VoLTE MOS优化思路及方法
VoLTE MOS优化思路及方法

一、VoL TE语音MOS采样点机制VoLTE语音MOS采样机制如下:(1)主叫起呼,进行录音(8s左右);(2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);(3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);(4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……二、VoL TE语音MOS优化分析方法1、MOS差的问题点定位测试log单次通话连续两个采样点MOS值小于3的问题点定义为MOS差的问题点。
注意事项:需剔除通话结束的最后一个采样点与下次通话第一个采样点的MOS值都小于3的问题点。
2、MOS优化分析方法由MOS采样点机制可以看出,MOS采样点收集的是采样时间点前8秒的语音质量,所以在分析的时候,需着重分析MOS采样时间前8秒的无线环境、语音编码、抖动、丢包等。
三、VoL TE语音MOS值的影响因素及优化思路1、MOS值的影响因素MOS值的直接影响因素为:端到端时延、抖动、丢包;VoLTE端到端时延可以分解为:UE语音编/解码时延、空口传输时延、核心网的处理时延、传输网的传输时延。
丢包和抖动的影响因素包括:空口信号质量、eNB负载、传输网的丢包和抖动。
故将以上因素分解后,MOS的影响因素包括:语音编码、覆盖、干扰、切换、邻区、基站负荷、基站故障、传输、核心网、测试终端、人为操作失误等。
2、MOS值的优化思路结合以上影响因素和前期VoLTE拉网测试时遇到的MOS问题,共总结出四类问题点类型:无线问题、基站异常、测试规范和设备、核心网/传输。
在分析MOS问题时,我们首先要考虑基站是否正常工作,其次考虑测试是否规范、测试设备是否正常,再次判断是否为无线问题造成的,最后才考虑是否核心网及传输网引起的。
VOLTE接通率优化思路及案例

VOLTE接通率优化思路及案例VOLTE (Voice over LTE) 是一种利用LTE网络传输语音和数据的技术。
VOLTE接通率优化是指通过调整和优化网络参数和配置,以提高VOLTE呼叫的接通率。
下面将介绍一些优化思路和案例,以提高VOLTE接通率。
1.数据分析和故障排查:首先,进行数据分析和故障排查是优化VOLTE接通率的基础。
通过分析呼叫失败原因、掉话率、信号覆盖和质量等指标,定位问题,并采取相应的措施进行修复。
2.优化VoLTE频谱资源:VOLTE需要分配适当的频谱资源以保证通话质量。
通过合理规划和配置频谱资源,避免与其他无线网络干扰,优化频谱利用率,提高VOLTE接通率。
3.参数优化:调整和优化网络参数是提高VOLTE接通率的重要手段。
例如,设置适当的调度算法、增加资源预留、调整拥塞控制参数等,以优化资源分配和控制,提高呼叫的接通率。
4.优化呼叫控制和信令处理:呼叫控制是VOLTE接通率的关键。
通过优化呼叫控制流程、有效处理和分发信令等方式,减少呼叫失败、超时等问题,提高VOLTE接通率。
5.扩充信号覆盖:信号覆盖是影响VOLTE接通率的重要因素。
通过添加、调整和优化基站、天线的位置和布局,加强覆盖,提高信号质量和接通率。
6.增加容量和优化网络拓扑:根据需求,增加基站和小区,扩充网络容量,分担负载,减少拥堵,提高VOLTE接通率。
同时,对网络拓扑进行优化,合理设计和布置小区,以提高效率和质量。
7.实时性网络优化:通过对网络信号和质量进行实时监测和优化,及时发现和解决问题,提高VOLTE接通率。
例如,利用实时数据和监控系统,对信道质量、拥塞情况等进行监测和控制。
下面以一个案例来说明VOLTE接通率的优化:地区的手机运营商发现VOLTE接通率较低,通过数据分析发现主要问题是信号覆盖不佳和呼叫控制流程不完善。
1.基站优化:首先,他们增加了一些基站,将基站的覆盖范围调整到更适合VOLTE通话的区域。
MOS的提升和优化

语音质量的度量标准——MOS2008-01-29 10:59在介绍语音质量的测量方法之前,首先将对语音质量的度量标准MOS进行简要介绍;VoIP呼叫质量会受噪声、畸变、信号幅度过高或过低、回声、通话间隙和许多其他问题的影响。
在测量呼叫质量时,需要研究三类基本的服务质量:(1)收听质量——指用户对呼叫过程中所听到的声音质量的评价。
(2)会话质量——指用户在整个通话过程中基于收听质量和会话能力而对呼叫作出的评价,包括回音和延迟等可能影响通话的相关问题。
(3)传输质量——指用于承载话音信号的网络连接的质量。
传输质量测量是与细节呼叫质量测量相对的一种网络服务质量测量。
呼叫质量测量的目的是通过主观或客观的测量方法,即通过人为的测量项目或基于计算机的测量工具,对一种或多种以上的呼叫质量类别给出一个可信的估计。
主观测量是一种久经考验的话音质量测量方法,但这种方法成本太高,费时也太长。
有一种更广为人知的主观类测量方法,叫做绝对种类定级(Absolute Category Rating,ACR)测量。
在ACR测量中,收听者按照从1~5的5级损伤指标对一系列音频文件进行分级(见表1)。
在取得了每个收听者给出的得分之后,计算所有音频文件的一般或平均意见得分(Mean Opinion Score, MOS)。
为了使ACR测量得到可信的测量结果,接受测量的人数至少应在16个以上,而且测量应该在一个安静的环境下,在可控的条件下完成。
这种测量方法定义在ITU-T P.800当中,该MOS值就是语音质量的度量尺寸,显然是MOS越大,语音质量越好。
3、语音质量测量方法的发展上述IUT-T P.800中所定义的方法得到的MOS值是一种主观的测量方法,并且该方法成本太高,费时太长;因此,在后来的研究和探索中,先后出现了如下几种客观测量方法:∙PSQM /PSQM+:Perceptual Speed Quality Measure,感知通话质量测量[2],定义在ITU-T P.861当中;∙PESQ:Perceptual Evaluation of Speed Quality,感知评估通话质量测量[3],定义在ITU-T P.862当中;∙PAMS:Perceptual Analysis Measurement System,感知分析测量,英国电信定义;∙E-Model:本文将重点介绍的测量方法,该方法定义在ITU-T G.107当中。
VOLTE接通率优化思路及案例

VOLTE接通率优化思路及案例随着移动通信技术的快速发展,人们对通话质量的要求也越来越高。
VOLTE(Voice over LTE)作为一种高质量的语音通信技术,具有更高的音质、更快的连接速度和更低的延迟,逐渐取代了传统的2G和3G语音通信方式。
然而,由于各种原因,VOLTE接通率可能会受到一些干扰,影响通话质量。
因此,提高VOLTE接通率成为了运营商和设备厂商共同面临的一个重要问题。
下面将介绍一些优化VOLTE接通率的思路和案例:1.信号覆盖优化:VOLTE需要在LTE网络下进行语音通信,因此优化LTE网络的覆盖范围和信号强度可以提高VOLTE接通率。
对于信号覆盖不好的区域,可以增设更多的LTE基站或放置室内LTE小站,以消除信号死角和盲区。
案例:城市的一些居民小区信号覆盖很差,导致VOLTE接通率低。
该地区的运营商决定在小区内增设室内LTE小站,通过强化信号覆盖,提高VOLTE接通率。
经过实施后,VOLTE接通率显著提高,用户体验得到了极大改善。
2. QoS优化:VOLTE语音通话对QoS(Quality of Service)要求较高,需要保证较低的延迟和较高的网络带宽。
因此,通过对网络中的资源进行调度和优化,可以提高VOLTE接通率。
例如,对于VOLTE通话流量进行优先级调度,确保其能够优先获得网络资源。
案例:国家的一个运营商发现,其LTE网络中VOLTE语音通话的延迟较高,导致VOLTE接通率较低。
通过对网络的QoS策略进行优化,提高了VOLTE语音通话的优先级,将相关资源分配给VOLTE通话,从而提高了接通率。
案例:运营商发现其IMS网络存在一些性能问题,导致VOLTE接通率较低。
运营商对IMS网络进行优化,增加了IMS服务器的数量,改进了通信协议,优化了网络参数等。
通过这些改进措施,VOLTE接通率得到了明显提高。
4.终端设备优化:VOLTE通话不仅依赖于网络的性能,还与终端设备的质量和性能密切相关。
VOLTE优化思路和重点V1

一、现网参数和指标情况 (2)1.参数配置 (2)2.道路测试指标 (2)3.MR数据分析 (4)4.网管KPI指标 (5)4.1接通率 (5)4.2掉话率 (5)4.3 Esrvcc切换成功率 (6)二、现网问题 (7)1.道路问题 (7)1.1弱覆盖路段 (7)1.2覆盖质差路段 (8)2.网管指标问题 (9)2.1 MR覆盖分析 (9)3.核心网和终端问题 (12)3.1各网元配合问题 (12)3.2终端问题 (13)三、指标提升方案 (14)1.道路指标 (14)2.网管指标 (15)3.用户感知提升 (15)4.优化重点 (15)4.1Esrvcc优化 (15)4.2RTP包传输优化 (16)一、现网参数和指标情况1.参数配置站点开启Volte功能需以下动作:开启功能开关、合理配置各类切换参数、配置GSM邻区。
核查市区现网站点功能性参数配置均无异常。
核查市区现网配置Esrvcc邻区与GSM现网数据一致性,结果如下:2.道路测试指标12月25日DT市区网格测试指标网格内道路RSRP情况:网格内道路SINR情况:3.MR数据分析MR测量是TD-LTE系统的一项重要功能,测量上报结果除用于小区重选切换等事件的触发,也可用于系统维护,评估网络的运行状态。
字段MR.RSRP.XX (参考信号接收功率)定义为承载小区专用参考信号RE的功率线性平均值,是反映服务小区覆盖的主要指标。
根据采样点不同区间的分布可判断小区的大致覆盖情况,用于检测盲点/弱覆盖区域。
MR.RSRQ (参考信号接收质量)可用于判断下行参考信号的接收质量,用于小区的重选切换判断。
根据MR统计来分析VOLTE用户在LTE网络的保持性能,判断弱覆盖情况下触发SRVCC合理4.网管KPI指标4.1接通率算法:E-RAB建立成功数/E-RAB建立请求数*RRC连接建立成功次数/ RRC连接建立请求次数*100%2月份以来,现网VOLTE用户数量持续提升。
精品案例_VOLTE_MOS提升之语数分层策略

VOLTE_MOS提升之语数分层策略最佳实践推广目录一、问题描述 (3)二、分析过程 (3)三、解决措施 (5)四、经验总结 (11)VOLTE_MOS提升之语数分层策略最佳实践推广【摘要】芜湖无线中心应集团要求对南昌最佳实践进行推广,在芜湖进行试点实验。
从多频参数对比验证中寻找最适合现网参数组,与基于业务指配相结合,对比该参数与集团建议参数组性能差异,为后续提供分析建议。
【关键字】业务指配 MOS优良率语数分层【业务类别】VOLTE一、语音质量评估方法VOLTE语音可以给客户提供更佳的语音用户体验,帮助运营商应对OTT语音冲击和ARPU 值下降的不利趋势。
对运营商而言,部署VoLTE将带来两方面的价值,一是提升无线频谱利用率、降低网络成本。
二是提升用户体验。
VoLTE的体验明显优于传统电路域语音。
首先,高清语音和视频编解码的引入显著提高了通信质量;其次,VoLTE的呼叫接入时长相比CS呼叫接入时延大幅缩短,那么如何评价VOLTE语音质量?下面介绍几种方法:语音质量的评估方法包括主观评价和客观评价两大种类。
主观评价指以人为主体进行语音质量评价,由参与评听的评听人根据预先约定的评估准则对语音质量进行打分,它反映了评听人对语音质量好坏的一种主观印象。
主观评价方法比较繁杂,为了排除偶然因素,减少评价波动方差,需要参与评价的评听人数量较多(一般40人以上)。
但是由于人是语音的最终接受者,这种评价方法是语音质量的真实反映。
客观评估是指用机器自动判别语音质量.它从原理上又可分为两类评价方式:基于输入输出方式的主动式评估和基于输出方式的被动式评估。
在实际语音质量评价中, PESQ和POLQA是目前仍然广泛使用的语音质量评价方法。
PSQM 由于种种缺陷目前在实际中已经很少采用。
PESQ总的思路是对源信号和通过测试系统的退化信号进行电平调整到标准听觉电平,再用输入滤波器模拟标准电话听筒进行滤波。
对通过电平调整和滤波后的两个信号在时间上对准,并进行听觉变换,这个变换包括对系统中线性滤波和增益变化的补偿和均衡。
VOLTE语音质量提升方案

VOLTE语音质量提升方案VOLTE(Voice over LTE)是一种在LTE网络上进行语音通信的技术,它可以提供更高质量、更快速的语音通话体验。
然而,即使使用VOLTE,语音通话的质量仍然可能受到一些因素的影响,例如网络拥塞、信号弱等。
为了提升VOLTE语音质量,可以采取以下方案:1.加强网络规划和优化:合理规划LTE网络的站点布局,提升网络覆盖和容量,减少网络拥塞和干扰。
通过优化信道和功率控制等策略,提高信号质量和覆盖范围,减少通话中断和丢包的概率。
2.网络保障措施:建立专门的QoS机制,为VOLTE语音通话分配更高的网络优先级,确保其在网络拥塞时能够获得更稳定、高质量的带宽。
同时,采用流量控制和动态带宽分配等技术,保障VOLTE语音通话的带宽需求,提高语音质量和稳定性。
3. 强化呼叫控制和质量管理:通过引入呼叫优化策略,包括最佳基站选择、呼叫前MOS(Mean Opinion Score)测量等,提升呼叫建立的成功率和语音质量。
在通话过程中,实时监测语音质量参数,包括丢包率、噪音和码化器性能等,及时调整参数和采取措施以优化语音通话质量。
4. 增强VOLTE终端设备性能:支持更高的语音编码解码器(codec),提供更好的语音质量。
通过对终端设备进行升级和软件优化,增强其对网络环境的适应性,减少通话中的音频延迟、波动和抖动,提升语音通话质量。
5. 提高语音编解码器的效率:采用先进的语音编解码技术,提高编码效率和音频质量,减少传输延迟和带宽占用。
通过引入更高级的音频编解码器,如HD Voice(高清语音)和EVS(Enhanced Voice Services)等,提供更清晰、更自然的语音质量。
6.引入音频增强技术:通过应用降噪技术和回声抑制技术,减少周围环境的噪声和回声对语音通话的干扰。
这些技术可以在终端设备和网络端进行实时处理,提升语音通话的清晰度和可听性。
7.加强用户培训和意识提升:提供培训和教育,向用户介绍VOLTE技术的优势和特点,提高用户对VOLTE语音服务的认知和认可度。
VOLTE语音质量MOS典型影响因素的研究

VOLTE语音质量MOS典型影响因素的研究摘要:本文主要介绍LTE网络语音解决方案volte的MOS评估测试方式,并对影响MOS语音质量的关键因素加以分析,同时提出相关优化思路用于如何提升VOLTE语音质量進行指导。
关键词:4G;VOLTE;MOS;LTE1研究背景VOLTE技术能够带给4G用户最直接的感受就是接通等待时间更短,以及更高质量,更自然的音视频通话效果。
MOS是评价VOLTE语音质量的好坏的关键,直接关系着用户使用高清语音的真实感受。
MOS分的降低,直接会影响语音听字不清晰、说话吞字、感知差。
本文主要研究影响MOS的关键因素并提出相关优化思路用于指导现有VOLTE网络优化来提升用户语音通话感知。
2语音质量评估方法2、1什么是MOSMOS是一种语音评估方法,最初是根据听者的感受为依据进行统计并规范分值,其结果从低到高为:“1至5”,1为差,2为一般,3为正常,4为好,5为最好。
请参考图1所示。
在实际环境中,2-3已经是正常值,人耳很难辨别出差异,1-1、9属于衰落比较厉害,人耳可分辨。
目前,MOS算法有PAMS、PESQ、PSQM、PSQM+、POLQA、MNB等众多算法,POLQA算法目前是4G网络最科学,且与MOS相关性最好的算法,为ITU主推的算法,可以客观的评测通信网络的语音质量。
2、2ATU设备中MOS的计算方法CDS、鼎力和ASCOM工具都按照中国移动MOS测试规范,采用固定语料和固定MOS打分周期。
目前MOS打分周期是9秒输出一个MOS,主叫和被叫周期交替发送固定语料。
所以每隔9秒鼎力设备的主叫和被叫就会输出一个MOS分,发送端发送语料的时候,接收端静默接收,不存在主被叫同时发送语料的时候,无论是主叫发送语料还是被叫发送语料,对端接收后都在MOS盒与原始语料进行对比,所以主叫和被叫的MOS分是一样的。
3、1语音编码以ASCOM工具为例,应用POLQASWB评估方法,采用语音样本和AMRWB23、85kbp语音编码,MOS值最好为4、14、采用同样的语音样本和AMRNB12、2kbp语音编码,MOS值最好为3、1。
VOLTE接通率优化思路及案例(个人资料)

VOLTE 接入问题优化思路及方案整理一、 VLOTE 主被叫接入流程主被叫接入流程指标定义:主叫呼叫成功次数/主叫发起呼叫总数*100% 事件定义:主叫上发 INVITE 后,收到网络下发200 OK二、 VOLTE 接入分析流程:影响业务告警过覆盖弱覆盖重叠覆盖干扰无线质差网络问题终端问题外部因素ATU 维护邻区漏配ATU 建、优、规VOLTE 未接通问题分析思路ATU 优化三、 VOLTE 接入处理流程:1. 影响业务告警:转维护处理2.无线质差:a)弱覆盖:转ATU建设、优化、规划流程处理b)过覆盖、重叠覆盖、干扰、邻区漏配:转ATU优化流程处理3.网络问题:转EPC\IMS排查处理4.终端问题:转软件、终端排查处理5.外部因素:人为误操作:转测试相关人员按规范正确操作、测试。
四、本轮VOLTE分析未接通分类:➢无线问题:1.弱覆盖、过覆盖、重叠覆盖、邻区缺失、模三干扰、外部干扰空口质差导致信令交互超时未接通。
案例:主叫发送UPDATE REQUEST后由于弱覆盖质差UPDATE REQUEST超时导致未接通。
➢网络问题:1.网络不回消息案例:主叫上发INVITE request 消息后网络侧未回100tring导致未接通。
2.流程冲突案例:主叫QCI1专载建立请求与切换请求流程冲突导致未接通。
3.网络主动释放案例:主叫在收到200 OK前网络侧下发rrcConnectionRelease导致未接通。
4.网络回错误码案例1:网络侧下发500 Server Internal Error消息导致主叫未接通。
案列2:网络下发invite service unavaible消息转CSFB导致主叫未接通。
➢软件&终端问题1.终端无响应案列:被叫上发INVITE- Ringing消息后终端10秒无响应,导致网络向主叫下发rrcConnectionRelease未接通。
2.终端响应延时案列:被叫UE发送INVITE- Ringing消息13秒后才上发INVITE 200 OK,导致网络向主叫下发rrcConnectionRelease未接通。
福建省-VolteMOS差点分析指导汇总

福建省-VolteMOS差点分析指导汇总Volte MOS差点分析指导书1 概述1.1 MOS指标定义MOS值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。
MOS与人的主观感受映射关系如下:表1 MOS分和用户满意度一般情况下,MOS值大于等于3.8被认为是较优的语音质量,大于等于3.0被认为是可以接受的语音质量,低于3.0被认为是难以接受的语音质量。
中国移动对MOS分的定义为路测MOS分,基于宽带AMR(AMR WB)的POLQA算法打分。
1.2 MOS评分原则中国移动集团只有语音MOS的测试标准,视频业务目前业界无通用MOS测评标准,所以现阶段VoLTE的MOS值测试仅针对语音业务。
针对目前移动场景,VoLTE与VoLTE通话协商的编码为AMR-WB 宽带编解码,提供高清语音体验;VoLTE与2G/3G CS业务互通协商的编码为AMR-NB窄带编码(与CS域的编解码相同),因此MOS测试采用VoLTE拨打VoLTE 的方式,测试宽带VoLTE编码的语音质量。
集团对MOS分的定义为路测MOS分,采用P.863算法进行评估。
集团对MOS测试工具要求:珠海世纪鼎利Pioneer、北京惠捷朗(CDS),现阶段测试终端是HTC M8T。
目前的MOS评分周期是9秒输出一个MOS分,主叫和被叫周期交替发送固定语料。
每隔9秒鼎利设备的主叫和被叫会输出一个MOS 分,发送端发送语料的时候,接收端静默接收,不存在主被叫同时发送语料的情况,无论是主叫发语料还是被叫发语料,对端接收后都会在MOS盒和原始语料进行对比,所以主叫和被叫的MOS是一致的。
每个MOS语料发送周期内(9秒),连续的语音分为两段,每段时间2秒左右,总的发音时长4秒左右。
其余时间都是发送静默帧(SID)。
160ms发包周期的都是SID帧,20MS发包周期的都是有语音的RTP包。
1.3 MOS考核要求MOS平均分,即POLQA算法平均得分,目标值:3.5,挑战目标:4.0;MOS>3.0占比,即MOS得分>3.0的采样点占比,目标值:85%,挑战目标:90%;MOS>3.5占比,即MOS得分>3.5的采样点占比,目标值:80%,挑战目标:85%。
案例-Volte_Mos分析优化总结

案例-Volte_Mos分析优化总结深圳电信Volte Mos分析优化总结概述近年来,伴随着移动互联⽹的快速发展,传统电信运营商的业务体系不够丰富、占⽤资源多、商业模式创新不⾜、⽤户使⽤体验不佳的劣势⽇益凸显。
在此背景下,以VoLTE为核⼼的融合通信成为运营商加快转型,应对互联⽹公司跨界竞争的重要业务形态。
随着⽬前VOLTE建设的推进开通,针对VoLTE 的MOS优化进⾏分总结,⽤于为后续VOLTE优化提供分析指导。
1.Mos评分标准语⾳质量问题包含两类,⼀类可以通过MOS分衡量,称为MOS分问题,主要表现为MOS 不达标;另⼀类通过⽤户主观感受来衡量,主要表现为单通、静⾳、杂⾳、掉话等等。
ITU-T P.800定义了MOS的主观测试⽅法,即请40⾄60个有代表性的⼈⼠来听⼀段相同的语⾳样本,然后对该样本经过VoIP传输后的语⾳质量进⾏投票评价,这是⼀种纯粹主观的定性评估。
ITU-T选取在⾮常宽的听觉范围内,根据不同年龄、性别和语⾔组别的得分,做出语⾳质量的判别。
主观测试⽅法应⽤⽐较⼴泛,但有⼀定局限性。
⽐如,主观测试⽅法要求有专业分析统计⽅法、经过专门培训的第三⽅语⾳测试⼈员、特殊的语⾳测试环境、标准的声源,对环境和⼈员都有较⾼的要求。
⽬前在对设备⼚商设备语⾳质量测试时,国内和国际运营商更多地采⽤客观测试测试⽅法。
MOS值(mean opinion score参考ITU-T P.800),语⾳质量的平均意见,是衡量通信系统语⾳质量的重要指标,它是⼀种五分制判断标尺,可以⽤数字或者⽂字表达。
Volte语⾳质量的客观评价体系与2/3G相同,仍采⽤MOS评分,但是2/3G采⽤的是8k采样的AMR-NB 语⾳编码(评分标准⽤的是ITU-T P.862),Volte采⽤的是16k的MAR-WB语⾳编码,评分标准采⽤的是ITU-T P.863.MOS得分说明不同的语⾳评分标准,MOS值存在差异。
1)PSQMPSQM (Perceptual Speech Quality Measurement)即感知的语⾳质量测试,它是⼀种语⾳质量的客观测试⽅法,参考ITU-T的P.861中描述。
VoLTE高清语音MOS值提升方法

VoLTE高清语音MOS值提升方法【摘要】VoLTE业务即将商用,VoLTE业务体验用户逐渐增多,如何来评估、提升VoLTE语音质量显得愈发重要,除了原有传统的语音掉话率和语音误码率等指标来反映VoLTE语音质量外,MOS(Mean Opinion Score)值更能真实地体现VoLTE语音感知。
其主要原理是将用户接听和感知语音质量的行为进行调研和量化,由不同的调查用户分别对原始标准语音和经过无线网传播后的衰退声音进行客观感受对比,得出MOS分值。
一般市区内MOS值达到3以上的时候,就表明网络质量处于较好的水平,VoLTE则能提供高质量的音视频通话,MOS值的优化日显重要。
【关键字】VoLTE MOS值【故障现象】:为了解VoLTE网络现状,同车对标移动测试,MOS>=3.5占比、覆盖率、RTP丢包率优于移动,其余指标与移动相当,但移动VoLTE 已经商用,用户规模远高于电信,多用户影响较大。
电信整体覆盖SINR较差,RTP抖动较大,MOS>=3.5占比仍有优化空间。
MOS等级如下:【原因分析】:1、影响VoLTE MOS的因素丢包率对MOS的影响如下图所示,右侧的某个原始数据包经过传输后,接收端中没有此数据包,则该数据包被丢弃,严重影响MOS感知。
VoLTE中的丢包率 (Packet Loss Rate)是指测试中所丢失数据包数量占所发送数据组的比率,主要是通过统计最终的用户的应用层IP层的数据丢包RTP(承载传输协议,指IP层的数据应用传输协议)丢包率来反映最终的丢包情况。
时延对MOS的影响如上图所示,左侧的某个原始数据包经过传输后,接收端收到这个包比标准信号延迟了一段时间,则用户MOS感知下降。
时延是指一个报文或分组从一个网络的一端传送到另一个端所需要的时间。
它包括了发送时延,传播时延,处理时延,排队时延。
对于语音通话,一般人们能忍受小于150ms的时延,若时延太长,会使通信双方都不舒服。
LTE--VOLITE-MOS话音质量分析

LTE-VOLTE-MOS话音质量分析随着LTE技术的发展,VOLTE(Voice over LTE)已经逐渐普及。
VOLTE带来了更高的通话质量和更佳的用户体验。
但是,用户反馈说话音质量并不总是稳定,有时可能会出现失真或断断续续的情况。
那么,如何分析VOLTE话音质量的问题呢?本文将介绍MOS评分及其在VOLTE话音质量分析中的应用。
MOS评分MOS(Mean Opinion Score)是衡量语音质量的一种标准。
它通过对大量人群的主观评价和客观参数分析得出。
MOS得分范围从1到5,其中1表示极差,而5表示非常好。
MOS评分的优势在于它考虑了用户的主观体验,不仅考虑了网络环境和声音失真等客观参数,同时还考虑了人类听觉的规律。
MOS评分是衡量语音质量最常用的评判标准之一。
VOLTE话音质量分析VOLTE话音质量的分析涉及多个因素。
从用户的角度来看,话音质量和以下因素有关:网络质量VOLTE话音的传输依赖于网络,网络质量是话音质量的决定因素之一。
因此,网络的延迟、带宽和数据包断续率等因素都会影响VOLTE话音质量。
设备性能话音质量也与设备性能相关。
例如,协议栈的稳定性、音频处理算法的质量、麦克风和听筒的质量等,都会影响话音的质量。
环境因素环境因素也会影响话音质量。
例如,听音环境的噪声水平、话筒与口的距离、通话的位置等都会对话音质量产生影响。
MOS评分我们可以通过实测及MOS评分的方法来对VOLTE话音质量进行评估。
实测在实测过程中,我们首先需要识别出话音质量差的区域。
然后,我们可以通过以下几个指标来评估话音质量:JitterJitter是网络中数据包之间的抖动。
当网络带宽不足或数据包丢失时,Jitter值通常会升高。
这会导致话音的失真和断断续续的现象。
通常情况下,Jitter值不应超过20ms。
Packet LossPacket Loss是指在网络传输中丢失数据包的比例。
Packet Loss值高时,会导致话音失真和断断续续的现象。
VoLTEMOS占比指标提升指导书

V o L T E M O S占比指标提升指导书集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-VOLTEMOS3.0占比指标提升指导书V1.0.0目录VoLTEMOS3.0占比指标概述VoLTEMOS采样机制语音质量主要体现在清晰、不失真、再现平面声象等几个方面。
早期语音质量的评价方式是凭人们在打通电话之后通过人耳来感知语音质量好坏的主观评价方式。
国际电信联盟ITU为这种语音质量的主观评价方式制订了相关的评测标准,即我们所熟知的MOS。
VoLTE语音MOS采样机制如下:(1)主叫起呼,进行录音(8s左右);(2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);(3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);(4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……MOS差的影响MOS是广泛认同的语音质量标准,当MOS大于3时,用户使用VoLTE 业务通话不会影响交流,而在MOS小于3时,基本无法听清,严重影响用户感知。
下表是MOS分值与用户感知对应表。
影响MOS的因素MOS值的直接影响因素为:端到端时延、抖动、丢包;VoLTE端到端时延可以分解为:UE语音编/解码时延、空口传输时延、核心网的处理时延、传输网的传输时延。
丢包和抖动的影响因素包括:空口信号质量、eNB负载、传输网的丢包和抖动。
故将以上因素分解后,MOS的影响因素包括:语音编码、覆盖、干扰、切换、邻区、基站故障、传输、核心网、测试终端、人为操作失误等。
MOS低分析流程针对MOS低问题小区优化分析思路流程如下:优化界定方案故障告警核查问题小区及周边一圈层邻近小区是否存在影响业务的故障告警,若存在影响业务的故障告警,优先处理故障告警;影响业务的告警如下:处理建议:网元断链、设备掉电形成的弱覆盖,GPS失步引起的干扰等均会影响周边用户的通话质量,针对相应的故障进行故障处理。
精品案例_电信volte业务MOS值优化提升方法探究

基于volte业务MOS值优化提升方法探究目录一、问题描述 (3)二、分析过程 (3)三、解决措施 (6)四、经验总结 (9)宣城电信基于volte业务MOS值优化提升方法探究【摘要】VoLTE的MOS值直接影响到用户的直观语音体验,因此保证一个良好的VoLTEMOS值对于提升用户感知有着巨大的作用。
针对目前移动场景,VoLTE与VoLTE通话协商的编码为A MR-WB宽带编解码,提供高清语音体验;VoLTE与2G/3G CS业务互通协商的编码为AMR-NB窄带编码(与CS域的编解码相同),因此MOS测试采用VoLTE拨打VoLTE的方式,测试宽带VoLTE编码的语音质量。
影响VoLTEMOS值的因素主要有语音编码、端到端时延、抖动、丢包率等,需着手针对这些方面进行VoLTE的MOS值优化。
通过对MOS值优化理清思路,从测试方法、配置参数、提升策略等方面寻找最优方案,进而解决因覆盖、资源、干扰、切换等问题导致的MOS差点问题,提升VoLTE的MOS值,从而改善用户终端体验。
总结出了如高RRC重建导致MOS值偏低、切换问题的影响提升V oLTE用户感知等方面的解决案例来提升MOS值,为后续打造一张精品VoLTE网络提供了坚实的基础。
【关键字】VoLTE MOS值优化思路【业务类别】VoLTE一、问题描述安徽宣城电信市区RCU路测的指标中VoLTE MOS大于等于3.5占比的指标为94%左右,虽然满足考核指标93%,但是明显低于其他地市,需要针对问题点进行专项优化,提升指标。
在指标优化提升的同时,总结影响MOS值的主要因素以及优化提升MOS值的方法,为后续MOS优化提供方向以及理论指导。
二、分析过程2.1 MOS指标定义及影响因素分析(一)MOS值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。
MOS与人的主观感受映射关系如下:一般情况下,MOS值大于等于3.8被认为是较优的语音质量,大于等于3.0被认为是可以接受的语音质量,低于3.0被认为是难以接受的语音质量。
VOLTE优化经验总结(含5篇)

VOLTE优化经验总结(含5篇)第一篇:VOLTE优化经验总结优化经验总结1.1 日常优化总结日常优化工作主要从无线覆盖优化、参数优化、系统内外邻区优化,功能优化四个方面着手,与ATU路网、工程建设紧密配合,提升整体网络质量。
1.2 RLC优先级优化现象:呼叫建立与切换过程冲突,专载被MME释放。
呼叫建立过程中专载建立与切换几乎同时发生,MME未收到NAS专载完成消息导致释放专载,终端回复invite580(也有上发CANCLE的情况),专载丢失形成未接通事件。
原因分析:QCI5设置的RLC优先级为2,高于SRB=2(传送NAS 层消息)配置为3.导致NAS的层3消息已经比MR要早,但是因为优先级比MR和SIP低,未及时发送。
优化措施:降低QCI 5优先级,确保SIP消息及时上传,修改后此类问题改善明显。
1.3 QCI 5 PDCP DiscardTimer时长优化现象:终端业务建立过程中,出现SIP信息传递丢失的问题,导致收到网络下发的INVITE500或者580等原因值释放。
原因分析:UE在无线信道较差的情况下,SIP信令发送或接收不完整或者无法及时传递,导致IMS相关定时器超时而发起会话cancel。
经过分析,由于QCI5的pdcp 丢弃时长过小,在无线覆盖较差的地方,上行时延会变大,容易导致QCI5信令丢包。
优化措施:QCI5 PDCP DiscardTimer由300ms修改为无穷大优化效果:VoLTE无线接通率提升明显1.4 SBC传输协议TCP重传次数优化背景:被叫从2G返回4G后,主叫起呼,被叫首先bye消息,紧接着接连收到多条上一次呼叫的invite,被叫回复bye481invite486invite580,呼叫失败。
优化措施:爱立信SBC对TCP配置进行了修改:最大重传次数从15次改为5次,最大重传隔间从十几分钟改为15s,此类问题已解决。
1.5 系统间邻区优化LTE网络的GSM邻区关系根据工程参数、共站2G邻区同向小区继承进行规划,同时根据4G、2G道路测试数据匹配进行邻区补充:4G弱信号路段与2G拉网服务小区匹配:利用第三方拉网测试数据,将4G和2G拉网信号强度、经纬度、服务小区等信息导出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、VoL TE语音MOS采样点机制VoLTE语音MOS采样机制如下:(1)主叫起呼,进行录音(8s左右);(2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);(3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);(4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);(6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……二、VoL TE语音MOS优化分析方法1、MOS差的问题点定位测试log单次通话连续两个采样点MOS值小于3的问题点定义为MOS差的问题点。
注意事项:需剔除通话结束的最后一个采样点与下次通话第一个采样点的MOS值都小于3的问题点。
2、MOS优化分析方法由MOS采样点机制可以看出,MOS采样点收集的是采样时间点前8秒的语音质量,所以在分析的时候,需着重分析MOS采样时间前8秒UE本端的下行(包括:无线环境、语音编码、抖动、丢包、频繁切换、RRC重建、异频测量频次等),以及对端的上行(包括:频繁切换、RRC重建、异频测量频次等)。
三、VoL TE语音MOS值的影响因素及优化思路1、MOS值的影响因素MOS值的直接影响因素为:端到端时延、抖动、丢包;VoLTE端到端时延可以分解为:UE语音编/解码时延、空口传输时延、核心网的处理时延、传输网的传输时延。
丢包和抖动的影响因素包括:空口信号质量、eNB负载、传输网的丢包和抖动。
故将以上因素分解后,MOS的影响因素包括:语音编码、覆盖、干扰、切换、邻区、基站负荷、基站故障、传输、核心网、测试终端、人为操作失误等。
2、MOS值的优化思路结合以上影响因素和前期VoLTE拉网测试时遇到的MOS问题,共总结出四类问题点类型:无线问题、基站异常、测试规范和设备、核心网/传输。
在分析MOS问题时,我们首先要考虑基站是否正常工作,其次考虑测试是否规范、测试设备是否正常,再次判断是否为无线问题造成的,最后才考虑是否核心网及传输网引起的。
因此我们在分析MOS问题时,应该按以下步骤进行MOS优化:(1)基站问题:是指问题路段中心经纬度150米以内的基站及主瓣65度范围的小区,若存在基站负荷过大、影响业务的告警、断站等问题,必将影响MOS值。
处理方法:在测试前确保基站正常工作。
案例1:基站故障导致MOS值低问题描述:车辆由南向北行驶至清风路与两河大道交叉路口,UE占用金牛清淳一街-SCDHLS3HM3JN-D2的信号,无线环境RSRP为-116.81dbm,SINR为-2.5,MOS值1.14,经测试数据分析,发现UE未能收到距离清风路与两河大道交叉路口50米的华力汽车公司车队-SCDHLD3HM2GX站点信号,经查询告警得知,发现该站点网元断链,因而导致该路段出现弱覆盖现象,最终导致MOS值差。
处理建议:建议处理华力汽车公司车队-SCDHLD3HM2GX站点故障。
案例2:基站负荷过大,导致MOS值低问题描述:无线环境较好(RSRP为-95dBm左右,SINR为10左右),无频繁切换;但MOS打点前8s主被叫占用电子科大-SCDHLS0HM1CH-D5,抖动和丢包均比较异常(RTP Jitter为992ms,RTP Loss Rate 为3.99%),后台查询电子科大-SCDHLS0HM1CH-D5问题发生时间点15分钟粒度的上行PRB峰值利用率为65.145%,上行PRB平均利用率为45.949%,初步判断为基站负荷过大导致调度不及时,从而影响了MOS值。
处理建议:解决电子科大-SCDHLS0HM1CH-D5负荷过大的问题。
(2)测试规范/测试设备:包括MOS设备调试造成的MOS设备性能低、MOS差、音频线松动、终端异常等。
处理方法:在测试前确保MOS设备正常工作、事先调试好MOS值、音频线插紧、检查终端等。
案例1:调试MOS导致MOS值低问题描述:周围站点状态正常,无线环境良好;本次问题发生在1月25日下午第一个正式log的第1次至第3次呼叫,连续21个MOS值均低于1.5(覆盖较好,无干扰和故障),车辆一直停留在北京华联双桥店门口,第4次起呼MOS值恢复正常,初步判断为当天下午刚开始测试时MOS设备有问题导致。
处理建议:建议按测试规范进行测试,测试前确保MOS设备正常工作。
案例2:无线环境良好,MOS采样点前8s信令丢失问题描述:周围站点状态正常,无线环境良好;主叫9:29:35发起INVITE请求,9:32:28出现低MOS,分析主叫前8s测试数据,此时占用春良宾馆-SCDHLD3HM3JJ-F3,此时RSRP=-87.25dbm,SINR=17,9:32:20至9:32:28主叫无信令交换,查看9:32:20无RTP丢包异常,RTP抖动正常,分析被叫LOG,无信令。
初步判断为终端问题导致MOS差。
处理建议:建议按测试规范进行测试,测试前确保UE终端正常工作。
(3)无线问题:主要包括弱覆盖(RSRP<-100dBm,SINR<0)、质差(RSRP>-100dBm,SINR<0)、频繁切换等。
引起弱覆盖的原因包括:周边缺站(需新规划)、已规划站点但未建设、周边基站故障、室分泄露、邻区漏配、切换参数不当。
质差包括弱覆盖质差和强覆盖质差,前者优先处理弱覆盖,后者通常是由MOD3干扰、GPS失步引起的干扰、外部干扰等干扰引起的。
频繁切换通常是由于网络结构不合理、天馈接反、切换参数设置不当造成的。
案例1:周边缺站(需新规划),弱覆盖导致MOS值低问题描述:测试车辆在川建路由西向东行驶,主被叫占用灵润路8号-SCDHLD3HM3JN-F1、凤凰石油加油站-SCDHLS2HM1JN-D3通话(RSRP-94~-115、SINR-9~15)邻区无更好接续小区,该路段为弱覆盖(连续覆盖路段约180米RSRP<-105),无线环境差导致低MOS(时间为14:58:30至14:58:41、14:59:11至14:59:45)。
该路段凤凰石油加油站-SCDHLS2HM1JN与汇泽路-SCDHLS3HM3JN站间距为600米左右,站间距过大不能够保证有效覆盖;周边无规划站点。
处理建议:建议在川建路新建站点(经度104.06242,纬度30.73527)案例2:已规划站点未建设,弱覆盖导致MOS值低问题描述:主叫UE在成双大道占用桐希亨-SCDHLS1HM1WH-D3时MOS低,在16:09:49的MOS统计为2.076,16秒后在16:10:04的MOS统计为1.401,UE所在路段周边小区的RSRP均在-105dbm左右,属于覆盖不足,核实在覆盖较差路段已有规划L3HZ156054簇桥老农管站,但未开通站点。
处理建议:建议尽快开通站点L3HZ156054簇桥老农管站。
案例3:周边站点故障,弱覆盖导致MOS值低问题描述:在一环路北一段路段被叫占用汇龙湾广场-SCDHLS3HM3JN-F2小区(RSRP=-109dBm SINR=-10),通过查询发现离问题路段最近的友纳克酒店-SCDHLS0HM1JN站点断站;处理建议:尽快恢复友纳克酒店-SCDHLS0HM1JN站点故障。
案例4:室分泄露,弱覆盖导致MOS值低问题描述:问题点前从“香伯伦酒店-SCDHLS0HM1JJ-D1”(RSRP为-101dBm,SINR为9)切换至室分小区“长城锦苑-SCDHLS4WM3JJ-F1”(RSRP为-90dBm),之后由于无法切换出至室外宏站,弱覆盖导致MOS值偏低。
处理建议:处理室分小区“长城锦苑-SCDHLS4WM3JJ-F1”的室分外泄问题。
案例5:邻区漏配,弱覆盖导致MOS值低问题描述:周围站点状态正常;UE沿八里桥路至南向北后右过程中,由于2016/1/25测试时查看八里桥路灯杆F-SCDHLD4HM3CH-F1到路段覆盖站点凤仪东路东端没有添加邻区关系,被叫UE占用八里桥路灯杆F-SCDHLD4HM3CH-F1(RSRP=-103dBm SINR=-10),无法发生切换到合适的小区,被叫电平质量较差且出现呼叫重建导致MOS质差处理建议:添加八里桥路灯杆F-SCDHLD4HM3CH-F1到凤仪东路东端站点所有小区的邻区关系。
案例6:切换参数不当,弱覆盖导致MOS值低问题描述:周围站点状态正常;辆沿新航路从西南向东北行驶,UE占用汇都工业园F-SCDHLS3HM2GX-F1的信号RSRP为-96dbm左右,SINR10.4左右,MOS值为1.52.随着车辆继续行驶且信号不断减弱,而顺康电子-SCDHLS1HM1GX-F1的电平到达了-83dbm左右都未能与汇都工业园F-SCDHLS3HM2GX-F1发生切换,因此因汇都工业园F-SCDHLS3HM2GX-F1与顺康电子-SCDHLS1HM1GX-D切换不及时引起MOS值差;处理建议:建议将汇都工业园F-SCDHLS3HM2GX-F1到顺康电子-SCDHLS1HM1GX-F1的小区偏移量CIO由0调整到6dB,加快两者之间的切换。
案例7:切换参数设置不当,频繁切换导致MOS值低问题描述:周围站点状态正常;测试车辆行驶至静渝路,由北向南行驶,主叫占用沙河农牧市场-SCDHLD3HM3JJ-F2小区,切换至异频小区千禧汽修厂-SCDHLS1HM1JJ-D2小区,测试车辆继续向南行驶RSRP电平衰减至-95dBm,回切至异频沙河农牧市场-SCDHLD3HM3JJ-F2小区,频繁异频切换导致低MOS.处理建议:测试时沙河农牧市场-SCDHLD3HM3JJ-F2在RSRP=-88dBm触发异频切换A4事件,建议将基于A4的A2门限调整为-100dBm。
案例8:网络结构不合理,频繁切换导致MOS值低问题描述:周围站点状态正常;UE在“人和商务楼-SCDHLS1HM1QY-D5”和“煤建公司-VCDHLS1HM1QY-D3”两个同频小区之间频繁切换,有异常丢包;问题路段为两个小区的中间位置。
处理建议:对“人和商务楼-SCDHLS1HM1QY-D5”和“煤建公司-VCDHLS1HM1QY-D3”进行RF优化,缓解两者间的频繁切换。
案例9:越区形成MOD3干扰,SINR差导致MOS值低问题描述:周围站点状态正常;服务小区为“东郊分局-VCDHLS0HM1JJ-D1”(频点为37900,PCI=262,RSRP 为-76.75dBm),邻区存在MOD3干扰小区“创意仓库-SCDHLS1HM1JJ-D1”(频点为37900,PCI=97,RSRP为-83.38dBm),导致MOS值偏低。
处理建议:“创意仓库-SCDHLS1HM1JJ-D1”离问题路段较远(有越区的情况),建议下压问题小区“创意仓库-SCDHLS1HM1JJ-D1”的下倾角,控制其在问题路段的覆盖。