段EB 的延长线与y 轴的负半轴交于点F ,当 点D 的坐标为(2,0)D 时,若△BDF 的面积为1, 且CF ∥AD ,求1k 的值,并直接写出线段CF 的长.24.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB -BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t = 5秒时,点P走过的路径长为;当t = 秒时,点P与点E重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.25.在平面直角坐标系xOy 中,抛物线21124y x 的顶点为M ,直线2y x ,点 0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x 和直线2y x 于点A ,点B .⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c (a ,b ,c 为整数且0a ),对一切实数x 恒有x ≤y ≤2124x ,求a ,b ,c 的值.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.三、解答题(本题共305分)13.解:原式=5162分=4…………………………………………………………………… 5分14.解:原式=22(44)(6)3x x x x x=32324463x x x x x=2243x x .………………………..….….….….….…………………… 3分∵ 2240x x ,∴224x x . ………………………………………………………………… 4分∴ 原式=22(2)35x x . ….……………………………………………………5分15.(1)证明:如图1.∵ ∠BAF =∠CAE ,∴ BAF CAF CAE CAF . ∴ BAC DAE . ………………… 1分 在△ABC 和△ADE 中,,,,B D AB AD BAC DAE∴ △A B C ≌△A D E . ……………………………………………………… 3分 ∴ B C =D E . ………………………………………………………………… 4分 (2)∠D G B 的度数为67 .……………………………………………………………… 5分图1E16.解:(1)∵关于x 的一元二次方程(m +1)x 2 + 2mx + m 3 = 0 有两个不相等的实数根,∴ 10m 且0 .∵ 2(2)4(1)(3)4(23)m m m m ,∴ 230m . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分解得 m >23. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分∴ m 的取值范围是 m >23且m 1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 3分(2)在m >23且m1的范围内,最小奇数m 为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 此时,方程化为210x x . ∵ 224141(1)5b ac ,∴x ∴ 方程的根为1x ,2x .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分 17.(1)证明:如图2.∵ 四边形ABCD 是平行四边形, ∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点,∴ CD DF AB AE 21,21 .∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G .∵ AB =2AD =4,∴ AD =2. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt △AGD 中,∵90,60,AGD A AD =2,∴ .360sin ,160cos AD DG AD AG ∴ 3BG AB AG .在Rt △DGB中,∵90,3,DGB DG BG∴.329322 BG DG DB ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分18.解:(1)300; ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2)52;﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分 (3)1750 .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分四、解答题(本题共20分,每小题5分)19.解:(1)当MN ⊥AC 时,从N 到M 小区铺设的管道最短.(如图3)﹍﹍﹍﹍﹍﹍ 1分(2) ∵ MAC =60 30 =30 , ACM =30 +30 =60 ,﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分图2FEDCBA∴ AMC=180 30 60 =90 . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分在Rt△AMC中,∵ AMC=90 , MAC=30 ,AC=2000,∴cos2000AM AC MAC米). ﹍﹍﹍﹍﹍﹍﹍﹍4分在Rt△AMN中,∵ ANM=90 ,cos30=AMAN,∴AN=AM cos30 =1000323=1500(米).………………………………………… 5分答:∠AMC等于90 ,AN的长为1500米.20.解:(1)根据题意得(6,0)A,(0,8)B.(如图4)在Rt△OAB中, AOB=90 ,OA=6,OB=8,∴10AB .﹍﹍﹍﹍﹍﹍﹍1分∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴16OC OA AC OA AB.∵点C在x轴的正半轴上,∴点C的坐标为(16,0)C.﹍﹍﹍﹍﹍2分(2)设点D的坐标为(0,)D y.(y<0)由题意可知CD=BD,22CD BD.由勾股定理得22216(8)y y.解得12y .∴点D的坐标为(0,12)D .﹍﹍﹍﹍﹍3分可设直线CD的解析式为12y kx.(k 0)∵点(16,0)C在直线12y kx上,∴16120k . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得34k .∴直线CD的解析式为3124y x.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分21.(1)证明:连结AO,AC.(如图5)∵BC是⊙O的直径,∴90BAC CAD.﹍﹍﹍﹍﹍1分∵E是CD的中点,∴AEDECE.∴EACECA.∵OA=OC,∴OCAOAC.∵CD是⊙O的切线,东lN∴ CD ⊥OC . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 ∴ 90ECA OCA .∴ 90EAC OAC . ∴ OA ⊥AP .∵ A 是⊙O 上一点,∴ AP 是⊙O 的切线. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分 (2) 解:由(1)知OA ⊥AP .在Rt △OAP 中,∵90OAP ,OC=CP=OA ,即OP =2OA , ∴ sin P 21OP OA . ∴ 30P . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分∴ 60AOP . ∵ OC=OA , ∴ 60ACO .在Rt △BAC 中,∵90BAC,AB =33,60ACO , ∴ 3tan AB AC ACO.又∵ 在Rt △ACD 中,90CAD,9030ACD ACO , ∴ 3cos cos30AC CD ACD﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分22.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC 中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍ 2分(2) 如图所示,答案不唯一. (在直线D 1D 2上取其他符合要求的点,或将BC 的平行线画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍﹍﹍﹍﹍﹍4分(3) 如图所示(答案不唯一).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得A ,C 两点的坐标分别为1(1,)A k ,2(1,)C k .(如图6)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1分∵ 10k ,20k ,∴ 点A 在第一象限,点C 在第四象限,12AC k k .当m=4时,1213()ACD S AC BD k k .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 作EG ⊥x 轴于点G .(如图7)∵ EG ∥AB ,AD 的中点为E , ∴ △DEG ∽△DAB ,12EG DG DE AB DB DA ,G 为BD的中点.∵ A ,B ,D 三点的坐标分别为1(1,)A k ,(1,0)B ,(,0)D m ,∴ 122k AB EG ,122BD m BG ,12m OG OB BG . ∴ 点E 的坐标为11(,)22k m E . ∵ 点E 恰好在双曲线1ky x上,∴ 11122k m k .①﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分∵ 10k ,∴ 方程①可化为114m ,解得3m .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3)当点D 的坐标为(2,0)D 时,由(2)可知点E 的坐标为13(,)22kE .(如图8)∵ 1BDF S ,∴ 11122BDF S BD OF OF .∴ 2OF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分设直线BE 的解析式为y ax b (a ≠0).∵ 点B ,点E 的坐标分别为(1,0)B ,13(,)22k E , ∴ 10,3.22a b k a b 解得 1a k ,1b k. ∴ 直线BE 的解析式为11y k x k .∵ 线段EB 的延长线与y 轴的负半轴交于点F ,10k ,∴ 点F 的坐标为1(0,)F k,1OF k . ∴ 12k .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分线段CF7分24.解:(1) 当t =5秒时,点P 走过的路径长为 19 ;当t = 3 秒时,点P 与点E 重合.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) 如图9,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF =∠MEN ,都等于△PEF 绕点E 旋转的旋转角,记为α.设AP =3t (0< t <2),则CP =63t ,43CE t . ∵ EF ∥AC ,∠C =90°,∴ ∠BEF =90°,∠CPE =∠PEF =α. ∵ EN ⊥AB , ∴ ∠B=∠MEN=α.∴ CPE B .﹍﹍﹍﹍﹍﹍﹍3分 ∵ tan CE CPE CP,3tan 4AC B BC, ∴ 43CP CE .∴ 446333t t .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4分解得5443t.﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分(3) t 的值为65(秒)或307(秒).﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7分25.解:(1)21(2)4A n n ,,()B n n ,. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2分(2) d =AB =A B y y =2124n n .∴ d =2112()48n =2112()48n .﹍﹍3分∴ 当14n 时,d 取得最小值18. ﹍﹍ 4分 当d 取最小值时,线段OB 与线段PM 的位置A关系和数量关系是OB ⊥PM 且OB =PM . (如图10)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x ,∴ 对一切实数x ,x ≤2ax bx c ≤2124x 都成立. (0a ) ①当0x 时,①式化为 0≤c ≤14. ∴ 整数c 的值为0. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6分 此时,对一切实数x ,x ≤2ax bx ≤2124x 都成立.(0a )即 222,12.4x ax bx ax bx x对一切实数x 均成立.由②得 21ax b x ≥0 (0a ) 对一切实数x 均成立.∴ 210,10.a b 由⑤得整数b 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍7分 此时由③式得,2ax x ≤2124x 对一切实数x 均成立. (0a )即21(2)4a x x ≥0对一切实数x 均成立. (0a )当a =2时,此不等式化为14x ≥0,不满足对一切实数x 均成立.当a ≠2时,∵ 21(2)4a x x ≥0对一切实数x 均成立,(0a )∴ 2220,1(1)4(2)0.4a a∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分∴ 整数a ,b ,c 的值分别为1a ,1b ,0c .④② ⑥。

北京市海淀区2012年中考数学二模试题(扫描版)

北京市海淀区2012年中考数学二模试题(扫描版)

海淀区九年级第二学期期末练习数学试卷答案及评分参考 2012. 6一、选择题(本题共32分,每小题4分)1. B2. C3. A4. C5. B6. D7. D8. C 二、填空题(本题共16分,每小题4分)9.23x ≥10. 5 11. 12 12.8; 21n n +- (每空各 2分) 三、解答题(本题共30分,每小题5分)13115()3tan604---+︒=54-+…………………………………………………4分=1. …………………………………………………5分14.解:去分母,得 ()()()()63223x x x x x ++-=-+. ………………………………2分2261826x x x x x ++-=+-. (3)分整理,得 324x =-. 解得 8x =-. ………………………………………………………………4分 经检验,8x =-是原方程的解. 所以原方程的解是8x =-. ……………………………………………………5分15.证明:∵ AC //EG ,∴ C CPG ∠=∠. …………1分 ∵ BC //EF ,∴ CPG FEG ∠=∠.∴ C FEG ∠=∠. …………………………………………2分在△ABC 和△GFE 中,,,,AC GE C FEG BC FE =⎧⎪∠=∠⎨=⎪⎩ ∴ △ABC ≌△GFE . …………………………………………………4分∴A G ∠=∠. …………………………………………………5分16. 解:原式=()()()21111111a a a a a +-⋅-+-- ……………………………………………2分 =()21111a a a +--- …………………………………………………3分 =22.(1)a -- …………………………………………………4分 由2220a a --=,得 2(1)3a -=.∴ 原式=23-. …………………………………………………5分GFEDC AP17.解:(1)依题意设一次函数解析式为2y kx =+. …………………………………1分∵ 点A (2,0-)在一次函数图象上, ∴022k =-+. ∴ k =1. ……………………………………………………2分 ∴ 一次函数的解析式为2y x =+. …………………………………3分(2)ABC ∠的度数为15︒或105︒. (每解各1分) ……………………5分18.解: ∵∠ADB =∠CBD =90︒,∴ DE ∥CB . ∵ BE ∥CD , ∴ 四边形BEDC 是平行四边形. ………1分 ∴ BC=DE .在Rt△ABD 中,由勾股定理得8AD ===. ………2分设DE x =,则8EA x =-. ∴8EB EA x ==-.在Rt△BDE 中,由勾股定理得 222DE BD EB +=.∴ 22248x x +=-(). ……………………………………………………3分 ∴ 3x =.∴ 3BC DE ==. ……………………………………………………4分∴1116622.22ABD BDC ABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形 ………… 5分 四、解答题(本题共20分,第19题、第20题各5分,第21题6分, 第22题4分) 19.解:(1)甲图文社收费s (元)与印制数t (张)的函数关系式为0.11s t =. ……1分(2)设在甲、乙两家图文社各印制了x 张、y 张宣传单, 依题意得{1500,0.110.13179.x y x y +=+= ………………………………………… 2分解得800,700.x y =⎧⎨=⎩……………………………………………… 3分答:在甲、乙两家图文社各印制了800张、700张宣传单. (4)分(3) 乙 . ……………………………………………………… 5分20.(1)证明:连结OC .∴ ∠DOC =2∠A . …………1分 ∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°.∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. ………………………………………………2分 (2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4,∴ CE =12BC =2.D ECA∵ BC //AO ,∴ ∠OCE =∠DOC .∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒,∴ ∠COE =∠D . ……………………………………………………3分 ∵tan D =12, ∴tan COE ∠=12. ∵∠OEC =90︒, CE =2,∴4tan CEOE COE==∠.在Rt △OEC 中, 由勾股定理可得 OC =在Rt △ODC 中, 由1tan 2OC D CD ==,得CD =……………………4分由勾股定理可得 10.OD =∴10.AD OA OD OC OD =+=+= …………………………………5分 21.解:(1)(64)50%20+÷=. 所以李老师一共调查了20名学生. …………………1分(2)C 类女生有 3 名,D 类男生有 1 名;补充条形统计图略.说明:其中每空1分,条形统计图1分. ……………………………………4分 (3)解法一:由题意画树形图如下: ………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 22.解:(1)画图如下:(答案不唯一)…………………………………2分从D 类中选取从A 类中选取女女男男女女男女男图3(2)图3中△FGH 的面积为7a. …………………………………4分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵ 抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m 由①得1m , 由②得0m , ∴ m 的取值范围是0m且1m . ……………………………………………2分(2)∵ 点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴ 令0y =,即 2(1)(2)10m x m x -+--=. 解得 11x =-,211x m =-. ∵1m >,∴10 1.1m >>-- ∵ 点A 在点B 左侧,∴ 点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分 ∴ OA=1,OB =11m -. ∵ OA : OB =1 : 3,∴ 131m =-.∴ 43m .∴ 抛物线的解析式为212133y x x =--. ………………………………………4分 (3)∵ 点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1).依题意翻折后的图象如图所示.令7y =,即 2121733x x --=.解得16x =, 24x =-.①②…………………………………………1分∴ 新图象经过点D (6,7).当直线13y x b =+经过D 点时,可得5b =.当直线13y x b =+经过C 点时,可得1b =-.当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0, y 0)时,得20001121333x b x x +=--. 整理得203330.x x b ---= 由2(3)4(33)12210b b ,得74b =-结合图象可知,符合题意的b 的取值范围为15b -<≤或4b . ……………7分 说明:15b -<≤ (2分),每边不等式正确各1分;74b(1分) 24.解:(1)∵22222221212112()()4422y x x x mx m m x m m m m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线x x my 222-=与x 轴负半轴交于点A ,∴ A (m , 0), 且m <0. (2)分过点D 作DF ⊥x 轴于F .由 D 为BO 中点,DF //BC , 可得CF =FO =1.2CO ∴ DF =1.2BC 由抛物线的对称性得 AC = OC . ∴ AF : AO =3 : 4. ∵ DF //EO ,∴ △AFD ∽△AOE .∴ .FD AF OE AO=由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m-=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,则M 即为所求.由A (-6,0),C ' (0, 3),可得 直线AC '的解析式为321+=x y . 由13,2y x y x⎧=+⎪⎨⎪=-⎩ 解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G ,过P 1作P 1H⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分 如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分(ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G ,则x H = x B =-3,x G =3P x =t . 由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5.∴35(5,)3P -. ……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -. 25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC , ∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°.∴ EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD ,∴ GF =DG =11.22DF CD =∴ 1.2GE CD =∵ N 为MD (AD )的中点, ∴ AN =ND =11.22AD CD = ∴ GE =AN , NG=ND+DG=ND+AN=AD=AB . ……………………………2分 ∴ △NGE ≌△BAN . ∴ ∠1=∠2.∵ ∠2+∠3=90°, ∴ ∠1+∠3=90°. ∴ ∠BNE =90°.∴ BN ⊥NE . ……………………………………………………………3分 ∵ ∠CDF =90°, CD =DF , 可得 ∠F =∠FCD =45°,2.CF CD.于是122.CF CE CE CE BM BA CDCD……………………………………4分 (2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .∵ 四边形ABCD 是矩形,∴ AB ∥CG .∴ ∠MBN =∠DGN ,∠BMN =∠GDN . ∵ N 为MD 的中点,∴ MN =DN .∴ △BMN ≌△GDN .∴ MB =DG ,BN =GN . ∵ BN =NE ,∴ BN =NE =GN .HGA BC DEM N F 321GFEA (M )CD NB∴ ∠BEG =90°. ……………………………………………5分 ∵ EH ⊥CE , ∴ ∠CEH =90°. ∴ ∠BEG =∠CEH . ∴ ∠BEC =∠GEH .由(1)得∠DCF =45°. ∴ ∠CHE =∠HCE =45°. ∴ EC=EH , ∠EHG =135°.∵∠ECB =∠DCB +∠HCE =135°, ∴ ∠ECB =∠EHG . ∴ △ECB ≌△EHG . ∴ EB =EG ,CB =HG . ∵ BN =NG ,∴ BN ⊥NE. ……………………………………………6分∵ BM =DG= HG -HD= BC -HD =CD -CE ,∴CEBM=2. ……………………………………………7分(3)BN ⊥NE ;CEBM.………………………………………………8分。

2012年北京东城区中考二模数学试卷

2012年北京东城区中考二模数学试卷

2012年北京东城中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.9的算术平方根是A .-9B .9C .3D .±32.如图,由几个小正方体组成的立体图形的俯视图是3.下列运算正确的是A .532a a a B .532a a a C .3332)(ba ab D .5210a a a 4.抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为奇数的概率为 A .16B .14C .13D .125.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是A .六边形B .五边形C .四边形D .三角形6.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调查.四个城市5个月香蕉价格的平均值均为3.50元,方差分别为2S 甲=18.3,2S 乙=17.4,2S 丙=20.1,2S 丁=12.5.一至五月份香蕉价格最稳定的城市是 A .甲B .乙C .丙D .丁7.如图,在平行四边形ABCD 中,E 为AD 的中点,DEF △的周长为1,则BCF △的周长为A .1B .2C .3D .48.如右图,正方形ABCD 的顶点A ,B ,顶点C D 、位于第一象限,直线:(0l x t t 将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为S ,则S 关于t 的函数图象大致是二、填空题(本题共16分,每小题4分)9.x 的取值范围是.10.一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为.11.观察下列等式: 1=1,2+3+4=9, 3+4+5+6+7=25, 4+5+6+7+8+9+10=49,……照此规律,第5个等式为.12.如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .三、解答题(本题共30分,每小题5分)13.0(4)6cos302 o .14.解方程组212x y x y,.15.已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC .16.先化简,再求值:2212111x x x x,其中2x .17.列方程或方程组解应用题:小明家有一块长8m 、宽6m 的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x 值.18.如图,在平面直角坐标系xOy 中,直线AB 与反比例函数k y x的图像交于点A(-3,4),AC ⊥x 轴于点C.(1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为B(a,0), 并与反比例函数ky x图象的另一支还有一个交点的情形下,求△ABC 的面积S 与a 之间的函数关系式.并写出自变量a 的取值范围.四、解答题(本题共20分,每小题5分)19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= ;(2)在扇形统计图中,B 组所占圆心角的度数为 ;(3)全校共有1000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?20. 如图,在平行四边形ABCD 中,5AB ,8BC ,AE BC 于点E ,53cos B ,求tan CDE 的值.21.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 长为半径的O ⊙与AD ,AC 分别交于点E ,F ,∠ACB =∠DCE .(1)请判断直线CE 与O ⊙的位置关系,并证明你的结论;(2)若 DE:EC=1 2BC ,求⊙O 的半径.22.阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x 时,突发奇想:21x 在实数范围内无解,如果存在一个数i ,使21i ,那么当21x 时,有x i ,从而x i 是方程21x 的两个根.据此可知:(1) i 可以运算,例如:i 3=i 2·i =-1×i =-i ,则i 4=,i 2011=______________,i 2012=__________________;(2)方程2220x x 的两根为(根用i 表示)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(1)(4)30m x m x .(1) 若方程有两个不相等的实数根,求m 的取值范围;(2) 若正整数m 满足822m ,设二次函数2(1)(4)3y m x m x 的图象与x 轴交于A B、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx 与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).24.已知:等边ABC中,点O 是边AC,BC 的垂直平分线的交点,M,N 分别在直线AC , BC 上,且60MON o .(1) 如图1,当CM=CN 时, M 、N 分别在边AC 、BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;(2) 如图2,当CM ≠CN 时,M 、N 分别在边AC 、BC 上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3) 如图3,当点M 在边AC 上,点N 在BC 的延长线上时,请直接写出线段AM 、CN 、MN 三者之间的数量关系.25.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c 的图像与y 轴交于点(0,3)C ,与x轴交于A、B两点,点B的坐标为(-3,0)(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点M的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△CPB的面积最大?最大面积是多少?并求出此时点P的坐标.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题:(本题共30分,每小题5分)13.解:原式=164L L分=1……5分14.解:①②得:23x x1x .……2分将1x 代入②得:12y,1y ……4分11xy……5分15.证明:∵AC平分BCD BC∠,平分ABC∠,∴ACB DBC∠∠……2分在ABC△与DCB△中,A B C D C B A C B D B C B C B C∠∠∠∠ ABC △DCB ≌△……4分AB DC .……5分16.解:原式=22111111111x x x x x x x x x x x x ·……3分当2x时,原式=211.22……5分 17.解:据题意,得1(8)(6)862x x .解得12122x x ,.1x 不合题意,舍去.2x .18.解: (1)∵4=3k12k ∴12y x……2分(2)∵BC =a -(-3)=a +3AC =4,∴14(3)2ACB S a……4分=2a +6 (a >-3)……5分四、解答题(本题共20分,每小题5分) 19.解:(1) 15,0.16;……2分(2)144 ;……3分(3)271000[(1584)50]100054050(人)……5分 答:该校平均每周做家务时间不少于4小时的学生约有540人 20.解: 在△ABE 中,AE BC ,5AB ,53cosB∴BE=3,AE=4. ∴EC=BC-BE =8-3=5.∵平行四边形ABCD,∴CD=AB=5.∴△CED 为等腰三角形.……2分 ∴∠CDE =∠CED . ∵ AD//BC, ∴∠ADE =∠CED . ∴∠CDE =∠ADE .在Rt △ADE 中,AE =4,AD=BC =8,41tan .82CDE21.解:(1)直线CE 与O ⊙相切证明:∵矩形ABCD , ∴BC//AD ,∠ACB =∠DAC . ∵,ACB DCE ∴.DAC DCE ……1分连接OE,则.DAC AEO DCE 90,90.90.2DCE DEC AEO DEC OEC o ooQ L L 分∴直线CE 与O ⊙相切.22222AB(2)tan2,tan3,tan Dtan D 1.,4,CO3,54ACB BCBCAB BC ACB ACACB DCECEDE DC CERt CDE CEO Rt CE OCE EOr rQL LQLL L分在中分设⊙的半径为r, 则在中即解得分22.解:(1)4i 1,2011i -i 20121i ……3分(2)方程2220x x的两根为1+i和1-i……5分五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)2(4)12(1)m m2(2)m.……2分由题意得,2(2)m >0且10m.∴符合题意的m的取值范围是21m m且的一切实数.……3分(2)∵正整数m满足822m,∴m可取的值为1和2.又∵二次函数2(1)(4)3y m x m x,∴m=2.……4分∴二次函数为2-23y x x.∴A点、B点的坐标分别为(-1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线3y kx经过点A、B.A可求出此时k 的值分别为3或-1.……7分注:若学生利用直线与抛物线相切求出k =2也是符合题意的答案.24.解: (1) AM CN MN ……2分(2)AM CN MN ……3分证明:过点O 作,,OD AC OE BC 易得,120,OD OE DOE o在边AC 上截得DN’=NE ,连结ON ’, ∵ DN ’=NE , OD =OE , ∠ODN ’=∠OEN'.DON EON ……4分∴ON’=OE. ∠DON ’=∠NOE .120,DOE oQ 60,MON o∴∠MOD +∠NOE=600.∴∠MOD +∠DON ’=600.易证'MON MON .……5分∴MN’=MN.'.,,()(),.MN MD DN MD NE MD AM AD AM CE NE CE CN MN AM CE CE CN AM CN AM CN MN (3) .MN CN AM ……7分25.解:(1)由题意,得:3,9-60.c a a c…解得:-1,3.a c所以,所求二次函数的解析式为:2--23y x x ……2分顶点D 的坐标为(-1,4).……3分 (2)易求四边形ACDB 的面积为9. 可得直线BD 的解析式为y=2x+6设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6. ①当1=9=33OBE S 时,易得E 点坐标(-2,-2),直线OE 设M 点坐标(x ,-x ),212---2 3.-122x x x x x (舍),∴-1-1(22M , ……4分②当1=9=63OBE S 时,同理可得M ∴ M 点坐标为(-1,4)……5分(3)连接OP ,设P 点的坐标为 ,m n ,因为点P 在抛物线上,所以所以PB PO OPB OB S S S S △C △C △△C ……6分111()222OC m OB n OC OB 339332222m n n m 22333273.2228m m m……7分因为3<0m,所以当32m 时,154n . △CPB 的面积有最大值27.8 ……8分所以当点P 的坐标为315(,)24 时,△CPB 的面积有最大值,且最大值为27.8。

北京市中考数学二模试题汇编 人教新课标版

北京市中考数学二模试题汇编 人教新课标版

北京2012年数学中考二模试题汇编目录丰台区2012年初三统一练习石景山2012年初三统一练习顺义区2012年初三统一练习大兴区2012年初三统一练习通州区2012年初三统一练习门头沟2012年初三统一练习房山区2012年初三统一练习延庆县2012年初三统一练习密云县2012年初三统一练习海淀区2012年初三统一练习丰台区2012年初三统一练习(二)数学试卷学校姓名准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2-的绝对值是A.12- B.12C.2 D.2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯B .50.2510-⨯C . 62.510-⨯D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12 B .13 C .14 D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14 B .12C .34D .1 5.若20x +=则 y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+ B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行 的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x xC .30528002800=-x xD .30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分)9x 的取值范围是 .DOCBA EDCBA10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒.12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+, 2(4)14f =+,…,利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分)13.计算: ()︒⎪⎭⎫ ⎝⎛+45sin 4-211-3-272-03 .14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:21DOCBA(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB 的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;MFEBCDA(2)可以估计这所学校八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?22.小杰遇到这样一个问题:如图1,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连结EF ,△AEF的三条高线交于点H ,如果AC =4,EF =3,求AH 的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH 平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答: (1)图2中AH 的长等于 .(2)如果AC =a ,EF =b ,那么AH 的长等于 .BA D CEFHG HFECDA B图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P 个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论;(2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图225.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .AEFPD E BAD F P北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --=, ∴223a a -=.…3分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分 检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明:∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 ,OA=OB ,∠AOC =∠BOD ,CO=DO .∴△COA ≌△DOB .……….4分∴∠C =∠D . …………….5分 17.解: (1)反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分(2)P 1(0)、 P 2(0,)、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分)19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分 ∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于23.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去. 综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21.∵PQ ,∴NQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分 ∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解析式为:22y x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’,设对称轴x =3与x 轴交于点D ,∴OD =3. ∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’, 在Rt △OC ’D 中,根据勾股定理C ’D =1. ∴C ’(3, 1).……6分 (3) 120°,4.……8分石景山区2012年初三第二次统一练习数 学 试 卷7654321NMCD BPFEA第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在题后的括号内.1.2的算术平方根是( ) A .21B .2C .2-D .2±2.2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为( ) A .6105.2-⨯ B .5105.2-⨯ C .5105.2⨯- D .6105.2-⨯-3.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120︒ 的菱形,剪口与折痕所成的角α 的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 4年星级饭店客房出租率(%A .61、62B .62、62C .61.5、62D .60.5、625.如图,有6张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创新、包容、厚德”的字样.背面完全相同,现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( ) A .31 B .32 C .61 D .41 6.若一个多边形的内角和是900°,则这个多边形的边数是( )第3题图A .5B .6C .7D .87.将二次函数2x y =的图象如何平移可得到342++=x x y 的图象( )A .向右平移2个单位,向上平移一个单位B .向右平移2个单位,向下平移一个单位C .向左平移2个单位,向下平移一个单位D .向左平移2个单位,向上平移一个单位8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( ) A .6B .23C .29D .32第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分) 9.分式3-x x有意义的条件为 . 10.分解因式:=-339ab b a ______ ________. 11.已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .12.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .三、解答题(本题共30分,每小题5分)第8题图 111210987654321第12题图13.()22145cos 314.38-⎪⎭⎫⎝⎛+︒---π.解:14.解分式方程123482---=-xxx .解:15.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3. 求证:BC=DE . 证明:16.已知:0162=-+x x ,求代数式()()()()3312122+-+--+x x x x x 的值.解:17.已知一次函数y kx b =+的图象与直线y =平行且经过点()3,2-,与x 轴、y轴分别交于 A 、 B 两点. (1)求此一次函数的解析式;(2)点C 是坐标轴上一点,若△ABC 是底角为︒30的等腰三角形,求点C 的坐标. 解:18.列方程(组)解应用题:如图是一块长、宽分别为60 m 、50 m 的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道.(1)用含x 的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽. 解:四、解答题(本题共20分,每小题5分)19.如图,梯形纸片ABCD 中,AD //BC ,∠B =30º.折叠纸片使BC 经过点A ,点B 落在点B’处,EF 是折痕,且BE =EF =4,AF ∥CD . (1)求∠BAF 的度数; (2)当梯形的上底AD 多长时,线段DF 恰为该梯形的高? 解:20.以下是根据全国 2011年国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分. 请根据以上信息,解答下列问题:(产量相关数据精确到1万吨)(1)请补全扇形统计图;(2)通过计算说明全国的粮食产量与上一年相比,增长最多的是 年; (3)2011年早稻的产量为 万吨;(4)2008-2011这三年间,比上一年增长的粮食产量的平均数为多少万吨,若按此平均数增长,请你估计2012年的粮食产量为多少万吨.(结果保留到整数位) 解:21.已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MPA BD E C B 'F 6%22%%早稻夏粮秋粮2011年各类粮食占全体 粮食的百分比分组统计图的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:22.阅读下面材料:小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且3:2:1::=OC OB OA ,求AOB ∠的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△CO A 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△O AB ',连结O O '. 则△O AO '是等边三角形,故OA O O =',至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形B O O '中. (1)请你回答:︒=∠AOB . (2)参考小阳思考问题的方法,解决下列问题: 已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB =60°,∠DCB =30°,AC =5,CD =4.求四边形ABCD 的面积. 解:五、解答题(本题满分22分,第23题7分,第24题7分,第25题8分) 23.已知:直线122y x =+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数xky =图象上.(1) 当a =1时,求反比例函数xky =的解析式;DCBA图⑴ 图⑵ 图⑶OCBA(2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若AD =2b,求△P ’DO 的面积.解:24.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.A B C D E AE B C D图1 图2备用图解:25.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式;∠=∠,(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得BFE CFE 若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:备用图草稿纸石景山区2012初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.3≠x ; 10.()()b a b a ab 33-+; 11.225-225π; 12.10;6. 三、解答题(本题共6道小题,每小题5分,共30分)13.解:()22145cos 3--14.38-⎪⎭⎫⎝⎛+︒-π=4223122+⨯-- ……………………………4分 =322+…………………………………………………5分 14. 123482---=-xxx解:()()123228---=-+x x x x ……………………………1分 ()()()42382--+-=x x x ……………………………3分46822+---=x x x ……………………………4分∴10-=x经检验:10-=x 是原方程的根.………………………5分15.证明:∵∠1=∠2=∠3∴DAE BAC ∠=∠…………………………… 1分 又∵AFE DFC ∠=∠∴E C ∠=∠ …………………………… 2分 在△ABC 和△ADE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AB EC DAE BAC (3)分 ∴△ABC ≌△ADE ……………………………………………………… 4分∴BC=DE . ……………………………………………………… 5分16.解:原式222922144x x x x x -++-++= …………………………………2分1062++=x x ………………………………… 3分当0162=-+x x 时,162=+x x ………………………………… 4分 原式11=. …………………………………5分17.解:(1)∵一次函数y kx b =+的图象与直线y =平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y …………………………………1分(2)令0=y ,则1=x ;令0=x 则3=y∴()()3,0,0,1B A∵1=OA ,3=OB …………………………2分 ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C ………………………4分 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫ ⎝⎛33,03C …………………………………………5分 ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫ ⎝⎛33,03C 18.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2-160x .………2分(2)由题意得:-2x 2+160x =60501000104⨯⨯, ………………3分解得 x = 2 或 x = 78. …………………………………4分 又0<x <50,所以x = 2,答:甬道的宽是2米. ……………………………………5分 19. 解:(1)∵BE =EF ∴∠EFB =∠B ,由题意,△EF B '≌△BEF∴∠EFB ’ =∠EFB =∠B=30° ∴△BFA 中,︒=︒-︒-︒-︒=∠90303030180BAF ……………………………………2分 (2)联结DF ,∵AD //BC ,AF ∥CD∴四边形AFCD 是平行四边形 ……………………………………3分 ∴∠C =∠A FB =60°∴CD =AF =3230cos =︒EF ……………………………………4分 若BC DF ⊥,则360cos =︒=CD FC此时3=AD . ……………………………………5分 20.(1)72%;(2)2011;(3)3427; ……………………每空1分,共3分(4)(57121-52871)÷3≈=1417 ………………………………………4分57121+1417=58538. ………………………………………5分21.(1)联结CO , … …………………………………1分∵DM ⊥AB∴∠D+∠A=90° ∵PC PD = ∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA∴∠OCA+∠PCD=90° ∴PC ⊥OC∴直线PC 是⊙O 的切线 …………………………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q ∴Rt △CQA 中 ∴22tanD QAC tan ==∠ ∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x …………………………………4分 ∴22=AQ∴242==AQ AN …………………………………5分22. 解:(1)150° ………………………1分(2) 如图,将△ADC 绕点A 顺时针旋转60°,使点D 与点B 重合,………2分 得到△O AB ',连结O C '. 则△O AC '是等边三角形,可知4,5'===='DC BO CA O C ,ADC ABO ∠=∠'……………………3分在四边形ABCD 中,︒=∠-∠-︒=∠+∠270360DCB DAB ABC ADC ,)(360''ABO ABC BC O ∠+∠-︒=∠∴︒=︒-︒=90270360. ……………………4分34522=-=∴BC 6432543215432''-=⨯⨯-⨯=-=∴∆∆BCO ACO ABCD S S S 四边形.………………5分23.(1)∵点P 在直线AB 上, 1=a 时,2121+⨯=b =25………………………1分 ∴)25,1(P ,∴)25,1(-'P ,代入x k y = 得25-=k ,∴x y 25-= …………………………2分 (2)联结'PP∵点P 和点P '关于y 轴对称 ∴'PP ∥x 轴 ∴OCA C PP ∽△△'O 'DCBA∴'PP ∶=OA C P '∶CO …………3分 ∵CO C P 2'= ∴'PP =OA 2∵221+=x y 与x 轴交于点A 、点B ∴)0,4(-A ,)2,0(B 可得4=OA∴8'=PP ∴a =4∴42421=+⨯=b ………………………5分 (3)当点P 在第一象限时:∵点P 和点P '关于y 轴对称且),(b a P∴),('b a P -∵y AD ∥∴)24-(b D , ∵D P 、点点'在xk y =上 ∴b a b⨯-=⨯-24 ∴2=a∴32221=+⨯=b ∵),23,4(-D )3,2('-P∴29'=DO P S △ …………6分当点P 在第二象限时:)24-(bD -,∴b a b⨯-=-⨯-24∴2-=a∴12)2(21=+-⨯=b∵),21,4(--D )1,2('P∴23'=DO P S △ …………7分24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG = ∴76∠=∠=∠F7654321AEBCG D∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG ∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG =∴BE AG CG CF 2121=== 由△DBE ∽△DCF 得2==FCBEDC BD∴DC DB 2=(3) 结论:DC DB 2=.25.解:(1)点A (0,2m -7)代入y =-x 2+2x +m -2,得m =5∴抛物线的解析式为y =-x 2+2x +3 ………………………2分(2)由⎩⎨⎧=++-=x y x x y 2322得⎪⎩⎪⎨⎧==323y x ,⎪⎩⎪⎨⎧=-=323y x∴B (32,3),C (32,3--)B (32,3)关于抛物线对称轴1=x 的对称点为)32,32('-B可得直线C B '的解析式为32632-+=x y , 由⎩⎨⎧=-+=132632y x y ,可得⎩⎨⎧==61y x∴)6,1(F ………………………5分(3)当)2,2(t t M --在抛物线上时,可得03242=-+t t ,4131±-=t , 当)2,(t t P --在抛物线上时,可得32=t ,3±=t ,舍去负值,所以t 的取值范围是34131≤≤+-t .………………8分顺义区2012届初三第二次统一练习F图(2)F E B AO 数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯B .49.110⨯C .49110⨯D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a b b -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-C .24(2)b a -D .4(2)(2)b a a +-5.北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了10户家庭的5月份用水量,结果如下(单位:立方米):5,6,6,2,5,6,7,10,7,6,则关于这10户家庭的5月份用水量,下列说法错误的是 A.众数是6 B.极差是8C.平均数是6D.方差是46.如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位, OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.从1,-2, 3,-4四个数中,随机抽取两个数相乘,积是正数的概率是A .14 B .13 C .12D .238.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去右上方的小三角形.将纸片展开,得到的图形是DC BA二、填空题(本题共16分,每小题4分) 9.若分式261x x --的值为0,则x 的值等于 . 10.如图,□ABCD 中,E 是边BC 上一点,AE 交BD 于F ,若2BE =,3EC =,则BFDF的值为 . 11.将方程2410x x --=化为2()x m n -=的形式,其中m ,n 是常数,则m n += . 12.如图,△ABC 中,AB =AC=2 ,若P 为BC的中点,则2AP BP PC +的值为 ; 若BC 边上有100个不同的点1P ,2P ,…,100P , 记i i i i m AP BP PC =+(1i =,2,…,100), 则12m m ++…100m +的值为 .三、解答题(本题共30分,每小题5分)13.计算:101()2sin 45(34---+︒-.14.解不等式2(2)x +≤4(1)6x -+,并把它的解集在数轴上表示出来. 15.已知:如图,E ,F 在BC 上,且AE ∥DF ,AB ∥CD ,AB =CD .求证:BF = CE .F EDCBAP iPCBAFEDCBA16.解分式方程:32322x x x -=+-.17.已知2x -3=0,求代数式5(2)(2)(4)1x x x x ---++的值.18.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y (万吨)随着时间x (年)逐年成直线上升,y 与x 之间的关系如图所示.(1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?四、解答题(本题共20分,每小题5分) 19.如图,在矩形ABCD 中,E 是边CB 延长线上的点,且EB=AB ,DE 与AB 相交于点F ,AD=2,CD=1,求AE 及DF 的长.20.已知:如图,P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,BC ∥OP 交⊙O 于点C .(1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若BC=2,11sin23APC ∠=,求PC 的长及点C 到PA 的距离.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级FEDC B AOCBAP学生人数为204人,请你根据图表中提供的信息,解答下列问题:(1)求该校八年级学生的人数占全校学生总人数的百分比; (2)求表中a ,b 的值;(3)求该校学生平均每人读多少本课外书?22.阅读下列材料:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决.请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC=x ,四边形OCPD 的面积为S .PyxB A DCO(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式; (2)若已知A (a ,0),B (0,b ),且当x=34时,S 有最大值98,求直线AB 的解析式; (3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点N 的坐标. 24.已知:如图,D 为线段AB 上一点(不与点A 、B 重合),CD ⊥AB ,且CD=AB ,AE ⊥AB ,BF ⊥AB ,且AE=BD ,BF=AD .(1)如图1,当点D 恰是AB 的中点时,请你猜想并证明∠ACE 与∠BCF 的数量关系; (2)如图2,当点D 不是AB 的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;(3)若∠ACB=α,直接写出∠ECF 的度数(用含α的式子表示).图1 图225.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为P .(1)求二次函数的解析式;(2)设D 为线段OC 上的一点,若DPC BAC ∠=∠,求点D 的坐标;FED CBAFE D C B A(3)在(2)的条件下,若点M 在抛物线212y x bx c =++上,点N 在y 轴上,要使以M 、N 、B 、D 为顶点的四边形是平行四边形,这样的点M 、N 是否存在,若存在,求出所有满足条件的点M 的坐标;若不存在,说明理由.顺义区2012届初三第二次统一练习 数学学科参考答案及评分细则9.3; 10.25; 11.7; 12.4,400.三、解答题(本题共30分,每小题5分)13.解:101()2sin 45(34---+︒--4212=-⨯- …………………………………………………… 4分3=-…………………………………………………………………… 5分14.解:去括号,得 24x +≤446x -+.…………………………………………… 1分移项,得 24x x -≤464-+-.…………………………………………… 2分 合并,得 2x -≤-2 . ………………………………………… 3分 系数化为1,得 x ≥1 . ……………………………………………… 4分 不等式的解集在数轴上表示如下:……………………………………… 5分15.证明:∵AE ∥DF ,∴∠1=∠2. ………………………… 1分∵ AB ∥CD , ∴ ∠B =∠C .………………………… 2分 在△ABE 和 △DCF 中, 12,,,B C AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABE ≌△DCF .…………………………………………………… 4分∴ BE =CF .∴BE -EF =CF -EF .即BF =CE .……………………………………………………………… 5分16.解:去分母,得 3(2)2(2)3(2)(2)x x x x x --+=+-.…………………… 1分去括号,得 223624312x x x x ---=-. ………………………… 2分 整理,得 88x -=-.…………………………………………………… 3分解得 1x =. ……………………………………………………………… 4分经检验,1x =是原方程的解.……………………………………………… 5分 ∴ 原方程的解是1x =.17.解:5(2)(2)(4)1x x x x ---++ 22510(28)1x x x x =--+-+ ……………………………………………… 2分 22510281x x x x =---++24129x x =-+ ………………………………………………………………… 3分 (23)(23)x x =+- …………………………………………………………… 4分 当2x -3=0时,原式(23)(23)0x x =+-=.………………………………… 5分18.解:(1)设y 与x 之间的关系式为y=kx+b .……………………………………… 1分由题意,得20084,2010 6.k b k b +=⎧⎨+=⎩ 解得1,2004.k b =⎧⎨=-⎩…………………… 3分 21F EDC BA∴y 与x 之间的关系式为y =x -2004(2008≤x ≤2012). …………… 4分(2)当x =2012时,y =2012-2004=8.∴该市2012年因“限塑令”而减少的塑料消耗量约为8万吨.……… 5分19.解:∵四边形ABCD 是矩形,且AD=2,CD=1,∴BC=AD=2,AB=CD=1,∠ABC =∠C= 90°,AB ∥DC .∴EB=AB=1. ………………………………………………………………… 1分 在Rt △ABE中,AE =2分 在Rt △DCE 中,DE == 3分∵AB ∥DC , ∴12EF EB DF BC ==. …………………………………………………………… 4分设EF x =,则2DF x =. ∵EFDF DE +=,∴2x x +=.∴3x =. ∴2DF x == 5分 20.解:(1)直线PC 与⊙O 相切.证明:连结OC , ∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC ,∴∠1=∠3.∴∠2=∠4.又∵OC=OA ,OP=OP ,∴△POC ≌△POA . ……………………………………………… 1分∴∠PCO =∠PAO .∵PA 切⊙O 于点A ,∴∠PAO =90°.∴∠PCO =90°. ∴PC 与⊙O 相切. ……………………………………………… 2分(2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠. ∴11sin 5sin 23APC ∠=∠=. ∵∠PCO =90°,∴∠2+∠5=90°. ∴1cos 2sin 53∠=∠=. ∵∠3=∠1 =∠2,∴1cos 33∠=. 4321O C B A P图3M P C B A D 85674321O C B A P 连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°. ∴261cos 33BC AB ===∠.………………………………………… 3分 ∴OA=OB=OC=3,AC ==.∴在Rt △POC 中,9sin 5OC OP ==∠.∴PC ==.…………………………………… 4分 过点C 作CD ⊥PA 于D ,∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°.∴∠3=∠8. ∴1cos 8cos 33∠=∠=. 在Rt △CAD中,1cos 83AD AC =∠==∴163CD ==.……………………………………… 5分 21.解:(1)∵1-28%-38%=34%.∴该校八年级学生的人数占全校学生总人数的百分比为34%.……… 1分(2)∵1440.062400÷=,∴24000.25600a =⨯=, ……………………………………………… 2分 84024000.35b =÷=. ……………………………………………… 3分(3)∵八年级学生人数为204人,占全校学生总人数的百分比为34%,∴全校学生总人数为20434%600÷=. ……………………………… 4分 ∴该校学生平均每人读课外书:24006004÷=.答:该校学生平均每人读4本课外书. ………………………………… 5分22.解:图2中∠APB 的度数为 135° .……………… 1分(1)如图3,以PA 、PB 、PC 的长度为三边长的一个三角形是 △APM .(含画图)………… 2分(2)以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于60°、65°、55° .……………… 5分 23.解:(1)设直线AB 的解析式为y kx b =+,由A (4,0),B (0,6),得40,6.k b b +=⎧⎨=⎩ 解得3,26.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为362y x =-+.……………………………… 1分 ∵OC=x ,∴3(,6)2P x x -+. ∴3(6)2S x x =-+. 即2362S x x =-+(0< x <4). …………………………………… 2分 (2)设直线AB 的解析式为y mx n =+,∵OC=x ,∴(,)P x mx n +.∴2S mx nx =+.∵当x=34时,S 有最大值98, ∴3,24939.1648n m m n ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得2,3.m n =-⎧⎨=⎩∴直线AB 的解析式为23y x =-+.………………………………… 3分∴A (32,0),B (0,3). 即32a =,3b =.……………………………………………………… 5分 (3)设点M 的坐标为(M x ,M y ), 由点M 在(2)中的直线AB 上,∴23M M y x =-+.∵点M 到x 轴、y 轴的距离相等,∴M M x y =或M M x y =-.当M M x y =时,M 点的坐标为(1,1).过M 点的反比例函数的解析式为1y x =. ∵点N 在1y x=的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为32,23⎛⎫⎪⎝⎭.……………………………………………… 6分 当M M x y =-时,M 点的坐标为(3,-3),B DC F E A 过M 点的反比例函数的解析式为9y x =-. ∵点N 在9y x=-的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为3,62⎛⎫- ⎪⎝⎭.……………………………………………… 7分 综上,点N 的坐标为32,23⎛⎫⎪⎝⎭或3,62⎛⎫- ⎪⎝⎭. 24.解:(1)猜想:∠ACE=∠BCF .证明:∵D 是AB 中点,∴AD=BD ,又∵AE=BD ,BF=AD ,∴AE=BF .∵CD ⊥AB ,AD=BD ,∴CA=CB .∴∠1 =∠2. ∵AE ⊥AB ,BF ⊥AB ,∴∠3 =∠4=90°.∴∠1+∠3 =∠2+∠4.即∠CAE=∠CBF .∴△CAE ≌△CBF .∴∠ACE=∠BCF .……………………………………………… 2分(2)∠ACE=∠BCF 仍然成立.证明:连结BE 、AF .∵CD ⊥AB ,AE ⊥AB ,∴∠CDB=∠BAE=90°.又∵BD = AE ,CD = AB ,△CDB ≌△BAE .……………… 3分 ∴CB=BE ,∠BCD=∠EBA .在Rt △CDB 中,∵∠CDB =90°, ∴∠BCD+∠CBD =90°.∴∠EBA+∠CBD =90°. 即∠CBE =90°.∴△BCE 是等腰直角三角形.∴∠BCE=45°. ……………………………………………… 4分 同理可证:△ACF 是等腰直角三角形.∴∠ACF=45°. ……………………………………………… 5分 ∴∠ACF=∠BCE .∴∠ACF -∠ECF =∠BCE -∠ECF .即∠ACE=∠BCF .……………………………………………… 6分(3)∠ECF 的度数为90°-α.……………………………………………… 7分4321F E D C B A25.解:(1)将点A (-3,6),B (-1,0)代入212y x bx c =++中,得 936,210.2b c b c ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解得 1,3.2b c =-⎧⎪⎨=-⎪⎩ ∴二次函数的解析式为21322y x x =--.…………………………… 2分 (2)令0y =,得213022x x --=,解得 11x =-,23x =. ∴点C 的坐标为(3,0). ∵22131(1)2222y x x x =--=--, ∴顶点P 的坐标为(1,-2).…………………………………………… 3分 过点A 作AE ⊥x 轴,过点P 作PF ⊥x 轴,垂足分别为E ,F .易得 45ACB PCD ∠=∠=︒.AC ==,PC ==.又DPC BAC ∠=∠,∴△ACB ∽△PCD .…………………… 4分 ∴BC AC CD PC=. ∵3(1)4BC =--=, ∴43BC PC CD AC ==. ∴45333OD OC CD =-=-=. ∴点D 的坐标为5(,0)3.……………………………………………… 5分 (3)当BD 为一边时,由于83BD =, ∴点M 的坐标为885(,)318-或811(,)318-. ………………………… 7分 当BD 为对角线时,点M 的坐标为235(,)318-. …………………… 8分大兴区2011~2012学年度第二学期模拟试卷(二)初三数学参考答案及评分标准第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分)三、解答题(本题共30分,每小题5分)13.解:原式=412222441-⨯+--……………………4分 =2421-………………………………5分 14.解:方程的两边同乘)4(+x x ,得x x 54=+……………………2分解得:1=x ……………………3分检验:把1=x 代入)4(+x x 05≠= ……………………4分∴原方程的解为:1=x . ……………………5分15.证明:(1)BE CF =,∴BE EF +CF EF =+,BF CE =即.……………………………1分∠ABC=90°,DC ⊥BC∴∠ABC=∠DCE=90°………………3分在ABF △和DCE △中,⎪⎩⎪⎨⎧=∠=∠=CE BF DCE ABC DC ABABF DCE ∴△≌△.…………………………5分16.解:原式=2244(441)3x x x x x ---++………………………………………………2分=22444413x x x x x --+-+ (3)分=31x - (4)分 当13x =-时,原式=312x -=-.………………5分 17.解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴ 2(1)2n =-⨯-=.∴ 点A 的坐标为12-(,).………………1分 ∵ 点A 在反比例函数k y x=的图象上, ∴ 2k =-. ∴反比例函数的解析式为2y x =-. ………………3分 (2)点P 的坐标为(2,0)(0,4)-或.………………5分18.解:设第一批购进水果x 千克,则第二批购进水果2.5x 千克,…………………………1分依据题意得:,12005.2550=-xx ……………………………………3分 解得x=20,经检验x=20是原方程的解,且符合题意……………………………4分答:第一批购进水果20千克;…………………………5分四、解答题(本题共20分,每小题5分)19.解:过A 作BC AD ⊥交BC 于D ,则︒=∠30BAD ,︒=∠45CAD∵BC AD ⊥∴︒=∠90ADB ,︒=∠90ADC∵︒=∠30BAD ,︒=∠90ADB ,6001060=⨯=AB ∴3006002121=⨯==AB BD ………………………………………………………2分 DAB AB AD ∠=cos ︒⨯=30cos 6003300=……………………………………3分∵︒=∠90ADC ,︒=∠45CAD ,3300=AD∴3300==AD CD …………………………………………………………………4分∵BD CD BC += ∴3003300+=BC …………………………………………………………………5分 答:甲乙两人之间的距离是)3003300(+米20.解:(1)50.9;…………………………….…………………………………………….2分(2)①……………………………………………………………………………….5分21. 解:(1)连接OD .∵OA=OD∴∠OAD =∠ODA .∵AD 平分∠BAC∴∠OAD =∠CAD ,∴∠ODA =∠CAD .∴OD ∥AC .………………………………………………1分∵DE ⊥AC ,∴∠DEA =∠FDO=90°∴EF ⊥OD .∴EF 是⊙O 的切线. ……………………………………2分(2)设BF 为x .∵OD ∥AE ,∴△ODF ∽△AEF . ……………………………………3分∴OD OF AE AF =,即2234x x +=+. 解得 x =2∴BF 的长为2. ……………………………………5分 22.(1)分割正确,且画出的相应图形正确……………………………………………………2分(2)证明:在辅助图中,连接OI 、NI .∵ON 是所作半圆的直径,∴∠OIN =90°.∵MI ⊥ON ,∴∠OMI =∠IMN =90°且∠OIM =∠INM .∴△OIM ∽△INM .∴OM IM =IM NM .即IM 2=OM ·NM .…………………………………………………3分 ∵OM=AB ,MN=BC∴IM 2 = AB ·BC∵AF=IM∴AF 2=AB ·BC=AB ·AD .∵四边形ABCD 是矩形,BE ⊥AF ,∴DC ∥AB ,∠ADF =∠BEA =90°.∴∠DFA =∠EAB .∴△DFA ∽△EAB .∴AD BE =AF AB .即AF ·BE =AB ·AD=AF 2.∴AF =BE .………………………………………………………………………4分∵AF=BH∴BH =BE .由操作方法知BE ∥GH ,BE =GH .∴四边形EBHG 是平行四边形.∵∠GEB =90°,∴四边形EBHG 是正方形.……………………………………………………5分 图⑤ 图⑥ 图⑦图⑧ 图⑨ 图① 图② 图③ 图④。

北京2011-2012年中考数学模拟试卷(2)及答案

北京2011-2012年中考数学模拟试卷(2)及答案

北京2011-2012年中考数学模拟试卷(2)说明:本卷满分150分,考试时间为100分钟.题号 一 二 三四 五 总 分16 17 18 19 20 21 22 得分一、单项选择题(每小题4分,共20分,请将所选选项的字母写在题目后的括号内) 1.今年1至4月份,我省旅游收入累计达5163000000元,用科学记数法表示是( )A .6105163⨯元 B .910163.5⨯元 C .810163.5⨯元 D .1010163.5⨯元 2.函数x y -=2 中,自变量x 的取值范围是( )A .2≠xB .x ≥2C .x ≤2D .0<x3.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中, 下列说法正确的是( )A .300名学生是总体B .300是众数C .30名学生是抽取的一个样本D .30是样本的容量4.如图1,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共 有( ) A .1对 B .2对 C .3对D .4对5.一个空间几何体的主视图和左视图都是边长 为2的正方形,俯视图是一个圆,那么这个 几何体的表面积是( )A .π6B .π4C .π8D .4二、填空题(每小题4分,共20分,请把下列各题的正确答案填写在横线上) 6.计算=+-+-- 30cos 2)142.3(2201π .7.若()b a x x x -+=--2214,则b a -= .8.若相交两圆的半径长分别是方程0232=+-x x 的两个根,则它们的圆心距d 的取值范EABDF G C(图1)围是 .9.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是 .10.如图2,菱形ABCD 中,对角线AC 、BD 交于O 点,分别以A 、C 为圆心,AO 、CO 为半径画圆弧,交菱形各边于点E 、F 、G 、H ,若AC=32,BD=2,则图中阴影部分的面积是 .三、解答下列各题(每小题6分,共30分) 11.解不等式组(要求利用数轴求出解集):5351x x -<+① 423322-+>-x x x ②12.已知13+=x ,求xx x x xx x 112122÷⎪⎭⎫ ⎝⎛+---+的值.13.观察下面的几个算式:13×17=221可写成100×1×(1+1)+21; 23×27=621可写成100×2×(2+1)+21; 33×37=1221可写成100×3×(3+1)+21; 43×47=2021可写成100×4×(4+1)+21; …… ……根据上面规律填空:AB CDO (图2)E FGH(1)83×87可写成 .(2))710)(310(++n n 可写成 . (3)计算:1993×1997=.14.如图3,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连接为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B 的坐标为(-2,-2). (1)把△ABC向左平移8格后得到△A 1B 1C 1,画出△A 1B 1C 1的图形,此时点B 1的坐标为 .(2)把△ABC绕点C 按顺时针方向旋转90°后得到△A 2B 2C ,画出△A 2B 2C 的图形,此时点B 2的坐标为. (3)把△ABC以点A 为位似中心放大为△AB 3C 3,使放大前后对应边长的比为1︰2,画出△AB 3C 3的图形.15.如图4,△ABC中,AB=AC ,D 、E 分别是BC 、AC 上的点, ∠BAD与∠CDE满足什么条件时AD=AE ?写出你的推理过程.四、解答下列各题(每小题7分,共28分)16.初三级一位学生对本班同学的上学方式进行了一次调查统计,图5①和图5②是他通过采A BxyOC(图3)ABD CE (图4)集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题: (1)该班共有多少名学生?(2)在图5①中将表示“骑车”的部分补充完整.(3)在扇形统计图中,“步行”部分对应的圆心角的度数是多少? (4)如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.(1)答: (3)答: (4)解:17.如图6,一次函数b kx y +=的图象与反比例函数xm y =的图象交于A 、B 两点。

03.2012年北京市东城区中考二模数学试题(word版含答案)-推荐下载

03.2012年北京市东城区中考二模数学试题(word版含答案)-推荐下载

C.3 D.±3
C. (ab 2 )3 a3b3
4. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得朝上
一面的点数为奇数的概率为
1
A.
6
1
B.
4
5. 如果一个多边形的内角和是其外角和的 2 倍,那么这个多边形是
A.六边形
B.五边形
1
C.
3
6. 在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调
1
D.
2
C.四边形
C.丙
D. a10 a 2 a 5
D.三角形
D.丁
7. 如图,在平行四边形 ABCD 中, E 为 AD 的中点, △DEF 的周长为 1,则 △BCF 的
周长为 A.1 B.2 C.3 D.4
8. 如右图,正方形 ABCD 的顶点 A(0,
顶点 C、D 位于第一象限,直线 l : x t(0 t 2) 将正
(2)当直线 AB 绕着点 A 转动时,与 x 轴的交点为 B(a,0), 并与反比例函数 y k 图象的另一支还有一个交点的情形 x 下,求△ABC 的面积 S 与 a 之间的函数关系式.并写出自变 量 a 的取值范围.
四、解答题(本题共 20 分,每小题 5 分)
19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在
学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分
布表和扇形统计图:
组别 A B C D E
做家务的时间 1≤t<2 2≤t<4 4≤t<6 6≤t<8 t≥8
频数 3 20 a 8 4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2012年北京怀柔区中考数学二模试题及答案

2012年北京怀柔区中考数学二模试题及答案

2012年北京怀柔区中考数学二模试题及答案怀柔区2012年中考模拟练习(二)数学试卷 2012.6.8 考生须知1.本试卷共4页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、班级和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. -的相反数等于 A. 4 B. C. - D. -4 2. 据统计,今年“五一”节期间,来北京市旅游人数约为2 410 000人次,同比增长15.6%. 将2 410 000用科学记数法表示应为 A.B. C. D. 3.如图所示,下列各式正确的是 A.∠A>∠2>∠1 B.∠1>∠2>∠A C.∠2>∠1>∠A D.∠1>∠A>∠2 4.下列图形中能够用来做平面镶嵌的图形的是 A.正八边形 B.正七边形 C.正六边形 D.正五边形 5.一条排污水管的横截面如图所示,已知排污水管的横截面圆半径OB=5m,横截面的圆心到污水面的距离 =3m,则污水面宽等于 A.8m B.10m C.12m D.16m 6.,则的值为 A.4 B. -9 C. 16 D. -16 7.已知两圆的半径R、r分别为方程x2-5x+6=0的两根,两圆的圆心距为1,则两圆的位置关系是A.外离 B.外切 C.相交 D.内切 8.如图,矩形ABCD的边AB=5cm,BC=4cm,动点P从A点出发,在折线AD―DC―CB上以每秒1cm的速度向点B作匀速运动,设△APB的面积为S(cm2),点P的运动时间为t(s),则S与t之间的函数关系图象是二、填空题(本题共16分,每小题4分) 9.若∠1=36°,则∠1的余角的度数是___ _____. 10.函数中自变量的取值范围是. 11.反比函数的图象,当x>0时,y随x的增大而增大,则k的取值范围是 . 12.已知,我们又定义,,……,,则通过计算b1,b2 ……,则 = ,然后推测出=__ ____ (用含字母n的代数式表示) .三、解答题(本题共30分,每小题5分) 13.计算:. 14.解不等式组把它的解集在数轴上表示出来,并求它的整数解.15.已知:如图,A、B、C、D四点在一条直线上,且AB=CD,∠A=∠D,∠E=∠F. 求证: AE=DF .16.已知,求的值. 17.已知:一次函数和反比例函数的图象交于点P(1,1)(1)求这两个函数的解析式;(2)若点A在轴上,且使△POA是直角三角形,直接写出点A的坐标。

2012北京市东城区中考二模数学试题及答案(真题)

2012北京市东城区中考二模数学试题及答案(真题)

北京市东城区2011--2012学年第二学期初三综合练习(二)数 学 试 卷 2012.6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9的算术平方根是A .-9B .9C .3D .±3 2. 如图,由几个小正方体组成的立体图形的俯视图是3. 下列运算正确的是A .532a a a =+B .532a a a =⋅C .3332)(b a ab =D .5210a a a =÷4. 抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为奇数的概率为 A .16B .14C .13D .125. 如果一个多边形的内角和是其外角和的2倍,那么这个多边形是 A .六边形B .五边形C .四边形D .三角形6. 在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的香蕉价格进行调查.四个城市5个月香蕉价格的平均值均为3.50元,方差分别为2S 甲=18.3,2S 乙=17.4,2S 丙=20.1,2S 丁=12.5.一至五月份香蕉价格最稳定的城市是 A .甲B .乙C .丙D .丁7. 如图,在平行四边形ABCD 中,E 为AD 的中点,DEF △的周长为1,则BCF △的周长为A .1B .2C .3D .48. 如右图,正方形ABCD 的顶点A ,B ,顶点C D 、位于第一象限,直线:(0l x t t =≤将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为S ,则S 关于t 的函数图象大致是二、填空题(本题共16分,每小题4分)9.x 的取值范围是 .10. 一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为 . 11. 观察下列等式: 1=1,2+3+4=9, 3+4+5+6+7=25, 4+5+6+7+8+9+10=49,……照此规律,第5个等式为 . 12. 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .三、解答题(本题共30分,每小题5分) 13.0(4)6cos302-π-+-.14. 解方程组212x y x y +=⎧⎨-=⎩,.15. 已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC .16. 先化简,再求值:2212111x x x x -+⎛⎫-÷ ⎪-⎝⎭,其中2x =-.17. 列方程或方程组解应用题:小明家有一块长8m 、宽6m 的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x 值.18. 如图,在平面直角坐标系xOy 中,直线AB 与反比例函数ky x =的图像交于点A(-3,4),AC ⊥x 轴于点C.(1)求此反比例函数的解析式;(2)当直线AB 绕着点A 转动时,与x 轴的交点为B(a,0),并与反比例函数ky x=图象的另一支还有一个交点的情形下,求△ABC 的面积S 与a 之间的函数关系式.并写出自变量a 的取值范围.四、解答题(本题共20分,每小题5分)19.在母亲节来临之际,某校团委组织了以“学会生存,感恩父母”为主题的教育活动,在学校随机调查了若干名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= ;(2)在扇形统计图中,B 组所占圆心角的度数为 ;(3)全校共有1000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?20. 如图,在平行四边形ABCD 中,5AB =,8BC =,AE BC ⊥于点E ,53cos =B ,求tan CDE ∠的值.21.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 长为 半径的O ⊙与AD ,AC 分别交于点E ,F ,∠ACB =∠DCE .(1)请判断直线CE 与O ⊙的位置关系,并证明你的结论;(2)若 DE:EC=1 2BC =,求⊙O 的半径.22. 阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x =-时,突发奇想:21x =-在实数范围内无解,如果存在一个数i ,使21i =-,那么当21x =-时,有x =±i ,从而x =±i 是方程21x =-的两个根.据此可知:(1) i 可以运算,例如:i 3=i 2·i =-1×i =-i ,则i 4= , i 2011=______________,i 2012=__________________;(2)方程2220x x -+=的两根为 (根用i 表示).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知关于x 的方程2(1)(4)30m x m x -+-+=. (1) 若方程有两个不相等的实数根,求m 的取值范围;(2) 若正整数m 满足822m ->,设二次函数2(1)(4)3y m x m x =-+-+的图象与x 轴交于A B 、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).24. 已知:等边ABC ∆中,点O 是边AC,BC 的垂直平分线的交点,M,N 分别在直线AC , BC上,且60MON ∠=.(1) 如图1,当CM=CN 时, M 、N 分别在边AC 、BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;(2) 如图2,当CM ≠CN 时,M 、N 分别在边AC 、BC 上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3) 如图3,当点M 在边AC 上,点N 在BC 的延长线上时,请直接写出线段AM 、CN 、MN 三者之间的数量关系.25.如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点(0,3)C ,与x轴交于A 、B 两点,点B 的坐标为(-3,0) (1) 求二次函数的解析式及顶点D 的坐标;(2) 点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出 此时点P 的坐标.2012北京市东城区中考二模数学试题及答案11。

2012年北京西城区中考二模数学试卷及答案

2012年北京西城区中考二模数学试卷及答案

北京市西城区2012年初三二模试卷数 学 2011. 6下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13-C .3-D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为 A .45.878610⨯ B .55.878610⨯ C .358.78610⨯ D .50.5878610⨯ 3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是 A .内含 B .外切 C .相交 D .内切 4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 A .四边形 B .五边形 C .六边形 D .八边形 5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是A .平均数B .众数C .中位数D .方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的 区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A B .25+ C . D .4 二、填空题(本题共16分,每小题4分) 9.分解因式 m 3 – 4m = . 10.函数21-=x y 中,自变量x 的取值范围是 . 11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);11222011A B A B A B +++的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足CAD DBC ∠=∠, AC =BD ,BC 与AD 相交于点E .求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数my x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数) 四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =,作EF AB ⊥,交BA 的延长线于点F .(1)求tan ABD ∠的值; (2)求AF 的长.21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点, AD 交BC 于点E ,连结AB . (1)求证:2AB AE AD =⋅; (2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.22.如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB , E 为AC 的中点,F 为BC 上一点且BF ≠FC (F 不与B ,C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3)在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中 的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12bx x a +=-,12c x x a⋅=. 解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c 的代数式表示); (3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c ++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s的速度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF 和点P同时停止运动.设运动的时间是t(单位:s),t>0.(1)当t=2时,PH= cm,DG = cm;(2)t为多少秒时△PDE为等腰三角形?请说明理由;(3)t为多少秒时点P与点G重合?写出计算过程;(4)求tan∠PBF的值(可用含t的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y 轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x m k =-++的顶点恰好为D 点,且DE=及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1;当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).北京市西城区2011年初三二模试卷数学答案及评分标准 2011.6二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分) 13.解:原式=112- ……………………………………………………………4分 =32. ……………………………………………………………………5分 14.证明: 如图1. 在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分解得2k <. ……………………………………………………………………2分(2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分代入求根公式x =,得2x ==-±.…………5分 ∴ 1222x x =-+=-16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分17.解:(1)∵ 反比例数my x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x=-.………………………1分点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.…………………………………………2分 (2)依题意得x -20< x .解得x >10.……………………………………………………………………3分∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分 答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元. 20.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3) ∵ AB ∥DC ,DM ⊥AB ,CN ⊥AB , ∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形. ∵4CD =, ∴ MN =CD = 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =, ∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………2分 ∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴4DM =. ∴ 4tan 7DM ABD BM ∠==.……………………………………………………3分 (2)∵ EF AB ⊥, ∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN . ∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =, ∴12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分 ∴ AF =BF -AB =14-10=4. …………………………………………………5分 21.(1)证明:如图4.∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分 ∴AB ADAE AB=. ∴ 2AB AE AD =⋅.………………………………………………………3分 (2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴AB =.………………………………………………………4分 ∵ BD 为⊙O 的直径, ∴ ∠A =90︒.又∵ DF 是⊙O 的切线, ∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,tan AB ADB AD ∠===, ∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060EDF BDF ADB ∠=∠-∠=︒-︒=︒. ∴ ∠F =18060DEF EDF ︒-∠-∠=︒.∴ △DEF 是等边三角形.∴ EF = DE 5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分 23.解:(1)=,>,<.……………………………………………………………………3分 (2)2ca.……………………………………………………………………………4分 (3)答:当x =5m +时,代数式2y ax bx c =++的值是正数. 理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2ca,B (2,0) 两点. ∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2ca<0<2,即点A 在点B 左侧.………………………5分 设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +. ∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5)∴ A M B x x x <<,即22cm a<<. ∴ 5572c m a +<+<,即572N c x a+<<.以下判断52ca+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x a a a a a+-+-+-=+-===>. ∴B x ac>+52. ∴ 52N B cx x a>+>.…………………………………………………………6分 ∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即0y >.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分 24.解:(1)52,265.………………………………………………………………………2分 (2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………3分∵ BF=t ,PF=2t ,DF =8, ∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD . 即()2228364t t -=+.解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE 边上,DP= DG . 由已知可得93tan 124AC B BC ===,63tan 84EF D DF ===. ∴.D B ∠=∠∴.90︒=∠=∠BFH DGH ∴ 3tan 4FH BF B t =⋅=,384D H D F F H t=-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG∵ 2DP DF t +=, ∴ 28DP t =-.由DP=DG 得3322855t t -=-+. 解得 7213t =. …………………………………………………………………5分 检验:724613<<,此时点P 在DE 边上. ∴ t 的值为7213时,点P 与点G 重合.(4)当0<t ≤4时,点P 在DF 边上运动(如图6),ta n 2PFPBF BF∠==. …………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则tan PS PBF BS∠=. 可得10(28)182PE DE DP t t =-=--=-. 此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS , ()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES . 524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS tPBF BS t -∠==-.………………………………………………7分 综上所述, 2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨<≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B,………………………………………………………1分 C点的坐标为.………………………………………………………3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B点的坐标为,2)B k m +, C点的坐标为,2)C k .如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D的坐标为,)D k m +,点E的坐标为)E k .由勾股定理得DE . ∵DE=∴ m=4. ……………………………4分 ∵ D恰为抛物线212y x m k =-++的顶点, 它的顶点横坐标为, ∴=.解得k=1.此时抛物线的解析式2143y x x =-+. …………………………………5分 此时D ,E两点的坐标分别为D,E . ∴OD =OE = ∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分 (3)E 1,E 3点的坐标分别为1E ,E3. 设直线13E E 的解析式为y ax b =+(a ≠0).则1,3.a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E的解析式为2my =-. ……………………………………7分 可得直线13E E 与y 轴正方向的夹角为60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为11)D m +,33)D m +,由勾股定理得13D D =4,13E E =4. ∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9)可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅=∴ 1331134D D E E S D D AQ =⨯==四边形.…………………………8分。

北京市2012年中考数学二模试题分类 代数综合(教师版)

北京市2012年中考数学二模试题分类 代数综合(教师版)

2012年市中考数学二模分类汇编——代数综合题整数根、系数是整数问题1.(昌平23.)已知m 为整数,方程221x mx +-=0的两个根都大于-1且小于32,当方程的两个根均为有理数时,求m 的值.23.解: 设221y x mx =+-. ………………………………1分 ∵2210x mx +-=的两根都在1-和32之间,∴ 当1x =-时,0y >,即:210m --> .…………2分当32x =时,0y >,即:931022m +->. ……………3分∴1213m -<<.…………………4分∵m 为整数,∴210m =--,,. …………………………5分 ① 当2m =-时,方程222104812x x --=∆=+=,, ∴ 此时方程的根为无理数,不合题意.② 当1m =-时,方程212121012x x x x --==-=,,,符合题意.③ 当0m =时,方程2210x -=,x =综合①②③可知,1m =-.…………………… 6分2.(房山)23.)已知:关于x 的方程mx2-3(m -1)x +2m -3=0. ⑴当m 取何整数值时,关于x 的方程mx2-3(m -1)x +2m -3=0的根都是整数;⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k x ky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k的解集.解:⑴ ⑵① ②23.解:⑴当m=0时,x=1----------------------------1分当m ≠0,可解得x1=1,x2=m mm 3232-=------------------2分 ∴31±±=,m 时,x 均有整数根--------------------------------------3分综上可得310±±=,,m 时,x 均有整数根⑵①抛物线向左平移一个单位后得到3-------------4分 过点(-1,3)代入解得m=3∴抛物线解析式为y= 3x2-6x +②k=-1×3=-3-----------------------6∴x>1或-1<x<0-----------------------73.(平谷23)已知抛物线22y x mx m =-+-. (1)求证此抛物线与x 轴有两个不同的交点;(2)若m 是整数,抛物线22y x mx m =-+-与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B .若M 为坐标轴上一点,且MA MB =,求点M 的坐标. 23.解:(1)证明:令0y =,则220x mx m -+-=.因为248m m ∆=-+2(2)40m =-+>, 1分 所以此抛物线与x 轴有两个不同的交点. 2分(2)因为关于x 的方程220x mx m -+-=的根为2(2)4m m x ±-+=,由m 为整数,当2(2)4m -+为完全平方数时,此抛物线与x 轴才有可能交于整数点.设22(2)4m n -+=(其中n 为整数), 3分所以 [(2)][(2)]4n m n m +---=. 因为 (2)n m +-与(2)n m --的奇偶性相同,所以2222n m n m +-=⎧⎨-+=⎩,;或222 2.n m n m +-=-⎧⎨-+=-⎩,解得 2m =.经检验,当2m =时,关于x 的方程220x mx m -+-=有整数根. 所以 2m =...................................5分 (3) 当2m =时,此二次函数解析式为222(1)1y x x x =-=--,则顶点A 的坐标为(11-,).抛物线与x 轴的交点为(0)O ,0、(20)B ,. 设抛物线的对称轴与x 轴交于1M ,则1(10)M ,.在直角三角形1AM O中,由勾股定理,得2AO =,由抛物线的对称性可得,2AB AO ==.又2222+=, 即 222OA AB OB +=.所以 △ABO 为等腰直角三角形.且11M A M B =.所以1(1)M ,0为所求的点. 6分若满足条件的点2M 在y 轴上时,设2M 坐标为(0)y ,.过A 作AN y ⊥轴于N ,连结2AM 、2BM .则22M A M B =.由勾股定理,有22222M A M N AN =+;22222M B M O OB =+.即 2222(1)12y y ++=+. 解得 1y =. 所以2(0)M ,1为所求的点.7分综上所述满足条件的M 点的坐标为(10,)或(01,).4.(门头沟23) 已知抛物线y =ax2+x +2. (1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x2+x +2的值为正整数,求x 的值;(3)若a 是负数时,当a =a1时,抛物线y =ax2+x +2与x 轴的正半轴相交于点M(m ,0);当a =a2时,抛物线y =ax2+x +2与x点N(n ,0). 若点M 在点N 的左边,试比较a1与a223. 当a=-1时,y=-x2+x+2,∴a=-1,b=1,c=2.∴抛物线的顶点坐标为(21,49),对称轴为直线x=21(2)∵代数式-x2+x+2的值为正整数,∴函数y=-x2+x+2的值为正整数.又因为函数的最大值为49,∴y 的正整数值只能为1或2.当y=1时,-x2+x+2=1,解得2511+=x ,2512-=x (3)分当y=2时,-x2+x+2=2,解得x3=0,x4=1.……………4分∴x 的值为2511+=x ,2512-=x ,0或1.(3) 当a <0时,即a1<0,a2<0.经过点M 的抛物线y=a1x2+x+2的对称轴为121a x -=,经过点N 的抛物线y=a2x2+x+2的对称轴为221a x -=.…………5分∵点M 在点N 的左边,且抛物线经过点(0,2)∴直线121a x -=在直线221a x -=的左侧……………6分∴121a -<221a -.∴a1<a2.…………………………………7分 5.(怀柔23)已知抛物线22(21)1y x m x m =+-+- (m 为常数) . (1)若抛物线22(21)1y x m x m =+-+-与x 轴交于两个不同的整数点,求m 的整数值;(2)在(1)问条件下,若抛物线顶点在第三象限,试确定抛物线的解析式;(3)若点M(x1,y1)与点N(x1+k ,y2)在(2)中抛物线上 (点M 、N 不重合), 且y1=y2. 求代数式21116+6+5-+1x x k k ⋅的值.23.解:(1)由题意可知,△=()222-1-4(-1)m m =5-4m >0,.…………………1分又抛物线与x 轴交于两个不同的整数点, ∴5-4m 为平方数,设k2 =5-4m ,则满足要求的m 值为1,-1,-5,-11,-19…… ∴满足题意的m 整数值的代数式为2-++1n n (n 为正整数). …………………………3分 (2)∵抛物线顶点在第三象限, ∴只有m=1符合题意,抛物线的解析式为2=+y x x .…………………4分(3)∵点M ()11,x y 与N ()12,x k y +在抛物线2=+y x x 上, ∴2111=+y x x ,2211=(+)++y x k x k ∵,21y y = ∴()221111+=+++.x x x k x k整理,得()12++1=0k x k∵点M 、N 不重合,∴k ≠0.∴2x1 =-k -1.……………………………………6分∴21116+6+5-+1x x kk ⋅=()2+116-3(k+1)+5-4+1k k k ⋅=6.………7分6.在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.25.解:(1)21(2)4A n n +,,()B n n ,.﹍﹍﹍﹍﹍﹍﹍﹍﹍2分 (2) d =AB=A B y y -=2124n n -+. ∴d =2112()48n -+=2112()48n -+.﹍﹍3分 ∴ 当14n =时,d 取得最小值18. ﹍﹍ 4分当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图10) ﹍﹍﹍﹍﹍ 5分(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +,∴ 对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.∴ 整数c 的值为0.﹍﹍﹍﹍﹍ 6分此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠)即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩对一切实数x 均成立. 由②得()21ax b x+-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩由⑤得整数b此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠)即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠)当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩④② ⑥∴ 由④,⑥,⑦得 0 <a ≤1.∴ 整数a 的值为1. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍8分 ∴ 整数a ,b ,c 的值分别为1a =,1b =,0c =. 利用数形结合研究交点、方程的根1.(东城23.) 已知关于x 的方程2(1)(4)30m x m x -+-+=. (1) 若方程有两个不相等的实数根,求m 的取值X 围;(2)若正整数m 满足822m ->,设二次函数2(1)(4)3y m x m x =-+-+的图象与x 轴交于A B 、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).23.解:(1)2(4)12(1)m m ∆=--- 2(2)m =+.……2分由题意得,2(2)m +>0且10m -≠ .∴ 符合题意的m 的取值X 围是 21m m ≠-≠且的 一切实数. ……3分 (2)∵ 正整数m 满足822m ->, ∴ m 可取的值为1和2 .又∵ 二次函数2(1)(4)3y m x m x =-+-+, ∴ m =2.……4分∴ 二次函数为2-23y x x =++. ∴ A 点、B 点的坐标分别为(-1,0)、(3,0). 依题意翻折后的图象如图所示.由图象可知符合题意的直线3y kx =+经过点A 、B . 可求出此时k 的值分别为3或-1.……7分注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案.2.(海淀23)已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点.(1)求m 的取值X 围;(2)若m>1, 且点A 在点B 的左侧,OA : OB=1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线 l 翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线y =公共点P(x0, y0)且 y0≤7时, 求b 的取值X 围23.解:(1)∵抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点, ∴210,(2)4(1)0.m m m由①得1m , 由②得0m,∴m 的取值X 围是0m且1m. …………2分(2)∵点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点, ∴令0y =,即2(1)(2)10m x m x -+--=. 解得11x =-,211x m =-.∵1m >,∴10 1.1m >>--∵点A 在点B 左侧,∴点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分∴OA=1,OB=11m -.①②………………………1分∵OA : OB=1 : 3,∴131m =-. ∴43m.∴抛物线的解析式为212133y x x =--. ………………………………………4分 (3)∵点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1).依题意翻折后的图象如图所示.令7y =,即2121733x x --=.解得16x =, 24x =-. ∴ 新图象经过点D (6,7).当直线13y x b=+经过D 点时,可得5b =. 当直线13y x b=+经过C 点时,可得1b =-.当直线1(1)3y x b b =+<-与函数2121(0)33y x x x =-->的图象仅有一个公共点P(x0, y0)时,得20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b ,得74b =-. 结合图象可知,符合题意的b 的取值X 围为15b -<≤或74b.……………7分通州22.已知关于x 的方程2(31)220mx m x m --+-= (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(31)22y mx m x m =--+-的图象经过坐标原点(0,0),求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y x b =+ 与(2)中的函数图象只有两个交点时,求b 的取值X 围. 22..解:(1)分两种情况讨论. 当0m =时,方程为x 20-=2=∴x ,方程有实数根,………………………………………….(1分)②当0m ≠,则一元二次方程的根的判别式()()2222314229618821m m m m m m m m m ∆=----=-+-+=++⎡⎤⎣⎦=()21m +≥0不论m 为何实数,∆≥0成立,∴方程恒有实数根 ………………………………………….(2分)综合①、②可知m 取任何实数, 方程()231220mx m x m --+-=恒有实数根………………….(3分)(2) 二次函数2(31)22y mx m x m =--+-的图象与经过(0,0)∴022=-m∴1=m ………………………………………….(4分)∴二次函数解析式为:x x y 22-=………………………….(5分) (3)在(2)条件下,直线y x b =+与二次函数图象只有两个交点,结合图象可知212y x xy x b ⎧=-⎨=+⎩当1y y =时,得230x x b --= 由940b ∆=+=得94b =-………………………….(6分)综上所述可知:当49->b 时,直线y x b =+与(2)中的图象有两个交点. ………….(7分)23.(延庆) 已知:关于x 的一元二次方程01-m x 2m 2-mx 2=++)((1)若此方程有实根,求m 的取值X 围;(3)解:如图所示:①当直线l 经过原点O 时与半圆P 有两个交点,即b=0………5分②当直线l 与半圆P 相切于D 点时有一个交点,如图由题意可得Rt △EDP 、Rt △ECO 是等腰直角三角形,∵DP=2 ∴EP=22………….6分 ∴OC=2-22 即b=2-22∴当0≤b <2-22时,直线l 与半圆P 只有两个交点。

2012东城区中考数学二模

2012东城区中考数学二模

2012东城区中考数学二模一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)9的算术平方根是()A.﹣9 B.9 C.3 D.±32.(4分)如图,由几个小正方体组成的立体图形的俯视图是()A.B.C.D.3.(4分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(a2)3=a5D.a10÷a2=a54.(4分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为偶数的概率为()A.B.C.D.5.(4分)如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.四边形B.六边形C.八边形D.十边形6.(4分)在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁7.(4分)如图,在平行四边形ABCD中,E为AD的中点,△DEF的面积为1,则△BCF的面积为()A.1 B.2 C.3 D.48.(4分)如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)使有意义的x的取值范围是.10.(4分)一个扇形的圆心角为120°,半径为1,则这个扇形的弧长为.11.(4分)观察下列等式:1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,…照此规律,第5个等式为.12.(4分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=.三、解答题(本题共30分,每小题5分)13.(5分)计算:﹣(4﹣π)0﹣6cos30°+|﹣2|14.(5分)解方程:.15.(5分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.16.(5分)先化简,再求值:(1﹣)÷,其中x=2.17.(5分)列方程或方程组解应用题:小明家有一块长8m、宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你帮小明求出图中的x值.18.(5分)如图,在平面直角坐标系xOy中,直线AB与反比例函数的图象交于点A(﹣3,4),AC⊥x轴于点C.(1)求此反比例函数的解析式;(2)当直线AB绕着点A转动时,与x轴的交点为B(a,0),并与反比例函数图象的另一支还有一个交点的情形下,求△ABC的面积S与a之间的函数关系式.并写出自变量a的取值范围.四、解答题(本题共20分,每小题5分)19.(5分)为贯彻落实云南省教育厅提出的“三生教育”,在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布和扇形统计图:根据上述信息回答下列问题:(1)a=,b=;(2)在扇形统计图中,B组所占圆心角的度数为;(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?20.(5分)如图,在平行四边形ABCD中,AB=5,BC=8,AE⊥BC于点E,cosB=,求tan∠CDE的值.21.(5分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AB=,BC=2,求⊙O的半径.22.(5分)阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数范围内无解,如果存在一个数i,使i2=﹣1,那么当x2=﹣1时,有x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:(1)i可以运算,例如:i3=i2•i=﹣1×i=﹣i,则i4=,i2011=,i2012=;(2)方程x2﹣2x+2=0的两根为(根用i表示).五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)已知关于x的方程(1﹣m)x2+(4﹣m)x+3=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)若正整数m满足8﹣2m>2,设二次函数y=(1﹣m)x2+(4﹣m)x+3的图象与x轴交于A、B两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=kx+3与此图象恰好有三个公共点时,求出k的值(只需要求出两个满足题意的k值即可).24.(7分)已知:等边△ABC中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC,BC上,且∠MON=60°.(1)如图1,当CM=CN时,M、N分别在边AC、BC上时,请写出AM、CN、MN三者之间的数量关系;(2)如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN、MN三者之间的数量关系.25.(8分)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+2ax+c的图象与y轴交于点C(0,3),与x轴交于A、B两点,点B的坐标为(﹣3,0)(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△CPB的面积最大?最大面积是多少?并求出此时点P的坐标.参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】∵32=9,∴9的算术平方根是3.故选C.2.【解答】从上面看易得:有两列小正方形第一列有3个正方形,第二层最右边有一个正方形.故选D.3.【解答】A、a2与a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,正确;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为a10÷a2=a10﹣2=a8,故本选项错误.故选B.4.【解答】根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数偶数;故其概率是=.故选:D.5.【解答】设这个多边形是n边形,根据题意得,(n﹣2)•180°=3×360°,解得n=8.故选C.6.【解答】因为丁城市的方差最小,所以丁最稳定.故选D.7.【解答】由平行四边形的性质可知:AD∥BC,BC=2DE,∴△DEF∽△BCF,且相似比为1:2,∴面积比为1:4,则△BCF的面积为4.故选D.8.【解答】根据图形知道,当直线x=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点左侧时,S=t2,t在B点右侧时S=﹣(t﹣)2+1,显然D是错误的.故选C.二、填空题(本题共16分,每小题4分)9.【解答】根据题意得:4x﹣1≥0,解得x≥.故答案为:x≥.10.【解答】根据弧长的公式l=知,该扇形的弧长为:l==π;故答案是:π.11.【解答】∵1=1,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,∴5+6+7+8+9+10+11+12+13=92=81,即第5个等式为:5+6+7+8+9+10+11+12+13=81.故答案为:5+6+7+8+9+10+11+12+13=81.12.【解答】过点O作OP⊥AB,OQ⊥BC,则OP=OQ,在△OPH和△OQG中,,故可得△OPH≌△OQG,从而可得四边形OHBG与正方形OQBP的面积,∵圆的半径为2,∴OQ=OP=,S阴影=S扇形OEF﹣S OHBG=S扇形OEF﹣S OQBP=﹣×=π﹣2.故答案为:π﹣2.三、解答题(本题共30分,每小题5分)13.【解答】原式=3﹣1﹣6×+2=1.14.【解答】①+②得,2x+x=3,解得x=1,把x=1代入②得,1﹣y=2,解得y=﹣1,故原方程组的解为:.15.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.16.【解答】(1﹣)÷=•=,当x=2时,原式=.17.【解答】据题意,得.解得x1=12,x2=2.x1不合题意,舍去.∴x=2.18.【解答】(1)把A(﹣3,4)代入y=得4=,∴k=﹣12∴反比例函数的解析式为y=﹣;(2)∵BC=a﹣(﹣3)=a+3,AC=4,∴S△ABC=×(a+3)×4=2a+6 (a>﹣3).四、解答题(本题共20分,每小题5分)19.【解答】(1)a=50﹣3﹣4﹣8﹣20=15,b=8÷50=0.16;(2)B组所占圆心角的度数为20÷50×360°=144°;(3)2000×(0.3+0.08+0.16)=1080(人),即该校平均每周做家务时间不少于4小时的学生约有1080人.故答案为15,0.16,144°.20.【解答】在△ABE中,AE⊥BC,AB=5,cosB=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴CD=AB=5.∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==.21.【解答】(1)直线CE与⊙O相切.…(1分)理由:连接OE,∵四边形ABCD是矩形,∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,…(2分)∴∠DCE+∠DEC=90°,∠ACB=∠DAC,又∠DCE=∠ACB,∴∠DEC+∠DAC=90°,∵OE=OA,∴∠OEA=∠DAC,∴∠DEC+∠OEA=90°,∴∠OEC=90°,∴OE⊥EC,…(3分)∵OE为圆O半径,∴直线CE与⊙O相切;…(4分)(2)∵∠B=∠D,∠DCE=∠ACB,∴△CDE∽△CBA,…(5分)∴,…(6分)又CD=AB=,BC=2,∴DE=1根据勾股定理得EC=,又AC==,…(7分)设OA为x,则()2+x2=(﹣x)2,解得x=,∴⊙O的半径为.…(8分)22.【解答】(1)∵i2=﹣1,∴i4=i2•i2=(﹣1)×(﹣1)=1;i2011=(i2)1005•i=(﹣1)1005•i=﹣i;i2012=(i2)1006•i=(﹣1)1006•i=i.故答案为:1,﹣i,1.(2)∵△=(﹣2)2﹣4×1×2=﹣4,i2=﹣1,∴△=4i2,∴方程x2﹣2x+2=0的两根为x==1±i,即x=1+i或x=1﹣i.故答案为:1+i或1﹣i.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)△=(4﹣m)2﹣12(1﹣m)=(m+2)2,由题意得,(m+2)2>0且1﹣m≠0.故符合题意的m的取值范围是m≠﹣2且m≠1的一切实数.(2)∵正整数m满足8﹣2m>2,∴m可取的值为1和2.又∵二次函数y=(1﹣m)x2+(4﹣m)x+3,∴m=2.…(4分)∴二次函数为y=﹣x2+2x+3.∴A点、B点的坐标分别为(﹣1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线y=kx+3经过点A、B.可求出此时k的值分别为3或﹣1.…(7分)注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案.24.【解答】(1)MN=AM﹣CN,理由是:在AM上截取AN′=CN,连接ON′,OC,OA,∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,∴OC=OA,O也是等边三角形三个角的平分线交点,∴∠OCA=∠OAB=∠OCN=×60°=30°,∴∠AOC=180°﹣30°﹣30°=120°,∴∠NCO=∠OAN′,∵在△OCN和△OAN′中,∴△OCN≌△OAN′(SAS),∴ON′=ON,∠CON=∠AON′,∵∠COA=120°,∠NOM=60°,∴∠CON+∠COM=60°,∴∠AON′+∠COM=60°,即∠NOM=∠N′OM,∵在△NOM和△N′OM中,∴△NOM≌△N′OM,∴MN=MN′,∵MN′=AM﹣AN′=AM﹣CN,∴MN=AM﹣CN.(2)MN=AM﹣CN,证明:理由是:在AM上截取AN′=CN,连接ON′,OC,OA,∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,∴OC=OA,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°﹣30°﹣30°=120°,∴∠OCN=∠OAN′=30°,∵在△OCN和△OAN′中,∴△OCN≌△OAN′(SAS),∴ON=ON′,∠CON=∠AON′∴∠N′ON=∠COA=120°,又∵∠MON=60°,∴∠MON=∠MON′=60°∵在△NOM和△N′OM中,∴△NOM≌△N′OM,∴MN=MN′,∵MN′=AM﹣AN′=AM﹣CN,∴MN=AM﹣CN.(3)解:MN=CN+AM,理由是:延长CA到N′,使AN′=CN,连接OC,OA,ON′,∵O是边AC和BC垂直平分线的交点,△ABC是等边三角形,∴OC=OA,由三线合一定理得:∠OCA=∠OAB=30°,∠AOC=180°﹣30°﹣30°=120°,∴∠OCN=∠OAN′,∵在△OCN和△OAN′中,∴△OCN≌△OAN′(SAS),∴ON′=ON,∠CON=∠AON′,∵∠COA=120°,∠NOM=60°,∴∠CON+∠AOM=60°,∴∠AON′+∠AOM=60°,即∠NOM=∠N′OM,∵在△NOM和△N′OM中,∴△NOM≌△N′OM,∴MN=MN′,∵MN′=AM+AN′=AM+CN,∴MN=AM+CN.25.【解答】(1)由题意,得:解得:.所以,所求二次函数的解析式为:y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4).(2)连接OD,AD,如右图;易求:S△OBD=×3×4=6,S四边形ACDB=S△ABD+S△ACD=×3×4+×3×2=9.因此直线OM必过线段BD,易得直线BD的解析式为y=2x+6;设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6.①当S△OBE=×9=3时,易得E点坐标(﹣2,2),则直线OE的解析式为y=﹣x,设M点坐标(x,﹣x),联立抛物线的解析式有:﹣x=﹣x2﹣2x+3,解得:x1=,x2=(舍去),∴M(,).②当S△OBE=×9=6时,同理可得M点坐标.∴M点坐标为(﹣1,4).(3)连接OP,设P点的坐标为(m,n),因为点P在抛物线上,所以n=﹣m2﹣2m+3,所以S△CPB=S△CPO+S△OPB﹣S△COB=OC•(﹣m)+OB•n﹣OC•OB=﹣m+n﹣=(n﹣m﹣3)=﹣(m2+3m)=﹣(m+)2+.因为﹣3<m<0,所以当m=﹣时,n=.△CPB的面积有最大值.所以当点P的坐标为(﹣,)时,△CPB的面积有最大值,且最大值为.。

2012年北京各区县初三数学二模(共六套)

2012年北京各区县初三数学二模(共六套)

海淀区九年级第二学期期末练习数 学 2012. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. -5的倒数是A .15B .15- C .5- D .52. 2012年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球 日”微话题,共有18 891 511人次参与了这次活动,将18 891 511用科学记数法表示(保 留三个有效数字)约为 A. 18.9⨯106 B. 0.189⨯108 C. 1.89⨯107 D. 18.8⨯1063. 把2x 2 − 4x + 2分解因式,结果正确的是A .2(x − 1)2B .2x (x − 2)C .2(x 2 − 2x + 1)D .(2x −2)24. 右图是由七个相同的小正方体堆砌而成的几何体, 则这个几何体的俯视图是A BCD 5.从1, -2, 3这三个数中,随机抽取两个数相乘,积为正数的概率是A .0B .13C .23D .16. 如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在 AB 、AC 上,将△ADE 沿DE 翻折后,点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为 A. 21B. 3C. 2D. 1A'ED ABCC. 中位数是51.5D. 众数是588.如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB = DC =2, AD =1, R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合, 点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列 图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9. 若二次根式23-x 有意义,则 x 的取值范围是 .10.若一个多边形的内角和等于540︒,则这个多边形的边数是 .11. 如图,在平面直角坐标系xOy 中,已知点A 、B 、C 在双 曲线xy 6=上,BD ⊥x 轴于D , CE ⊥ y 轴于E ,点F 在x 轴上, 且AO =AF , 则图中阴影部分的面积之和为 .12.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,则挪动的珠子数为 颗; 当挪动n 颗 珠子时(n 为大于1的整数), 所得分数为 (用含n 的代数式表示).FE R P B C D A班级三、解答题(本题共30分,每小题5分) 1311|5|()3tan604---+︒.14.解方程:6123x x x +=-+.15. 如图,AC //EG , BC //EF , 直线GE 分别交BC 、BA 于P 、D ,且AC=GE , BC=FE . 求证:∠A =∠G .16.已知2220a a --=,求代数式221111121a a a a a --÷--++的值.17. 如图,一次函数的图象与x 轴、y 轴分别交于点A (-2, 0)、B (0, 2). (1)求一次函数的解析式;(2)若点C 在x 轴上,且OC =23, 请直接写出∠ABC 的度数.18. 如图,在四边形ABCD 中,∠ADB =∠CBD =90︒,BE//CD 交AD 于E , 且EA=EB .若AB=54,DB =4, 求四边形ABCD 的面积.GF E D CA P EDCA四、解答题(本题共20分,第19题、第20题各5分,第21题6分,第22题4分) 19. 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近的甲、乙两家图文社印制此种宣传单的收费标准如下: 甲图文社收费s (元)与印制数t (张)的函数关系如下表:乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过 2 000张,均按每张0.09元收费.(1)根据表中给出的对应规律,写出甲图文社收费s (元)与印制数t (张)的函数关系式; (2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单?(3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家图文社中选择 图文社更省钱.20.如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线; (2)若BC=4,1tan 2D =,求CD 和AD 的长.21. 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了 为期半个月的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D : 较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C 类女生有 名,D 类男生有 名,将上面条形统计图补充完整; (3)为了共同进步,李老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位 男同学和一位女同学的概率.类别50%25%15%D C B A22.阅读下面材料:小明遇到这样一个问题:我们定义: 如果一个图形绕着某定点旋转一定的角度α (0︒ <α <360︒) 后所得的图形与原图形重合,则称此图形是旋转对称图形. 如等边三角形就是一个旋转角为120︒的旋转对称图形. 如图1,点O 是等边三角形△ABC 的中心, D 、E 、F 分别为AB 、BC 、 CA 的中点, 请你将△ABC 分割并拼补成一个与△ABC 面积相等的新的旋转对称图形.图1小明利用旋转解决了这个问题,图2中阴影部分所示的图形即是与△ABC 面积相等的新的旋转对称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题:如图3,在等边△ABC 中, E 1、E 2、E 3分别为AB 、 BC 、CA 的中点,P 1、P 2, M 1、M 2, N 1、N 2分别为 AB 、BC 、CA 的三等分点. (1)在图3中画出一个和△ABC 面积相等的新的旋转 对称图形,并用阴影表示(保留画图痕迹); (2)若△ABC 的面积为a ,则图3中△FGH 的面积为 .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点. (1)求m 的取值范围;(2)若m >1, 且点A 在点B 的左侧,OA : OB =1 : 3, 试确定抛物线的解析式;(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线 l 翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线13y x b =+与新图象只有一个公共点P (x 0, y 0)且 y 0≤7时, 求b 的取值范围.E 3 E 1 E 2P 1 P 2 N 1N 22 1 B A图3 GFH24. 如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A , 顶点为B , 且对称轴与x 轴交于点C .(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式; (3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐 标.备用图25. 在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中 点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E 为CF 的中点,试探究BN 与NE 的位置关系及BMCE的值, 并证明你的结论; (2)如图2,且若AB =BC , 点M 、A 不重合, BN =NE ,你在(1)中得到的两个结论是否成立, 若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图1 图2 图3A N DA C E D NM B F E C B F N M E C B海淀区九年级第二学期期末练习数学试卷答案及评分参考 2012. 6说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共32分,每小题4分)1. B2. C3. A4. C5. B6. D7. D8. C 二、填空题(本题共16分,每小题4分)9.23x ≥10. 5 11. 12 12.8; 21n n +- (每空各 2分) 三、解答题(本题共30分,每小题5分) 13115()3tan604---+︒=54-+ …………………………………………………4分=1. …………………………………………………5分14.解:去分母,得 ()()()()63223x x x x x ++-=-+. ………………………………2分2261826x x x x x ++-=+-. ……………………………………………………3分 整理,得 324x =-. 解得 8x =-. ………………………………………………………………4分 经检验,8x =-是原方程的解. 所以原方程的解是8x =-. ……………………………………………………5分15.证明:∵ AC //EG ,∴ C CPG ∠=∠. …………1分 ∵ BC //EF ,∴ CPG FEG ∠=∠.∴ C FEG ∠=∠. …………………………………………2分在△ABC 和△GFE 中,,,,AC GE C FEG BC FE =⎧⎪∠=∠⎨=⎪⎩ ∴ △ABC ≌△GFE . …………………………………………………4分∴A G ∠=∠. …………………………………………………5分16. 解:原式=()()()21111111a a a a a +-⋅-+-- ……………………………………………2分 =()21111a a a +--- …………………………………………………3分 =22.(1)a -- …………………………………………………4分由2220a a --=,得 2(1)3a -=.∴ 原式=23-. …………………………………………………5分 GFEDC AP17.解:(1)依题意设一次函数解析式为2y kx =+. …………………………………1分∵ 点A (2,0-)在一次函数图象上, ∴022k =-+. ∴ k =1. ……………………………………………………2分 ∴ 一次函数的解析式为2y x =+. …………………………………3分 (2)ABC ∠的度数为15︒或105︒. (每解各1分) ……………………5分18.解: ∵∠ADB =∠CBD =90︒,∴ DE ∥CB . ∵ BE ∥CD , ∴ 四边形BEDC 是平行四边形. ………1分 ∴ BC=DE .在Rt △ABD 中,由勾股定理得8AD =. ………2分设DE x =,则8EA x =-. ∴8EB EA x ==-.在Rt △BDE 中,由勾股定理得 222DE BD EB +=.∴ 22248x x +=-(). ……………………………………………………3分 ∴ 3x =.∴ 3BC DE ==. ……………………………………………………4分 ∴1116622.22ABD BDC ABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形 ………… 5分 四、解答题(本题共20分,第19题、第20题各5分,第21题6分, 第22题4分)19.解:(1)甲图文社收费s (元)与印制数t (张)的函数关系式为0.11s t =. ……1分(2)设在甲、乙两家图文社各印制了x 张、y 张宣传单, 依题意得 {1500,0.110.13179.x y x y +=+= ………………………………………… 2分解得800,700.x y =⎧⎨=⎩……………………………………………… 3分答:在甲、乙两家图文社各印制了800张、700张宣传单. ………………4分(3) 乙 . ……………………………………………………… 5分20.(1)证明:连结OC .∴ ∠DOC =2∠A . …………1分 ∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°.∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. ………………………………………………2分 (2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4,∴ CE =12BC =2.∵ BC //AO , ∴ ∠OCE =∠DOC .D EC BA∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒,∴ ∠COE =∠D . ……………………………………………………3分 ∵tan D =12, ∴tan COE ∠=12. ∵∠OEC =90︒, CE =2,∴4tan CEOE COE==∠.在Rt △OEC 中, 由勾股定理可得OC ==在Rt △ODC 中, 由1tan 2OC D CD ==,得CD =, ……………………4分由勾股定理可得 10.OD =∴10.AD OA OD OC OD =+=+= …………………………………5分 21.解:(1)(64)50%20+÷=. 所以李老师一共调查了20名学生. …………………1分 (2)C 类女生有 3 名,D 类男生有 1 名;补充条形统计图略.说明:其中每空1分,条形统计图1分. ……………………………………4分 (3)解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=. ………………6分 22.解:(1)画图如下:(答案不唯一) …………………………………2分图3从D 类中选取从A 类中选取女女男男女女男女男(2)图3中△FGH 的面积为7a. …………………………………4分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵ 抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m ì- ïïíïD =-+->ïî由①得1m ¹, 由②得0m ¹,∴ m 的取值范围是0m ¹且1m ¹. ……………………………………………2分 (2)∵ 点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴ 令0y =,即 2(1)(2)10m x m x -+--=. 解得 11x =-,211x m =-. ∵1m >, ∴10 1.1m >>-- ∵ 点A 在点B 左侧,∴ 点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -. …………………………3分 ∴ OA=1,OB =11m -. ∵ OA : OB =1 : 3,∴131m =-. ∴ 43m =.∴ 抛物线的解析式为212133y x x =--. ………………………………………4分 (3)∵ 点C 是抛物线212133y x x =--与y 轴的交点,∴ 点C 的坐标为(0,1)-.依题意翻折后的图象如图所示.令7y =,即2121733x x --=. 解得16x =, 24x =-.∴ 新图象经过点D (6,7). 当直线13y x b =+经过D 点时,可得5b =.① ② …………………………………………1分当直线13y x b =+经过C 点时,可得1b =-.当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0, y 0)时,得20001121333x b x x +=--.整理得 2003330.x x b ---=由2(3)4(33)12210b b D =----=+=,得74b =-结合图象可知,符合题意的b 的取值范围为15b -<≤或4b <-. ……………7分 24.解:(1)∵22222221212112()()4422y x x x mx m m x m m m m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -. ……………………………1分(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线x x my 222-=与x 轴负半轴交于点A , ∴ A (m , 0), 且m <0. …………………………………………………2分过点D 作DF ⊥x 轴于F . 由 D 为BO 中点,DF //BC , 可得CF =FO =1.2CO ∴ DF =1.2BC由抛物线的对称性得 AC = OC . ∴ AF : AO =3 : 4. ∵ DF //EO ,∴ △AFD ∽△AOE . ∴.FD AFOE AO= 由E (0, 2),B 11(,)22m m -,得OE =2, DF =14m -.∴134.24m-=∴ m = -6.∴ 抛物线的解析式为2123y x x =--. ………………………………………3分(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=,直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO于M ,则M 即为所求. 由A (-6,0),C ' (0, 3),可得直线AC '的解析式为321+=x y .由13,2y x y x⎧=+⎪⎨⎪=-⎩ 解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2). ……………4分由点P 在抛物线2123y x x =--上,设P (t ,213t - (ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G ,过P 1作P 1H ⊥ BC 于H , 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H = AG =4. ∴ t -(-3)=4. ∴ t =1.∴17(1,)3P -. ……………………5分 如右图,同 方法可得 P 2H=AG =4. ∴ -3- t =4. ∴ t =-7.∴27(7,)3P --. ……………………6分 (ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥ x 轴于G , 则x H = x B =-3,x G =3P x =t . 由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG = MH =1. ∴ t -(-6)=1. ∴ t =-5. ∴35(5,)3P -. ……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P-. 25. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC , ∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°. ∴ EG//CD , ∠EGN =∠A , ∠CDF =90°. ………………………………1分 ∵ E 为CF 的中点,EG//CD ,∴ GF =DG =11.22DF CD =∴ 1.2GE CD =∵ N 为MD (AD )的中点, ∴ AN =ND =11.22AD CD = ∴ GE =AN , NG=ND+DG=ND+AN=AD=AB . ……………………………2分 ∴ △NGE ≌△BAN . ∴ ∠1=∠2. ∵ ∠2+∠3=90°, ∴ ∠1+∠3=90°. ∴ ∠BNE =90°. ∴ BN ⊥NE . ……………………………………………………………3分 ∵ ∠CDF =90°, CD =DF , 可得 ∠F =∠FCD =45°,CFCD= .于是12CFCE CE CE BM BA CD CD ==== ……………………………………4分 (2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .∵ 四边形ABCD 是矩形,∴ AB ∥CG .∴ ∠MBN =∠DGN ,∠BMN =∠GDN . ∵ N 为MD 的中点,∴ MN =DN .∴ △BMN ≌△GDN .∴ MB =DG ,BN =GN . ∵ BN =NE ,∴ BN =NE =GN . ∴ ∠BEG =90°. ……………………………………………5分 ∵ EH ⊥CE , ∴ ∠CEH =90°. ∴ ∠BEG =∠CEH . ∴ ∠BEC =∠GEH . 由(1)得∠DCF =45°. ∴ ∠CHE =∠HCE =45°.HGA BC DEM N F 321GFEA (M )CD NB∴ EC=EH , ∠EHG =135°.∵∠ECB =∠DCB +∠HCE =135°, ∴ ∠ECB =∠EHG . ∴ △ECB ≌△EHG . ∴ EB =EG ,CB =HG . ∵ BN =NG ,∴ BN ⊥NE. ……………………………………………6分∵ BM =DG= HG -HD= BC -HD =CD -,∴CE BM. ……………………………………………7分(3)BN ⊥NE ;CEBM.………………………………………………8分丰台区2012年初三统一练习(二)数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的绝对值是A .12-B .12C .2D .2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12 B .13 C .14 D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14B .12C .34D .1 5.若20x +=则 y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=EDCBA7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行 的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x xC .30528002800=-x xD .30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分)9有意义,则x 的取值范围是 . 10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒. 12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…, 利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分) 13.计算:()︒⎪⎭⎫⎝⎛+45sin 4-211-3-272-03.14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.DOCBA15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;B21DOCBAMFEBCDA(2)如果OD=1,tan∠OCA=2,求AC的长.22.小杰遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答:(1)图2中AH的长等于.(2)如果AC=a,EF=b,那么AH的长等于.B A DCEFHGHFEDAB图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点PP 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图2AEFPB D CCE AD F P25.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --= , ∴223a a -=. (3)分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明: ∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 , OA=OB ,∠AOC =∠BOD , CO=DO .∴△COA ≌△DOB .……….4分 ∴∠C =∠D . …………….5分17.解:(1) 反比例函数ky x= 的图象经过点A (-1,1) ,∴-11-1k =⨯=.…………1分 (2)P 1(0、 P 2(0,、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分) 19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF . ∴四边形EFBD 为平行四边形.……2分∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于23.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去.综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°. 过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21. ∵PQNQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分 ∴二次函数的解析式为:22y x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’, 设对称轴x =3与x 轴交于点D ,∴OD =3.∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’,在Rt △OC ’D 中,根据勾股定理C ’D =1.7654321NMCD BPFEA∴C ’(3,1).……6分 (3) 120°,4.……8分2012年门头沟区初三年级第二次统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1. 4-的倒数是 A.4-B.4C. D. 2. 在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.将 0.000 0963用科学记数法表示为A. 51063.9⨯ B. 51063.9-⨯ C. 41063.9-⨯ D. 31063.9-⨯ 3. 下列交通标志中既是中心对称图形,又是轴对称图形的是4. 五边形的内角和是A.360°B.540°C.720°D.900° 5. 为了支援地震灾区同学,某校开展捐书活动, 九(1)班40名同学积极参与.现将捐书数量 绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是A. 0.1B. 0.2C. 0.3D. 0.46. 某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公41-41A. B. C. D.EDCB A顷产量的两组数据,两组数据的平均数相同,其方差分别为s 甲2=0.002、s 乙2=0.03,则下列说法正确的是 A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定7.关于x 的一元二次方程032=-+m x x 有两个不相等的实数根,则m 的取值范围是 A. B. C. D.8. 如图,已知MN 是圆柱底面直径,NP 是圆柱的高.在圆柱的侧面上, 过点M 、P 嵌有一圈路径最短的金属丝.现将圆柱侧面沿NP 剪开,所得的侧面展开图是A. B. C. D.二、填空题(本题共16分,每小题4分)9. 分解因式:22344xy y x x +-= . 10. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点, 若32=BD AD ,AE =3,则AC = . 11.一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元. 该商场为促销决定:买1支毛笔就赠送1本书法练习本. 某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (10≥x )本, 则付款金额y (元)与练习本个数x (本)之间的函数关系式是 .12. 一组按规律排列的式子:22b a ,432b a -,843b a ,1654b a -,…,其中第6个式子是 ,第n 个式子是 (n 为正整数).三、解答题(本题共30分,每小题5分) 13.计算:4)3(45sin 80-+-+︒-π14.解不等式组:()⎪⎩⎪⎨⎧<-+≤+321234xx x x15.已知:3=x ,求2212-÷-x x x x 的值.PNM P /N /PN M P /N /P N M P /N /P N M M /P /N/PNM 121>m 121<m 121->m 121-<m16. 已知:如图,点E 、F 分别为□ABCD 的BC 、AD 边上的点,且∠1=∠2. 求证:AE =FC .17. 如图,已知反比例函数y =x6(x >0)的图象与一次函数y =kx +b 的图象交于点A (1,m ),B (n ,2)两点. (1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x 的取值范围.18. 列方程或方程组解应用题某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)19.已知:如图,四边形ABCD 中,BC =CD =DB ,∠ADB =90°,sin ∠ABD =54,S △BCD =39. 求四边形ABCD 的周长.20. 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径. 点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足 为D .(1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长.21.甲学校到丙学校要经过乙学校. 从甲学校到乙学校有A 1、A 2、A 3三条线路,从乙学校到丙学校有B 1、B 2二条线路.(1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果; (2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了B 1线路的概率是多21F EDCBA DC BA少?23. 已知抛物线y =ax 2+x +2.(1)当a =-1时,求此抛物线的顶点坐标和对称轴; (2)若代数式-x 2+x +2的值为正整数,求x 的值;(3)若a 是负数时,当a =a 1时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点M (m ,0);当a =a 2时,抛物线y =ax 2+x +2与x 轴的正半轴相交于点N (n ,0). 若点M 在点N 的左边,试比较a 1与a 2的大小.24. 有两张完全重合的矩形纸片,小亮将其中一张绕点A 顺时针旋转90°后得到矩形AMEF(如图1),连结BD 、MF ,此时他测得BD =8cm ,∠ADB =30°. (1)在图1中,请你判断直线FM 和BD 是否垂直?并证明你的结论;(2)小红同学用剪刀将△BCD 与△MEF 剪去,与小亮同学继续探究.他们将△ABD 绕点A 顺时针旋转得△AB 1D 1,AD 1交FM 于点K (如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,请直接写出旋转角β的度数;(3)若将△AFM 沿AB 方向平移得到△A 2F 2M 2(如图3),F 2M 2与AD 交于点P ,A 2M 2与BD 交于点N ,当NP ∥AB 时,求平移的距离是多少.25. 如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为 ,点A 、D 的坐标分别为(-4,0),(0,4). 动点P 从A 点出发,在AB 边上匀速运动. 动点Q 从点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外). (1)求出点C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时,S 有最大值?并求出这个最大值.C D MB FE图1D M B图3N 2P 2M 2 D MBFD 1图2B 1K31634+-=x y2012年门头沟数学二模评标一、选择题1.C2.B3.D4.B5.B6.A7.C8.A 二、填空题9.2)2(y x x - 10.215 11. 2005+=x y 12. 6476b a -,n n n n b a 2)1(11++- 三、解答题(本题共30分,每小题5分) 13.解:原式=412222++-……………………………………4分 =5223+ ………………………………………….5分 14. ()⎪⎩⎪⎨⎧<-+≤+)2(321)1(234 xx x x解:由(1)得,1-≥x …………………………………….2分由(2)得,x<3 ………………………………………4分 不等式组的解集是31<≤-x ………………………5分 15.解:2212-÷-x xx x =xx x x x )1(2)1)(1(-⋅-+ ………………………..3分 =12+x ……………………………………..4分 当x=3时,原式=12+x =132+=21…………………………5分16.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D. ………………………….2分 ∵∠1=∠2,……………………………………….3分△ABE ≌△CDF. ………………………………4分 AE=CF. ………………………………………5分17.解:(1)由题意得,m=6,n=3.∴A (1,6),B (3,2). …………………………2分由题意得,⎩⎨⎧=+=+236b k b k解得,⎩⎨⎧=-=82b k∴一次函数解析式为y=-2x+8. ……………………3分21FEDC B A(2)反比例函数的值大于一次函数的值的x 的取值范围是0<x<1或x>3. …..5分 18.解:设甲组每天修桌凳x 套,则乙组每天修桌凳为1.5x 套. …………………………..1分由题意得,205.1960960+=xx …………………………………………….3分 解得,x=16 ………………………………………………………………………4分经检验,x=16是原方程的解,且符合实际意义.1.5x=1.5⨯16=24 …………………………………………………………..5分 答:甲组每天修桌凳16套,乙组每天修桌凳为24套. 19.解:过C 作CE ⊥BD 于E. ∵∠ADB =90°,sin ∠ABD =54, ∴AD=4x,AB=5x. ………………………..1分 ∴DB=3x∵BC =CD =DB ,∴DE=x 23,∠CDB=60°. ………………………2分 ∴tan ∠CDB=DECE∴CE=x 233. ……………………………3分 ∵S △BCD =39, ∴3921=⋅⋅CE BD ∴ x=2. ………………………………………….4分 ∴AD=8,AB=10,CD=CB=6.∴四边形ABCD 的周长=AD+AB+CD+CB=30. ……………………………..5分 20.(1)证明:连接OC, ∵OA=OC,∴∠OCA=∠OAC. ∵CD ⊥PA , ∴∠CDA=90°,∴∠CAD+∠DCA=90°, ∵AC 平分∠PAE ,∴∠DAC=∠CAO. ………………………1分∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°. ∴CD 为⊙O 的切线. …………………………2分 (2)解:过O 作OF ⊥AB ,垂足为F , ∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形, ∴OC=FD ,OF=CD.∵DC+DA=6,设AD=x ,则OF=CD=6-x , ……………………3分EDCBA∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x ,在Rt △AOF 中,由勾股定理得222AF +OF =OA . 即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =(舍). ………………………4分 ∴AD=2, AF=5-2=3. ∵OF ⊥AB ,AB=2AF=6. ………………………..5分 21.(1)………………………………..2分结果:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2) ………….4分(2)小张恰好经过了B 1线路的概率是21………………………………………….6分22.(1)正确 ……………………………….2分(一个1分) (2)正确 ………………………………..4分 23. 当a=-1时,y=-x 2+x+2,∴a=-1,b=1,c=2. ∴抛物线的顶点坐标为(21,49),对称轴为直线x=21.……2分 (2)∵代数式-x 2+x+2的值为正整数,∴函数y=-x 2+x+2的值为正整数.又因为函数的最大值为49,∴y 的正整数值只能为1或2. 当y=1时,-x 2+x+2=1,解得2511+=x ,2512-=x …………3分 当y=2时,-x 2+x+2=2,解得x 3=0,x 4=1.……………4分∴x 的值为2511+=x ,2512-=x ,0或1. (3) 当a <0时,即a 1<0,a 2<0.B 2B 2B 1B 1B 2B 1A 3A 2A 1经过点M 的抛物线y=a 1x 2+x+2的对称轴为121a x -=, 经过点N 的抛物线y=a 2x 2+x+2的对称轴为221a x -=.…………5分∵点M 在点N 的左边,且抛物线经过点(0,2)∴直线121a x -=在直线221a x -=的左侧……………6分∴121a -<221a -. ∴a 1<a 2.…………………………………………………………7分24. 解:(1)垂直. …………………………1分证明:延长FM 交BD 于N.如图1,由题意得:△BAD ≌△MAF .∴∠ADB =∠AFM .又∵∠DMN =∠AMF , ∴∠ADB +∠DMN =∠AFM +∠AMF =90°.∴∠DNM =90°,∴BD ⊥MF . ······································································· 2分 (2)β的度数为60°或15°(答对一个得1分) ····················································· 4分 (3)如图2,由题意知四边形PNA 2A 为矩形,设A 2A =x ,则PN =x .在Rt △A 2M 2F 2中,∵M 2F 2=MF =BD =8,∠A 2F 2M 2=∠AFM =∠ADB =30°. ∴M 2A 2=4,A 2F 2=34. …………………………..5分 ∴AF 2=34-x .在Rt △P AF 2中,∵∠PF 2A =30°. ∴AP =AF 2tan ·30°=(34-x )·33=4-33x . ∴PD =AD -AP =34-4+33x . ……………..6分D M A BF图2NF 2P A 2M 2 C DMB FE图1N∵NP ∥AB ,∴ABPN =DA DP .∴4x=3433434x +-,解得x =6-32.即平移的距离是(6-32)cm . (7)分25. 解:(1)把y =4代入y =-43x +163,得x =1. ∴C 点的坐标为(1,4). ……………………………………….1分(2) 当y =0时,-43x +163=0,∴x =4.∴点B 坐标为(4,0).过点C 作CM ⊥AB 于M ,则CM =4,BM =3. ∴BC5.∴sin ∠ABC =CMBC=45.① 0<t <4时,过Q 作QN ⊥OB 于N ,则QN =BQ ·sin ∠ABC =45t.∴S =12OP ·QN =12(4-t )×45t =-25t 2+85t (0<t <4). ……………2分②当4<t ≤5时,连接QO ,QP ,过点Q 作QN ⊥OB 于N .同理可得QN =45t .∴S =12OP ·QN =12×(t -4)×45t .=25t 2-85t (4<t ≤5). …………………………….3分③当5<t ≤6时, 连接QO ,QP . S =12×OP ×OD =12(t -4)×4.=2t -8(5<t ≤6). ……………………………….4分S 随t 变化的函数关系式是⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-<<+-)65(82)54(5852)40(585222t t t t t t t t .(3)①当0<t <4时,∵-25<0当t =8522()5⨯-=2时,S 最大=28()54()5-⨯-=85. ……………………………5分 ②当4<t ≤5时, S =25t 2-85t ,对称轴为t =-85225-⨯=2,∵25>0 ∴在4<t ≤5时,S 随t 的增大而增大.∴当t =5时,S 最大=25×52-85×5=2. …………………………..6分③当5<t ≤6时,在S =2t -8中,∵2>0,∴S 随t 的增大而增大.∴当t =6时,S 最大=2×6-8=4. …………………………………………7分∴综合三种情况,当t =6时,S 取得最大值,最大值是4. ………………………8分顺义区2012届初三第二次统一练习数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯ B .49.110⨯ C .49110⨯ D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a bb -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-。

2012年北京大兴区中考二模数学试卷

2012年北京大兴区中考二模数学试卷

2012年北京大兴中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.-3的相反数是A .13B .-13C .-3D .32.在下列运算中,计算正确的是 A . 725)(x x B . 222)(y x y x C . 10313x x xD . 633xx x 3.数据1,2,3,4,5的平均数是A .1B .2C .3D .44.如图,在△ABC 中,D 、E分别是AB 、AC 的中点,若DE=5,则BC 为 A .2.5 B .10 C .12 D .255.用配方法将代数式245a a 变形,结果正确的是变形A .2(2)1aB.2(2)5aC .2(2)9aD .2(2)4a 6.图1是一个底面为正方形的直棱柱金属块,因设计需要将它切去一角,如图2所示,则切去后金属块的俯视图是6. 如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A .30°B .50°C .45°D .60°8.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△CMN 的面积为y ,则y 关于x 的函数图象大致形状是二、填空题(本题共16分,每小题4分) 9.如果分式11 x x 的值是零,那么x 的取值是.10.2012年3月12日,国家财政部公布全国公共财政收入情况,1-2月累计,全国财政收入20918.28亿元,这个数据用科学记数法表示并保留两个有效数字........为 亿元.11.如图,⊙O 的半径为6,点A 、B 、C 在⊙O 上,且∠ACB =45°, 则弦AB 的长是 .12.已知:如图, 互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共有个平行四边形, ……,第n 个图形中一共有平行四边形的个数为个.三、解答题(本题共30分,每小题5分) 13.计算:4145sin 2322214.解分式方程:451x x 15.已知:如图,∠ABC=90°,DC ⊥BC ,E ,F 为BC 上两点,且BE CF ,AB DC .求证:ABF DCE △≌△;16.先化简,再求值:24(1)(21)3x x x x,其中13x .17.如图,在平面直角坐标系xOy 中,一次函数2y x 的图象与反比例函数ky x的图象的一个交点为A (-1,n ).(1)求反比例函数ky x的解析式; (2)若P 是坐标轴上一点(点P 不与点O 重合),且PA=OA ,试写出点P 的坐标.18.某小型超市购进了两批相同品种的水果,第一批用了200元,第二批用了550元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. 求第一批购进水果多少千克?四、解答题(本题共20分,每小题5分)19.甲、乙两人同时从某地A出发,甲以60米/分钟的速度沿北偏东30°方向行走,乙沿北偏西45°方向行走,10分钟后甲到达B点,乙正好到达甲的正西方向的C点,此时甲、乙两人之间的距离是多少米?20.PMI指数英文全称Purchase Management Index,中文翻译为采购经理指数.PMI是一套月度发布的、综合性的经济监测指标体系,分为制造业PMI、服务业PMI.PMI是通过对采购经理的月度调查汇总出来的指数,反映了经济的变化趋势.下图来源于2012年3月2日的《都市快报》,反映了2011年2月至2012年2月期间我国制造业PMI指数变化情况,请根据以上信息并结合制造业PMI图,解答下列问题:(1)在以上各月PMI指数,中位数是;(2)观察制造业PMI指数图,下列说法正确的有(请填写序号):①我国制造业PMI指数从2011年11月至2012年2月连续三个月回升,并创下四个月新高;②自2011年2月至2012年2月我国制造业每月PMI指数较前一月下降的次数是10次.21.如图,以△ABC 的边AB 为直径的⊙O 与边BC 交于点D ,过点D 作DE ⊥AC ,垂足为E ,延长AB 、ED交于点F ,AD 平分∠BAC . (1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径 为2,AE =3,求BF 的长.22.阅读材料1:把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“分割——重拼”.如图1,一个梯形可以分割——重拼为一个三角形;如图2,任意两个正方形可以分割——重拼为一个正方形.(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;阅读材料2:如何把一个矩形ABCD (如图6)分割——重拼为一个正方形呢?操作如下:①画辅助图:作射线OX ,在射线OX 上截取OM =AB ,MN =BC .以ON 为直径作半圆,过点M 作MI ⊥OX ,与半圆交于点I ;②如图6,在CD 上取点F ,使AF =MI ,作BE ⊥AF ,垂足为E .把△ADF 沿射线DC 平移到△BCH 的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.(2)请依据上述操作过程证明得到的四边形EBHG是正方形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)24.已知二次函数y=ax2+bx+2,它的图像经过点(1,2).(1)如果用含a的代数式表示b,那么b=;(2)如图所示,如果该图像与x轴的一个交点为(-1,0).①求二次函数的解析式;②在平面直角坐标系中,如果点P到x轴的距离与点P到y轴的距离相等,则称点P为等距点.求出这个二次函数图像上所有等距点的坐标.(3)当a取a1,a2时,二次函数图像与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小,并说明理由.25.已知抛物线y = x2 + bx ,且在x轴的正半轴上截得的线段长为4,对称轴为直线x = c.过点A的直线绕点A (c ,0 ) 旋转,交抛物线于点B ( x ,y ),交y轴负半轴于点C,过点C且平行于x轴的直线与直线x = c交于点D,设△AOB的面积为S1,△ABD的面积为S2.(1)求这条抛物线的顶点的坐标;(2)判断S1与S2的大小关系,并说明理由.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(共8道小题,每小题4分,共32分)二、填空题(共4道小题,每小题4分,共16分)三、解答题(本题共30分,每小题5分)13.解:原式=412222441 ……………………………………………………4分=2421…………………………………………………………………………5分 14.解:方程的两边同乘)4( x x ,得x x 54 ………………………………………………………………………………2分解得:1 x ……………………………………………………………………………3分检验:把1 x 代入)4(x x 05…………………………………………………4分∴原方程的解为:1 x . …………………………………………………………………5分15.证明:(1)BE CF Q ,∴BE EF CF EF ,BF CE 即.…………………………………………………………………………………1分Q ∠ABC=90°,DC ⊥BC∴∠ABC=∠DCE=90°………………………………………………………………………3分在ABF △和DCE △中,CE BF DCE ABC DCAB ABF DCE △≌△.…………………………………………………………………………5分16.解:原式=2244(441)3x x x x x………………………………………………2分=22444413x x x x x………………………………………………3分=31x.…………………………………………………………………………4分当13x 时,原式=312x.…………………………………………………………5分17.解:(1)∵ 点A (1,)n 在一次函数2y x 的图象上,∴ 2(1)2n .∴ 点A 的坐标为12 (,).分∵ 点A 在反比例函数ky x的图象上,∴ 2k .∴ 反比例函数的解析式为2y x. 分(2)点P 的坐标为(2,0)(0,4)或.………………………………………………………5分18.解:设第一批购进水果x 千克,则第二批购进水果2.5x 千克,…………………………1分依据题意得:,12005.2550 xx ………………………………………………………………………………3分解得x=20,经检验x=20是原方程的解,且符合题意……………………………………………………4分 答:第一批购进水果20千克;………………………………………………………………5分 四、解答题(本题共20分,每小题5分)19.解:过A 作BC AD 交BC 于D ,则 30BAD ,45CAD ∵BCAD∴ 90ADB ,90ADC ∵ 30BAD , 90ADB ,6001060 AB ∴3006002121 AB BD ………………………………………………………2分DAB AB AD cos 30cos 6003300 ……………………………………3分∵ 90ADC , 45CAD ,3300 AD ∴3300 AD CD …………………………………………………………………4分∵BDCD BC ∴3003300 BC …………………………………………………………………5分答:甲乙两人之间的距离是)3003300( 米20.解:(1)50.9;…………………………….…………………………………………….2分(2)①……………………………………………………………………………….5分21. 解:(1)连接OD .∵OA=OD∴∠OAD =∠ODA .∵AD 平分∠BAC∴∠OAD =∠CAD ,∴∠ODA =∠CAD .∴OD ∥AC .………………………………………………1分∵DE ⊥AC ,∴∠DEA =∠FDO=90°∴EF ⊥OD .∴EF 是⊙O 的切线. ……………………………………2分(2)设BF 为x .∵OD ∥AE ,∴△ODF ∽△AEF . ……………………………………3分 ∴OD OF AE AF ,即2234x x . 解得 x =2∴BF 的长为2. ……………………………………5分22.(1)分割正确,且画出的相应图形正确……………………………………………………2分(2)证明:在辅助图中,连接OI 、NI .∵ON 是所作半圆的直径,∴∠OIN =90°.∵MI ⊥ON ,∴∠OMI =∠IMN =90°且∠OIM =∠∴△OIM ∽△INM .∴OM IM =IM NM .即IM 2=OM ·NM .…………………………………………………3分 ∵OM=AB ,MN=BC∴IM 2 = AB ·BC∵AF=IM∴AF 2=AB ·BC=AB ·AD .∵四边形ABCD 是矩形,BE ⊥AF ,∴DC ∥AB,∠ADF =∠BEA =90°.∴∠DF A =∠EAB .∴△DF A ∽△EAB .∴AD BE =AF AB .即AF ·BE =AB ·AD=AF 2.∴AF =BE .………………………………………………………………………4分 ∵AF=BH∴BH =BE .由操作方法知BE ∥GH ,BE =GH .∴四边形EBHG 是平行四边形.∵∠GEB =90°,∴四边形EBHG 是正方形.……………………………………………………5分图⑤ 图⑥ 图⑦图⑧ 图⑨图① 图② 图③ 图④五、解答题(本题满分7分)23.解:(1)结论:PD PE PF AB ……………………2分证明:过点P 作MN ∥BCPF AB Q ∥四边形BMPD 是平行四边形BM PD ……………………………………………3分PE AC PF AB Q ∥,∥四边形AEPF 是平行四边形PF AE ……………………………………………4分AB AC Q B C∠∠又PE AC PF AB Q ∥,∥,MN ∥BC∠C ∠ANM =EPMB ∠∠AMNAMN EPMPE MEAE ME MB ABQ PD PE PF AB …………………………………………5分(2)结论:PE PF PD AB ……………………………7分六、解答题(本题满分7分)24.解:(1)a ……………………………………………1分(2)①∵二次函数c bx ax y 2经过点(1,2)和(-1,0) 0222b a b a 解,得 11b a 即22x x y …………………………………………………………………………2分②该函数图像上等距点的坐标即为此函数与函数x y 1和函数x y 2的交点坐标 x y x x y 22, xy x x y 22解得P 1(2,2) P 2(2,2 )P 3(31,31 ) P 4(13,31 )……………………………………………………4分(3) ∵二次函数与x 轴正半轴交于点M (m ,0)且b a当a =1a 时∴02121 m a m a ∴212m m a同理 02222 n a n a 222n n a ∴)1)(1()1)((2222212n m mn n m n m m m n n a a∵1n m ∴212()(1)0(1)(1)m n m n a a mn m n∴12a a ………………………………………………………………………………………7分七、解答题(本题满分8分)25.解:(1)∵ 抛物线y =x 2+bx ,在x 轴的正半轴上截得的线段的长为4,∴ A (2,0),图象与x 轴的另一个交点E 的坐标为 (4,0),对称轴为直线x =2. ∴ 抛物线为 y = x 2 +b x 经过点E (4,0) .∴ b = -4,∴ y = x 2 -4x .∴ 顶点坐标为(2,-4). ………… 2分(2) S 1与S 2的大小关系是:S 1 = S 2 ………… 3分理由如下:设经过点A (2,0)的直线为y=kx+b (k ≠0).∴ 0 =2k +b .∴ k =21 b .∴ y =b x b 2.∴ 点B 1的坐标为(x 1 ,b x b12), 点B2的坐标为(x 2 ,b x b 22). 当交点为B 1时,b x b b x b S 11122221, 12221x b S b x b x b 112)2(2. 21S S .……………………………………… 5分当交点为B 2时,b x b b x b S 2212222122122 x b S =b x b x b 222)2(2. ∴ S 1 = S 2.综上所述,S 1 = S 2.…………………………………………………………… 8分 说明:以上各题的其它解法只要正确,请参照本评分标准给分。

2012年北京通州区中考二模数学试卷

2012年北京通州区中考二模数学试卷

俯视图主视图左视图2012年北京通州中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.3的相反数是( ) A .31B .31C .3D .32.在函数12y x中,自变量x 的取值范围是( ) A .2xB .2x C .2x D .2x 3.下列运算正确的是 A .xy y x 532 B .aa a 23C .bb a a )(D .2(1)(2)2a a a a4.如图是某个几何体的三视图,则该几何体是( )A .长方体B .三棱柱C .圆柱D .圆台5.下列判断正确的是( )A .“打开电视机,正在播NBA 篮球赛”是必然事件 B .“掷一枚硬币正面朝上的概率是21”表示每抛掷硬币2次就必有1次反面朝上 C .一组数据2,3,4,5,5,6的众数和中位数都是5D .甲组数据的方差2S 甲=0.24,乙组数据的方差2S 乙=0.03,则乙组数据比甲组数据稳定6.如图所示,转盘均被分成四个相同的扇形,转动转盘时指针落在每个扇形内的机会均等,转动转盘,B AC DA 1 A 2 则指针落在标有奇数的扇形内的概率为( ) A .12B .13C .14D .187.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =60o ,则sin ∠BDC 的值为( )A .12B3C.2D.28.如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为( )A .132π平方厘米 B .312π平方厘米 C .25π平方厘米D .无法计算二、填空题(本题共16分,每小题4分) 9.因式分解:ax 2-4ax +4a =_________.10.一次函数21y x 的图象经过象限.11.AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD = l ,则弦AB 的长是.12.如图,在△ABC 中,∠A = .∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; ……;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012=.三、解答题(本题共30分,每小题5分)CDABC1311( 3.14)()214.解方程:xx 211 15.如图,AB 是∠DAC 的平分线,且AD =AC .求证:BD =BC16.已知:x 2-5x =6,请你求出代数式10x -2x 2+5的值.17.如图,点C 在反比例函数xk y 的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于点D ,且△ODC 的面积是3.(1)求反比例函数xk y 的解析式;(2)若CD =1,求直线OC 的解析式.18.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间.现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?19.已知相邻的两根电线杆AB 与CD 高度相同,且相距BC =50m .小王为测量电线杆的高度,在两根图甲 图乙电线杆之间某一处E 架起测角仪,如图所示,分别测得两根电线杆顶端的仰角为45°、23°,已知测角仪EF 高1.5m ,请你帮他算出电线杆的高度.(精确到0.1m ,参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.43) 显示解析四、解答题(本题共20分,每小题5分)20.已知:如图直线P A 交⊙O 于A ,E 两点,P A 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB . (1)求证:AC 平分∠DAB .(2)若DC =4,DA =2,求⊙O 的直径.21.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题: (1)求张老师抽取的样本容量; (2)把图甲和图乙都补充绘制完整; (3)请估计全年级填报就读职高的学生人数.五、解答题:(每题7分,共21分)22.已知关于x 的方程2(31)220mx m x m(1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(31)22y mx m x m 的图象经过坐标原点(0,0),求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y x b 与(2)中的函数图象只有两个交点时,求b 的取值范围.23.(1)已知:如图1,ABC是⊙O 的内接正三角形,点P 为弧BC 上一动点,求证:PA PB PC(2)如图2,四边形ABCD 是⊙O 的内接正方形,点P 为弧BC 上一动点,求证:PA PC (3)如图3,六边形ABCDEF 是⊙O 的内接正六边形,点P 为弧BC 上一动点,请你写出P A ,PB ,PC 三者之间的数量关系表达式.(不需要证明)图2 图3图124.如图,在平面直角坐标系中,二次函数c bx x y 2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ′使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形ABPC 的面积最大,并求出此时P 点的坐标和四边形ABPC的最大面积.25.附加题(10分) 问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少? 数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x>.探索研究(1)我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x>的图象性质.①填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y = ax 2+bx +c (a ≠ 0)的最大(小)值时,除了通过观察图象,还可以通过配方得到,请你通过配方求函数1y x x(x >0)的最小值.解决问题(2)用上述方法解决“问题情境”中的问题,直接写出答案.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题:(每题3分,共24分)1.D.2. B.3. D.4. A.5. D.6. A.7. D.8. C 二、填空题:(每题3分,共12分) 9.2)2( x a ; 10.一、二、三 ;11.6; 12.三、解答题:(每题5分,4道小题,共20分) 13.解: 12114.3182123 ……………………………………..(3分)123 ……………………………………..(4分)14.解:xx 211 去分母:x x 22 …………………………………..(1分)移项:22 x x 合并同类项:2 x …………………………………..(2分)检验:把2 x 代入原方程,左边=右边2 x 是原方程的解.……………..(3分) ∴原方程的解为:2 x …………………………………..(4分)15.证明: AB 是∠DAC 的平分线,∴CAB DAB …………………………………..(1分)在ADB和ACB 中AB AB CAB DAB ACAD …………………………………..(4分) ∴ADB≌ACB ∴BD =BC …………………………………..(5分)16.解:10x -2x 2+5=-2(x 2 -5x )+5…………………………………..(3分)2012DABC∵x 2-5x =6,∴原式 = -7…………………………………..(5分)17.答案:解:(1)∵△ODC 的面积是3, ∴6DC OD ∵点C 在xky的图象上,∴x y=k . ∴(- y) x = 6.∴ k = x y = -6. ………………………………..(1分)∴所求反比例函数解析式为x6y . ……………………………..(2分)(2)∵ CD =1,即点C ( 1, y ),把x =1代入6y x,得y =-6.∴ C (1,-6) .……………………………..(3分)把C (1,-6)代入解析式:x k y 1 ∴61 k ……………………………..(4分) ∴正比例函数的解析式为:x y 6……………………………..(5分)18.解:设应有x 人去生产成衣 ……………………………..(1分) 根据题意得:)300(3045.1x x ……………………………..(3分)解方程得:250x ……………………………..(4分) 答:应有250人去生产成衣.……………………………..(5分)19.解:过点F 作MN//BC ……………………………..(1分) 四边形MFEB 和四边形FNCE 是矩形 ∴MF=BE,FN=EC设BE 为x ,则EC =50-x ,∵ 45AFM ∴AM =FM∵相邻的两根电线杆AB 与CD 高度相同 DN=AM=MF=BE=x ……………………………..(2分) ∵ 23DFN ∴xxFN DN DFN 5023tan tan ……………………………..(3分) ∵tan23°≈0.43 ∴0.15 x ……………………………..(4分) ∵测角仪EF 高1.5m ∴电线杆的高度16.5 m……………………………..(5分)NM20.答案:(1)连结OC∵DC 切⊙O 于C ∴OC ⊥DC 又∵PA ⊥DC ∴ OC ∥PA∴∠PAC =∠OCA ……………………………..(1分) 又 OC =OA∴ ∠OCA =∠OAC ∴∠PAC =∠OAC ∴AC 平分∠DAB ……………………………..(2分) (2)作OF ⊥AE 于F ,设⊙O 的半径为R ……………………………..(3分) 又∵PA ⊥DC OC ⊥DC ∴四边形OCDF 为矩形 ∴OF =CD =4 且 DF =OC =R又 DA =2,∴ AF=DF-AD=R -2……………………………..(4分)在Rt △OAF 中,OF 2+AF 2=OA 2∴ 42+(R -2)2=R 2解得:R =5∴⊙O 的直径:2R =10 ……………………………..(5分) 21.解:(1)张老师抽取的样本容量是60……………………………..(2分) (2)……………………………..(4分)(3)540225125…………………………..(5分)22..解:(1)分两种情况讨论.①当0m 时,方程为x 202 x ,方程有实数根,………………………………………….(1分)②当0m ,则一元二次方程的根的判别式2222314229618821m m m m m m m m m = 21m ≥0不论m 为何实数, ≥0成立, 方程恒有实数根………………………………………….(2分) 综合①、②可知m 取任何实数,方程 231220mx m x m恒有实数根………………….(3分)>职高41.7 %其他F(2) 二次函数2(31)22y mx m x m 的图象与经过(0,0)022 m 1m ………………………………………….(4分) 二次函数解析式为:x x y 22 ………………………….(5分)(3)在(2)条件下,直线y x b 与二次函数图象只有两个交点,结合图象可知212y x x y x b当1y y 时,得230x x b 由940b 得94b …………………………………….(6分) 综上所述可知:当49b 时,直线y x b 与(2)中的图象有两个交点. …………………………………….(7分)23.在AP 上截取PM=BP ,连结BM …………………………………….(1分)∵ABC是⊙O 的内接正三角形,∴ 60ACB ABC ,AB=BC∴60ACB APB ∵PM=BP ,∴BPM是正三角形∴60MBP ∵CBP ABM …………………………………….(2分)ABM ≌CBP∴AM=PC∴AP = PB+PC …………………………………….( 3分)(2)∵过点B 做PB BN ,交PA 于点N …………….(4分)∵四边形ABCD 是⊙O 的内接正方形,∴AB=BC, 90BCD ABC ,90AOB ∴ 45APB ,PB=BN 根据勾股定理得:PB PN 2 …………………………………….(5分)∵90NBP ABC ∴CBPABN ∴ABN≌CBP ∴PCAN∴PA PC …………………………………….(6分)(3)结论:PC PB PA 3…………………………………….(7分)24.解:(1)将B 、C 两点的坐标代入得3c 0c b 39 …………….(1分) 解得:32c b …………………………………….(2分) 所以二次函数的表达式为:322x x y ……….(3分)(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322 x x ),PP /交CO 于E若四边形POP /C 是菱形,则有PC =PO .连结PP / 则PE ⊥CO 于E ,…………………………………….(4分)∴OE =EC =23∴322 x x =23解得1x =2102 ,2x =2102 (不合题意,舍去)∴P 点的坐标为(2102 ,23 )…………………………………….(5分) (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F , ………….(6分) 设P (x ,322 x x ),易得,直线BC 的解析式为3x y 则Q 点的坐标为(x ,x -3).EB QP OE QP OC AB S S S S CPQBPQ ABC ABPC 212121 四边形3)3(2134212 x x 当23 x 时,四边形ABPC 的面积最大=87523232x此时P 点的坐标为415,23,四边形ABPC 的面积875的最大值为. ……………………………………………………………………(7分)25.选作题解:⑴ ①174,103,52,2,52,103,174. 函数1y x x(0)x 的图象如图.………………………………………(1分),, ……………………………………(3分)②本题答案不唯一,下列解法供参考.当01x 时,y 随x 增大而减小;当1x 时,y 随x 增大而增大;当1x 时函数1y x x(0)x 的最小值为2. ………………………(5分)③1y x x=22=22 (7分)=22=0,即1x 时,函数1y x x (0)x 的最小值为2.…………(8分)时,它的周长最小,最小值为 …………………(10分)[注]学生正确答案与本答案不符,请老师们参照本答案给分.。

2012年北京丰台区中考二模数学试卷

2012年北京丰台区中考二模数学试卷

2012年北京丰台中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1.2 的绝对值是A .12B .12C .2D .22.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为 A .62.510B .50.2510C . 62.510D .725103.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12B .13C .14D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14B .12C .34D .15.若20x 则yx 的值为A .-8B .-6C .6D .86.下列运算正确的是A .222()a b a b B .235a b ab C .632a a a D .325a a a 7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,EDCBA下面列出的方程正确的是A .30428002800 x x B .30280042800 x x C .30528002800 xx D .30280052800 xx 8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分) 9x 的取值范围是.10.分解因式:b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD 弦BC 于点D ,如果1OD ,那么BAC ________ .12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f ,2(2)12f ,2(3)13f ,2(4)14f ,…,利用以上运算的规律写出()f n(n为正整数) ;(1)(2)(3)(100)f f f f g g g g.三、解答题(本题共30分,每小题5分) 13.计算:45sin 4-211-3-272-03.DOCBA14.已知2230a a ,求代数式2(1)(2)(2)a a a a的值.15.解分式方程:21124x x x . 16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数k y x的图象交于A 、B 两点.(1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:21DOCBA(2)设一户家庭某月用电量为x千瓦时,写出该户此月应缴电费y(元)与用电量x(千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD中,过AD的中点E作AC的垂线EF,交AB于点M,交CB的延长线于点F.如果FB的长是2,求菱形ABCD的周长.20.已知:如图,点A、B在⊙O上,直线AC是⊙O的切线,联结AB交O C于点D,AC=CD.(1)求证:OC⊥OB;(2)如果OD=1,tan∠OCA AC的长.ODC BM F EB C DA22.小杰遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF,△AEF 的三条高线交于点H,如果AC=4,EF=3,求AH的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答:(1)图2中AH的长等于.(2)如果AC=a,EF=b,那么AH的长等于.BA D CE F HG HFEC DA B图1图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x 的一元二次方程242(1)0x x k有两个不相等的实数根.(1)求k 的取值范围;(2)如果抛物线242(1)y x x k 与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点PP 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1图2AEFPB D CCE AD F P25.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2).(1) 抛物线2y x bx c经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度 (0°< <90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度 (0°< <180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当 °时,线段CE 的长度最大,最大值为 .数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分) 13.解:原式=3-1+4-422……4分 =6-22….5分14.解:2(1)(2)(2)a a a a=22224a a a ……1分.=224a a . ……2分2230a a Q , ∴223a a .…3分∴原式=224347a a .….….5分15.21124x x x 解:2(2)(4)1x x x .……1分22241x x x .……2分23x .…… 3分32x .…….4分检验:经检验,32x 是原方程的解.∴原方程的解是32x .……5分16.证明: Q ∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 ,OA=OB ,∠AOC =∠BOD , CO=DO .∴△COA ≌△DOB .……….4分 ∴∠C =∠D . …………….5分17.解:(1)Q 反比例函数ky x的图象经过点A (-1,1) ,∴-11-1k .…………1分(2)P 1(0、 P 2(0,、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x 时,0.49y x ;……3分当230400x 时,0.54-11.5y x ;……4分当400x 时,0.79-111.5y x .……5分四、解答题(本题共20分,每小题5分) 19.解:联结BD .∵在菱形ABCD 中,∴AD ∥BC ,AC BD .……1分又∵EF ⊥AC , ∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416 .……5分20.(1)证明:∵OA =OB , ∴∠B =∠4. ∵CD =AC , ∴∠1=∠2.∵∠3=∠2,∴∠3=∠1. ∵AC 是⊙O 的切线, ∴OA ⊥AC .……1分∴∠OAC =90°.∴∠1+∠4=90°. ∴∠3+∠B =90°. ∴OC ⊥OB .……2分(2)在Rt △OAC 中 ,∠OAC =90°,∵tan ∠OCA,∴OA AC ……3分∴设AC =2x ,则AO. 由勾股定理得,OC =3x .∵AC =CD , ∴AC =CD =2x . ∵OD =1, ∴OC =2x +1. ∴2x +1=3x . ……4分∴x =1. ∴AC =21=2.……5分21.解:432ABCD O1(1……3分(注:错一空扣1分,最多扣3分)(2)700 (1-0.04)=672.……5分五、解答题(本题共21分,第23题6分,第24题7分,第25题8分) 23.解:(1)由题意得△>0.∴△=2(4)4[2(1)]8240k k.……1分∴解得3 k .……2分(2)∵3 k 且k 为正整数,∴1 k 或2.……3分当1 k 时,x x y 42,与x 轴交于点(0,0)、(4,0),符合题意; 当2 k 时,242 x x y ,与x 轴的交点不是整数点,故舍去.综上所述,1 k .……4分(3)∵2,4y x y x x,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可) ∴∠NQP =45°,NQ PM S 21. ∵PQ ,∴NQ =1.∵P (t t ,),则M (t t t 4,2),∴PM =t t t t t 5)4(22.……5分∴t t S 5212.∴当50 t 时,t t S 25212 ;……6分当5 t 时,t t S 25212 .……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21.……3分∵,AB PE ∴BP BM EM 21.∴21, EM DN .∴12213 .…4分同理,524,//DM FN MD PC .∴四边形MDNP 为平行四边形.……5分∴67 .∵,41 ∴35 . ∴EMD DNF .……6分∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解析式为:22y x .……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’, 设对称轴x =3与x 轴交于点D ,∴OD =3.∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’,在Rt △OC ’D 中,根据勾股定理C ’D =1. ∴C ’(3,1).……6分 (3) 120°,4.……8分欢迎关注“北京中考”微信公众号:zkzhongkao7654321NMCD BPFEA。

[VIP专享]北京昌平区2012年中考数学二模试题及答案(word版)【内部资料】

[VIP专享]北京昌平区2012年中考数学二模试题及答案(word版)【内部资料】
S3 BzE
F
S2 1 -z
y C
得 1 (x 1- y)si n60o + 1 (y 1- z)si n60o + 1 (z 1- x)si n60o <
李明同学喜欢自行车和长跑两项运动,在某次训练中,他骑自行车的平均速度为每分
钟 600 米,跑步的平均速度为每分钟 200 米,自行车路段和长跑路段共 5000 米,用时
15 分钟.求自行车路段和长跑路段的长度.
四、解答题(共 4 道小题,每小题 5 分,共 20 分) 19.在 Rt△ABC 中,∠ACB=90°,BC=4.过点 A 作 AE⊥AB 且 AB=AE,过点 E分别作
9.若分式 2x 4 的值为 0,则 x 的值为

x 1
10.圆锥的母线长为 3,底面半径为 2,则它的侧面积为

11.已知一个菱形的周长是 20,两条对角线的长的比是 4∶3,则这个菱形的面积是

12.如图的方格纸中,每个小方格都是边长为 1 的正方形,A、B 两点是方格
纸中的两个格点,在 4×5 的方格纸中,找出格点 C,使△ABC 的面积为
北京昌平区 2011—2012 学年第二学期初三年级第二次统一
练习
数 学 试 卷
2012.6
考 1.本试卷共 6 页,共五道大题,25 道小题,满分 120 分。考试时间 120 分钟。 生 2.在答题卡上准确填写学校名称、考试编号和姓名。 须 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 知 4.在答题卡上,选择题或画图用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
EF⊥AC,ED⊥BC,分别交 AC 和 BC 的延长线与点 F,D.若 FC=5,求四边形 AABDE 的周长.

2012年北京密云区中考二模数学试卷

2012年北京密云区中考二模数学试卷

2012年北京密云中考二模数 学2012年6月一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的 1. -3的绝对值是A . 3B . -3C . ±3D .132.函数11y x的自变量x 的取值范围是A .x ≠0B .x ≠1C .x ≥1D .x ≤13.若右图是某几何体的三视图,则这个几何体是A . 长方体B . 正方体C . 三棱柱D . 圆锥4.一组数据1,-1,2,5,6,5的平均数和极差分别是A .7和3B .3和7C .5和7D .3和55. 若2(2)0x ,则yx 的值为A .-8B .-6C .8D . 66.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是A .16B .13C .12D .237.如图,AB 是半⊙O 的直径,C 是⊙O 上一点,OD BC 于D ,若:4:3AC BC ,10AB cm ,则OD 的长为A .2 cmB .4 cmC .6 cmD .8 cm8. 如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,P 是斜边AB上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于 点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示 y 关于x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分) 9.已知32A x ,12B x ,则A B.10.不等式组211,1(6)2x x xf 的解集是.11.已知关于x 的一元二次方程22410x x k有实数根,则的最大值是.12.如图,在边长为1的等边△A B C 中,若将两条含120 圆心角的¼AOB 、¼BOC及边AC 所围成的阴影部分的面积记为S ,则S 与△ABC 面积的比是.三、解答题(本题共30分,每小题5分) 131tan 602 o14.用配方法解方程:01632 x x .15.已知:如图,∠C =∠CAF =90°,点E 在AC 上,且AE =BC ,EF ⊥AB 于点D .求证:AB =FE .16.已知2a +b -1=0,求代数式22()(1)()aa b a b a b的值.17.如图,A 、B 两点在反比例函数k y x(x >0)的图象上.(1)求该反比例函数的解析式;(2)连结AO 、BO 和AB ,请直接写出△AOB 的面积.18.列方程解应用题:某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?四、解答题(本题共20分,每小题5分)19.已知:如图,AB 为⊙O 的直径,PA 、PC 是⊙O 的切线,A 、C 为切点,∠BAC =30o. (1)求∠P 的大小; (2)若AB =6,求PA 的长.20.如图,在四边形ABCD 中,AC 平分∠BAD ,CE AB 于E .设CD =CB AD =9,AB =15.求B 的余弦值及AC 的长.21.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的条形统计图(部分)如图所示,其中分组情况是: A组:0.5h t ;B组:0.5h 1h t ≤C组:1h 1.5h t ≤D组: 1.5ht ≥请根据上述信息解答下列问题: (1)C组的人数是 ; (2)将条形统计图补充完整; (3)本次调查数据的中位数落在组内;(4)若该区约有4300名初中学生,请估计其中达到国家规定体育活动时间的人大约有多少?22.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点....如图1,PH PJ ,PI PG ,则点P 就是四边形ABCD 的准内点.(1)如图2, AFD 与DEC 的角平分线,FP EP 相交于点P .求证:点P 是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点(作图工具不限,不写作法,但要有必要的说明).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程 2220x ax a b ,其中a 、b 为实数.(1)若此方程有一个根为2 a (a <0),判断a 与b 的大小关系并说明理由; (2)若对于任何实数a ,此方程都有实数根,求b 的取值范围.24. 如图,在直角坐标系xoy 中,以y 轴为对称轴的抛物线经过直线2y 与y 轴的交点A 和点M (2,0).(1)求这条抛物线所对应的二次函数的解析式;(2)将这条抛物线沿x 轴向右平移,使其经过坐标原点.①在题目所给的直角坐标系xoy 中,画出平移后的抛物线的示意图;②设平移后的抛物线的对称轴与直线AB (B 是直线23y x与x 轴的交点)相交于C 点,判断以O 为圆心、OC 为半径的圆与直线AB 的位置关系,并说明理由;(3)P 点是平移后的抛物线的对称轴上的点,求P 点的坐标,使得以O 、A 、C 、P 四点为顶点的四边形是平行四边形.25.已知菱形ABCD 的边长为1,60ADC o,等边△AEF 两边分别交DC 、CB 于点E 、F .(1)特殊发现:如图1,若点E 、F 分别是边DC 、CB 的中点,求证:菱形ABCD 对角线AC 、BD 的交点O 即为等边△AEF 的外心;(2)若点E 、F 始终分别在边DC 、CB 上移动,记等边△AEF 的外心为P .①猜想验证:如图2,猜想△AEF 的外心P 落在哪一直线上,并加以证明;②拓展运用:如图3,当E 、F 分别是边DC 、CB 的中点时,过点P 任作一直线,分别交DA 边于点M ,BC 边于点G ,DC 边的延长线于点N ,请你直接写出11DM DN的值.数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)1tan 602 o12································································································ 4分12. ··························································································································· 5分14.(本小题满分5分)解:原方程化为:03122 x x …………………………………………1分131122 x x………………………………………………2分 341-2 x ………………………………………………3分 ∴3321,332121x x ………………………………………………5分 15.(本小题满分5分)证明:∵EF ⊥AB 于点D ,∴ ∠ADE =90°.∴ ∠1 +∠2=90°.-----------------------------1分 又∵∠C =90°, ∴ ∠1+∠B =90°.∴ ∠B =∠2. -------------------------------2分 在△ABC 和△FEA 中,2,,.B BC AE C FAE-----------------------------------------------------------3分 ∴ △ABC ≌△FEA . -----------------------------------------------------------4分 ∴ AB =FE . -------------------------------------------------------------------------5分16.(本小题满分5分) 解:22()(1)()aa b a b a b= 21()()a b a b a b a b a b---------------------------------------------------3分 = 2a +b . ------------------------------------------------------------------------------ 4分∵ 2a +b -1=0,∴ 2a +b =1. ∴ 原式=1 .----------------------------------------------------------------------------- 5分17.(本小题满分5分)解:(1)∵点A (1,6)在反比例函数(0)my x x的图象上, ∴166m xy .∴反比例函数解析式为6(0)y x xf .-------------------------------------2分 (2)△AOB 的面积是352. --------------------------------------------------------5分 18.(本小题满分5分)解:设每轮感染中平均每一台电脑会感染x 台电脑, ······································· 1分依题意得:1(1)81x x x , ······························································· 3分解得 12810x x ,(舍去),∴ 8x . ---------------------------------------------------------------------------4分答:每轮感染中平均每一台电脑会感染8台.··················································· 5分 四、解答题(本题共20分,第19题4分,第20题5分,第21题6分,第22题5分) 19.(本小题满分5分)(1)解:∵PA 是⊙O 的切线,AB 为⊙O 的直径,∴ PA AB .∴90BAP o.----------------------------------1分∵ ∠BAC =30o,∴ 9060PAC BAC o o.又∵PA 、PC 切⊙O 于点A 、C ,∴ PA PC .-------------------------------------------------------------------2分∴△PAC 是等边三角形.∴ 60P o. ------------------------------------------------------------------3分( 2 ) 如图,连结BC .∵AB 是直径,∠ACB =90o.---------------------------------------4分在R t △ACB 中,AB =6,∠BAC =30o,∴cos 6cos30AC AB BAC o .又∵△PAC 是等边三角形,∴ PA AC ----------------------------------------------------------------5分20.(本小题满分5分)解:如图,在AB 上截取AF AD ,连结CF . -------------------------------------1分∵ AC 平分∠BAD ,∴12 .又AC AC ,∴△ADC ≌△AFC .∴ AF =AD =9,CF=CD =CB ------------2分∴△CBF 是等腰三角形. 又∵CE AB 于E ,∴ EF =EB =21BF =21(AB -AF )=3.--------------------------------------------------3分在Rt △BEC 中,cosBE B BC. ---------------------------------4分 在Rt △BEC (或Rt △FEC )中,由勾股定理得 CE =5.在Rt △AEC 中,由勾股定理 得AC =13.-------------------------------------------5分∴ B AC 的长为13. 21.(本小题满分5分)解:(1)120; ---------------------------------1分(2)图形正确 -------------------------------2分(3)C;--------------------------------------3分(4)达国家规定体育活动时间的人数约占12060100%60%300.------------4分 ∴达国家规定体育活动时间的人约有 430060%2580 (人).-----5分22.(本小题满分5分)证明:(1)如图2,过点P 作AD PJ CD PI BC PH AB PG ,,,,∵EP 平分DEC ,∴PH PJ . -----------------------------------------1分同理 PI PG .∴P 是四边形ABCD 的准内点.----------------------2分(2)说明:①平行四边形对角线,AC BD 的交点1P (或者取平行四边形两对边中点连线的交点1P )是准内点,如图3(1)和图3(2); -------------------------4分 ②梯形两腰夹角的平分线与梯形两腰中点连线的交点2P 是准内点,如图4. --5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(本小题满分7分)解:(1)∵ 方程 2220x ax a b 有一个根为2a ,∴ 224420a a a b .整理,得 2a b . ∵ 0a , ∴2a a ,即ab . ---------------------------------------------3分(2) 2244(2)448a a b a a b .∵ 对于任何实数a ,此方程都有实数根,∴ 对于任何实数a ,都有2448a a b ≥0 ,即22a a b ≥0.∴ 对于任何实数a ,都有b ≤22a a . ∵ 22111()2228a a a ,当 12a 时,22a a 有最小值18 . ∴b 的取值范围是b ≤18. ----------------------------------------------7分 24.(本小题满分7分)(1)设0x ,则2y . A (0,2).设这条抛物线所对应的二次函数的解析式为:22y ax .∵过点M (0), 有2(20a .解得83a . 所求的这条抛物线所对应的二次函数的解析式为2823y x .----------2分(2)①平移后的抛物线如图所示: --------------------------------------------------------------3分 ②相切.理由:由题意和平移性质可知,平移后的抛物线的对称轴为直线x .∵C 点是对称轴与直线AB 的相交,易求得点C ,32).由勾股定理,可求得OC 设原点O 到直线AB 的距离为d ,则有 AB d AO BO .∵点A 为(0,2),点B 为(0), 4AB .42d d OC .这说明,圆心O 到直线AB 的距离d 与⊙O 的半径OC 相等.以O 为圆心、OC 为半径的圆与直线AB 相切. -------------------------------------5分(3)设P ,p ). ∵抛物线的对称轴与y 轴互相平行,即AO ∥PC .只需PC AO 2 ,即可使以O ,A ,C ,P 为顶点的四边形是平行四边形.由(2)知,点C ,32), 322p . 22p .解得172p ,212p .P 点的坐标为1p ,72)或2p ,12 ).----------------------------7分25.(本小题满分8分)证明:(1)如图1:分别连结OE 、OF .∵四边形ABCD 是菱形,AD DC CB ,AC BD ,DO BO ,且112302ADC o . 在Rt △AOD 中,有12AO AD .又 E 、F 分别是边DC 、CB 的中点, 1122EO CB DC OF . AO EO FO .点O 即为等边△AEF 的外心. -------------------------------------------------- 3分(2)①猜想:△AEF 的外心P 落在对角线DB 所在的直线上.证明:如图2:分别连结PE 、PA ,作PQ DC 于Q ,PH AD 于H .则90PQE PHD o.∵60ADC o , 在四边形QDHP 中,120QPH o .又 ∵点P 是等边△AEF 的外心,60EFA o, P E P A ,2260120EPA EFA o o . . △PQE ≌△PHA (AAS ). PQ=PH . 点P 在ADC 的角平分线上.∵菱形ABCD 的对角线DB 平分A D C ,点P 落在对角线DB 所在的直线上. ----------------------------------- 6分②112DM DN . ---------------------------------------------------------------- 8分。

2012西城区中考数学二模

2012西城区中考数学二模

2012西城区中考数学二模一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)﹣8的倒数是()A.8 B.﹣8 C.D.2.(4分)在2012年4月25日至5月2日举办的2012(第十二届)北京国际汽车展览会上,约有800 000名观众到场参观,盛况空前.800 000用科学记数法表示应为()A.8×103B.80×104C.8×105D.0.8×1063.(4分)若⊙O1与⊙O2内切,它们的半径分别为3和8,则以下关于这两圆的圆心距O1O2的结论正确的是()A.O1O2=5 B.O1O2=11 C.O1O2>11 D.5<O1O2<114.(4分)如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,若,AE=6,则EC的长为()A.8 B.10 C.12 D.165.(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是8.9环,方差分别是S甲2=0.61,S乙2=0.52,S丙2=0.53,S丁2=0.42,则射击成绩波动最小的是()A.甲B.乙C.丙D.丁6.(4分)如图,AB为⊙O的弦,半径OC⊥AB于点D,若OB长为10,cos∠BOD=,则AB的长是()A.20 B.16 C.12 D.87.(4分)若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4 B.6 C.8 D.108.(4分)如图,在矩形ABCD中,AB=,BC=1.现将矩形ABCD绕点C顺时针旋转90°得到矩形A′B′CD′,则AD 边扫过的面积(阴影部分)为()A.πB.πC.πD.π二、填空题(本题共16分,每小题4分)9.(4分)将代数式x2﹣6x+10化为(x﹣m)2+n的形式(其中m,n为常数),结果为.10.(4分)如图,菱形ABCD周长为8cm.∠BAD=60°,则AC=cm.11.(4分)如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.12.(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…都在y轴上,对应的纵坐标分别为1,2,3,….直线l1,l2,l3,…分别经过点A1,A2,A3,…,且都平行于x轴.以点O为圆心,半径为2的圆与直线l1在第一象限交于点B1,以点O为圆心,半径为3的圆与直线l2在第一象限交于点B2,…,依此规律得到一系列点B n(n为正整数),则点B1的坐标为,点B n的坐标为.三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)已知a2+2a﹣4=0,求代数式a(a﹣2)2﹣a2(a﹣6)﹣3的值.15.(5分)如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.16.(5分)已知关于x的一元二次方程(m+1)x2+2mx+m﹣3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最小奇数时,求方程的根.17.(5分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AB=2AD=4,求BD的长.18.(5分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.为配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了人;(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是;(4)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式大约有人.四、解答题(本题共20分,每小题5分)19.(5分)如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60°方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M小区位于北偏东30°方向,测绘员从A处出发,沿主输气管道步行2000米到达C 处,此时测得M小区位于北偏西60°方向.现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短.(1)问:MN与AC满足什么位置关系时,从N到M小区铺设的管道最短?(2)求∠AMC的度数和AN的长.20.(5分)如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.21.(5分)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)说明:AP是⊙O的切线;(2)若OC=CP,AB=6,求CD的长.22.(5分)阅读下列材料小华在学习中发现如下结论:如图1,点A,A1,A2在直线l上,当直线l∥BC时,.请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角形不全等);(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)在平面直角坐标系xOy中,A为第一象限内的双曲线(k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与x轴交于点B,与双曲线(k2<0)交于点C.x轴上一点D (m,0)位于直线AC右侧,AD的中点为E.(1)当m=4时,求△ACD的面积(用含k1,k2的代数式表示);(2)若点E恰好在双曲线(k1>0)上,求m的值;(3)设线段EB的延长线与y轴的负半轴交于点F,当点D的坐标为D(2,0)时,若△BDF的面积为1,且CF∥AD,求k1的值,并直接写出线段CF的长.24.(7分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC﹣CB﹣BA运动,点P在AC,CB,BA边上运动,速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB 方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t=5秒时,点P走过的路径长为;当t=秒时,点P与点E重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;(3)当点P在折线AC﹣CB﹣BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.25.(8分)在平面直角坐标系xOy中,抛物线y1=2x2+的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+和直线y2=x于点A,点B.(1)直接写出A,B两点的坐标(用含n的代数式表示);(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+,求a,b,c的值.参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】﹣8的倒数是﹣.故选D.2.【解答】800 000=8×105.故选C.3.【解答】根据两圆内切,圆心距等于两圆的半径之差,得圆心距=8﹣3=5,故选A.4.【解答】∵DE∥BC,∴==,∵AE=6,∴EC=AE÷=6×=10,故选:B.5.【解答】因为甲、乙、丙、丁的方差分别是:,,,,所以s2丁<s2乙<s2丙<s2甲,由此射击成绩波动最小的是丁.故选D.6.【解答】∵cos∠BOD=,∴=,∵BO=10,∴DO=6,∵OC⊥AB,∴∠ODB=90°,在Rt△BOD中,BD===8,∴AB=2DB=16,故选:B.7.【解答】多边形的内角和是:3×360=1080°.设多边形的边数是n,则(n﹣2)•180=1080,解得:n=8.即这个多边形的边数是8.故选C.8.【解答】连接AC、AC′,根据勾股定理,得AC==2,故可得S扇形CAA'==π,S扇形CDD'==π,则阴影部分的面积=S扇形CAA'﹣S扇形CDD'=π.故选C.二、填空题(本题共16分,每小题4分)9.【解答】∵x2﹣6x+10=x2﹣6x+9+1,∴x2﹣6x+10=(x﹣3)2+1.故答案为:(x﹣3)2+1.10.【解答】∵菱形ABCD周长为8cm.∠BAD=60°∴△AOB为直角三角形,AB=2cm,∠OAB=30°,OA=OC,∴OA=cm,∴AC=2cm.故答案为:211.【解答】∵把一个半径为12cm的圆形硬纸片等分成三个扇形,∴扇形的弧长为:×2πr=8π,∵扇形的弧长等于圆锥的底面周长,∴2πr=8π,解得:r=4,故答案为:412.【解答】连OB1,OB2,OB3,如图,在Rt△OA1B1中,OA1=1,OB1=2,∴A1B1===,∴B1的坐标为(,1),故答案为:(,1);在Rt△OA2B2中,OA2=2,OB2=3,∴A2B2=,∴B2的坐标为(,2)在Rt△OA3B3中,OA3=3,OB3=4,∴A3B3=,∴B3的坐标为(,3);…按照此规律可得点B n的坐标是(,n),即(,n)故答案为:(,n).三、解答题(本题共30分,每小题5分)13.【解答】原式=5﹣1+6×﹣2=5﹣1+3﹣2=4.14.【解答】原式=a(a2﹣4a+4)﹣a2(a﹣6)﹣3=a3﹣4a2+4a﹣a3+6a2﹣3=2a2+4a﹣3,…(3分)∵a2+2a﹣4=0,∴a2+2a=4,…(4分)∴原式=2(a2+2a)﹣3=5.…(5分)15.【解答】(1)证明:∵∠BAF=∠CAE,∴∠BAF﹣∠CAF=∠CAE﹣∠CAF,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE;(2)解:∠DGB的度数为67°,理由为:∵∠B=∠D,∠AFB=∠GFD,∴△ABF∽△GDF,∴∠DGB=∠BAD,在△AFB中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD=180°﹣35°﹣78°=67°.16.【解答】(1)∵关于x的一元二次方程(m+1)x2+2mx+m﹣3=0 有两个不相等的实数根,∴m+1≠0且△>0.∵△=(2m)2﹣4(m+1)(m﹣3)=4(2m+3),∴2m+3>0.解得m>.∴m的取值范围是m>且m≠﹣1.(2)在m>且m≠﹣1的范围内,最小奇数m为1.此时,方程化为x2+x﹣1=0.∵△=b2﹣4ac=12﹣4×1×(﹣1)=5,∴.∴方程的根为,.17.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,DF=CD.∴AE=DF,∴四边形AEFD是平行四边形;(2)解:过点D作DG⊥AB于点G.∵AB=2AD=4,∴AD=2.在Rt△AGD中,∵∠AGD=90°,∠A=60°,AD=2,∴AG=AD•cos60°=1,DG=AD•sin60°=.∴BG=AB﹣AG=3.在Rt△DGB中,∵∠DGB=90°,DG=,BG=3,∴DB===2.18.【解答】(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.(4)支持“警示戒烟”这种方式的人有10000•35%=3500(人).故答案为:300,0.4,3500.四、解答题(本题共20分,每小题5分)19.【解答】(1)当MN⊥AC时,从N到M小区铺设的管道最短,(2)∵∠MAC=60°﹣30°=30°,∠ACM=30°+30°=60°,∴∠AMC=180°﹣30°﹣60°=90°,在Rt△AMC中,∵∠AMC=90°,∠MAC=30°,AC=2000,∴AM=AC•cos∠MAC=2000×=1000(米),在Rt△AMN中,∵∠ANM=90°,cos30°=,∴AN=AM⋅cos30°=1000×=1500(米).答:∠AMC等于90°,AN的长为1500米.20.【解答】(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.21.【解答】(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP=.∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴.又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD====4.22.【解答】(1)如图所示,答案不唯一.画出△D1BC,△D2BC,△D3BC,△D4BC,△D5BC中的一个即可.(将BC 的平行线l画在直线BC下方对称位置所画出的三角形亦可);(2)如图所示,答案不唯一.(在直线D1D2上取其他符合要求的点,或将BC的平行线画在直线BC下方对称位置所画出的三角形亦可)(3)如图所示(答案不唯一).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)由题意得A,C两点的坐标分别为A(1,k1),C(1,k2).(如图1)∵k1>0,k2<0,∴点A在第一象限,点C在第四象限,AC=k1﹣k2.当m=4时,.(2)作EG⊥x轴于点G.(如图2)∵EG∥AB,AD的中点为E,∴△DEG∽△DAB,,G为BD的中点.∵A,B,D三点的坐标分别为A(1,k1),B(1,0),D(m,0),∴,,.∴点E的坐标为.∵点E恰好在双曲线上,∴.①∵k1>0,∴方程①可化为,解得m=3.(3)当点D的坐标为D(2,0)时,由(2)可知点E的坐标为.(如图3)∵S=1,∴.∴OF=2.设直线BE的解析式为y=ax+b(a≠0).∵点B,点E的坐标分别为B(1,0),,∴解得a=k1,b=﹣k1.∴直线BE的解析式为y=k1x﹣k1.∵线段EB的延长线与y轴的负半轴交于点F,k1>0,∴点F的坐标为F(0,﹣k1),OF=k1.∴k1=2.∵A点坐标为(1,2),D点坐标为(2,0),∴设一次函数解析式为y=kx+b,将A(1,2),D(2,0)分别代入解析式得,,解得,故函数解析式为y=﹣2x+4,又∵AD∥FC,设FC的解析式为y=﹣2x+c,将F(0,﹣2)代入解析式得,c=﹣2,故函数解析式为y=﹣2x﹣2.当x=1时,k2=﹣4.C点坐标为(1,﹣4),故线段CF==.24.【解答】(1)在Rt△ABC中,∠C=90°,AC=6,BC=8.由勾股定理,得AB=10,∵点P在AC,CB,BA边上运动,速度分别为每秒3,4,5个单位,∴点P在AC边上运动的时间为:6÷3=2秒,点P在BC边上运动的时间为:8÷4=2秒,∴点P在AB边上运动的时间为:5﹣2﹣2=1秒,∴P点在AB边上运动的距离为:5×1=5,∴当t=5秒时,点P走过的路径长为19;由题意可知,当(t﹣2)×4=t时,点P与点E重合.解得:t=3,∴t=3秒时,点P与点E重合.故答案为:19,3;(2)如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=∠MEN,∵P在AC上,∴AP=3t (0<t≤2),∴CP=6﹣3t,.∵EF∥AC,∠C=90°,∴∠BEF=90°,∠CPE=∠PEF.∵EN⊥AB,∴∠B=∠MEN.∵∠PEF=∠FEN,∴∠CPE=∠B.∵,,∴.∴CP==t∴.解得:.(3)如图1,当P点在AC上时,(0<t≤2)∴AP=3t,PC=6﹣3t,EC=t,∴BE=8﹣t,∵EF∥AC,∴△FEB∽△ACB,∴,∴,∴EF=6﹣t.∵四边形PEQF是菱形,∴∠POE=90°,OE=EF=3﹣t,∵EF∥AC,∠C=90°,∴∠OEC=90°,∴四边形PCEO是矩形,∴OE=PC.∴3﹣t=6﹣3t,∴t=,如图2,当P在AB上时(4<t<6),∵四边形PFQE是菱形,∴PE=PF,∴∠PFE=∠PEF,∵EF∥AC,∠C=90°,∴∠FEB=∠FEP+∠PEB=90°,∴∠B+∠EFB=90°,∴∠B+∠FEP=90°,∴∠PEB=∠B,∴PE=PB.∵PB=5(t﹣4),∴BF=10(t﹣4),∵sin∠B==,∴,∴EF=6t﹣24∵CE=t,∴BE=8﹣t,∵△FEB∽△ACB,∴,∴,∴EF=6﹣t.∴6﹣t=6t﹣24解得t=∴t的值为(秒)或(秒).25.【解答】(1)当x=n时,y1=2n2+,y2=n;∴A(n,2n2+),B(n,n).(2)d=AB=|y A﹣y B|=|2n2﹣n+|.∴d=|2(n﹣)2+|=2(n﹣)2+.∴当n=时,d取得最小值.此时,B(,),而M(0,)、P(,0)∴四边形OMBP是正方形∴当d取最小值时,线段OB与线段PM的位置关系和数量关系是OB⊥PM且OB=PM.(如图)(3)∵对一切实数x恒有x≤y≤2x2+,∴对一切实数x,x≤ax2+bx+c≤2x2+都成立.(a≠0)①当x=0时,①式化为0≤c≤.∴整数c的值为0.此时,对一切实数x,x≤ax2+bx≤2x2+都成立.(a≠0)即对一切实数x均成立.由②得ax2+(b﹣1)x≥0 (a≠0)对一切实数x均成立.∴由⑤得整数b的值为1.此时由③式得,ax2+x≤2x2+对一切实数x均成立.(a≠0)即(2﹣a)x2﹣x+≥0对一切实数x均成立.(a≠0)当a=2时,此不等式化为﹣x+≥0,不满足对一切实数x均成立.当a≠2时,∵(2﹣a)x2﹣x+≥0对一切实数x均成立,(a≠0)∴∴由④,⑥,⑦得0<a≤1.∴整数a的值为1.∴整数a,b,c的值分别为a=1,b=1,c=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年北京市中考数学模拟试卷(二)2012年北京市中考数学模拟试卷(二)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共l0个小题,每小题3分,共30分)D..4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()8.(3分)(2012•西藏)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=_________.12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为_________.13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=_________.15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是_________.16.(3分)菱形的对角线长分别是6cm和8cm,则菱形的周长是_________.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是_________.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A= _________°.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=2011°,c=﹣(﹣2),求a﹣b+c的值.20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.2012年北京市中考数学模拟试卷(二)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共l0个小题,每小题3分,共30分)D..,故本选项错误;,故本选项正确;4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()根据题意得,只要把代入7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()8.(3分)(2012•西藏)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()∴梯形的面积为:二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=(a+b)(a﹣b).12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.y=3=y=13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=50°.ACD=ACD=∠15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是3%.解:从中任意抽取一件检验,则抽到不合格产品的概率是16.(3分)菱形的对角线长分别是6cm和8cm,则菱形的周长是20cm.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是5.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A= 35°.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=2011°,c=﹣(﹣2),求a﹣b+c的值.b+c=20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?.24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)=6.4EF==5=25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.和,﹣′的解析式为的解析式为26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.(BQ=的坐标为(参与本试卷答题和审题的老师有:leikun;HLing;dbz1018;lbz;yangwy;bjf;冯延鹏;马兴田;sd2011;lk;wangjc3;zcx;王岑;蓝月梦;ZHAOJJ;nhx600;HJJ;xiawei;CJX;zjx111(排名不分先后)菁优网2014年2月27日。

相关文档
最新文档