第五节-三角恒等变换练习题(高考总复习)

合集下载

三角恒等变换经典练习

三角恒等变换经典练习

三角恒等变换经典练习一、选择题( )A B .12C D .12.已知313sin(=-)απ,则=-)26sin(απ (A) 97- (B) 97 (C) 97± (D)92-3.sin15°+cos15°=( ) A .26B .46 C .23 D .434.已知sinα+cosα=32,则sin 2α的值为( ) A .95 B .±95 C .﹣95D .05.=+200sin 80sin 200cos 80cos ( )A .21- B .23- C .21D .236.若3cos()45πα-=,则sin 2α=( )A .725B .15 C. 15- D .725-7.在△ABC 中,tanA=21,cosB=10103,则tanC=( )A .﹣2B .1C .D .﹣18.函数f (x )=sin 2(x+)﹣sin 2(x ﹣)是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数 9.若1010)sin(,552sin =-=αβα,且⎥⎦⎤⎢⎣⎡∈⎥⎦⎤⎢⎣⎡∈23,,,4ππβππα,则βα+的值是( ) A.π47B.π49C.π45或π47D.π45或π4910.已知函数f (x )=sin2x ﹣cos2x ,有下列四个结论:①f (x )的最小正周期为π;②f (x )在区间[﹣,]上是增函数;③f (x )的图象关于点(,0)对称;④x=是f (x )的一条对称轴.其中正确结论的个数为( ) A .1B .2C .3D .4二、填空题1.设1cos 9θ=,则sin 2θ的值为__________.2.已知α,β为锐角,若sin α=54,cos β=135,则sin2α= ,cos (α+β)= .3.已知1sin sin 3αβ-=-,1cos cos 2αβ-=,则cos()αβ-= .三、解答题1.已知113cos ,cos()714ααβ=-=,且02πβα<<<,求:(1)tan 2α;(2)βcos .2、已知函数f(x)=43sin 2(π﹣x )+4sinxcos(x+3π)﹣3. (Ⅰ)求 f(3π)的值; (Ⅱ)求f (x )图象的对称轴方程; (Ⅲ)求f (x )在[﹣4π,3π]上的最大值与最小值.3.已知函数2()(1)cos f x x x=.(1)求函数()f x 的定义域及其单调减区间.(2)求函数()f x 的值域.以及当()f x 取得最大值时x 的值构成的集合。

三角恒等变换(试题部分)

三角恒等变换(试题部分)

4.3三角恒等变换探考情悟真题【考情探究】考点内容解读5年考情预测热度考题例如考向关联考点两角和与差的三角函数1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,会用二倍角的正弦、余弦、正切公式,了解它们的内在联系.2021浙江,18,14分两角差的余弦公式任意角的三角函数的定义、诱导公式★★☆2021浙江,16,14分二倍角公式解三角形2021浙江,16,14分二倍角公式正弦定理简单的三角恒等变换能利用两角和与差的三角函数公式以及二倍角公式进行简单的三角恒等变换.2021浙江,18,14分二倍角公式三角函数的性质★★★2021浙江,10,6分三角恒等变换分析解读 1.对本节内容的考查仍以容易题和中等难度题为主.2.主要考查两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,以及运用上述公式进行简单的恒等变换(例:2021浙江,10).3.对三角恒等变换的考查往往与解三角形、向量知识综合在一起.4.预计2021年高考试题中,三角恒等变换仍是考查的重点,复习时应高度重视.破考点练考向【考点集训】考点一两角和与差的三角函数1.(2021浙江台州中学一模,2)计算:sin5°cos55°-cos175°sin55°的结果是()A.-12B.12C.-√32D.√32答案D2.(2021浙江杭州二中期中,15)假设α满足sin(α+20°)=cos(α+10°)+cos(α-10°),那么tanα=.答案 √3考点二 简单的三角恒等变换1.(2021课标全国Ⅱ理,10,5分)α∈(0,π2),2sin 2α=cos 2α+1,那么sin α=( )A.15B.√55C.√33D.2√55答案 B2.(2021浙江镇海中学期中,7)sin (π6-α)=-√23,那么cos 2α+√3sin 2α=( )A.109B.-109C.-59D.59答案 A3.(2021届山东夏季高考模拟,14)cos (α+π6)-sin α=4√35,那么sin (α+11π6)= .答案 -454.(2021届浙江镇海中学期中,18)f(x)=sin x 2·(cos x 2+sin x 2)+a 的最大值为√22.(1)求实数a 的值;(2)假设f (α+π4)+f (α-π4)=√23,求√2sin (2α-π4)+11+tanα的值. 解析 此题考查三角恒等变换以及三角函数式的求值;考查学生运算求解的能力;考查了数学运算的核心素养.(1)f(x)=sin x 2cos x 2+sin 2x 2+a=12(2sin x 2cos x 2)+12(1-cos x)+a=12sin x-12cos x+a+12=√22sin (x -π4)+a+12,当x=2kπ+3π4(k ∈Z)时,sin (x -π4)=1, f(x)取得最大值为√22+a+12,结合条件,可知a=-12.(2)√2sin (2α-π4)+11+tanα=sin2α-cos2α+11+sinαcosα=2sinαcosα+sin 2α-cos 2α+sin 2α+cos 2αcosα+sinαcosα=2sin αcos α①,由(1)知f(x)=√22sin (x -π4),那么f (α+π4)=√22sin α, f (α-π4)=-√22cos α,结合条件,可知sin α-cos α=23, 又因为sin 2α+cos 2α=1,所以2sin αcos α=59②,由①②得√2sin (2α-π4)+11+tanα=59.炼技法 提能力 【方法集训】方法1 三角函数式的化简方法1.tan α=2 018tan π2 018,那么sin (α+2 017π2 018)sin (α+π2 018)=( )A.-1B.1C.-2 0172 019D.2 0172 019答案 C2.化简(sin θ2-cos θ2)√2+2cosθ(0<θ<π)= .答案 -cos θ3.(2021届浙江绍兴一中期中,18)函数f(x)=cos x(msin x+cos x),且满足f (π4)=1.(1)求m 的值;(2)假设x ∈[0,π4],求f(x)的最大值和最小值,并求出相应的x 的值.解析 此题考查三角恒等变换以及三角函数式的化简、三角函数最值的求法;考查数学运算求解的能力;考查了数学运算的核心素养.(1)f (π4)=cos π4(msin π4+cos π4)=√22(√22m +√22)=1⇒m=1.(2)f(x)=cos x(sin x+cos x)=12sin 2x+12cos 2x+12=√22sin (2x +π4)+12,因为x ∈[0,π4],所以2x+π4∈[π4,3π4],因此当2x+π4=π4或2x+π4=3π4时, f(x)min =1,此时x=0或x=π4.当2x+π4=π2时, f(x)max =√2+12,此时x=π8.方法2 三角函数式的求值方法1.(2021浙江台州中学一模,15)α,β为锐角,tan α=43,cos(α+β)=-√55,那么cos 2α= ,tan(α-β)= .答案 -725;-2112.(2021安徽江南十校联考改编,14)sinα·cosα1+3cos 2α=14,且tan(α+β)=13,其中β∈(0,π),那么β的值为 .答案3π43.(2021届浙江慈溪期中,16)α∈(0,π2)且tan 2α=43,那么tan (α+π4)tan (α-π4)的值等于 .答案 -9方法3 利用辅助角公式解决问题的方法1.(2021浙江诸暨期末,18)函数f(x)=-2√3sin 2x+2sin xcos x. (1)求函数f(x)在区间[0,π2]上的值域;(2)设α∈(0,π),f (α2)=12-√3,求cos α的值.解析 (1)f(x)=-2√3·1−cos2x2+sin 2x =sin 2x+√3cos 2x-√3 =2sin (2x +π3)-√3,∵x ∈[0,π2],∴2x+π3∈[π3,4π3], ∴sin (2x +π3)∈[-√32,1],∴f(x)∈[-2√3,2-√3].(2)∵f(α2)=2sin(α+π3)-√3=12-√3,∴sin(α+π3)=14.又∵α∈(0,π),∴α+π3∈(π3,4π3),∴α+π3必在第二象限,∴cos(α+π3)=-√154,∴cosα=cos[(α+π3)-π3]=cos(α+π3)cosπ3+sin(α+π3)sinπ3=-√154×12+14×√32=√3-√158.2.(2021浙江“七彩阳光〞联盟期初联考,18)f(x)=2√3cos2x+sin2x-√3+1(x∈R).(1)求f(x)的单调增区间;(2)当x∈[-π4,π4]时,求f(x)的值域.解析由题可知f(x)=sin2x+√3(2cos2x-1)+1=sin2x+√3cos2x+1=2sin(2x+π3)+1.(1)令2kπ-π2≤2x+π3≤2kπ+π2,k∈Z,即2kπ-5π6≤2x≤2kπ+π6,k∈Z,∴kπ-5π12≤x≤kπ+π12,k∈Z,∴函数f(x)的单调增区间为[kπ-5π12,kπ+π12](k∈Z).(2)∵x∈[-π4,π4],∴2x+π3∈[-π6,5π6],∴sin(2x+π3)∈[-12,1],∴f(x)∈[0,3].3.(2021届浙江湖州、衢州、丽水三地联考,18)平面向量a=(√32sinx,cosx),b=(cos x,0),函数f(x)=|2a+b|(x∈R).(1)求函数f(x)图象的对称轴;(2)当x∈(0,π2)时,求f(x)的值域.解析此题考查平面向量的模的求法、三角恒等变换、辅助角公式的应用;考查学生运算求解的能力;考查了数学运算的核心素养.(1)2a+b=(√3sin x+cos x,2cos x),f(x)=|2a+b|=√(√3sinx+cosx)2+(2cosx)2=√2sin(2x+π6)+4(x∈R).由2x+π6=kπ+π2,k∈Z,得x=kπ2+π6,k∈Z,故函数f(x)图象的对称轴为直线x=kπ2+π6,k∈Z.(2)因为x∈(0,π2),所以2x+π6∈(π6,7π6),所以sin(2x+π6)∈(-12,1],可得f(x)∈(√3,√6],即f(x)的值域为(√3,√6].【五年高考】A组自主命题·浙江卷题组(2021浙江,10,6分)2cos2x+sin2x=Asin(ωx+φ)+b(A>0),那么A=,b=.答案√2;1B组统一命题、省(区、市)卷题组考点一两角和与差的三角函数1.(2021课标全国Ⅲ理,4,5分)假设sinα=13,那么cos2α=()A.89B.79C.-79D.-89答案B2.(2021课标全国Ⅱ,9,5分)假设cos(π4-α)=35,那么sin2α=()A.725 B.15 C.-15 D.-725答案 D 3.(2021江苏,13,5分)tanαtan (α+π4)=-23,那么sin (2α+π4)的值是 .答案√2104.(2021课标全国Ⅰ文,15,5分)α∈(0,π2),tan α=2,那么cos (α-π4)= .答案3√1010考点二 简单的三角恒等变换1.(2021课标全国Ⅲ文,4,5分)sin α-cos α=43,那么sin 2α=( )A.-79B.-29C.29D.79答案 A2.(2021四川,11,5分)cos 2π8-sin 2π8= .答案√22C 组 教师专用题组考点一 两角和与差的三角函数1.(2021课标Ⅰ,2,5分)sin 20°cos 10°-cos 160°sin 10°=( ) A.-√32B.√32C.-12 D.12答案 D2.(2021重庆,9,5分)假设tanα=2tanπ5,那么cos(α-3π10)sin(α-π5)=()A.1B.2C.3D.4答案C3.(2021江苏,5,5分)假设tan(α-π4)=16,那么tanα=.答案754.(2021江苏,8,5分)tanα=-2,tan(α+β)=17,那么tanβ的值为. 答案3考点二简单的三角恒等变换1.(2021山东文,4,5分)cos x=34,那么cos2x=()A.-14B.14C.-18D.18答案D2.(2021四川,12,5分)sin15°+sin75°的值是.答案√623.(2021江苏,16,14分)向量a=(cos x,sin x),b=(3,-√3),x∈[0,π].(1)假设a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.解析(1)因为a=(cos x,sin x),b=(3,-√3),a∥b,所以-√3cos x=3sin x.假设cos x=0,那么sin x=0,与sin2x+cos2x=1矛盾,故cos x≠0.于是tan x=-√33.又x∈[0,π],所以x=5π6.(2)f(x)=a·b=(cos x,sin x)·(3,-√3)=3cos x-√3sin x=2√3cos(x+π6).因为x∈[0,π],所以x+π6∈[π6,7π6],从而-1≤cos(x+π6)≤√32.于是,当x+π6=π6,即x=0时,f(x)取到最大值3;当x+π6=π,即x=5π6时,f(x)取到最小值-2√3.【三年模拟】一、选择题(每题4分,共12分)1.(2021届浙江杭州二中开学考,3)cos(π6-α)=23,那么cos(5π3+2α)的值为()A.59B.19C.-19D.-59答案C2.(2021浙江绍兴一中新高考调研卷五,5)△ABC,有关系式tan C(sin2B-sin A)=cos2B+cos A成立,那么△ABC为()A.等腰三角形B.∠A=60°的三角形C.等腰三角形或∠A=60°的三角形D.等腰直角三角形答案C3.(2021届浙江五校十月联考,9)在△ABC中,sinAsinB +cos C=0,tan A=√24,那么tan B=()A.√2B.2√2C.√23D.√22答案D二、填空题(每空3分,共12分)4.(2021届浙江名校协作体开学联考,12)设函数f(x)=cos2x-sin x,那么f(5π6)=,假设f(x)≥0,那么实数x的取值范围是.答案0;[2kπ-7π6,2kπ+π6](k∈Z)5.(2021届浙江之江教育联盟联考,14)函数f(x)=sin2x-sin2(x-π6),x∈R,那么f(x)的最小正周期为,单调递增区间为.答案π;[-π6+kπ,π3+kπ](k∈Z)三、解答题(共90分)6.(2021届浙江金丽衢十二校联考,18)设函数f(x)=sin x+cos x,x∈R.(1)求f(x)·f(π-x)的最小正周期;(2)求函数g(x)=sin3x+cos3x的最大值.解析此题考查三角恒等变换以及三角函数的性质;考查学生运算求解的能力;考查数学运算的核心素养.(1)f(x)·f(π-x)=(sin x+cos x)(sin x-cos x)=-cos2x.所以最小正周期T=2π2=π.(2)g(x)=sin3x+cos3x=(sin x+cos x)(1-sin xcos x),令sin x+cos x=t,那么t∈[-√2,√2],所以sin x·cos x=t2-12,所以g(t)=t(1−t2-12)=t·3−t22=3t-t32,g'(t)=3−3t22,即g(t)在[-√2,-1]上单调递减,在[-1,1]上单调递增,在[1,√2]上单调递减,所以g(t)max=g(1)=1.7.(2021浙江三校联考,18)函数f(x)=6cos2ωx2+√3sinωx-3(ω>0)的图象上相邻两对称轴之间的距离为4.(1)求ω的值及f(x)的单调增区间;(2)假设f(x0)=6√35,且x0∈(23,143),求f(x0+1)的值.解析(1)f(x)=3cosωx+√3sinωx=2√3sin(ωx+π3).由题意得T=8,所以ω=2π8=π4 ,所以f(x)=2√3sin(πx4+π3).令-π2+2kπ≤πx4+π3≤π2+2kπ,k∈Z,解得-103+8k≤x≤23+8k,k∈Z.所以f(x)的单调增区间为[-103+8k,23+8k],k∈Z.(2)由(1)知f(x0)=2√3sin(πx04+π3)=6√35,即sin(πx04+π3)=35,因为x0∈(23,14 3),所以πx04+π3∈(π2,3π2),所以cos(πx04+π3)=-45.所以f(x0+1)=2√3sin(πx04+π4+π3)=2√3[sin(πx04+π3)cosπ4+cos(πx04+π3)sinπ4]=2√3×(35×√22-45×√22)=-√65.8.(2021浙江杭州高级中学期中,18)函数f(x)=cos2x+√3cos xcos(x+π2).(1)求函数f(x)的最大值及取得最大值时x的值;(2)假设f(x0)=-110,x0∈(π12,π3),求cos2x0的值.解析(1)f(x)=-sin(2x-π6)+12.易知当sin(2x-π6)=-1时,f(x)取得最大值,此时2x-π6=-π2+2kπ,k∈Z,故x=-π6+kπ,k∈Z,所以当x=-π6+kπ,k∈Z时,f(x)max=32.(2)因为f(x0)=-sin(2x0-π6)+12=-110,所以sin(2x0-π6)=35.因为x0∈(π12,π3 ),所以2x0-π6∈(0,π2),故cos(2x0-π6)=45.所以cos2x0=cos[(2x0-π6)+π6]=cos(2x0-π6)cosπ6-sin(2x0-π6)sinπ6=4√3-310.9.(2021浙江高考数学仿真卷(二),18)函数f(x)=-√3sin2x-2cos2x+1.(1)求函数f(x)的振幅和单调递增区间;(2)在△ABC中,C为锐角,满足sin2C+2sin2A=1,假设f(C)=12,求cos2A的值.解析(1)f(x)=-√3sin2x-cos2x=-2sin(2x+π6),∴f(x)的振幅为2.令π2+2kπ≤2x+π6≤3π2+2kπ(k∈Z),那么π6+kπ≤x≤2π3+kπ(k∈Z).∴f(x)的单调递增区间为[π6+kπ,2π3+kπ](k∈Z).(2)∵sin 2C+2sin 2A=1,∴sin 2C=1-2sin 2A=cos 2A=sin (π2+2A),∴2C=π2+2A 或2C+2A+π2=π,所以C-A=π4或C+A=π4.∵C 为锐角,∴2C+π6∈(π6,7π6),∵f(C)=12, ∴-2sin (2C +π6)=12,∴sin (2C +π6)=-14,∴2C+π6∈(π,7π6), ∴C ∈(5π12,π2), ∴C-A=π4,此时cos (2C +π6)=-√154,∴cos 2A=cos [2(C -π4)]=cos (2C -π2)=sin 2C=sin [(2C +π6)-π6]=sin (2C +π6)cos π6-cos (2C +π6)sin π6=-14×√32-(-√154)×12=√15-√38.10.(2021浙江高考信息优化卷(一),18)函数f(x)=2√3sin ωxsin (ωx +π2)-2sin 2ωx+1(ω>0),且f(x)的最小正周期为π.(1)求ω的值以及f(x)在区间[0,π3]上的值域;(2)假设f(α)=2√55,且α∈[π6,π2],求cos 2α的值.解析 (1)f(x)=2√3sin ωxcos ωx+cos 2ωx=√3sin 2ωx+cos 2ωx=2sin (2ωx +π6),∵T=2π2ω=π,∴ω=1, ∴f(x)=2sin (2x +π6),∵x ∈[0,π3],∴2x+π6∈[π6,5π6],∴sin(2x+π6)∈[12,1],∴f(x)∈[1,2].(2)易知f(α)=2sin(2α+π6)=2√55⇒sin(2α+π6)=√55,∵α∈[π6,π2],∴2α+π6∈[π2,7π6],∴cos(2α+π6)=-2√55,∴cos2α=cos[(2α+π6)-π6]=cos(2α+π6)cosπ6+sin(2α+π6)sinπ6=√5-2√1510.11.(2021届浙江Z20联盟开学联考,18)函数f(x)=cos2x+√3sin xcos x.(1)求f(π3)的值;(2)假设f(α2)=1310,α∈(0,π3),求cosα的值.解析此题考查简单的三角恒等变换;考查学生运算求解的能力;考查数学运算的核心素养.(1)因为f(x)=cos2x+√3sin xcos x=1+cos2x2+√32sin2x=12+sin(2x+π6),所以f(π3)=12+sin(2π3+π6)=12+sin5π6=12+12=1.(2)由f(α2)=1310,α∈(0,π3),得sin(α+π6)=45,cos(α+π6)=35,所以cosα=cos(α+π6-π6)=cos(α+π6)cosπ6+sin(α+π6)·sinπ6=3√3+410.。

三角恒等变换练习题及答案

三角恒等变换练习题及答案

角函数公式两角和公式sin(A+B)=sin(A-B)=cos(A+B)=cos(A-B)=tan(A+B)=tan(A-B)=倍角公式tan2α=cos2α=sin2α=半角公式sin^2( α/2)=cos^2( α/2)=tan^2( α/2)=和差化积2sinAcosB=2cosAsinB=2cosAcosB=-2sinAsinB=积化和差公式sinαsinβ=cosαcos=βsin αco=sβ万能公式sin(α)= (2tαn(α/2))/(1+t αn^2(α/2)) cos(α)= (1-t αn^2(α/2))/(1+t αn^2( α/2)) tαn(α)= (2tαn(α/2))/(1-t αn^2( α/2))角函数公式两角和公式sin(Α+B)=sin ΑcosB+cosΑsinB sin(Α-B)=sinΑcosB-sinBcosΑcos(Α+B)=cosΑcosB-sinΑsinB cos(Α-B)=cosΑcosB+sinΑsinBt αn(Α+B)=(tαnΑ+tαnB)/(1-t αnΑt αnB) tαn(Α-B)=(tαnΑ-t αnB)/(1+tαnΑt αnB) 倍角公式cos2 cos 2sin 2 2 c os 2 1 1 2 sin 2;。

sin 2 tan2 2sin2 tancos ;1 tan2半角公式sin^2( α/2)=(1-cos α)/2cos^2( α/2)=(1+cos α)/2tαn^2( α/2)=(1-cos α)/(1+cos α)和差化积2sinΑcosB=sin(Α+B)+sin( Α-B) 2cosΑsinB=sin(Α+B)-sin(Α-B) ) 2cosΑcosB=cos(Α+B)+cos(Α-B)-2sinΑsinB=cos(Α+B)-cos(Α-B)积化和差公式sin(α)sin(β)=—1/2*[cos( α+β)-cos(α-β)] cos(α)cos(β)=1/2*[cos( α+β)+cos(α-β)] sin(α)cos(β)=1/2*[sin( α+β)+sin(α-β)]1. 三角函数式的化简(1)降幂公式sin cos 1sin 22;sin1 cos22;cos1 cos2。

3-5第五节 三角恒等变换练习题(2015年高考总复习)

3-5第五节 三角恒等变换练习题(2015年高考总复习)

第五节 三角恒等变换时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分) 1.已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( )A .-3B .-17C .-43D .-7解析 依题意得,sin α=255,故tan α=2,tan2α=2×21-4=-43,所以tan ⎝ ⎛⎭⎪⎫π4+2α=1-431+43=-17.答案 B2.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是( )A .-233B .±233C .-1D .±1解析 cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=-1.答案 C 3.已知cos2θ=23,则sin 4θ+cos 4θ的值为( ) A.1318B.1118C.79D .-1解析 ∵cos2θ=23,∴sin 22θ=79,∴sin 4θ+cos 4θ=1-2sin 2θcos 2θ=1-12(sin2θ)2=1118.答案 B4.已知α+β=π4,则(1+tan α)(1+tan β)的值是( )A .-1B .1C .2D .4解析 ∵α+β=π4tan(α+β)=tan α+tan β1-tan αtan β=1,∴tan α+tan β=1-tan αtan β.∴(1+tan α)(1+tan β)=1+tan α+tan β+tan αtan β =1+1-tan αtan β+tan αtan β=2. 答案 C 5.(2014·成都诊断检测)如图,在平面直角坐标系xOy 中,角α,β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A ,B 两点,若点A ,B 的坐标为⎝ ⎛⎭⎪⎫35,45和⎝ ⎛⎭⎪⎫-45,35,则cos(α+β)的值为( )A .-2425B .-725C .0D.2425解析 cos α=35,sin α=45,cos β=-45,sin β=35,cos(α+β)=cos αcos β-sin αsin β=35·(-45)-45·35=-2425.选A.答案 A6.若sin ⎝ ⎛⎭⎪⎫α-π4cos2α=-2,则sin α+cos α的值为( )A .-72B .-12C.12D.72解析 ∵22(sin α-cos α)=-2(cos 2α-sin 2α),∴sin α+cos α=12.答案 C二、填空题(本大题共3小题,每小题5分,共15分)7.若tan ⎝ ⎛⎭⎪⎫α+π4=25,则tan α=________. 解析 ∵tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α25, ∴5tan α+5=2-2tan α. ∴7tan α=-3,∴tan α=-37.答案 -378.(2013·江西卷)函数y =sin2x +23sin 2x 的最小正周期T 为________.解析 y =sin2x +23sin 2x =sin2x -3cos2x + 3 =2sin(2x -π3)+3,所以T =π.答案 π9.(2013·新课标全国卷Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________.解析 f (x )=sin x -2cos x =5(15sin x -25cos x )=5sin(x -φ)而sin φ=25,cos φ=15,当x -φ=π2+2k π(k ∈Z )时,f (x )取最大值5,即θ=φ+π2+2k π时,f (x )取最大值.cos θ=cos(φ+π2+2k π)=-sin φ=-25=-255.答案 -255三、解答题(本大题共3小题,每小题10分,共30分) 10.已知tan2θ=34(π2<θ<π),求2cos 2θ2+sin θ-12cos (θ+π4)的值.解 ∵tan2θ=2tan θ1-tan 2θ=34, ∴tan θ=-3或tan θ=13.又θ∈(π2,π),∴tan θ=-3.∴2cos 2θ2+sin θ-12cos (θ+π4=cos θ+sin θcos θ-sin θ=1+tan θ1-tan θ=1-31+3=-12.11.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π=1617,求cos(α+β)的值. 解 (1)∵T =10π=2πω,∴ω=15.(2)由(1)得f (x )=2cos ⎝ ⎛⎭⎪⎫15x +π6, ∵f ⎝ ⎛⎭⎪⎫5α+5π3=2cos ⎝ ⎛⎭⎪⎫α+π2=-2sin α=-65. ∴sin α=35,cos α=45.∵f ⎝ ⎛⎭⎪⎫5β-5π6=2cos β=1617, ∴cos β=817,sin β=1517.∴cos(α+β)=cos αcos β-sin αsin β =45×817-35×1517=-1385. 12.(2013·重庆卷)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2.(Ⅰ)求C ;(Ⅱ)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值.解 (Ⅰ)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.故C =3π4.(Ⅱ)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25.因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.①因为C =3π4,A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B ,即325-sin A sin B =22,解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4.。

三角恒等变换专题复习带答案

三角恒等变换专题复习带答案

三角恒等变换专题复习教学目标:1、能利用单位圆中的三角函数线推导出 απαπ±±,2的正弦、余弦、正切的诱导公式;2、理解同角三角函数的基本关系式:;3、可熟练运用三角函数见的基本关系式解决各种问题; 教学重难点:可熟练运用三角函数见的基本关系式解决各种问题 基础知识一、同角的三大关系:① 倒数关系 tan α•cot α=1 ② 商数关系 sin cos αα= tan α ; cos sin αα= cot α ③ 平方关系 22sin cos 1αα+=温馨提示:1求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解;来源:学+科+网2利用上述公式求三角函数值时,注意开方时要结合角的范围正确取舍“±”号;二、诱导公式口诀:奇变偶不变,符号看象限用诱导公式化简,一般先把角化成,2k z α+∈的形式,然后利用诱导公式的口诀化简如果前面的角是90度的奇数倍,就是 “奇”,是90度的偶数倍,就是“偶”;符号看象限是,把α看作是锐角,判断角2k πα+在第几象限,在这个象限的前面三角函数的符号是 “+”还是“--”,就加在前面;用诱导公式计算时,一般是先将负角变成正角,再将正角变成区间0(0,360)的角,再变到区间00(0,180)的角,再变到区间00(0,90)的角计算;三、和角与差角公式 :sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=变 用 tan α±tan β=tan α±β1 tan αtan β四、二倍角公式:sin 2α= 2sin cos αα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-五、注意这些公式的来弄去脉这些公式都可以由公式cos()cos cos sin sin αβαβαβ±=推导出来;六、注意公式的顺用、逆用、变用;如:逆用sin cos cos sin sin()αβαβαβ±=± 1sin cos sin 22ααα=变用22cos 1cos 2αα+=22cos 1sin 2αα-= 21cos 4cos 22αα+= 七、合一变形辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式;()22sin cos αααϕA +B =A +B +,其中tan ϕB=A. 八、万能公式ααα2tan 1tan 22sin += ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=九、用αsin ,αcos 表示2tanααααααsin cos 1cos 1sin 2tan-=+=十、积化和差与和差化积积化和差 )]sin()[sin(cos sin βαβαβα-++=; )]sin()[sin(sin cos βαβαβα--+=;)]cos()[cos(cos cos βαβαβα-++=; )]cos()[cos(sin sin βαβαβα--+=.和差化积 2cos2sin2sin sin ϕθϕθϕθ-+=+2sin 2cos 2sin sin ϕθϕθϕθ-+=- 2cos 2cos 2cos cos ϕθϕθϕθ-+=+ 2sin 2sin 2cos cos ϕθϕθϕθ-+=-十一、方法总结1、三角恒等变换方法观察角、名、式→三变变角、变名、变式1 “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=α+β-β=α-β+β, 2α=α+β+ α-β, 2α=β+α-β-α,α+β=2·错误! , 错误! = α-错误!-错误!-β等.2“变名”指的是切化弦正切余切化成正弦余弦sin cos tan ,cot cos sin αααααα==, 3“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等; 2、恒等式的证明方法灵活多样①从一边开始直接推证,得到另一边,一般地,如果所证等式一边比较繁而另一边比较简时多采用此法,即由繁到简.②左右归一法,即将所证恒等式左、右两边同时推导变形,直接推得左右两边都等于同一个式子. ③比较法, 即设法证明: "左边-右边=0" 或" 错误! =1";④分析法,从被证的等式出发,逐步探求使等式成立的充分条件,一直推到已知条件或显然成立的结论成立为止,则可以判断原等式成立.例题精讲例1 已知α为第四象限角,化简:ααααααcos 1cos 1sin sin 1sin 1cos +-++-解:1因为α为第四象限角所以原式=αααααα2222cos 1)cos 1(sin sin 1)sin 1(cos --+-- ()ααααααααααsin cos cos 1sin 1sin cos 1sin cos sin 1cos -=---=--+-=例2 已知360270<<α,化简α2cos 21212121++ 解:360270<<α,02cos,0cos <>∴αα所以原式2111cos211cos 22222αα++=+21cos cos cos 222ααα+===- 例3 tan20°+4sin20°解:tan20°+4sin20°=0020cos 40sin 220sin +=0sin(6040)2sin 40cos 20-+00003340sin 403cos 20223cos 20+=== 例4 05天津已知727sin()2425παα-==,求sin α及tan()3πα+.解:解法一:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==, 解得 259sin 2=α,即53sin ±=α 由1027)4sin(=-πα可得57cos sin =-αα由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限于是53sin =α,从而5457sin cos -=-=αα 以下同解法一小结:1、本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系均含α进行转换得到.2、在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例 5 已知,,A B C 为锐角ABC ∆的三个内角,两向量(22sin ,cos sin )p A A A =-+,(sin cos ,q A A =-1sin )A +,若p 与q 是共线向量.1求A 的大小;2求函数232sin cos()2C By B -=+取最大值时,B 的大小. 解:122// 2(1)(1+)- p q sinA sinA sin A cos A ∴-=22220 120cos A cos A cos A ∴+=∴+= 1cos 2A 2∴=-0<2A<π,002A 120 A=60∴=∴200A=60 B+C=120∴ 2013y=2sin B+cos(602B)1cos 2B+cos 2B sin 2B 22-=-+31 =sin 2B cos 2B+1=sin(2B )1226π--+ , 2B B 623πππ-=当时,即=. 小结:三角函数与向量之间的联系很紧密,解题时要时刻注意例6 设关于x 的方程sinx +3cosx +a =0在0, 2π内有相异二解α、β.1求α的取值范围; 2求tan α+β的值. 解: 1∵sinx +3cosx =221sinx +23cosx =2 sinx +3π, ∴方程化为sinx +3π=-2a.∵方程sinx +3cosx +a =0在0, 2π内有相异二解, ∴sinx +3π≠sin 3π=23 .又sinx +3π≠±1 ∵当等于23和±1时仅有一解, ∴|-2a |<1 . 且-2a≠23. 即|a |<2且a ≠-3.∴ a 的取值范围是-2, -3∪-3, 2.2 ∵α、 β是方程的相异解, ∴sin α+3cos α+a =0 ①. sin β+3cos β+a =0 ②. ①-②得sin α- sin β+3 cos α- cos β=0. ∴ 2sin2βα-cos2βα+-23sin2βα+sin2βα-=0, 又sin2βα+≠0, ∴tan2βα+=33.∴tan α+β=2tan22tan22βαβα+-+=3.小结:要注意三角函数实根个数与普通方程的区别,这里不能忘记0, 2π这一条件. 例7 已知函数()x x m x f cos sin 2-=在区间⎪⎭⎫⎝⎛2,0π上单调递减,试求实数m 的取值范围.解:已知条件实际上给出了一个在区间⎪⎭⎫⎝⎛2,0π上恒成立的不等式. 任取∈21,x x ⎪⎭⎫⎝⎛2,0π,且21x x <,则不等式()()21x f x f >恒成立,即>-11cos sin 2x x m 22cos sin 2x x m -恒成立.化简得()()2112sin 2cos cos x x x x m ->- 由2021π<<<x x 可知:0cos cos 12<-x x ,所以()1221cos cos sin 2x x x x m --<上式恒成立的条件为:()上的最小值,在区间⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛--<20cos cos sin 21221πx x x x m . 由于()2sin 2cos 22sin 2sin 22cos 2sin4cos cos sin 22121212121211221x x x x x x x x x x x x x x x x +-=-+--=-- 2sin2cos 2cos 2sin 2sin 2sin 2cos 2cos 221212121x x x x x x x x +⎪⎭⎫ ⎝⎛+=2tan2tan 2tan 2tan 122121x x x x +⎪⎭⎫ ⎝⎛+=且当2021π<<<x x 时,42,2021π<<x x ,所以 12tan ,2tan 021<<x x , 从而 02tan 12tan 12tan 2tan 2tan 2tan1212121>⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x x x , 有 22tan2tan 2tan 2tan 122121>+⎪⎭⎫ ⎝⎛+x x x x , 故 m 的取值范围为]2,(-∞.基础精练1.已知α是锐角,且sin 错误!=错误!,则sin 错误!的值等于A.错误! B .-错误! C.错误! D .-错误!2.若-2π<α<-错误!,则 错误!的值是A .sin 错误!B .cos 错误!C .-sin 错误!D .-cos 错误!3.错误!·错误!等于A.-sinαB.-cosαC.sinαD.cosα4.已知角α在第一象限且cosα=错误!,则错误!等于A.错误!B.错误!C.错误!D.-错误!5.定义运算错误!=ad -bc.若cosα=错误!,错误!=错误!,0<β<α<错误!,则β等于A.错误!B.错误!C.错误!D.错误!6.已知tanα和tan 错误!-α是方程ax 2+bx +c =0的两个根,则a 、b 、c 的关系是A.b =a +cB.2b =a +cC.c =b +aD.c =ab7.设a =错误!sin56°-cos56°,b =cos50°cos128°+cos40°cos38°,c =错误!,d =错误!cos80°-2cos 250°+1,则a,b,c,d 的大小关系为A.a >b >d >cB.b >a >d >cC.d >a >b >cD.c >a >d >b8.函数y =错误!sin2x +sin 2x,x ∈R 的值域是A.错误!B.错误!C.错误!D.错误!9.若锐角α、β满足1+错误!tanα1+错误!tanβ=4,则α+β= .10.设α是第二象限的角,tanα=-错误!,且sin 错误!<cos 错误!,则cos 错误!= .11.已知sin-4πx=135,0<x<4π,求)4cos(2cos x x +π的值;12.若),0(,πβα∈,31tan ,507cos -=-=βα,求α+2β;拓展提高1、设函数fx =sin 错误!-错误!-2cos 2错误!+11求fx 的最小正周期.2若函数y =gx 与y =fx 的图像关于直线x =1对称,求当x ∈0,错误!时y =gx 的最大值2.已知向量a =cosα,sinα,b =cosβ,sinβ,|a -b|=错误!1求cosα-β的值;2若0<α<错误!,-错误!<β<0,且sinβ=-错误!,求sinα.3、求证:αβαsin 2sin )(+-2cos α+β=αβsin sin .基础精练参考答案4.C 解析原式=错误!=错误!=错误!=2×cosα+sinα=2×错误!+错误!=错误!. 5.D 解析依题设得:sinα·cosβ-cosα·sinβ=sin α-β=错误!.∵0<β<α<错误!,∴cosα-β=错误!. 又∵cosα=错误!,∴sinα=错误!.sinβ=sinα-α-β=sinα·cosα-β-cosα·sinα-β =错误!×错误!-错误!×错误!=错误!,∴β=错误!.6.C 解析tan tan()4,tan tan(),4b a c a πααπαα⎧+-=-⎪⎪⎨⎪-=⎪⎩∴tan 错误!=tan 错误!-α+α=错误!=1,∴-错误!=1-错误!,∴-b =a -c,∴c =a +b.7.B 解析a =sin56°-45°=sin11°,b =-sin40°cos52°+cos40°sin52°=sin52°-40°=sin12°,c =错误!=cos81°=sin9°,d =错误!2cos 240°-2sin 240°=cos80°=sin10°∴b >a >d >c.8.C 解析y =错误!sin2x +sin 2x =错误!sin2x -错误!cos2x +错误!=错误!sin 错误!+错误!,故选择C. 9. 错误!解析由1+错误!tanα1+错误!tanβ=4,可得错误!=错误!,即tanα+β=错误!. 又α+β∈0,π,∴α+β=错误!.10. -错误!解析:∵α是第二象限的角,∴错误!可能在第一或第三象限,又sin 错误!<cos 错误!,∴错误!为第三象限的角, ∴cos 错误!<0.∵tanα=-错误!,∴cosα=-错误!,∴cos 错误!=- 错误!=-错误!.12.解析∵),0(,πβα∈,507cos -=α∴),0,33(71tan -∈-=α),0,33(31tan -∈-=β∴),65(,ππβα∈,α+2β)3,25(ππ∈,又tan2β=43tan 1tan 22-=-ββ,12tan tan 12tan tan )2tan(-=-+=+βαβαβα,来源:Zxxk ∴α+2β=411π拓展提高参考答案1、解析 1fx =sin 错误!cos 错误!-cos 错误!sin 错误!-cos 错误!x =错误!sin 错误!x -错误!cos 错误!x=错误!sin 错误!x -错误!,故fx 的最小正周期为T =错误!=82法一:在y =g x 的图象上任取一点 x,gx,它关于x =1的对称点2-x,gx.由题设条件,点2-x ,gx 在y =fx 的图象上,从而gx =f2-x =错误!sin 错误!2-x -错误! =错误!sin 错误!-错误!x -错误!=错误!cos 错误!x +错误!,当0≤x≤错误!时, 错误!≤错误!x +错误!≤错误!,因此y =gx 在区间0,错误!上的最大值为gx max =错误!cos 错误!=错误!.法二:因区间0,错误!关于x =1的对称区间为错误!,2,且y =gx 与y =fx 的图象关于x =1对称,故y =gx 在0,错误!上的最大值为y =fx 在错误!,2上的最大值,由1知fx =错误!sin 错误!x -错误!, 当错误!≤x ≤2时,-错误!≤错误!x -错误!≤错误!,因此y =gx 在0,错误!上的最大值为gx max =错误!sin 错误!=错误!.2、解析1∵a =cos α,sinα,b =cosβ,sinβ, ∴a -b =cosα-cosβ,sinα-sinβ. ∵|a -b|=错误!,∴错误!=错误!, 即2-2cosα-β=错误!,∴cosα-β=错误!.2∵0<α<错误!,-错误!<β<0,∴0<α-β<π,∵cosα-β=错误!,∴sinα-β=错误! ∵sin β=-错误!,∴cosβ=错误!,∴sinα=sinα-β+β=sinα-βcosβ+cosα-βsinβ=错误!·错误!+错误!·-错误!=错误!。

高中数学专题《三角恒等变换》真题练习

高中数学专题《三角恒等变换》真题练习

5.5三角恒等变换(基础+提升+拔高)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·山西省长治市第二中学校高三月考(文))若角π0,3θ⎡⎤∈⎢⎥⎣⎦,则cos θθ的取值范围是( )A .[2,2]-B .[0,2]C .[1,2]-D .[1,2]2.(2021·全国·高一课时练习)已知0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,若()3sin 5αβ+=-,5cos 13β=-,则sin α的值为( )A .1665B .3365C .5665D .63653.(2021·浙江·宁波市北仑中学高一期中)已知11tan(),tan ,,(0,)27αββαβπ-==-∈,则2αβ-=( )A .34π-B .4π-C .4π D .54π4.(2021·福建宁德·高三期中)已知1sin 33πα⎛⎫+= ⎪⎝⎭,则cos(2)3πα-=( )A .79-B .79C .29-D .295.(2021·全国·高三月考(文))已知1sin 263θπ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭( )A .79-B .79C. D6.(2021·新疆·克拉玛依市教育研究所模拟预测(理))中国古代数学家赵爽设计的弦图(如图1)是由四个全等的直角三角形拼成,四个全等的直角三角形也可拼成图2所示的菱形,已知弦图中,大正方形的面积为25,小正方形的面积为1,则图2中菱形的一个锐角的余弦值为( )A .725B .35C .45D .24257.(2021·新疆喀什·模拟预测)已知角θ满足()sin cos sin cos θθθθ+=3tan 28θπ⎛⎫-= ⎪⎝⎭( ) A .12BC.D .1-8.(2021·福建·福清西山学校高三期中)若tan 2x =,则2sin 2sin cos 2sin sin2x x x xx --=( )A .45B .45-C .85D .85-9.(2021·广东顺德·一模)cos1875︒=( )A B C D 10.(2021·天津二十中高三月考)已知函数()sin2sin 213f x x x π⎛⎫=+++ ⎪⎝⎭,则下列结论正确的有( )个①()()33ππ+=-f x f x ;①,012π⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心; ①任取方程()1f x =的两个根1x ,2x ,则12x x -是π的整数倍; ①对于任意的123,,0,4x x x π⎡⎤∈⎢⎥⎣⎦,()()()123f x f x f x +恒成立.A .1B .2C .3D .411.(2021·安徽·六安一中高三月考(理))在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点00(,)P x y ,若π4cos()65α+=,则 0x =( )A B C D 12.(2019·西藏·拉萨中学高二月考(文))在ABC 中,已知cos cos b A a B =,判断ABC 的形状( ) A .等边三角形B .直角三角形C .等腰直角三角形D .等腰三角形13.(2021·浙江·宁波市北仑中学高一期中)当0x x =时,函数()sin 2cos f x x x =-取得最大值,则0tan x =( ) A .12B .2C .12-D .2-14.(2021·安徽·六安一中高三月考(文))已知函数2()sin 22cos 1f x x x =+-,下列四个结论正确的是( ) A .函数()f x 在区间3,88ππ⎡⎤-⎢⎥⎣⎦上是减函数 B .点3,08π⎛⎫⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 的图象可以由函数2y x =的图象向左平移4π个单位长度得到D .若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的值域为15.(2021·广西桂林·模拟预测(理))在同一平面直角坐标系中,画出三个函数()sin 2cos 2f x x x =+,5()sin 2g x x ⎛⎫=+ ⎪⎝⎭π,()co 7s h x x ⎛⎫=- ⎝π⎪⎭的部分图象如图所示,则( )A .a 为()f x 的图象,b 为()g x 的图象,c 为()h x 的图象B .a 为()h x 的图象,b 为()f x 的图象,c 为()g x 的图象C .a 为()g x 的图象,b 为()f x 的图象,c 为()h x 的图象D .a 为()h x 的图象,b 为()g x 的图象,c 为()f x 的图象16.(2021·云南大理·模拟预测(理))已知,,0,,sin sin sin ,cos cos cos 2παβγαγββγα⎛⎫∈+=+= ⎪⎝⎭,则下列说法正确的是( )A .1cos()3βα-=-B .1cos()3βα-=C .3πβα-=-D .3πβα-=17.(2021·全国·高三月考)已知函数()()2sin ),2(f x x o πωϕωϕ=+>≤图象相邻两条对称轴间的距离为π,且对任意实数x ,都有()3f x f π⎛⎫≤ ⎪⎝⎭.将函数()y f x =图象向左平移6π个单位长度,得到函数()y g x =的图象,则关于函数()()y f x g x =+描述不正确的是( )A .最小正周期是2πBC .函数在0,3π⎡⎤⎢⎥⎣⎦上单调递增D .图象关于直线4x π=对称18.(2021·全国·高三月考(理))已知(0,)απ∈,且2cos2cos 1αα+=,则tan α=( )A B .53C D 19.(2021·陕西·西安中学高三期中(理))已知31sin()23πα+=,则cos2α=( ) A .79-B .79C .13-D .1320.(2021·河南·高三月考(文))将函数()sin 26f x x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位长度后得到函数()g x 的图象,则函数()cos2y g x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最小值为( )A B .2-C .D .32-21.(2021·上海市延安中学高一期中)当函数3cos 4sin y x x =-取得最大值时,tan x 的值是( )A .43B .34C .43-D .34-22.(2021·贵州遵义·高三月考(文))已知函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=-+-∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,再向上平移1个单位长度得到曲线()y g x =,若关于x 的方程()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则实数m 的取值范围是( )A .[]0,3B .[)0,3C .[)2,3D .)1,323.(2021·全国·高一单元测试)已知ABC ,则“sin cos A B >”是“tan tan 1A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件24.(2021·安徽淮南·一模(理))在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点P (x 0,y 0),若cos(6πα+)=45,则x 0=( )A B C D 25.(2021·全国·高一单元测试)在ABC 中,已知()2sin sin sin sin A B C C θλ-=,其中1tan 3θ=(其中π02θ<<),若112tan tan tan A B C++为定值,则实数λ的值是( )A B C D26.(2020·黑龙江齐齐哈尔·高一期中)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]27.(2021·江西·浮梁县第一中学高一期中)已知把函数()πsin cos 3f x x x ⎛⎫=+ ⎪⎝⎭π3个单位长度,再把横坐标缩小到原来一半,纵坐标不变,得到函数()g x 的图象,若()()1214g x g x ⋅=,若1x ,[]2π,πx ∈-,则12x x -的最大值为( ) A .πB .3π4C .3π2D .2π28.(2021·上海·高一课时练习)若24sin 3k x x k -=+,则k 的取值范围是( ) A .13,2⎛⎫-- ⎪⎝⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .()3,-+∞D .()1,33,2⎛⎤-∞--- ⎥⎝⎦29.(2020·浙江·台州市新桥中学高三月考)已知,x y R +∈,满足21x y +=,则x 的最小值为( )A .45B .25C .1 D30.(2022·上海·高三专题练习)在ABC 中,若sin A =cos B C 的取值范围是( ) A .(0,1] B .(0,1](2,5] C .3(0,1](2,5]2D .以上答案都不对二、多选题31.(2021·广东·湛江二十一中高三月考)已知sin 3cos 3cos sin αααα+=-5,下列计算结果正确的是( )A .1tan 2α=B .tan α=2C .213cos sin225αα+=D .26sin cos25αα-=32.(2021·湖北·高三期中)已知函数()22sin f x x =,下列说法正确的是( )A .()f x 的最小正周期为πB .()f x 是奇函数C .()f x 的单调递增区间为,2k k πππ⎡⎤+⎢⎥⎣⎦,k ∈ZD .()f x 的图象关于点,14π⎛⎫⎪⎝⎭对称33.(2021·山东省实验中学高三月考)下列式子正确的是( )A .sin15cos15+︒︒=B .cos 75︒=C .2tan 151︒+︒=D .tan12tan33tan12tan331︒+︒+︒︒=34.(2021·浙江·宁波市北仑中学高一期中)在①ABC 中,3sin 4cos 6,3cos 4sin 1A B A B +=+=,则C 的大小不可能为( ) A .6πB .3π C .23πD .56π35.(2021·福建宁德·高三期中)已知函数()2sin 2x x f x =+ )A .()f x 的最小正周期为πB .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增C .曲线()f x 关于,03π⎛⎫⎪⎝⎭对称D .曲线()f x 关于6x π=对称36.(2021·湖南· )A B .22cos sin 1212ππ-C .cos15 sin 45 sin15cos45︒︒-︒︒D .2tan151tan 15︒-︒37.(2021·江苏扬州·高三月考)已知函数()|||cos |f x x x =+,下列说法正确的有( )A .函数()f x 在27[,]36ππ上单调递减B .函数()f x 是最小正周期为2π的周期函数C .若12m <<,则方程()=f x m 在区间[0,]π内,最多有4个不同的根D .函数()f x 在区间[10,10]-内,共有6个零点38.(2021·浙江·高二开学考试)设ABC 中角A ,B ,C 所对应的边长度分别为a ,b ,c ,满足sin 2:sin 2:sin 24:5:6A B C =,则以下说法中正确的有( )A .ABC 为钝角三角形B .若a 确定,则ABC 的面积确定 C .3cos 24A =-D .sin :sin :sin 5:A B C =39.(2021·江苏南京·三模)已知函数()3sin 24cos 2f x x x =+,()()|()|g x f x f x =+.若存在0x R ∈,使得对任意x ∈R ,()0()f x f x ≥,则( )A .任意()()00,x R f x x f x x ∈+=-B .任意0,()2x R f x f x π⎛⎫∈≤+ ⎪⎝⎭C .存在0θ>,使得()g x 在()00,x x θ+上有且仅有2个零点D .存在512πθ>-,使得()g x 在005,12x x πθ⎛⎫-+ ⎪⎝⎭上单调递减 40.(2021·广东实验中学高一期末)已知函数()sin cos f x a x b x =+,其中, a b R ∈,且的0ab ≠,若()4f x f π⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ) A .56f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .5()2f x f x π⎛⎫=- ⎪⎝⎭C .4f x π⎛⎫- ⎪⎝⎭是奇函数D .4f x π⎛⎫+ ⎪⎝⎭是奇函数三、填空题41.(2021·全国·高一课时练习)若sin 2θθ=,0,2πθ⎛⎫∈ ⎪⎝⎭,则θ=________.42.(2021·全国·高一课时练习)化简:44sin cos cos 2ααα-=________.43.(2021·全国·高一课时练习)sin 21cos39cos21sin39︒︒+︒︒=________. 44.(2020·北京八中高三期中)若角α的终边过点()2,1,则cos2α的值为______.45.(2020·陕西·泾阳县教育局教学研究室高三期中(理))若1tan 2θ=,则2cos sin 2θθ+=___________.46.(2021·贵州·凯里一中高二期中(理))2()2sin cos 2cos 1(0)f x x x x ωωωω=+->有五条顺次相邻的对称轴,首尾两条对称之间的距离是π,则()f x 的最小正周期是_______.47.(2021·河南·高二月考(文))已知函数()sin 2cos f x x x =+在x θ=时取得最大值,则tan 4πθ⎛⎫+= ⎪⎝⎭___________.48.(2021·广西·罗城仫佬族自治县高级中学高二开学考试)若tan 2α=,则2cos 2sin 22αα+-=______. 49.(2021·北京·东直门中学高三期中)若sin 4πα⎛⎫- ⎪⎝⎭35=,则sin 2α = _____________.50.(2021·广东·湛江二十一中高三月考)若33sin π3sin π44x x ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则2sin 2sin cos 2sin cos2x x x xx ++=__________. 51.(2021·安徽·六安一中高三月考(理))已知1sin 3α=,1cos()65πβ+=,5,(0,)4παβ∈,则cos()3παβ-+=________. 52.(2021·全国·高一课时练习)已知3,22παπ⎛⎫∈ ⎪⎝⎭,若4cos 5α=,则cos 4πα⎛⎫+= ⎪⎝⎭________.53.(2021·宁夏·吴忠中学高三月考(理))当0,2x π⎡⎤∈⎢⎥⎣⎦时,不等式sin (cos )2m x x x m <+恒成立,则实数m 的取值范围为____.54.(2021·北京市第十三中学高三期中)若点(cos ,sin )A θθ关于x 轴对称点为(cos(),sin())33B ππθθ++,则θ的一个取值为_____.55.(2021·河南·高二期中(理))已知函数()sin 2cos f x x x =-在x θ=时取得最大值,则tan 24πθ⎛⎫+= ⎪⎝⎭___________.56.(2021·天津二中高三期中)已知()()()sin 2πωx φωx φf x φ⎛⎫=++< ⎪⎝⎭是奇函数,则ϕ=_______.57.(2021·黑龙江·高三期中(理))已知函数2()2sin 24f x x x π⎛⎫=+ ⎪⎝⎭.若关于x 的方程()2f x m -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,则实数m 的取值范围是________. 58.(2021·全国·高一课时练习)已知4cos 5θ=-,且tan 0θ>,则3cos tan 1sin θθθ-的值为______.59.(2021·广东顺德·高三月考)在①ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若b =a cos C 12+c ,则角A 为_____.60.(2021·四川绵阳·高三月考(文))已知,2πβπ⎛⎫∈ ⎪⎝⎭,sin 13β=,若()3sin 2sin αβα+=,则()tan αβ+=______.61.(2021·云南大理·模拟预测(理))已知函数()sin ||cos |f x x x =-,则下列说法正确的有________.(将所有正确的序号填在答题卡横线上) ①π是函数()f x 的一个周期;①()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称;①()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减①()f x 的值域为[1,2]-.62.(2021·浙江省桐庐中学高一月考)()f x =________.63.(2020·上海市奉贤中学高三月考)在①ABC 中,已知2sin sin sin()sin A B C C θλ-=,其中1tan 022πθθ⎛⎫=<< ⎪⎝⎭.若112tan tan tan A B C++为定值,则实数λ=_________. 64.(2021·广西南宁·模拟预测(理))已知函数()sin 2sin 3f x a x x b πωω⎛⎫=+++ ⎪⎝⎭的图象的相邻两个对称轴之间的距离为2π,且x R ∀∈恒有()6f x f π⎛⎫≤ ⎪⎝⎭,若存在()()()123123,,0,,2x x x f x f x f x π⎡⎤∈+≤⎢⎥⎣⎦成立,则b 的取值范围为________.65.(2021·福建·高三月考)已知()f x 不是常数函数,写出一个同时具有下列四个性质的函数()f x :___________.①定义域为R ;①()2f x f x π⎛⎫=+ ⎪⎝⎭;①()21(2)2f x x f +=;①14f π⎛⎫≠- ⎪⎝⎭. 66.(2021·全国·高二单元测试)一直线过点()2,3A 且与x 轴、y 轴的正半轴分别相交于B 、C 两点,O 为坐标原点.则OB OC BC +-的最大值为__.67.(2021·上海市延安中学高一期中)在平面直角坐标系xOy 中,角α与角β的终边关于y 轴对称,若1sin 3α=,则cos()αβ-=_________68.(2021·江苏铜山·高一期中)已知函数22()2cos cos 2sin f x x x x x =+-,则函数()f x 的一条对称轴的方程为______.69.(2021·全国·高一单元测试)111sin 45sin 46sin 46sin 47sin89sin90++⋯+=︒︒︒︒︒︒___________.70.(2021·上海市实验学校高一期中)若[],x ππ∈-,则函数()f x =的值域为__________.四、解答题71.(2021·全国·高一课时练习)(1)求()()1tan11tan 44+︒+︒的值;(2)求()()()()()1tan11tan 21tan31tan 441tan 45+︒+︒+︒+︒+︒的值.72.(2021·全国·高一课时练习)设m为实数,已知sin 1m αα=-,求m 的取值范围. 73.(2021·全国·高一课时练习)已知函数22sin 2sin cos 3cos y x x x x =+-,x ∈R . (1)求函数的最小正周期; (2)求函数的最大值.74.(2021·全国·高一课时练习)求函数cos 22cos 1y x x =-+的值域. 75.(2021·全国·高一课时练习)求下列各函数的周期和值域: (1)sin cos y x x =; (2)sin y x x +.76.(2021·全国·高一课时练习)求值:sin15cos5sin 20cos15cos5cos 20︒︒-︒︒︒-︒.77.(2021·全国·高一课时练习)如图,在等腰直角三角形ABC 中,90B ∠=︒,点E ,F 将BC 三等分,求EAF ∠,FAC ∠的正切值.78.(2021·全国·高一课时练习)已知α是第一象限角,且5cos 13α=,求()πsin 4cos 24παα⎛⎫+ ⎪⎝⎭+的值. 79.(2021·全国·高一课时练习)证明:(1)()()22sin sin sin sin αβαβαβ+-=-;(2)2222π4π3cos cos cos 332x x x ⎛⎫⎛⎫++++=⎪ ⎪⎝⎭⎝⎭. 80.(2021·全国·高一课时练习)已知3cos 5θ=-,且180270θ︒<<︒,求sin 2θ,cos 2θ的值.81.(2021·全国·高一课时练习)由倍角公式2cos 22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.对于cos3x ,我们有()cos3cos 2cos2cos sin 2sin =+=-x x x x x x x()()22cos 1cos 2sin cos sin x x x x x =--()322cos cos 21cos cos x x x x =--- 34cos 3cos x x =-.可见cos3x 可以表示为cos x 的三次多项式.一般地,存在一个n 次多项式()n P t ,使得()cos cos n nx P x =,这些多项式()4P t 称为切比雪夫(P .L .Tschebyscheff )多项式.请尝试求出()n P t ,即用一个cos x 的四次多项式来表示cos4x .利用结论3cos34cos 3cos x x x =-,求出sin18︒的值.(提示:31890218⨯=︒-⨯︒︒)82.(2021·全国·高一课时练习)在ABC 中,已知tan tan tan tan 1A B A B ++=,求角C 的大小. 83.(2021·全国·高一课时练习)已知()2cos 23cos 0αββ++=,求()tan tan αβα+的值. 84.(2021·全国·高一课时练习)化简: (1)ππsin sin 44x x ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(2)()()cos cos 120cos 120A A A +-+︒+︒; (3)sin 2cos 1cos 21cos αααα⋅++.85.(2021·全国·高一课时练习)已知sin α=α是第二象限角,且()tan 1αβ+=,求tan β的值. 86.(2021·全国·高一课时练习)证明:(1)()()()()cos cos cos cos sin sin sin sin αβγαβγαβγαβγ+-+=+-+; (2)1sin 21tan 1cos 2sin 22θθθθ++=++.87.(2021·安徽·六安一中高三月考(理))已知函数2()sin(2)4sin 2(0)6f x x x ωπωω=++->,其图象与x 轴相邻两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向右平移(0)m m >个长度单位得到函数()g x 的图象恰好经过点5(,0)24π,求当m 取得最小值时,()g x 的单调区间和对称轴方程.88.(2021·全国·高一课时练习)证明:()()()()()()sin sin sin sin sin sin 0αβαββγβγγαγα+-++-++-=. 89.(2021·全国·高一课时练习)把1sin cos θθ++化成积的形式. 90.(2021·全国·高一课时练习)试用不同的方法求tan15的值.91.(2021·河南·高三月考(文))如图,在矩形ABCD 中,2,AB AD ==点E 为AB 的中点,,F G 分别为线段,AD BC 上的点,且,EF EG AEF θ⊥∠=.(1)若EFG 的周长为f,求f 的解析式及θ的取值范围;(2)求f 的最值. 92.(2021·湖北·高二月考)已知函数()53sin 22sin cos 644f x x x x πππ⎛⎫⎛⎫⎛⎫=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (1)解不等式()12f x ≥-; (2)若,123x ππ⎡⎤∈⎢⎥⎣⎦,且()()4cos 43F x f x x πλ⎛⎫=--- ⎪⎝⎭的最小值是32-,求实数λ的值.93.(2021·云南·高二月考)已知函数()23sin cos 2f x x x x =+. (1)求()f x 的单调递减区间;(2)0,2x π⎛⎫∀∈ ⎪⎝⎭,cos 03a x f x π⎛⎫+-> ⎪⎝⎭,求a 的取值范围. 94.(2021·上海·高一专题练习)对于集合{}12,,,n A θθθ=⋅⋅⋅和常数0θ,定义:()()()22210200cos cos cos n n θθθθθθμ-+-++-=为集合A 相对0θ的“余弦方差”. (1)若集合ππ,34A ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”; (2)求证:集合π2π,,π33A ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,并求此定值; (3)若集合π,,4A αβ⎧⎫=⎨⎬⎩⎭,[)0,πα∈,[)π,2πβ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.95.(2021·江西·九江一中高一月考)已知函数()2sin cos f x x x x = (1)求函数()f x 的单调递减区间;(2)将函数()f x 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图象向左平移6π个单位,得到函数()g x 的图象,求函数()()()212h x f x g x =+在7,612x ππ⎡⎤∈⎢⎥⎣⎦的值域. 96.(2021·全国·高三专题练习)设πA B C ++=,求证:222sin sin 2sin sin cos sin B C B C A A +-=.97.(2021·全国·高三专题练习)已知0απ<<,0βπ<<,且()3cos cos cos 2αβαβ+-+=,求α、β的值.98.(2021·黑龙江·哈尔滨三中高三月考(理))定义在(1,1)-上的函数)()22()log log 1aa f x a x =+--,若方程()0f x =恰有两个不等实根1x ,2x ,且12x x <,设2122()2g a x x x =--. (1)求函数()g a 的定义域;(2)证明:函数()g a 在定义域内为增函数.99.(2021·黑龙江齐齐哈尔·高一期末)依据《齐齐哈尔市城市总体规划(2011﹣2020)》,拟将我市建设成生态园林城、装备工业基地、绿色食品之都、历史文化名城.计划将图中四边形区域CDEF 建成生态园林城,CD ,DE ,EF ,FC 为主要道路(不考虑宽度).已知90FCD ∠=︒,120CDE ∠=︒,333FE ED CD ===km .(1)求道路CF 的长度;(2)如图所示,要建立一个观测站A ,并使得60FAC ∠=︒,AB DC ⊥,求AB 两地的最大距离.100.(2021·全国·高一课时练习)如图,某人身高1.73m ,他站的地点A 和云南大理文笔塔塔底O 在同水平线上,他直立时,测得塔顶M 的仰角22.8MCE ∠=︒(点E 在线段MO 上,忽略眼睛到头顶之间的距离,下同).他沿线段AO 向塔前进100m 到达点B ,在点B 直立时,测得塔顶M 的仰角48.3MDE ∠=︒:塔尖MN 的视角 3.3MDN ∠=︒(N 是塔尖底,在线段MO 上).(1)求塔高MO ;(2)此人在线段AO 上离点O 多远时,他直立看塔尖MN 的视角最大?说明理由.参考数据:sin 22.8sin 48.30.674sin 25.5︒︒=︒,tan 22.80.42125︒=,263.5967.460=⨯.。

三角函数恒等变换含答案及高考题

三角函数恒等变换含答案及高考题

三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

(4)化弦(切)法。

(4)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x 2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx 所以sin x -cos x =2(sin x +cos x ),所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证. 5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求下列函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

三角恒等变换经典例题

三角恒等变换经典例题

三角恒等变换1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=- (2)βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan ba ϕϕϕ=== ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin = (2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a bb a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10.常见数据:sin15cos75cos15︒=︒=︒=︒= 3215tan -=︒, 3275tan +=︒,专题四 三角恒等变形各类题命题点1 和差公式的直接应用1.(2015课标1,2) 0000sin 20cos10cos160sin10-=( ).AB 1.2C - 1.2D2.(2017江苏,5)若1tan()46πα-=,则tan α=_____________ . 3.(2016·杭州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)=________.4.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-125.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·宁波期末考试)已知θ∈(0,π4),且sin θ-cos θ=-144,则2cos 2θ-1cos (π4+θ)等于( )A.23B.43C.34D.327.(2017浙江高考模拟训练冲刺卷四,4)已知4sin25θ=-,3cos 25θ=,则θ属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 命题点2 角的变换8.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255 D.55或5259.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.10.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.11.(2016·浙江五校联考)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)等于( )A.43 B .-43 C .-23 D .-3 命题点3 三角函数式的化简12.(2013重庆,9)004cos50tan 40-=()BC 1 13.化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);化简4cos 2sin 22+-14.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).15. 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.16.(2017·嘉兴第一中学调研)若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于A.12 B .-12C .2D .-2 命题点4 给值求值问题17.(2017课标全国3文,4)已知4sin cos 3αα-=,则sin2α=( ) 7.9A - 2.9B - 2.9C 7.9D18.(2016·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.19.(2013浙江,6)已知R α∈,sin 2cos αα+=则tan 2α=( ) 4.3A 3.4B 3.4C - 4.3D - 20.(2014江苏,15)已知(,)2παπ∈,sin α=(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。

高三数学三角恒等变换试题答案及解析

高三数学三角恒等变换试题答案及解析

高三数学三角恒等变换试题答案及解析1.已知,则()A.B.C.D.【答案】B【解析】将两边平方得,,可得,故选B.【考点】同角基本关系以及二倍角公式.2.已知cos(α-)+sinα=,则sin(α+)的值是()A.-B.C.-D.【答案】C【解析】cos(α-)+sinα=⇒sinα+cosα=⇒sin(α+)=,所以sin(α+)=-sin(α+)=-.3.已知函数f(x)=cos2ωx+sinωxcosωx-(ω>0)的最小正周期为π.(1)求ω值及f(x)的单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f()=,求角C 的大小.【答案】(1)增区间为[kπ-,kπ+](k∈Z)(2)当B=时,C=π--=;当B=时,C=π--=.【解析】解:(1)f(x)=+sin2ωx-=sin(2ωx+).∵T=π,∴ω=1,∴f(x)=sin(2x+),增区间为[kπ-,kπ+](k∈Z).(2)∵f()=sin(A+)=,角A为△ABC的内角且a<b,∴A=.又a=1,b=,∴由正弦定理得=,也就是sinB==×=.∵b>a,∴B=或B=,当B=时,C=π--=;当B=时,C=π--=.4.已知α,β∈(0,),满足tan(α+β)=4tanβ,则tanα的最大值是()A.B.C.D.【答案】B【解析】tanα=tan[(α+β)-β]==≤=,当且仅当tanβ=时等号成立.5.在中,若分别为的对边,且,则有()A.a、c、b成等比数列B.a、c、b成等差数列C.a、b、c成等差数列D.a、b、c成等比数列【答案】D【解析】由已知得,,故,又,而,故,所以,故,从而a、b、c成等比数列.【考点】1、两角和与差的余弦公式;2、二倍角公式;3、正弦定理.6.在△ABC中,角A,B,C的对边分别为a,b,c,已知,b sin=a+c sin,则C= .【答案】【解析】由已知得,所以,由,应用正弦定理,得,.整理得,即,由于,从而,又,故.【考点】1正弦定理;2正弦两角和差公式。

数学课程三角恒等变换练习题及答案

数学课程三角恒等变换练习题及答案

数学课程三角恒等变换练习题及答案1. 练习题1.1 简单练习题1. 计算下列三角函数值,并化简为有理数:(1) sin 30°(2) cos 45°(3) tan 60°2. 利用三角恒等变换证明以下等式:(1) sin^2 x + cos^2 x = 1(2) 1 + tan^2 x = sec^2 x3. 使用三角恒等变换求解以下方程:(1) sin 2x = 0.5(2) cos 2x - sin 2x = 01.2 提高练习题1. 利用三角恒等变换化简下列表达式:(1) cos x + sin x + 1 - cos x(2) cot^2 x + 1 - csc^2 x2. 解下列方程:(1) 2 sin^2 x - 3 cos x - 1 = 0(2) tan^2 x + sec x = 22. 答案2.1 简单练习题答案1.(1) sin 30° = 1/2(2) cos 45° = 1/√2(3) tan 60° = √32. 证明以下等式:(1) 三角恒等变换:sin^2 x + cos^2 x = 1证明:根据三角恒等变换公式 sin^2 x + cos^2 x = 1代入 sin x = cos (90° - x),可得:cos^2 (90° - x) + cos^2 x = 1sin^2 x + cos^2 x = 1(2) 三角恒等变换:1 + tan^2 x = sec^2 x证明:根据三角恒等变换公式 1 + tan^2 x = sec^2 x代入 tan x = sin x / cos x,可得:1 + (sin x / cos x)^2 = (1 / cos x)^21 + sin^2 x / cos^2 x = 1 / cos^2 x(cos^2 x + sin^2 x) / cos^2 x = 1 / cos^2 x1 / cos^2 x = 1 / cos^2 x2.2 提高练习题答案1. 化简以下表达式:(1) cos x + sin x + 1 - cos x= sin x + 1(2) cot^2 x + 1 - csc^2 x= (cos^2 x / sin^2 x) + 1 - (1 / sin^2 x)= (cos^2 x + sin^2 x) / sin^2 x= 1 / sin^2 x2. 解以下方程:(1) 2 sin^2 x - 3 cos x - 1 = 0首先,利用三角恒等变换将方程中的 cos x 表示为 sin x:2 (1 - cos^2 x) - 3 cos x - 1 = 02 - 2 cos^2 x -3 cos x - 1 = 0-2 cos^2 x - 3 cos x + 1 = 0然后,令 t = cos x,将方程转化为关于 t 的二次方程:-2 t^2 - 3 t + 1 = 0解这个二次方程可得 t = -1 或 t = 1/2。

三角恒等变换 练习题

三角恒等变换 练习题

三角恒等变换练习题题目1:已知三角形ABC,其中∠A=60°,AD是边BC上的高线。

请证明,当且仅当AC^2=AB×AD时,三角形ABC为等腰三角形。

解法:设∠B=α,∠C=β,根据三角形内角和定理,有α+β+60°=180°,即α+β=120°。

由于∠A=60°,所以∠CBA=180°-60°-α=120°-α。

因为AD是边BC上的高线,所以∠ADB=90°,所以∠BDA=180°-90°-β=90°-β。

根据余弦定理,在△ABC中,有AC^2=AB^2+BC^2-2AB×BC×cosα。

根据余弦定理,在△ABD中,有AD^2=AB^2+BD^2-2AB×BD×cos(90°-β)。

因为∠CBA=120°-α,所以∠BAC=α,所以cosα=cos(180°-α)=-cos(120°-α)。

因为∠BDA=90°-β,所以cos(90°-β)=sinβ。

代入上面两个式子,得到AC^2=AB^2+BC^2+2AB×BC×cos(120°-α)。

由于α+β=120°,所以cos(120°-α)=cos(α+β)=cosβ。

所以AC^2=AB^2+BC^2+2AB×BC×cosβ。

当且仅当AC^2=AB×AD时,即AB^2+BC^2+2AB×BC×cosβ=AB×(AB+BD),则有AB×BD=BC^2,即∠B=∠C。

所以当AC^2=AB×AD时,三角形ABC为等腰三角形。

题目2:已知三角形ABC,其中∠A=45°,BD是边AC的平分线,DM是边BC的中线,E是边AC上的点,且ME ⊥ AC。

三角恒等变换大题(含详细解答)

三角恒等变换大题(含详细解答)

三角恒等变换1.已知0<α<π4,0<β<π4且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值. 2.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 3.已知sin(2α-β)=35,sinβ=-1213,且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫-π2,0,求sinα 4.若cos(α+β)cos(α-β)=13,求cos2α-sin2β 5.函数y =12sin2x +sin2x ,x ∈R ,求y 的值域 6.已知0<α<π4,0<β<π4且3sinβ=sin(2α+β),4tan α2=1-tan2α2,求α+β的值. 7.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 8.已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数. 9 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值 10 若,22sin sin =+βα求βαcos cos +的取值范围 11 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+-- 12 已知函数.,2cos 32sinR x x x y ∈+=(1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象参考答案1. 解:由4tan α2=1-tan 2α2得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴2sin(α+β)cos α=4cos(α+β)sin α.∴tan(α+β)=2tan α.∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2,∴α+β=π4评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.2. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛ sin 2α+β2-⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β-⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.3. 解:∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2.∴π<2α-β<5π2.而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos (2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β=45×513-35×⎝⎛⎭⎫-1213=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130,又α∈⎝⎛⎭⎫π2,π,∴sin α=3130130. 评析:由sin(2α-β)求cos(2α-β)、由sin β求cos β,忽视2α-β、β的范围,结果会出现错误.另外,角度变换在三角函数化简求值中经常用到,如:α=(α+β)-β,2α=(α-β)+(α+β),⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2等. 4. 解析:∵cos(α+β)cos(α-β)=13, ∴12(cos2α+cos2β)=13, ∴12(2cos 2α-1+1-2sin 2β)=13, ∴cos 2α-sin 2β=13. 5. 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝⎛⎭⎫2x -π4+12 评析:本题是求有关三角函数的值域的一种通法,即将函数化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的模式.一般地,a cos x +b sin x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2cos x +b a 2+b 2sin x =a 2+b 2(sin φcos x +cos φsin x )=a 2+b 2sin(x +φ),其中tan φ=a b,也可以变换如下:a cos x +b sin x =a 2+b 2(cos φcos x +sin φsin x )=a 2+b 2cos(x -φ),其中tan φ=b a. 6. 解:由4tan α2=1-tan 2α2 得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, ∴2sin(α+β)cos α=4cos(α+β)sin α. ∴tan(α+β)=2tan α. ∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2, ∴α+β=π4. 评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.7. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛sin 2α+β2- ⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β- ⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.8. 解:(1)当0θ=时,()sin cos )4f x x x x π=+=+ 322,22,24244k x k k x k πππππππππ-≤+≤+-≤≤+()f x 为递增; 3522,22,24244k x k k x k πππππππππ+≤+≤++≤≤+()f x 为递减 ()f x ∴为递增区间为 3[2,2],44k k k Z ππππ-+∈; ()f x 为递减区间为5[2,2],44k k k Z ππππ++∈。

第五节三角恒等变换

第五节三角恒等变换

第五节 三角恒等变换1. 已知cos ⎝ ⎛⎭⎪⎫π2+θ=45,则cos2θ=________.答案:-725 2. 设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin2θ=________.答案:-79 3.若tan ⎝⎛⎭⎪⎫α+π4=25,则tan α=________.答案 -37 4. 若cos2αsin ⎝⎛⎭⎪⎫α-π4=-22,则sin α+cos α=________.答案:12 5.已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( B ) A .-3 B .-17 C .-43D .-7 6. 函数y =sin ⎝⎛⎭⎪⎫x -π6cosx 的最小值是________.答案:-34 7. 若α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos2α=14,则tan α=________.答案: 3 8. 已知1-cos2αsin αcos α=1,tan(β-α)=-13,则tan(β-2α)=________. 答案:-19. 函数y =sin 2x -sin2x 的最小正周期为_________.答案:π10. 函数y =sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝ ⎛⎭⎪⎫π6-x 的最大值为________. 答案:2+34 11. 若3sin α+cos α=0,则1cos 2α+sin2α=________.答案:10312. 已知钝角α满足cos α=-35,则tan ⎝ ⎛⎭⎪⎫α2+π4=________.答案:-3 13. 已知cos ⎝ ⎛⎭⎪⎫θ-π4=35,θ∈⎝ ⎛⎭⎪⎫π2,π,则cos θ=________.答案:-210 14. 计算:cos10°+3sin10°1-cos80°=________.答案: 2 15. 当函数y =sinx -3cosx (0≤x<2π)取得最大值时,x =________.答案:56π 16. 已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=453,则sin ⎝⎛⎭⎪⎫α+7π6=________.答案:-45 17. 若函数f(x)=(1+3tanx)cosx ,0≤x<π2,则f(x)的最大值为________. 答案:218.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________.答案 π319.计算:cos 10°+3sin 10°1-cos 80°=________.答案 2 20.(2014·昆明调研)已知sin(x -π4)=35,则sin 2x 的值为( B ) A .-725 B.725 C.925 D.1625 21.已知α为第二象限角,sin α+cos α=33,则cos 2α=( A ) A .-53 B .-59 C.59 D.5322.(2014·珠海模拟)若sin(π-α)=45,α∈⎝⎛⎭⎪⎫0,π2,则sin 2α-cos 2α2的值等于__________.答案 425 23.已知cos2θ=23,则sin 4θ+cos 4θ的值为( B ) A.1318 B.1118 C.79D .-1 24.已知α+β=π4,则(1+tan α)(1+tan β)的值是( C ) A .-1 B .1 C .2 D .4 25.若sin ⎝ ⎛⎭⎪⎫α-π4cos2α=-2,则sin α+cos α的值为( C ) A .-72 B .-12 C.12 D.7226.函数y =sin2x +23sin 2x 的最小正周期T 为________.答案 π。

三角函数恒等变换练习试题及答案解析详细讲解

三角函数恒等变换练习试题及答案解析详细讲解

两角和与差的正弦、余弦、正切1.利用两角和与差的正弦、余弦、正切公式进行三角变换;2.利用三角变换讨论三角函数的图象和性质2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键.知识点回顾1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β)cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β)sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β)sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β)tan(α-β)=tan α-tan β1+tan αtan β (T α-β) tan(α+β)=tan α+tan β1-tan αtan β(T α+β) 2.二倍角公式sin 2α=ααcos sin 2;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β),tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.[难点正本 疑点清源]三角变换中的“三变”(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 热身训练1.已知sin(α+β)=23,sin(α-β)=-15,则tan αtan β的值为_______.2.函数f (x )=2sin x (sin x +cos x )的单调增区间为______________________.3.(2012·江苏)设α为锐角,若cos ⎪⎭⎫ ⎝⎛+6πα=45,则 4.(2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于() A .-34B.34C .-43D.435.(2011·辽宁)设sin(π4+θ)=13,则sin 2θ等于( ) A .-79B .-19 C.19 D.79典例分析题型一 三角函数式的化简、求值问题例1 (1)化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2; (2)求值:[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C 2的值为________.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<π2<α<π,且cos ⎪⎭⎫ ⎝⎛-2πα=-19,sin ⎪⎭⎫ ⎝⎛-βα2=23,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. 已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β. 题型三 三角变换的简单应用例3 已知f (x )=⎪⎭⎫ ⎝⎛+x tan 11sin 2x -2sin ⎪⎭⎫ ⎝⎛+4πx ·sin ⎪⎭⎫ ⎝⎛-4πx (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.已知函数f (x )=3sin ⎪⎭⎫ ⎝⎛-62πx +2sin 2⎪⎭⎫ ⎝⎛-12πx (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值时x 的集合.利用三角变换研究三角函数的性质典例:(12分)(2011·北京)已知函数f (x )=4cos x ·sin ⎪⎭⎫ ⎝⎛+6πx -1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值. 总结方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=b a)有a 2+b 2≥|y |.3.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形.失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.过手训练(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.(2012·山东)若θ∈⎥⎦⎤⎢⎣⎡2,4ππ,sin 2θ=378,则sin θ等于( ) A.35B.45C.74D.34 2.已知tan(α+β)=25,tan ⎪⎭⎫ ⎝⎛-4πβ=14,那么tan ⎪⎭⎫ ⎝⎛+4πα等于( ) A.1318 B.1322 C.322 D.163.当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( ) A .最大值是1,最小值是-1 B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分)4.已知锐角α满足cos 2α=cos ⎪⎭⎫ ⎝⎛-απ4,则sin 2α=________. 5.已知cos ⎪⎭⎫ ⎝⎛-απ4=1213,α∈⎪⎭⎫ ⎝⎛4,0π,则cos 2αsin ⎝⎛⎭⎫π4+α=________. 6.设x ∈⎪⎭⎫ ⎝⎛2,0π,则函数y =2sin 2x +1sin 2x 的最小值为________. 三、解答题7.(13分)(2012·广东)已知函数f (x )=2cos ⎪⎭⎫ ⎝⎛+6πωx (其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617,求cos(α+β)的值. 课后习题(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.(2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( ) A.15B.14C.13D.122.(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( )A .-53B .-59 C.59D.533.已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( ) A.π4B.3π4C.π4和3π4D .-π4和-3π44.(2011·福建)若α∈⎪⎭⎫ ⎝⎛2,0π,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22B.33C.2D. 3 二、填空题(每小题5分,共15分)5.cos 275°+cos 215°+cos 75°cos 15°的值为________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________. 7.sin α=35,cos β=35,其中α,β∈⎪⎭⎫ ⎝⎛2,0π,则α+β=____________. 三、解答题(共22分)8.(10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合. 9.(12分)已知α∈⎪⎭⎫ ⎝⎛ππ,2,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎪⎭⎫ ⎝⎛ππ,2,求cos β的值.。

三角恒等变换练习题

三角恒等变换练习题

三角恒等变换练习题1. 证明: sin^2(x) + cos^2(x) = 1解析:根据三角恒等变换公式 sin^2(x) + cos^2(x) = 1,我们需要证明这个公式的正确性。

下面是证明过程:由于 sin(x) = opp/hyp 和 cos(x) = adj/hyp,其中 opp 表示对边,adj 表示邻边,hyp 表示斜边。

根据勾股定理,我们知道在一个直角三角形中,斜边的平方等于对边的平方与邻边的平方之和。

即 hyp^2 = opp^2 + adj^2。

将 opp/hyp 和 adj/hyp 代入上述公式,则得到:sin^2(x) + cos^2(x) = (opp/hyp)^2 + (adj/hyp)^2 = opp^2/hyp^2 +adj^2/hyp^2 = (opp^2 + adj^2)/hyp^2由于 opp^2 + adj^2 = hyp^2,代入上面的等式可以得到:sin^2(x) + cos^2(x) = (opp^2 + adj^2)/hyp^2 = hyp^2/hyp^2 = 1因此,sin^2(x) + cos^2(x) = 1 成立,证毕。

2. 化简:tan(x) / (sec(x) - 1)解析:我们需要将表达式 tan(x) / (sec(x) - 1) 进行化简。

下面是化简过程:首先,我们知道 tan(x) = sin(x) / cos(x) 和 sec(x) = 1 / cos(x)。

将上述等式代入表达式 tan(x) / (sec(x) - 1),得到:(sin(x) / cos(x)) / (1 / cos(x) - 1)接下来,我们需要找到表达式中的公共分母,并进行合并。

首先,将 1 / cos(x) 相减得到:1 / cos(x) - 1 = (1 - cos(x)) / cos(x)代入原表达式,得到:(sin(x) / cos(x)) / ((1 - cos(x)) / cos(x))接下来,我们将除法转化为乘法,并得到:(sin(x) / cos(x)) * (cos(x) / (1 - cos(x)))cos(x) 可以约去,得到最终的结果:sin(x) / (1 - cos(x))因此,化简后的结果为 sin(x) / (1 - cos(x))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 三角恒等变换
时间:45分钟 分值:75分
一、选择题(本大题共6小题,每小题5分,共30分)
1.已知α为锐角,cos α=\f (\r (5),5),则t an 错误!=( )
A.-3 ﻩ B.-错误!
C.-错误! D .-7
解析 依题意得,si nα=错误!,故t an α=2,t an2α=错误!=-错误!,所以tan 错误!=错误!=-错误!.
答案 B
2.已知cos 错误!=-错误!,则cos x +cos 错误!的值是( )
A .-错误! ﻩB.±错误!
C.-1
D.±1
解析 co sx +cos 错误!=cos x +错误!cos x +错误!sin x =错误!c os x +\r(3)2
sin x =错误!错误!=错误!co s错误!=-1. 答案 C
3.已知cos 2θ=错误!,则sin 4θ+cos 4θ的值为( )
A.1318 ﻩ
B.1118
C.79 ﻩD .-1
解析 ∵cos2θ=\f(\r(2),3),∴si n22θ=错误!,∴s in4θ+cos 4θ=1-2si n2θcos 2θ=1-错误!(si n2θ)2=错误!.
答案 B
4.已知α+β=π4,则(1+tan α)(1+tan β)的值是( )
A .-1
B.1
C.2D.4
解析∵α+β=\f(π,4),tan(α+β)=错误!=1,
∴tanα+tanβ=1-tanαtanβ.
∴(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ
=1+1-tanαtanβ+tanαtanβ=2.
答案 C
5.
(2014·成都诊断检测)如图,在平面直角坐标系xOy中,角α,β的顶点与坐标原点重合,始边与x轴的非负半轴重合,它们的终边分别与单位圆相交于A,B两点,若点A,B的坐标为错误!和错误!,则cos(α+β)的值为( )
A.-24
25ﻩB.-错误!
C.0 D.\f(24,25)
解析cosα=\f(3,5),sinα=错误!,cosβ=-错误!,sinβ=错误!,cos(α+β)=cosαcosβ-sinαsinβ=错误!·(-错误!)-错误!·错误!
=-24
25
.选A.
答案A
6.若错误!=-错误!,则sinα+cosα的值为()
A.-错误!B.-错误!
C.错误! ﻩD.错误!
解析 ∵\f (2,2)(s in α-cos α)=-错误!(cos 2α-s in 2α), ∴sin α+cos α=错误!.
答案 C
二、填空题(本大题共3小题,每小题5分,共15分)
7.若ta n错误!=错误!,则t anα=________.
解析 ∵tan 错误!=错误!=错误!,
∴5tan α+5=2-2tan α.
∴7ta nα=-3,∴ta nα=-\f (3,7).
答案 -37
8.(2013·江西卷)函数y =si n2x +23sin 2x 的最小正周期T为________.
解析 y=s in2x+23s in 2x =s in2x -3cos 2x+ 3 =2sin(2x -错误!)+错误!,所以T =π.
答案 π
9.(2013·新课标全国卷Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________.
解析 f (x )=sin x -2c os x =\r(5)(错误!sin x -错误!cos x )=错误!sin(x-φ)而si nφ=错误!,cos φ=错误!,当x -φ=错误!+2k π(k ∈Z )时,f (x )取最大值错误!,即θ=φ+错误!+2k π时,f(x )取最大值.cos θ=c os(φ+\f (π,2)+2k π)=-sin φ=-错误!=-错误!.
答案 -错误!
三、解答题(本大题共3小题,每小题10分,共30分)
10.已知tan2θ=\f(3,4)(错误!<θ<π),求错误!的值. 解 ∵tan2θ=错误!=错误!,
∴tan θ=-3或tan θ=错误!.
又θ∈(错误!,π),∴ta nθ=-3.
∴错误!=错误!=错误!
=1-31+3
=-错误!. 11.已知函数f(x)=2cos 错误!(其中ω>0,x ∈R )的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈错误!,f 错误!=-错误!,
f 错误!=错误!,求co s(α+β)的值.
解 (1)∵T =10π=错误!,∴ω=错误!.
(2)由(1)得f (x)=2cos 错误!,
∵f 错误!=2co s错误!=-2sin α=-错误!.
∴sin α=错误!,cos α=错误!.
∵f 错误!=2co sβ=错误!,
∴c osβ=\f(8,17),si nβ=错误!.
∴cos(α+β)=cos αco sβ-sin αs in β
=45×\f (8,17)-\f(3,5)×\f(15,17)=-错误!.
12.(2013·重庆卷)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+错误!ab =c2.
(Ⅰ)求C ;
(Ⅱ)设co sA cos B =错误!,错误!=错误!,求tan α的值.
解 (Ⅰ)因为a2+b2+错误!ab =c 2,
由余弦定理有cos C=错误!=错误!=-错误!.
故C =3π4.
(Ⅱ)由题意得
错误!=错误!.
因此(tan αsin A -co sA )(tan αsin B -cos B )=错误!, tan 2αsin Asi nB -t an α(sin A cos B +c os A sin B )+cos A cos B =错误!,tan 2αsi nAsin B-tan αs in(A +B )+cosAco sB =错误!.①
因为C =3π4,A +B=错误!,所以si n(A +B )=错误!, 因为cos(A +B )=c os Ac os B-sin A sin B,即错误!-s inA sin B =\f(2),2,解得sin A sin B=错误!-错误!=错误!.
由①得ta n2α-5ta nα+4=0,解得tan α=1或tan α=4.。

相关文档
最新文档