高考数学二轮复习小题限时训练(三)文
高考数学二轮复习第三篇方法应用篇专题3.6等价转化法(测)理(2021学年)
![高考数学二轮复习第三篇方法应用篇专题3.6等价转化法(测)理(2021学年)](https://img.taocdn.com/s3/m/4a03371b4693daef5ff73d97.png)
2018 年高考数学二轮复习 第三篇 方法应用篇 专题 3.6 等价转化法(测)理2018年高考数学二轮复习 第三篇 方法应用篇 专题 3.6 等价转化法(测) 理编辑整理:尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018 年高考数学二轮复习 第 三篇 方法应用篇 专题3.6 等价转化法(测)理)的内容能够给您的工作和学习带来便利。
同时也 真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2018 年高考数学二轮复习 第三篇 方法应用篇 专题 3.6 等价转化法(测)理的全部内容。
12018 年高考数学二轮复习 第三篇 方法应用篇 专题 3.6 等价转化法(测)理方法六 等价转化法总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______(一) 选择题(12*5=60 分)1。
【2016高考新课标 3】若 tan 3 ,则 cos2 2sin 2 ()4(A) 64 25【答案】A(B) 48 25(C) 1(D) 16 25【解析】由tan 3 4,得sin 3 , cos 54 5或 sin3 5, cos4 5,所以cos22 sin216 25412 2564 25,故选 A.2。
若 的定义域为 ,恒成立,,则的解集为( )A.B.C。
D。
【答案】B点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
某些 数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质, 那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全22018 年高考数学二轮复习 第三篇 方法应用篇 专题 3.6 等价转化法(测)理面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。
高考数学二轮复习强化练习三不等式文
![高考数学二轮复习强化练习三不等式文](https://img.taocdn.com/s3/m/fae971259b6648d7c1c7467f.png)
能力升级练(三) 不等式一、选择题1.不等式|x|(1-2x)>0的解集为())A.(-∞,0)∪(0,12)B.(-∞,12C.(1,+∞)2)D.(0,12x≥0时,原不等式即为x(1-2x)>0,所以0<x<1;当x<0时,原不等式即为-x(1-2x)>0,所以2).x<0,综上,原不等式的解集为(-∞,0)∪(0,122.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定=1,故a=2.由f(x)的图象可知f(x) f(1-x)=f(1+x)知f(x)图象的对称轴为直线x=1,则有a2在[-1,1]上为增函数.所以x∈[-1,1]时,f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,令b2-b-2>0,解得b<-1或b>2.3.若a,b∈R,且a+|b|<0,则下列不等式中正确的是()A.a-b>0B.a3+b3>0C.a2-b2<0D.a+b<0a+|b|<0知,a<0,且|a|>|b|,当b≥0时,a+b<0成立,当b<0时,a+b<0成立,所以a+b<0,故选D.4.(2018湖州质检)若实数m,n满足m>n>0,则()A.-1a <-1aB.√a−√a<√a-aC.(12)a>(12)aD.m2<mnm=2,n=1,代入各选择项验证A,C,D不成立.√2-1<√2-1,只有B项成立.5.(2019四川绵阳诊断)已知x>1,y>1,且lg x,2,lg y成等差数列,则x+y有()A.最小值20B.最小值200C.最大值20D.最大值2002×2=lg x+lg y=lg(xy),所以xy=10000,则x+y ≥2√aa =200,当且仅当x=y=100时,等号成立,所以x+y 有最小值200.6.设a>0,若关于x 的不等式x+aa -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A.16B.9C.4D.2(1,+∞)上,x+aa -1=(x-1)+aa -1+1≥2√(a -1)×a(a -1)+1=2√a +1(当且仅当x=1+√a 时取等号).由题意知2√a +1≥5.所以a ≥4.7.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为a8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批产品应生产( ) A.60件B.80件C.100件D.120件x 件,则每件产品的生产准备费用是800a 元,仓储费用是a8元,总的费用是(800a +a 8)元,由基本不等式得800a +a 8≥2√800a ·a 8=20,当且仅当800a =a8,即x=80时取等号.8.(2019湖北孝感调研)“a>b>0”是“ab<a 2+a 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件a>b>0,可知a 2+b 2>2ab ,充分性成立,由ab<a 2+a 22,可知a ≠b ,a ,b ∈R ,故必要性不成立.9.已知0<a<1a,且M=11+a+11+a,N=a 1+a +a1+a,则M ,N 的大小关系是( )A.M>NB.M<NC.M=ND.不能确定0<a<1a ,所以1+a>0,1+b>0,1-ab>0,所以M-N=1-a 1+a +1-a 1+a =2-2aa1+a +a +aa >0,即M>N.故选A .二、填空题10.已知不等式mx 2+nx-1a <0的解集为x x<-12或x>2,则m-n= .m<0且-12,2是方程mx 2+nx-1a =0的两根,∴{-12+2=-aa ,(-12)×2=-1a2,解得{a =-1,a =32或{a =1,a =-32(舍).∴m -n=-1-32=-52. -5211.设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是 .f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a-2b=m (a-b )+n (a+b ), 即4a-2b=(m+n )a+(n-m )b.于是得{a +a =4,a -a =-2,解得{a =3,a =1.∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.12.函数y=a 2+2a -1(x>1)的最小值为 .y=a 2+2a -1=(a 2-2a +1)+2a -2+3a -1=(a -1)2+2(a -1)+3a -1=(x-1)+3a -1+2≥2√3+2.当且仅当x-1=3a -1,即x=√3+1时,等号成立.√3+213.已知x>0,y>0,x+3y+xy=9,则x+3y 的最小值为 .x>0,y>0,所以9-(x+3y )=xy=13x ·(3y )≤13·(a +3a 2)2,当且仅当x=3y ,即x=3,y=1时等号成立.设x+3y=t>0,则t 2+12t-108≥0,所以(t-6)(t+18)≥0,又因为t>0,所以t ≥6.故当x=3,y=1时,(x+3y )min =6.三、解答题14.(2019山东潍坊调研)函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0上,且m,n为正数,求1a +1a的最小值.曲线y=a1-x恒过定点A,x=1时,y=1,∴A(1,1).将A点代入直线方程mx+ny-1=0(m>0,n>0), 可得m+n=1,∴1a +1a=(1a+1a)·(m+n)=2+aa+aa≥2+2√aa·aa=4,当且仅当aa =aa且m+n=1(m>0,n>0),即m=n=12时,取得等号.15.(一题多解)设函数f(x)=mx2-mx-1(m≠0),若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.f(x)<-m+5在[1,3]上恒成立,故mx2-mx+m-6<0,则m(a-12)2+34m-6<0在x∈[1,3]上恒成立.方法一令g(x)=m(a-12)2+34m-6,x∈[1,3].当m>0时,g(x)在[1,3]上是增函数, 所以g(x)max=g(3)=7m-6<0.所以m<67,则0<m<67.当m<0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m-6<0. 所以m<6,所以m<0.综上所述,m 的取值范围是m 0<m<67或m<0.方法二 因为x 2-x+1=(a -12)2+34>0,又因为m (x 2-x+1)-6<0,所以m<6a 2-a +1. 因为函数y=6a 2-a +1=6(a -12)2+34在[1,3]上的最小值为67,所以只需m<67即可. 因为m ≠0,所以m 的取值范围是m 0<m<67或m<0.。
高考数学二轮复习专练二中档小题(三)
![高考数学二轮复习专练二中档小题(三)](https://img.taocdn.com/s3/m/c9525bde33d4b14e852468e3.png)
中档小题(三)1.(2013·江西省高三上学期七校联考)若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的所有实数a 的取值范围为( )A .(1,9)B .[1,9]C .[6,9)D .(6,9] 2.(2013·荆州市质量检测)设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导数是f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-2xB .y =3xC .y =-3xD .y =4x3.(2013·南昌市第一次模拟测试)双曲线x 2b 2-y 2a 2=-1(a >0,b >0)与抛物线y =18x 2有一个公共焦点F ,双曲线上过点F 且垂直实轴的弦长为233,则双曲线的离心率等于( )A .2 B.233C.322D. 3 4.(2013·长春市第一次调研测试)若x ∈(1,4),设a =x 12,b =x 23,c =ln x ,则a 、b 、c 的大小关系为( )A .c >a >bB .b >a >cC .a >b >cD .b >c >a 5.(2013·郑州市第二次质量检测)已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在向量CD →上的投影为( )A.105B.2105C.3105D.41056.(2013·安徽省“江南十校”联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 013=( )A. 2 012-1B. 2 013-1C. 2 014-1D. 2 014+17.(2013·广州市调研测试)在区间[1,5]和[2,4] 上分别取一个数,记为a ,b ,则方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( ) A.12 B.1532 C.1732 D.3132 8.(2013·郑州市第一次质量检测)把70个面包分五份给5个人,使每人所得成等差数列,且使较大的三份之和的16是较小的两份之和,则最小的一份为( )A .2B .8C .14D .209.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0,表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)10.(2013·东北三校第一次联合模拟考试)已知函数y =A sin(ωx +φ)+k (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin(4x +π6)B .y =2sin(2x +π3)+2C .y =2sin(4x +π3)+2D .y =2sin(4x +π6)+211.(2013·安徽省“江南十校”联考)从某校高中男生中随机抽取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).若要从身高在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,则这2人的身高不在同一组内的概率为________.12.(2013·武汉市武昌区联合考试)已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的全面积为________.13.(2013·高考课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.14.(2013·武汉市高中毕业生调研测试)从圆C :x 2+y 2-6x -8y +24=0外一点P 向该圆引切线PT ,T 为切点,且|PT |=|PO |(O 为坐标原点),则(1)|PT |的最小值为________;(2)|PT |取得最小值时点P 的坐标为________. 备选题 1.(2013·洛阳市统一考试)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =23,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( )A .4πB .12πC .16πD .64π2.(2013·海淀区第二学期期中练习)抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-1,0),则|PF ||P A |的最小值是( )A.12B.22C.32D.232 3.(2013·高考安徽卷)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.4.(2013·湖南省五市十校联合检测)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动.Q是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案:1.【解析】选D.依题意, P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -52a +1>33a -5≤22,解得6<a ≤9,即实数a 的取值范围是(6,9].2.【解析】选A.由已知得f ′(x )=3x 2+2ax +a -2为偶函数,∴a =0,∴f (x )=x 3-2x ,f ′(x )=3x 2-2.又f ′(0)=-2,f (0)=0,∴y =f (x )在原点处的切线方程为y =-2x .3.【解析】选B.双曲线与抛物线x 2=8y 的公共焦点F 的坐标为(0,2),由题意知点(33,2)在双曲线上,∴⎩⎪⎨⎪⎧a 2+b 2=413b 2-4a 2=-1,得a 2=3,故e =c a =233. 4.【解析】选B.由于x >1,所以x 23>x 12>1,即b >a >1.又1<x <4,所以1<x <2,0<ln x <1,所以b >a >c .5.【解析】选B.依题意得AB →=(2,2),CD →=(-1,3),|CD →|=10,AB →·CD →=-2+6=4,向量AB →在向量CD →上的投影等于410=2105.6.【解析】选C.由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 013=a 1+a 2+a 3+…+a 2 013=(2-1)+(3-2)+(4-3)+…+( 2 014-2 013)= 2 014-1.7.【解析】选 B.方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆,故⎩⎪⎨⎪⎧a 2>b2e =c a =a 2-b 2a <32, 即⎩⎨⎧a 2>b 2a 2<4b 2,化简得⎩⎨⎧a >ba <2b,又a ∈[1,5],b ∈[2,4],画出满足不等式组的平面区域,如图阴影部分所示,求得阴影部分的面积为154,故所求的概率P =S 阴影2×4=1532.8.【解析】选A.由题意知,中间一份为14,设该等差数列的公差为d (d >0),则这五份分别是14-2d ,14-d ,14,14+d ,14+2d .又16(14+14+d +14+2d )=14-2d +14-d ,解得d =6.故14-2d =2.9.【解析】选C.当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此,m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.10.【解析】选D.由函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,可知k =2,A=2,由函数的最小正周期为π2,可知2πω=π2,可得ω=4,由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin(4x +π6)+2.11.【解析】身高在[60,70)的男生人数为0.030×10×100=30,同理[70,80)的人数为20,[80,90]的人数为10,所以按分层抽样选取6人,各小组依次选3人,2人,1人,分别记为a ,b ,c ;A ,B ,M ;从这6人中选取2人共有15种结果,其中身高不在同一组内的结果有11种.故概率P =1115.【答案】111512.【解析】由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的全面积S =π×1+π×9+π×(4+12)=26π.【答案】26π13.【解析】当n =1时,S 1=23a 1+13,∴a 1=1.当n ≥2时,a n =S n -S n -1=23a n +13-(23a n -1+13)=23(a n -a n -1), ∴a n =-2a n -1,即a na n -1=-2,∴{a n }是以1为首项的等比数列,其公比为-2,∴a n =1×(-2)n -1,即a n =(-2)n -1.【答案】(-2)n -1 14.【解析】圆C 的标准方程为:(x -3)2+(y -4)2=1,设P (x ,y ),由|PT |=|PO |得(x -3)2+(y -4)2-1=x 2+y 2,得3x +4y -12=0,P 的轨迹为直线:3x +4y -12=0,当圆心C到直线的距离最小时,切线PT 取最小值,|PT |min =125,此时P 点坐标为(3625,4825).【答案】(1)125 (2)(3625,4825)备选题 1.【解析】选C.取SC 的中点E ,连接AE 、BE ,依题意,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,∴AC 2=AB 2+BC 2,即AB ⊥BC .又SA ⊥平面ABC ,∴SA ⊥BC ,又SA ∩AB =A ,∴BC ⊥平面SAB ,BC ⊥SB ,AE =12SC =BE ,∴点E 是三棱锥S -ABC 的外接球的球心,即点E 与点O 重合,OA =12SC =12SA 2+AC 2=2,球O 的表面积为4π×OA 2=16π.2.【解析】选B.依题意知x ≥0,则焦点F (1,0),|PF |=x +1,|P A |=(x +1)2+y 2=(x +1)2+4x ,当x =0时,|P A ||PF |=1;当x >0时,1<|P A ||PF |=1+4x(x +1)2≤1+4x (2x )2=2(当且仅当x =1时取等号).因此当x ≥0时,1≤|P A ||PF |≤2,22≤|PF ||P A |≤1,|PF ||P A |的最小值是22.3.【解析】设C (x ,x 2),由题意可取A (-a ,a ),B (a ,a ), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a )x 2+a 2-a =0, 即y 2+(1-2a )y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.【答案】[1,+∞) 4.【解析】令Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0)=(2x +π3,12sin x ),⎩⎨⎧c =2x +π3d =12sin x,消去x 得d =12sin(12c -π6),所以y =f (x )=12sin(12x -π6),易知y =f (x )的值域是[-12,12].【答案】[-12,12]。
2023新教材高考数学二轮专题复习强化训练3排列组合二项式定理
![2023新教材高考数学二轮专题复习强化训练3排列组合二项式定理](https://img.taocdn.com/s3/m/ecf3161e5b8102d276a20029bd64783e09127d92.png)
强化训练3 排列、组合、二项式定理一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·山东泰安模拟](x -1x)22展开式中的常数项为( )A .C 1122 B .-C 1122 C .C 1222D .-C 12222.3名男生2名女生站成一排照相,则2名女生相邻且都不站在最左端的不同的站法共有( )A .72种B .64种C .48种D .36种3.六名志愿者到北京、延庆、张家口三个赛区参加活动,若每个赛区两名志愿者,则安排方式共有( )A .15种B .90种C .540种D .720种4.[2022·湖南益阳一模]为迎接新年到来,某中学2022年“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行.校文娱组委员会要在原定排好的8个学生节目中增加2个教师节目,若保持原来的8个节目的出场顺序不变,则不同排法的种数为( )A .36B .45C .72D .905.[2022·山东德州二模]已知a >0,二项式(x +ax2)6的展开式中所有项的系数和为64,则展开式中的常数项为( )A .36B .30C .15D .106.[2022·山东淄博一模]若(1-x )8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,则a 6=( )A .-448B .-112C .112D .4487.[2022·河北沧州二模](x -2x-1)5的展开式中的常数项为( )A .-81B .-80C .80D .1618.[2022·湖北十堰三模]甲、乙、丙、丁共4名学生报名参加夏季运动会,每人报名1个项目,目前有100米短跑、3 000米长跑、跳高、跳远、铅球这5个项目可供选择,其中100米短跑只剩下一个参赛名额,若最后这4人共选择了3个项目,则不同的报名情况共有( )A.224种B.288种C.314种D.248种二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·河北唐山二模]已知(x-2x2)n的展开式中第3项与第8项的二项式系数相等,则( )A.n=9B.n=11C.常数项是672D.展开式中所有项的系数和是-110.在新高考方案中,选择性考试科目有:物理、化学、生物、政治、历史、地理6门.学生根据高校的要求,结合自身特长兴趣,首先在物理、历史2门科目中选择1门,再从政治、地理、化学、生物4门科目中选择2门,考试成绩计入考生总分,作为统一高考招生录取的依据.某学生想在物理、化学、生物、政治、历史、地理这6门课程中选三门作为选考科目,下列说法正确的是( )A.若任意选科,选法总数为C24B.若化学必选,选法总数为C12 C13C.若政治和地理至少选一门,选法总数为C12 C12C13D.若物理必选,化学、生物至少选一门,选法总数为C12 C12+111.[2022·广东·华南师大附中三模]已知(a+2b)n的展开式中第5项的二项式系数最大,则n的值可以为( )A.7 B.8C.9 D.1012.[2022·湖北荆州三模]已知二项式(2x-1x)n的展开式中共有8项,则下列说法正确的有( )A.所有项的二项式系数和为128B.所有项的系数和为1C.第4项和第5项的二项式系数最大D .有理项共3项三、填空题(本题共4小题,每小题5分,共20分)13.[2022·山东烟台三模]若(1-ax )8展开式中第6项的系数为1792,则实数a 的值为________.14.[2022·辽宁辽阳二模]某话剧社计划在今年7月1日演出一部红色话剧,导演已经选好了该话剧的9个角色的演员,还有4个角色的演员待定,导演要从8名男话剧演员中选3名,从5名女话剧演员中选1名,则导演的不同选择共有________种.15.[2022·浙江卷]已知多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2=______,a 1+a 2+a 3+a 4+a 5=______.16.[2022·河北保定一模]2022年北京冬奥会的某滑雪项目中有三个不同的运动员服务点,现需将10名志愿者分配到这三个运动员服务点处,每处需要至少2名至多4名志愿者,则不同的安排方法一共有________种.强化训练3 排列、组合、二项式定理1.解析:(x -1x)22展开式中的常数项为C 1122 (-1)11=-C 1122 .答案:B2.解析:将2名女生捆绑在一起,故2名女生相邻有A 22 种站法,又2名女生都不站在最左端,故有A 13 种站法,剩下3个位置,站3名男生有A 33 种站法,故不同的站法共有A 22 A 13 A 33 =36种. 答案:D3.解析:先从六名志愿者中选择两名志愿者到北京参加活动,有C 26 =15种方法,再从剩下的4名志愿者中选择2名志愿者到延庆参加活动,有C 24 =6种方法,最后从剩下的2名志愿者中选择2名志愿者到延庆参加活动,有C 22 =1种方法.由分步乘法原理得共有15×6×1=90种方法.答案:B4.解析:采用插空法即可:第1步:原来排好的8个学生节目产生9个空隙,插入1个教师节目有9种排法; 第2步:排好的8个学生节目和1个教师节目产生10个空隙,插入1个教师节目共有10种排法,故共有9×10=90种排法. 答案:D5.解析:令x =1,则可得所有项的系数和为(1+a )6=64且a >0,解得a =1, ∵(x +1x 2)6的展开式中的通项T k +1=C k 6 x 6-k(1x2)k =C k 6 x 6-3k ,k =0,1, (6)∴当k =2时,展开式中的常数项为C 26 =15. 答案:C6.解析:(1-x )8=(x -1)8=[(1+x )-2]8=a 0+a 1(1+x )+a 2(1+x )2+…+a 8(1+x )8,a 6=C 28 ·(-2)2=112.答案:C7.解析:(x -2x -1)5=(x -2x -1)(x -2x -1)(x -2x -1)(x -2x -1)(x -2x-1),所以展开式中的常数项为(-1)5+C 15 C 14 ×(-2)×(-1)3+C 25 C 23 ×(-2)2×(-1)=-81.答案:A8.解析:分两种情况讨论:①不选100米短跑,四名学生分成2名、1名、1名三组,参加除100米短跑的四个项目中的三个,有C 24 A 34 =144种;②1人选100米短跑,剩下三名学生分成2名、1名两组,参加剩下四个项目中的两个,有C 14 C 23 A 24 =144种.故他们报名的情况总共有144+144=288种. 答案:B9.解析:由C 2n =C 7n ,可得n =9,则选项A 判断正确;选项B 判断错误; (x -2x2)n 的展开式的通项公式为C k 9 x 9-k (-2)k x -2k =(-2)k C k 9 x 9-3k,令9-3k =0,则k =3,则展开式的常数项是(-2)3C 39 =-672.选项C 判断错误; 展开式中所有项的系数和是(1-212)9=-1.判断正确.答案:AD10.解析:若任意选科,选法总数为C 12 C 24 ,A 错误; 若化学必选,选法总数为C 12 C 13 ,B 正确;若政治和地理至少选一门,选法总数为C 12 (C 12 C 12 +1),C 错误;若物理必选,化学、生物至少选一门,选法总数为C 12 C 12 +1,D 正确. 答案:BD11.解析:当(a +2b )n的展开式中第4项和第5项的二项式系数相等且最大时,n =7; 当(a +2b )n的展开式中第5项和第6项的二项式系数相等且最大时,n =9; 当(a +2b )n的展开式中只有第5项的二项式系数最大时,n =8. 答案:ABC12.解析:由题设n =7,则T k +1=C k 7 (2x )7-k(-1x)k =(-1)k 27-k C k7 x7-3k2,A .所有项的二项式系数和为27=128,正确; B .当x =1,所有项的系数和为(2-1)7=1,正确;C .对于二项式系数C k 7 ,显然第四、五项对应二项式系数C 37 =C 47 最大,正确; D .有理项为7-3k2∈Z ,即k =0,2,4,6共四项,错误.答案:ABC13.解析:因为T 6=T 5+1=C 58 (-ax )5=C 58 (-a )5x 5=C 38 (-a )5x 5, 所以有:C 38 (-a )5=-56a 5=1 792, 所以a 5=-32, 解得a =-2. 答案:-214.解析:依题意,可得导演的不同选择的种数为C 38 ·C 15 =280. 答案:28015.解析:因为(x +2)(x -1)4展开式中x 2的系数为a 2,所以a 2=C 34 (-1)3+2C 24 (-1)2=8.在多项式(x +2)(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5中,令x =0,得a 0=2;令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=0.所以a 1+a 2+a 3+a 4+a 5=-a 0=-2.答案:8 -216.解析:根据题意得,这10名志愿者分配到三个运动员服务点处的志愿者数目为2,4,4或3,3,4,所以不同的安排方法共有C 210 C 48 C 44 A 22 A 33 +C 410 C 36 C 33 A 22 A 33 =22 050. 答案:22 050。
2019版二轮复习数学(文)第三层级 难点自选专题二 “选填”压轴小题的4大抢分策略
![2019版二轮复习数学(文)第三层级 难点自选专题二 “选填”压轴小题的4大抢分策略](https://img.taocdn.com/s3/m/d5fd91162f60ddccda38a0e7.png)
“选填”压轴小题的 4 大抢分策略
解答选择题中的压轴题,务必要遵循“小题小解”的原则,要 抓住已知条件与备选项之间的关系进行分析、试探、推断,充分发 挥备选项的暗示作用,选用解法要灵活机动,做到具体问题具体分 析,不要生搬硬套.能定性判定的,就不再使用复杂的定量计算; 能用特殊值分析的,就不再采用常规解法;能用间接法求解的,就 不再用直接法.
3.已知△ABC中,AB=4,AC=5,点O为△ABC所在平面内
一点,满足|―O→A |=|―O→B |=|―O→C |,则―A→O ·―B→C =________.
解析:法一:如图,―A→B =―O→B -―O→A ,―A→C =―O→C -―O→A ,
∴
―→ AB
2=
―→ OB
2-2
―→ OB
―→ ·OA
+
―→ OA
2,
―A→C 2=―O→C 2-2―O→C ·―O→A +―O→A 2.两式相
减,得
―→ AC
2-
―→ AB
2=2
―→ OB
―→ ·OA
-
―→ ―→ 2 OC ·OA . ∴25-16=2―O→A ·(―O→B -―O→C ), ∴9=2―O→A ·―C→B ,∴―A→O ·―B→C =92.
化简可得-43cos2x+acos x+53≥0在R 上恒成立. 又因为|cos x|≤1, 令cos x=t, 则-43t2+at+53≥0在t∈[-1,1]上恒成立.设g(t)=-43t2+at+53, 则函数g(t)在t∈[-1,1]上,使得不等式g(t)≥0恒成立,
则gg1-≥1≥0,0,
恒成立.易得
a≤h(t)min=h(-1)=13.
综上所述,a的取值范围是-13,13.故选C.
高考二轮复习限时训练(三)
![高考二轮复习限时训练(三)](https://img.taocdn.com/s3/m/5c17a2d9ce2f0066f5332213.png)
高考二轮复习限时训练(三)(时间:60分钟)班级 姓名 得分一.填空题:本大题共14小题,每小题5分,共计70分。
1、函数)1(log 12)(2---=x x x f 的定义域为 。
2、已知集合A =},1|{2Z x x y x ∈-=,},12|{A x x y y B ∈-==,则B A = 。
3、若函数3222)1()(----=m mx m m x f 是幂函数,且在),0(+∞∈x 上是减函数,则实数=m 。
4、函数y=213log (3)x x -的单调递减区间是 。
5、方程x x 28lg -=的根()z k k k x ∈+∈,1,,则k = 。
6、实数,x y 满足350,(1,3]x y x --=∈,则2y x -取值范围是________________。
7、已知b a bx ax x f +++=3)(2是偶函数,定义域为[]a a 2,1-,则b a +的值为 。
8、已知)(x f 的定义域是R ,且2lg 3lg )1(),()1()2(-=-+=+f x f x f x f ,5lg 3lg )2(+=f ,则=)2009(f 。
9、定义在[]2,2-上的偶函数()g x 满足:当0x ≥时,()g x 单调递减.若()()1g m g m -<,则m 的取值范围是 。
10、已知),0()(2>++=a c bx ax x f 且321,,x x x 两两不等,则)3(321x x x f m ++=与3)()()(321x f x f x f n ++=的大小关系是 。
11、已知函数)(log )(221a ax x x f --=的值域为,R 且在)31,(--∞上是增函数,则a 的取值范围是 。
12、若存在[]3,1∈a ,使得不等式02)2(2>--+x a ax 成立,则实数x 的取值范围是 。
二.解答题(每题15分,共30分)13.在△ABC 中,已知角A 、B 、C 所对的三条边分别是a 、b 、c ,且c a b ⋅=2(1)求证:30π≤<B ;(2)求函数BB B y cos sin 2sin 1++=的值域。
2024年对口高考数学二轮复习专题(三)数列专题训练
![2024年对口高考数学二轮复习专题(三)数列专题训练](https://img.taocdn.com/s3/m/ff12b5d78662caaedd3383c4bb4cf7ec4afeb6bd.png)
2024年对口高考数学二轮复习专题(三)数列综合题姓名:___________________ 班级:____________________一、选填题1、设数列{a n}的前n项和为S n,若S n+1=2a n+1,n∈N*,则a3=()A.3B.2C.1D.02、等比数列{a n}中,a1•a2•a3=8,则a2=()A.8B.±2C.﹣2D.23、在正项递增等比数列{a n}中,a2+a3=6,a1•a4=8,则数列{a n}的公比q为()A.1B.2C.3D.44、在各项均为正数的等比数列{a n}中,若a5a6=9,则log3a1+log3a2+⋯+log3a10的值为()A.12B.2+log35C.8D.105、已知{a n}是公比为q的等比数列,且a1,a3,a2成等差数列,则q=()A.1或B.1C.D.﹣26、已知数列{a n}满足:a1=1,a n=2a n﹣1+1(n≥2),则a4=()A.13B.11C.9D.157、已知等差数列{a n}的前3项和S3=12,则a2=()A.4B.3C.12D.88、已知等差数列{a n}前n项和为S n,且,则等于()A.B.C.D.9、已知数列{a n}的前n项和,则该数列的第3项a3=。
10、已知数列{a n}满足在a n+2=a n+1﹣a n(n∈N*),且a1=3,a2=5,则a2022的值为.11、已知数列{a n}的前n项和为S n,且,则数列{a n}的通项公式为a n=.二、解答题12、已知等差数列{a n}的前n项和为S n,且a3=6,S4=20.(1)求数列{a n}的通项公式;(2)若a1,a k,S k+2成等比数列,求正整数k的值.13、设S n为等差数列{a n}的前n项和,已知a1=2,a8,a5,a11,成等比数列,S n=5,求n 的值。
14、已知{a n}是公差不等于0的等差数列,a3=﹣9,且a6是a3和a7的等比中项.(1)求数列{a n}的通项公式;(2)设{a n}的前n项和为S n,若S n>a n,求正整数n的最小值.15、在等差数列{a n}中,设S n为前n项和,已知a1=﹣9,S4=﹣24。
新教材适用2024版高考数学二轮总复习第3篇方法技巧引领必考小题练透第6讲不等式
![新教材适用2024版高考数学二轮总复习第3篇方法技巧引领必考小题练透第6讲不等式](https://img.taocdn.com/s3/m/5d6462a9541810a6f524ccbff121dd36a32dc4fc.png)
第三篇 第6讲一、单项选择题(共8小题)1. (2023·道里区校级模拟)已知a <b <0,则下列不等式恒成立的是( B ) A .ea -b>1B .b a +a b>2 C .ac 2<bc 2D .ln(b -a )>0【解析】 因为a <b <0,所以a -b <0,e a -b<1,A 错误;ba >0,ab >0,b a +a b ≥2b a ·a b=2,当且仅当a =b 时取等号,显然等号无法取得,B 正确;当c =0时,C 显然错误;当b -a <1时,D 错误.故选B.2. (2023·海淀区一模)已知二次函数f (x ),对任意的x ∈R ,有f (2x )<2f (x ),则f (x )的图象可能是( A )【解析】 二次函数f (x ),对任意的x ∈R ,有f (2x )<2f (x ),令x =0得,f (0)<2f (0),即f (0)>0,故C 、D 都不可能,对于B ,二次函数的对称轴方程为x =-b2a ,由图象可知f ⎝ ⎛⎭⎪⎫-b 2a <0,设f (x )的图象与x 轴的两个交点为x 1,x 2,且0<x 1<x 2,则x 1+x 2=-b a >0,所以0<x 1<-b 2a <x 2<-b a ,所以f ⎝ ⎛⎭⎪⎫-b a >0,当x =-b 2a 时,f (2x )=f ⎝ ⎛⎭⎪⎫-b a <2f ⎝ ⎛⎭⎪⎫-b 2a <0,两者相矛盾,故B 不可能.故选A.3. (2023·渝中区校级一模)已知正实数a ,b 满足4a +b +1b +1=1,则a +2b 的最小值为( B )C .10D .12【解析】 因为正实数a ,b 满足4a +b +1b +1=1,则a +2b +1=(a +b +b +1)⎝ ⎛⎭⎪⎫4a +b +11+b =5+4b +4a +b +a +b 1+b ≥5+24b +4a +b ·a +b 1+b =9,当且仅当4b +4a +b =a +b 1+b 且4a +b+1b +1=1,即b =2,a =4时取等号,此时a +2b 取得最小值8.故选B. 4. (2023·浑南区校级模拟)已知正实数x ,y 满足1x +2y=1,则2xy -2x -y 的最小值为( C )A .2B .4C .8D .9【解析】 因为正实数x ,y 满足1x +2y=1,所以2x +y =xy ,则2xy -2x -y =2x +y =(2x+y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4x y =8,当且仅当y =2x 且1x +2y=1,即x =2,y =4时取等号.故选C.5. (2023·蒙城县校级三模)已知关于x 的不等式ax 2+bx +1>0的解集为(-∞,m )∪⎝ ⎛⎭⎪⎫1m ,+∞,其中m <0,则b a +2b 的最小值为( D )A .-2B .2C .2 2D .3【解析】 因为不等式ax 2+bx +1>0的解集为(-∞,m )∪⎝ ⎛⎭⎪⎫1m,+∞,所以⎩⎪⎨⎪⎧a >0,m +1m=-b a,m ·1m =1a ,解得a =1,b =-m -1m ;因为m <0,所以b =-m -1m≥2-m ·⎝ ⎛⎭⎪⎫-1m =2,当且仅当-m =-1m ,即m =-1时取“=”,所以b a +2b =b +2b,且b ≥2,因为函数y =b +2b 在b ≥2上单调递增,所以b +2b 的最小值为3,即b a +2b的最小值为3.故选D.6. (2023·香坊区校级三模)已知实数a ,b 满足lg a +lg b =lg(a +2b ),则4a +2b 的最小值是( D )C .13D .18【解析】 因为实数a ,b 满足lg a +lg b =lg(a +2b ),所以lg(ab )=lg(a +2b ),所以a +2b =ab ,a >0,b >0,所以1b +2a=1,则4a +2b =(4a +2b )⎝ ⎛⎭⎪⎫1b +2a =10+4b a +4a b≥10+24b a ·4ab=18,当且仅当a =b =3时取等号,故4a +2b 的最小值是18.故选D.7. (2023·大东区校级四模)已知x >0,y >0,x +2y =1,则x +1y +1xy的最小值为( C )A .4+4 3B .12C .8+4 3D .16【解析】 由x +2y =1可得,x +1y +1xy=x +x +2yy +x +2yxy=2x +2yx +3y xy=2x 2+8xy +6y2xy=2xy+6yx+8≥22x y ×6y x+8=8+4 3.当且仅当2x y=6y x时,等号成立,即x 2=3y 2.所以x +1y +1xy的最小值为8+43,故选C.8. (2023·雁峰区校级模拟)已知实数x ,y ,满足x 2+xy +3y 2=3,则x +y 的最大值为( B )A.31111 B .61111C.3+13D .3+33【解析】 令t =x +y ,则x =t -y ,则x 2+xy +3y 2=3可化为(t -y )2+(t -y )y +3y 2-3=0,整理得3y 2-ty +t 2-3=0,∴Δ=(-t )2-12(t 2-3)≥0,即t 2≤3611,∴t ≤61111,故x +y ≤61111.故选B. 二、多项选择题(共4小题)9. (2023·济南二模)已知实数a ,b ,c 满足a >b >c ,且a +b +c =0,则下列说法正确的是( BC )A.1a -c >1b -cB .a -c >2bC .a 2>b 2D .ab +bc >0【解析】 对于A ,∵a >b >c ,∴a -c >b -c >0,∴1a -c <1b -c,A 错误;对于B ,∵a>b >c ,a +b +c =0,∴a >0,c <0,∴b +c =-a <0,a -b >0,∴a -b >b +c ,即a -c >2b ,B 正确;对于C ,∵a -b >0,a +b =-c >0,∴a 2-b 2=(a +b )(a -b )>0,即a 2>b 2,C 正确;对于D ,ab +bc =b (a +c )=-b 2≤0,D 错误.故选BC.10. (2023·向阳区校级模拟)已知关于x 的不等式ax 2+bx +c >0的解集为(-∞,-2)∪(3,+∞),则下列选项中正确的是( BD )A .a <0B .不等式bx +c >0的解集是{x |x <-6}C .a +b +c >0D .不等式cx 2-bx +a <0的解集为⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫12,+∞【解析】 由题意可知,-2和3是方程ax 2+bx +c =0的两根,且a >0,∴-2+3=-ba ,(-2)×3=c a,∴b =-a ,c =-6a ,a >0,即选项A 错误;不等式bx +c >0等价于a (x +6)<0,∴x <-6,即选项B 正确;∵不等式ax 2+bx +c >0的解集为(-∞,-2)∪(3,+∞),∴当x =1时,有a +b +c <0,即选项C 错误;不等式cx 2-bx +a <0等价于a (6x 2-x -1)>0,即a (3x +1)(2x -1)>0,∴x <-13或x >12,即选项D 正确.故选BD.11. (2023·东风区校级模拟)已知a >0,b >0,且a +b =1,则下列结论正确的是( AC ) A.1a +1b的最小值是4B .ab +1ab的最小值是2C .2a+2b的最小值是2 2 D .log 2a +log 2b 的最小值是-2【解析】 ∵a >0,b >0,a +b =1,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=b a +ab+2≥21+2=4,当且仅当b a =a b ,a =b =12时取等号,∴1a +1b 的最小值为4,∴A 正确,∵ab +1ab≥21=2,当且仅当⎩⎪⎨⎪⎧ab =1,a +b =1时取等号,∵⎩⎪⎨⎪⎧ab =1,a +b =1无解,∴ab +1ab>2,∴B 错误,∵a +b =1,∴2a+2b≥22a·2b=22a +b=22,当且仅当a =b =12时取等号,∴2a +2b的最小值为22,∴C 正确,∵a >0,b >0,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时取等号,∴log 2a +log 2b =log 2(ab )≤log 214=-2,∴log 2a +log 2b 的最大值为-2,∴D 错误,故选AC.12. (2023·濠江区校级三模)若a >0,b >0,a +b =4,则下列不等式对一切满足条件a ,b 恒成立的是( ACD )A.ab ≤2 B .a +b ≤2 C.a 23+b 2≥4 D .1a +1b≥1【解析】 对于A ,ab ≤⎝⎛⎭⎪⎫a +b 22=4,当且仅当a =b =2时等号成立,故ab ≤2,故A正确;对于B ,(a +b )2≤4×a +b2=8,当且仅当a =b =2时取等号,故a +b ≤22,故B 错误;对于C ,由题意得b =4-a >0,所以0<a <4,a 23+b 2=a 23+(4-a )2=43a 2-8a +16,根据二次函数的性质可知,当a =3时,上式取得最小值4,故C 正确;对于D ,∵a +b=4,a >0,b >0,∴12×12⎝ ⎛⎭⎪⎫1a +1b (a +b )=12×12⎝ ⎛⎭⎪⎫1+1+b a +a b ≥14(2+2)=1,当且仅当ab =ba,即a =b =2时等号成立,故D 正确.故选ACD. 三、填空题(共4小题)13. (2023·贵阳模拟)若x >0,则x +4x +1的最小值为_3__. 【解析】 因为x >0,所以x +4x +1=x +1+4x +1-1≥2x +1·4x +1-1=3,当且仅当x =1时,等号成立.14. (2023·开福区校级二模)函数y =log a (x +4)-1的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n的最小值为 23+4 .【解析】 ∵函数y =log a (x +4)-1的图象恒过定点A ,∴⎩⎪⎨⎪⎧x +4=1,y =0-1,解得,x =-3,y =-1,故A (-3,-1);∵点A 在直线mx +ny +1=0上,∴3m +n =1,又∵mn >0,∴m >0,n >0,∴1m +1n =⎝ ⎛⎭⎪⎫1m +1n (3m +n )=3m n +n m +4≥23+4,(当且仅当m =3-36,n =3-12时,等号成立). 15. (2023·岳麓区校级模拟)正实数x ,y 满足1x +4y =2,且不等式x +y 4≥m 2-m 恒成立,则实数m 的取值范围为_[-1,2]__.【解析】 因为正实数x ,y 满足1x +4y =2,所以x +y 4=12⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =12⎝⎛⎭⎪⎫2+4x y +y 4x≥12⎝⎛⎭⎪⎫2+24xy ·y 4x =2,当且仅当y 4x =4x y 且1x +4y =2,即x =1,y =4时取等号,则x +y 4的最小值为2.因为x +y4≥m 2-m 恒成立,所以m 2-m ≤2,解得-1≤m ≤2.故m 的范围为[-1,2].16. (2023·浙江二模)若a 2+b 2=a +b ,则a 3+b 3a 2+b 2的取值范围是 ⎝ ⎛⎦⎥⎤0,98 . 【解析】 由a 2+b 2=a +b 可得a +b =a 2+b 2≥2ab ,而2(a 2+b 2)≥(a +b )2,∴a 2+b 2≥a +b22,当且仅当a =b 时,等号成立,即a +b ≥a +b22,解得0≤a +b ≤2,由a 3+b 3a 2+b 2=a 3+b 3a +b =a 2+b 2-ab 可知a +b ≠0,∴0<a +b ≤2,所以a 3+b 3a 2+b 2=a +b -ab =a +b -a +b2-a +b 2,令t =a +b ,t ∈(0,2],则a 3+b 3a 2+b 2=-12t 2+32t =-12⎝ ⎛⎭⎪⎫t -322+98,函数y =-12t 2+32t 在⎝ ⎛⎭⎪⎫0,32单调递增,在⎣⎢⎡⎦⎥⎤32,2单调递减,故0<-12t 2+32t ≤98,即a 3+b 3a 2+b 2的取值范围是⎝ ⎛⎦⎥⎤0,98.。
【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)
![【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)](https://img.taocdn.com/s3/m/cecf8f0b4b7302768e9951e79b89680203d86b6f.png)
第 3讲平面向量1. (2016 课·标全国丙改编→1,3→31,则∠ ABC= ________. )已知向量 BA=22, BC=,22答案30°分析→→∵ |BA|= 1, |BC|= 1,→ →3BA·BC=,∴∠ ABC = 30°.cos∠ ABC=→→2|BA|·|BC|12. (2016 ·东改编山 )已知非零向量m,n 知足 4|m|= 3|n|,cos〈 m, n〉=3.若 n⊥ (tm+ n),则实数 t 的值为 ______.答案- 4分析∵ n⊥ (tm+ n),∴ n·(tm+n)=0,即 t·m·n+ n2= 0,∴ t|m||n|cos〈 m, n〉+ |n|2=0,由3212已知得 t×|n| ×+ |n| = 0,解得 t=- 4.433. (2016 天·津改编 )已知△ABC 是边长为 1 的等边三角形,点 D, E 分别是边 AB, BC 的中点,连接 DE 并延伸到点F,使得 DE=→ →2EF ,则 AF ·BC的值为 ________.答案1 8分析→→→如下图, AF =AD +DF .又 D, E 分别为 AB, BC 的中点,→1→且 DE= 2EF,因此 AD=2AB,→=→+→=→+1→DF DE EF DE2DE3→ 3→=2DE =4AC,→1→ 3 →→→ →因此 AF=2AB+4AC.又 BC= AC-AB,→ →1→3→→ →则 AF·BC=AB+AC ·(AC- AB)241→ →1→ 2 3 →2 3 → →=AB·AC-AB+AC - AC·AB 2244→ 2 1→21→→= 4AC - 2AB -4AC ·AB.3→ →又 |AB|= |AC|= 1,∠ BAC = 60°,→ → 3 1 1 1 1故AF ·BC = - - ×1×1× = .4 2 4 2 84. (2016 ·江浙 )已知向量a ,b , |a|= 1,|b|= 2.若对随意单位向量 e ,均有 |a ·e|+ |b ·e| ≤6,则a ·b 的最大值是 ________.答案12分析 由已知可得:6≥|a ·e|+ |b ·e| ≥|a ·e + b ·e|= |(a + b) ·e|,因为上式对随意单位向量e 都成立.∴ 6≥|a + b|成立.∴ 6≥(a + b) 2= a 2+ b 2+ 2a ·b = 12+ 22+ 2a ·b.1即 6≥5+ 2a ·b ,∴ a ·b ≤2.1.考察平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考察, 多为填空题,难度中低档 .2.考察平面向量的数目积,以填空题为主,难度低;向量作为工具,还常与三角函数、解三角形、不等式、分析几何联合,以解答题形式出现.热门一平面向量的线性运算1.在平面向量的化简或运算中,要依据平面向量基本定理选好基底,变形要有方向不可以盲目转变.2.在用三角形加法法例时,要保证 “首尾相接 ”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法例时,要保证 “同起点 ”,结果向量的方向是指向被减向量.例 1π(1) 设 0<θ< ,向量 a = (sin 2θ, cos θ), b = (cos θ, 1),若 a ∥ b ,则 tan θ= ______.2→ → → →(2) 如图,在 △ ABC 中,已知 BD = 2DC ,以向量 AB ,向量 AC 作为基底,→则向量 AD 可表示为 ____________.答案 (1)1 (2)1 →+ 2 →2 3AB 3AC 分析(1)因为 a ∥ b ,因此 sin 2θ= cos 2θ,即 2sin θcos θ=cos 2θ.π 因为 0<θ< ,因此 cos θ>0,21得 2sin θ= cos θ,tan θ= 2.(2) 依据平面向量的运算法例及已知图形可知→2 →AB +3AC .→→→→ 2 → → 2 → → 1AD =AB + BD = AB + BC =AB + (BA + AC)=333思想升华(1) 关于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用. (2)运算过程中重视数形联合,联合图形剖析向量间的关系. 追踪操练 1(1)如图,正方形 ABCD 中,点 E 是 DC 的中点,点 F 是 BC的一个三平分点,那么以向量 → → →AB 和向量 AD 为基底,向量 EF 可表示为__________ .→→ →(2) 如图,在正方形 ABCD 中, E 为 DC 的中点,若 AE = λAB + μAC ,则 λ + μ的值为 ________. 答案(1)1→ - 2 →(2)12AB 3AD2分析→ → → (1)在 △ CEF 中,有 EF = EC +CF .→ 1 →因为点 E 为 DC 的中点,因此 EC = DC .2因为点 F 为 BC 的一个三平分点,因此→ 2 →CF =CB.3→ 1→ 2→ 1→ 2→ 1→2→因此 EF = 2DC +3CB =2AB +3DA = 2AB - 3AD.(2)→ → → 1 →1 → → 1 → →→ 1 → 因为 E 为 DC 的中点,因此 AC = AB + AD = AB +AB + AD =AB + AE ,即 AE =-AB +2222→ AC ,1 1因此 λ=- , μ=1,因此 λ+ μ= .22热门二平面向量的数目积1.数目积的定义: a ·b = |a||b|cos θ.2.三个结论(1) 若 a = (x , y),则 |a|= a ·a = x 2+ y 2.(2) 若 A(x 1,y 1), B( x 2, y 2),则→ 2 2 .|AB|= (x 2- x 1 ) + (y 2- y 1 )(3)若 a= (x1,y1), b= ( x2,y2 ),θ为 a 与 b 的夹角,则 cos θ=a·b=x1x2+ y1y2|a||b|x12+ y12x22+ y22.例 2(1)如图,在矩形ABCD 中, AB=2, BC= 2,点 E 为 BC 的中点,点 F在边→ →=→ →CD 上,若 AB·AF2,则 AE ·BF的值是 ________.(2) 若 b=cos π, cos5π,|a|= 2|b|,且 (3a+b) ·b=- 2,则向量 a,b 的夹角1212为 ________.答案(1) 2 (2)5π6分析(1)以 A 为原点,成立如下图的坐标系,可得 A(0,0),B(2, 0), E(2, 1), F(x,2),→→∴ AB= ( 2,0) ,AF= (x,2),→ →2x=2,∴ AB·AF=解得 x= 1,∴ F(1,2).→→∴ AE= ( 2,1),BF= (1- 2, 2),→ →∴ AE·BF= 2×(1- 2)+ 1×2= 2.22π25π 2 π 2 π(2) b= cos+cos12=cos+ sin= 1,121212因此 |b|= 1,|a|= 2.由 (3a+b) ·b=- 2,可得3a·b+ b2=- 2,故 a·b=-3,故 cos〈 a, b〉=a·b=- 33=-|a||b|2×1 2.5π又〈 a, b〉∈ [0,π],因此〈 a, b〉=6 .思想升华(1) 数目积的计算往常有三种方法:数目积的定义,坐标运算,数目积的几何意义;(2) 能够利用数目积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.追踪操练 2 (1)已知点 A,B,C,D 在边长为 1 的方格点图的地点如下图,→ →则向量 AD在AB方向上的投影为 ________.(2) 如图,在△ ABC 中,AB= AC= 3,cos∠ BAC=1→→→ →3,DC= 2BD,则 AD·BC的值为 ________.答案(1)-5(2)- 2 5分析(1)不如以点 A 为坐标原点,成立如下图的平面直角坐标系,易得→→AD = (- 2,3),AB→ →→ →- 25 AD ·AB= (4,2) ,因此向量 AD 在 AB方向上的投影为→=2 5=- 5.|AB |→→→→→→2→ →(2) AD·BC= (AC+ CD ) ·BC= (AC+CB) ·BC3→2→→→2→1→→→=[AC+3(AB -AC)] BC·= ( 3AB +3AC) ·(AC- AB)2 →2 1 → → 1 →2=-3|AB|+3AB·AC+3|AC|=-6+ 1+3=- 2.热门三平面向量与三角函数平面向量作为解决问题的工具,拥有代数形式和几何形式的“两重型”,高考常在平面向量与三角函数的交汇处命题,经过向量运算作为题目条件.例 3已知函数 f(x)= 2cos2x+ 23sin xcos x(x∈ R).π(1)当 x∈[0,2)时,求函数 f( x)的单一递加区间;(2)设△ABC 的内角 A,B, C 的对边分别为 a, b,c,且 c=3, f( C)= 2,若向量 m= (1, sin A)与向量 n= (2, sin B)共线,求 a, b 的值.解π (1)f(x)= 2cos 2x + 3sin 2x = cos 2x + 3sin 2x + 1=2sin(2 x + ) +1,6π π π 令- + 2k π≤2x +≤ + 2k π, k ∈ Z ,26 2π π解得 k π-≤x ≤k π+ , k ∈ Z ,36π因为 x ∈ [0, 2) ,π因此 f( x)的单一递加区间为 [0,6] .π(2) 由 f(C)= 2sin(2C +6)+ 1= 2,π 1得 sin(2C + 6)= 2,π π 13 π而 C ∈(0 ,π),因此 2C + 6∈( 6, 6 ), π 5 π因此 2C + =6π,解得 C = 3.6因为向量 m = (1,sin A)与向量 n =(2 ,sin B)共线,因此sin A 1sin B= .2由正弦定理得 a = 1,①b 2由余弦定理得π c 2= a 2+ b 2- 2abcos,3即 a 2+ b 2- ab =9.②联立①②,解得 a = 3,b = 2 3.思想升华 在平面向量与三角函数的综合问题中, 一方面用平面向量的语言表述三角函数中的问题, 如利用向量平行、 垂直的条件表述三角函数式之间的关系, 利用向量模表述三角函数之间的关系等; 另一方面能够利用三角函数的知识解决平面向量问题,在解决此类问题的 过程中, 只需依据题目的详细要求, 在向量和三角函数之间成立起联系, 就能够依据向量或者三角函数的知识解决问题.追踪操练 3已知 △ABC 是锐角三角形,向量m = cos A + π,3π, n = cos B , sin B ,且 m ⊥ n.sin A +3 ( )(1) 求 A -B 的值;3(2) 若 cos B = 5,AC =8,求 BC 的长.解(1)因为 m ⊥ n ,π π因此 m ·n = coscos B +sin A + 3 sin BA + 3 π= cos A +3- B =0,π又 A ,B ∈ 0,2 ,因此ππ 5πA + -B ∈ - , ,3 6 6 因此 π ππA + -B = ,即 A - B = .3 263π4(2) 因为 cos B =5, B ∈ 0,2 ,因此 sin B = 5,因此 sin A = sin π ππ = sin Bcos + cos Bsin 6B +664 3 3 1 4 3+ 3= · + ·= ,52 5 2104 3+3由正弦定理,得BC = sin A10 ×8= 4 3+ 3.4sin B·AC =5→ 1 →1.如图,在 △ ABC 中, AD = 3AB , DE ∥ BC 交AC 于E , BC边上的中线AM交DE于,设 → = , → = ,用ABaACb N, 表示向量ab→ →AN ,则 AN= ____________.押题依照平面向量基本定理是向量表示的基本依照,而向量表示 (用基底或坐标 )是向量应用的基础.1答案6(a + b)分析因为 DE ∥ BC ,因此 DN ∥ BM ,则 △ AND ∽△ AMB ,因此 AM AN = ADAB .→1 →→1 →因为 AD = 3AB ,因此 AN = 3AM . 因为 M 为 BC 的中点,→ 1 → → 1 因此 AM = (AB +AC)=(a + b),22→ 1 →1因此 AN =AM = (a + b).362.如图,BC 、DE 是半径为 →→ → →1 的圆 O 的两条直径, BF = 2FO ,则 FD ·FE= ________.押题依照数目积是平面向量最重要的观点,平面向量数目积的运算是高考的必考内容,和平面几何知识的联合是向量考察的常有形式.答案-89分析→→→1,∵BF =2FO ,圆 O 的半径为 1,∴ |FO |=3→→→→→→→2→→→→→1 2 8 ∴ FD ·FE = (FO + OD) ·(FO + OE)= FO + FO ·(OE + OD)+ OD ·OE = ( ) + 0- 1=- .39→ →120°sin 208 )°,则 △ABC3.在 △ABC 中,AB =(cos 32 °,cos 58 °),BC = (sin 60 sin ° 118 ,°sin 的面积为 ________.押题依照平面向量作为数学解题工具, 经过向量的运算给出条件解决三角函数问题已成为近几年高考的热门.答案38分析→ 2 2°|AB|= cos 32 °+ cos 58= cos 232°+ sin 232°=1,→33,BC =2 cos 28 ,°- 2 sin 28°→323 23 因此 |BC|=+ -2 sin 28 =2.2 cos 28 °°→ →33 °则 AB ·BC = cos 32 °×2cos 28-°sin 32 ×° sin 2823=2 (cos 32 cos ° 28 -°sin 32 sin ° 28 ) °=333,2 cos(32 +°28°)= 2cos 60 =° 4→ →3 → →4 1AB ·BC = . 故 cos 〈 AB , BC 〉= →→ = 3 2 |AB| ×|BC| 1×2→ → °, 180°],因此〈 → →又〈 AB , BC 〉∈ [0 AB , BC 〉= 60°,→ →故 B = 180°-〈 AB , BC 〉= 180°- 60°= 120°.故 △ ABC 的面积为1 →S = 2×|AB|→×|BC|sin B1 3 = ×1××sin221203 =° .84.如图,在半径为1 的扇形 AOB中,∠ AOB =60°,C为弧上的动点, AB 与OC交于点P ,→ →则 OP ·BP 的最小值是 _______________________________________ .押题依照 此题将向量与平面几何、 最值问题等有机联合,表现了高考在知识交汇点命题的方向,此题解法灵巧,难度适中.答案-116分析→ → →→→→→→→→→2 = 60 °,因为 OP = OB + BP ,因此 OP ·BP = (OB + BP) ·BP =OB ·BP + BP .又因为∠ AOB OA = OB ,因此∠ OBA = 60°, OB = → → →1 → →→1→→21.因此 OB ·BP = |BP |cos 120=°-|BP|,因此 OP ·BP =- |BP|+ |BP|22→1 2 11→1 → →1= (|BP|- )-≥-,当且仅当 |BP|= 时, OP ·BP 获得最小值-.4 16 16416A 组 专题通关1.在 △ ABC 中,已知 D 是 AB 边上一点,若→ →→ 1 →→AD = 2DB, CD = CA + λCB ,则 λ= ________.3答案23分析 在 △ABC 中,已知 D 是 AB 边上一点,→→ →1→→→→→→ 2 → → 2 → → 1 → 2 → ∵ AD = 2DB ,CD = CA + λCB ,∴ CD = CA + AD = CA + AB = CA +3 (CB - CA)= CA + CB ,3333∴ λ= 2.32. △ ABC 是边长为 2 的等边三角形,已知向量→ →a ,b 知足 AB = 2a , AC = 2a + b ,则以下结论正确的选项是 ________.① |b|= 1; ② a ⊥ b ;→③ a ·b = 1; ④ (4a + b)⊥BC.答案 ④分析→ → →在 △ABC 中,由 BC = AC - AB = 2a + b - 2a = b ,得 |b|= 2.又 |a|= 1,因此 a ·b = |a||b|cos 120 =°- 1,→ 2因此 (4a + b) ·BC = (4a + b) ·b = 4a ·b + |b|= 4×(- 1)+ 4= 0,→因此 (4a + b)⊥ BC.→ → → → → →3.在等腰 △ ABC 中,∠ BAC =90°,AB = AC = 2,BC = 2BD ,AC = 3AE ,则 AD ·BE = ________.答案-43分析由已知获得→ → 1→→→1 →1 →2 1 → → 1 → → 1 → 2,AD ·BE =(AB + AC) ·(BA + AC) =-2AB + AB ·AC +2 AC ·BA + AC2366→ → 1212△ ABC 是等腰直角三角形,∠ BAC = 90 °, AB = AC =2,因此 AD ·BE =- 2×2 + 0+0+ 6×24=- 3.4. (2016 ·津蓟县期中天 )已知向量 a , b 知足 (a + 2b) ·(a - b)=- 6,且 |a|= 1, |b|= 2,则 a与 b 的夹角为 ________.答案π 3分析 设 a 与 b 的夹角为θ,∵ (a + 2b) ·(a - b)=- 6,且 |a|= 1,|b|= 2,∴ 1+a ·b - 8=- 6,∴ a ·b = 1=|a||b |cos θ,∴ cos θ= 1,2π又∵ θ∈ [0,π],∴ θ=3.5. (2016 安·徽江淮十校第二次联考 )已知平面向量 a 、b(a ≠0, a ≠b)知足 |a|= 3,且 b 与 b - a 的夹角为 30°,则 |b|的最大值为 ________.答案 6分析→ → → → →令OA = a , OB = b ,则 b - a = OB -OA =AB ,如图,∵ b 与 b - a 的夹角为 30°,∴∠ OBA =30°,→→→→,∴由正弦定 理|OA| = |OB|得 , ∵ |a| = |OA |= 3 sin ∠ OBA sin ∠ OAB |b|= | OB | =6·sin ∠ OAB ≤ 6.6.已知向量 a = (2,1),b = (- 1, 2),若 a , b 在向量 c 方向上的投影相等,且 (c - a) ·(c - b) =- 5,则向量 c 的坐标为 ________.21 3答案 (2,2)分析设 c = (x , y),依据题意有x 2+ y 2- x - 3y =- 5,22x + y =- x + 2y ,1,x = 2解得3y = 2.→→ → 7.设向量 OA = (5+ cos θ,4+ sin θ), OB = (2,0) ,则 |AB|的取值范围是 ________. 答案[4,6]分析→ → →= (- 3- cos θ,- 4- sin θ),∵AB =OB -OA → 2 2 2 ∴ |AB| = (- 3-cos θ) +( -4- sin θ)= 6cos θ+ 8sin θ+26= 10sin(θ+ φ)+ 26,此中 tan φ= 3,4→ 2 →∴ 16≤|AB | ≤ 36,∴ 4≤|AB| ≤ 6.8.设向量 a = (a 1, a 2), b = (b 1, b 2),定义一种向量积 a?b = (a 1b 1, a 2b 2),已知向量 m =(2 , 1 π →2),n = (,0),点 P(x ,y)在 y = sin x 的图象上运动, Q 是函数 y = f(x)图象上的点, 且知足 OQ3→为坐标原点 ),则函数 y = f( x)的值域是 ________.= m?OP + n(此中 O1 1 答案 [- 2, 2]分析令 Q(c ,d),由新的运算可得→ →1 π π 1sin x), OQ = m?OP + n =(2x ,sin x)+ ( , 0)= (2x + ,233 2π, 11∴c =2x + 3π1消去 x 得 d =sin( c - ),22 6d = 2sin x ,1 1π1 1] .∴ y = f( x)= sin(x -),易知 y = f(x)的值域是 [- ,2262 2π9.设向量 a = ( 3sin x , sin x), b =(cos x ,sin x), x ∈ [0, 2].(1) 若 |a|= |b|,求 x 的值;(2) 设函数 f(x)= a ·b ,求 f(x)的最大值.解(1)由 |a|2= ( 3sin x)2+ (sin x)2= 4sin 2x ,222= 1,|b| =(cos x) + (sin x) 及 |a|= |b|,得 4sin 2x = 1.π1π又 x ∈ [0, ],进而 sin x = ,因此 x = .22 62(2) f(x)= a ·b = 3sin x ·cos x + sin x=3 1 1π 1,2sin 2x - cos 2x += sin(2x - )+ 2262π π π1,当 x = ∈ [0, ] 时, sin(2 x -)取最大值326因此 f( x)的最大值为32.10.已知向量 a = (cos α, sin α),b = (cos x , sin x), c = (sin x + 2sin α, cos x + 2cos α),此中 0<α<x<π.π(1) 若 α=4,求函数 f(x)= b ·c 的最小值及相应 x 的值;π (2) 若 a 与 b 的夹角为,且 a ⊥ c ,求 tan 2α的值.3解 (1)∵ b = (cos x , sin x),πc = (sin x + 2sin α, cos x + 2cos α), α= 4,∴ f(x)= b ·c= cos xsin x + 2cos xsin α+sin xcos x +2sin xcos α= 2sin xcos x + 2(sin x + cos x).π令 t = sin x +cos x 4<x<π ,则 2sin xcos x = t 2 -1,且- 1<t< 2.则 y = t 2+ 2t - 1= t +2 2-3,- 1<t< 2,2 2∴ t =- 2时, y min =-3,此时 sin x + cos x =- 2, 2 2 2 即 2sin x + π=- 2,42π π π 5π,∵ <x<π,∴ <x + <424 4 π 7 11π∴ x + = π,∴ x =12 .46∴函数 f(x)的最小值为- 3,相应 x 的值为 11π2 12.π(2) ∵ a 与 b 的夹角为 ,3π a ·b∴ cos= = cos αcos x + sin αsin x3 |a| ·|b|= cos(x - α).π∵ 0< α<x<π,∴ 0<x - α<π,∴ x - α=3.∵ a ⊥ c ,∴ cos α(sin x + 2sin α)+ sin α(cos x + 2cos α)= 0,π∴ sin(x + α)+ 2sin 2α= 0,即 sin 2α+3 + 2sin 2α= 0.5 sin 2α+ 3 3. ∴ 2cos 2α=0,∴ tan 2α=-52B 组 能力提升11.已知非零单位向量a 与非零向量b 知足 |a +b|= |a - b|,则向量 b - a 在向量 a 上的投影为 ________.答案 -1分析 因为 |a + b|= |a - b|,因此 (a + b)2= (a - b)2,2解得 a ·b = 0,因此向量 b - a 在向量 a 上的投影为 |b - a|cos 〈 a , b - a 〉=a ·(b -a)=0-|a||a||a|=- |a|=- 1.→ → →AB AC12.已知点 P 为 △ ABC 所在平面内一点, 且知足 AP = λ( → + →)(λ∈ R),则直线 |AB|cos B |AC|cos CAP 必经过 △ ABC 的 ________心. 答案垂→ → →AB AC分析 ∵BC ·( → + → )|AB|cos B |AC|cos C→ →=- |BC|+ |BC|= 0,→ → →AB AC∴ BC 与 λ( → + →)垂直,|AB|cos B |AC|cos C→ →AP 经过 △ABC 的垂心.∴ AP ⊥ BC ,∴点 P 在 BC 的高线上,即直线13.若 a = (2+ λ,1),b = (3,λ),若〈 a ,b 〉为钝角, 则实数 λ的取值范围是 ______________.答案3 (- ∞,- 3)∪( -3,- )2分析3 ∵ a = (2+ λ,1),b = (3,λ),∴ a ·b = 3(2+ λ)+ λ<0,得 λ<- .若 a ,b 共线,则 λ(2+ λ)2- 3= 0,解得λ=- 3 或λ=1.即当λ=- 3 时, a, b 方向相反,3又〈 a, b〉为钝角,则λ<-且λ≠- 3.14.在直角坐标系xOy 中,已知点A(1,1), B(2,3), C(3,2) ,点 P(x, y)在△ABC 三边围成的地区 (含界限 )上.→→→→(1) 若 PA+PB + PC= 0,求 |OP|;→→→(2) 设 OP=mAB+ nAC(m, n∈ R),用 x, y 表示 m-n,并求 m-n 的最大值.解 (1)方法一→ →→∵ PA+ PB+ PC= 0,→→→又 PA+ PB+ PC= (1- x,1- y)+ (2-x,3- y)+ (3- x,2- y)=(6 -3x,6- 3y),6- 3x= 0,x=2,∴解得6- 3y= 0,y=2,→→即 OP= (2,2),故 |OP|= 2 2.方法二→→→∵PA+ PB+ PC= 0,→→→→→→则 (OA- OP)+(OB -OP) +(OC-OP) =0,→1→→→→2.∴ OP=3(OA+ OB+ OC)=(2,2),∴ |OP|= 2→→→(2) ∵ OP=mAB+ nAC,x= m+2n,∴ (x, y)= (m+ 2n, 2m+ n),∴y= 2m+ n,两式相减得, m- n= y- x.令 y-x= t,由图知,当直线y= x+t 过点B(2,3) 时, t 获得最大值 1,故 m- n 的最大值为1.。
2015届高考数学(文科,通用)二轮复习突破练 高考中档大题规范练(三) Word版含答案
![2015届高考数学(文科,通用)二轮复习突破练 高考中档大题规范练(三) Word版含答案](https://img.taocdn.com/s3/m/99ef496725c52cc58bd6bea4.png)
高考中档大题规范练(三)——立体几何(推荐时间:70分钟)1.(2014·江苏)如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知P A ⊥AC ,P A =6,BC =8,DF =5.求证:(1)直线P A ∥平面DEF ;(2)平面BDE ⊥平面ABC .证明 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A .又因为P A ⊄平面DEF ,DE ⊂平面DEF ,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC ,又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .2.(2014·江西)如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1.(1)求证:A 1C ⊥CC 1;(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABC -A 1B 1C 1体积最大,并求此最大值.(1)证明 由AA 1⊥BC ,知BB 1⊥BC .又BB 1⊥A 1B ,BC ⊂平面BCA 1,A 1B ⊂平面BCA 1,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1.(2)解 方法一 设AA 1=x ,在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2.同理A 1C =A 1C 21-CC 21=3-x 2,在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C=-x 2(4-x 2)(3-x 2), sin ∠BA 1C = 12-7x 2(4-x 2)(3-x 2), 所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22. 从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22. 因为x 12-7x 2=12x 2-7x 4= -7(x 2-67)2+367,故当x =67=427, 即AA 1=427时,体积V 取到最大值377.方法二 如图所示,过A 1作BC 的垂线,垂足为D ,连接AD .由AA 1⊥BC ,A 1D ⊥BC ,故BC ⊥平面AA 1D ,BC ⊥AD .又AB =2,AC =3,BC =7,所以AB 2+AC 2=BC 2,故∠BAC =90°,所以S △ABC =12AD ·BC =12AB ·AC , 所以AD =2217. 设AA 1=x ,在Rt △AA 1D 中,A 1D =AD 2-AA 21=127-x 2,S △A 1BC =12A 1D ·BC =12-7x 22. 从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22. 因为x 12-7x 2=12x 2-7x 4= -7(x 2-67)2+367,故当x =67=427, 即AA 1=427时,体积V 取到最大值377.3.如图所示,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形.(1)求证:MD ∥平面APC ;(2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.(1)证明 由已知,得MD 是△ABP 的中位线,所以MD ∥AP .又MD ⊄平面APC ,AP ⊂平面APC ,故MD ∥平面APC .(2)证明 因为△PMB 为正三角形,D 为PB 的中点,所以MD ⊥PB .所以AP ⊥PB .又AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以AP ⊥BC .又BC ⊥AC ,AC ∩AP =A ,所以BC ⊥平面APC .因为BC ⊂平面ABC ,所以平面ABC ⊥平面APC .(3)解 由题意,可知MD ⊥平面PBC ,所以MD 是三棱锥D -BCM 的一条高,在Rt △ABC 中,AB =20,BC =4,则CM =12AB =10, 又在正三角形PMB 中,DM =53,所以DC =MC 2-DM 2=102-(53)2=5,所以cos ∠DBC =25+16-252×5×4=25,则S △BCD =12·BD ·BC ·sin ∠DBC =12×5×4×215=221, 所以V D -BCM =V M -DBC =13×S △BCD ×MD =13×221×53=107. 4.在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,P A =PC =2a ,若在这个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P -ABCD =13r (S △P AB +S △PBC +S △PCD +S △P AD +S 正方形ABCD )=13r (2+2)a 2. 由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等,得13r (2+2)a 2=13a 3, 解得r =12(2-2)a .5.(2014·课标全国Ⅰ)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C .(1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC -A 1B 1C 1的高.(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO .由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,AO ∩OD =O ,故BC ⊥平面AOD ,所以OH ⊥BC .又OH ⊥AD ,BC ∩AD =D ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =34.由于AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114.又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217,故三棱柱ABC -A 1B 1C 1的高为217.6.如图,四边形ABCD 为正方形,EA ⊥平面ABCD ,EF ∥AB ,AB =4,AE =2,EF =1.(1)求证:BC ⊥AF ;(2)若点M 在线段AC 上,且满足CM =14CA ,求证:EM ∥平面FBC ; (3)试判断直线AF 与平面EBC 是否垂直?若垂直,请给出证明;若不垂直,请说明理由.(1)证明 因为EF ∥AB ,所以EF 与AB 确定平面EABF .因为EA ⊥平面ABCD ,所以EA ⊥BC .由已知,得AB ⊥BC 且EA ∩AB =A ,所以BC ⊥平面EABF .又AF ⊂平面EABF ,所以BC ⊥AF .(2)证明 如图所示,过M 作MN ⊥BC ,垂足为N ,连接FN ,则MN ∥AB .又CM =14AC , 所以MN =14AB . 又EF ∥AB 且EF =14AB , 所以EF ∥MN ,且EF =MN .所以四边形EFNM 为平行四边形,所以EM ∥FN .又FN ⊂平面FBC ,EM ⊄平面FBC ,所以EM ∥平面FBC .(3)解 AF ⊥平面EBC .证明如下:由(1),可知AF ⊥BC .在四边形ABFE 中,AB =4,AE =2,EF =1,∠BAE =∠AEF =90°,所以tan ∠EBA =AE AB =12,tan ∠F AE =EF AE =12, 即tan ∠EBA =tan ∠F AE ,则∠EBA =∠F AE .设AF ∩BE =P ,因为∠P AE +∠P AB =90°,故∠PBA +∠P AB =90°.则∠APB =90°,即EB ⊥AF .又EB ⊂平面EBC ,BC ⊂平面EBC ,且EB ∩BC =B ,所以AF ⊥平面EBC .。
2021新高考数学二轮复习专题练:小题满分限时练
![2021新高考数学二轮复习专题练:小题满分限时练](https://img.taocdn.com/s3/m/c738f90749649b6649d74791.png)
限时练(一)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x 2-2x <0},N ={-2,-1,0,1,2},则M ∩N =( ) A.∅ B.{1}C.{0,1}D.{-1,0,1}解析 ∵M ={x |0<x <2},N ={-2,-1,0,1,2},∴M ∩N ={1}. 答案 B2.设(2+i)(3-x i)=3+(y +5)i(i 为虚数单位),其中x ,y 是实数,则|x +y i|等于( ) A.5B.13C.2 2D.2解析 易得6+x +(3-2x )i =3+(y +5)i(x ,y ∈R ). ∴⎩⎨⎧6+x =3,3-2x =y +5,∴⎩⎨⎧x =-3,y =4,故|x +y i|=|-3+4i|=5. 答案 A3.已知等差数列{a n }的前n 项和为S n ,且a 2+a 8=0,S 11=33,则公差d 的值为( ) A.1B.2C.3D.4解析 ∵a 2+a 8=2a 5=0,∴a 5=0, 又S 11=(a 1+a 11)×112=11a 6=33,∴a 6=3,从而公差d =a 6-a 5=3. 答案 C4.设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a ,a ∥α,a ∥βB.存在一条直线a ,a ⊂α,a ∥βC.存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD.存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析 对于A ,a ∥α,a ∥β,则平面α,β可能平行,也可能相交,所以A 不是α∥β的一个充分条件.对于B ,a ⊂α,a ∥β,则平面α,β可能平行,也可能相交,所以B 不是α∥β的一个充分条件.对于C ,由a ∥b ,a ⊂α,b ⊂β,a ∥β,b ∥α可得α∥β或α,β相交,所以C 不是α∥β的一个充分条件.对于D ,存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α,如图,在β内过b 上一点作c ∥a ,则c ∥α,所以β内有两条相交直线平行于α,则有α∥β,所以D 是α∥β的一个充分条件.答案 D5.设双曲线的一条渐近线为方程y =2x ,且一个焦点与抛物线y 2=4x 的焦点相同,则此双曲线的方程为( ) A.54x 2-5y 2=1 B.5y 2-54x 2=1 C.5x 2-54y 2=1D.54y 2-5x 2=1解析 抛物线y 2=4x 的焦点为点(1,0),则双曲线的一个焦点为(1,0),设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧b a =2,a 2+b 2=1,解得⎩⎪⎨⎪⎧a =55,b =255,所以双曲线方程为5x 2-54y 2=1. 答案 C6.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为“4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目,则P (A |B )的值为( ) A.14B.34C.29D.59解析 ∵P (B )=3344,P (AB )=A 3344, 由条件概率P (A |B )=P (AB )P (B )=A 3333=29.答案 C7.在如图所示的△ABC 中,点D ,E 分别在边AB ,CD 上,AB =3,AC =2,∠BAC =60°,BD =2AD ,CE =2ED ,则向量BE →·AB→=( )A.9B.4C.-3D.-6解析 根据题意,AB =3,BD =2AD ,则AD =1, 在△ADC 中,又由AC =2,∠BAC =60°, 则DC 2=AD 2+AC 2-2AD ·AC cos ∠BAC =3, 即DC =3,所以AC 2=AD 2+DC 2, 则CD ⊥AB ,故BE →·AB →=(BD →+DE →)·AB →=BD →·AB →+DE →·AB →=BD →·AB →=3×2×cos 180°=-6. 答案 D8.设定义在R 上的偶函数f (x )满足:f (x )=f (4-x ),且当x ∈[0,2]时,f (x )=x -e x +1,若a =f (2 022),b =f (2 019),c =f (2 020),则a ,b ,c 的大小关系为( ) A.c <b <a B.a <b <c C.c <a <bD.b <a <c解析 因为f (x )是偶函数,所以f (-x )=f (x )=f (4-x ),则f (x )的周期为4,则a =f (2 022)=f (2),b =f (2 019)=f (3)=f (4-3)=f (1),c =f (2 020)=f (0). 又当x ∈[0,2]时,f (x )=x -e x +1,知f ′(x )=1-e x <0. ∴f (x )在区间[0,2]上单调递减, 因此f (2)<f (1)<f (0),即a <b <c . 答案 B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·聊城模拟)已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( )A.C 的方程为x 23-y 2=1 B.C 的离心率为 3C.曲线y =e x -2-1经过C 的一个焦点D.直线x -2y -1=0与C 有两个公共点解析 ∵双曲线的渐近线为y =±33x ,∴设双曲线C 的方程为x 23-y 2=λ(λ≠0).又双曲线C 过点(3,2),∴323-(2)2=λ,解得λ=1,故A 正确.此时C 的离心率为3+13=233,故B 错误.双曲线C 的焦点为(-2,0),(2,0),曲线y =e x -2-1经过点(2,0),故C 正确.把直线方程代入双曲线C 的方程并整理,得x 2-6x +9=0,所以Δ=0,故直线x -2y -1=0与双曲线C 只有一个公共点,所以D 错误.故选AC. 答案 AC10.(2020·青岛质检)已知函数f (x )=sin 2x +23sin x cos x -cos 2x ,x ∈R ,则( ) A.-2≤f (x )≤2B.f (x )在区间(0,π)上只有1个零点C.f (x )的最小正周期为πD.直线x =π3为函数f (x )图象的一条对称轴解析 已知函数f (x )=sin 2x +23sin x cos x -cos 2x =3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,x ∈R ,则-2≤f (x )≤2,A 正确;令2x -π6=k π,k ∈Z ,则x =k π2+π12,k ∈Z ,则f (x )在区间(0,π)上有2个零点,B 错误;f (x )的最小正周期为π,C 正确;当x =π3时,f ⎝ ⎛⎭⎪⎫π3=2sin(2×π3-π6)=2,所以直线x =π3为函数f (x )图象的一条对称轴,D正确.故选ACD.答案ACD11.在某次高中学科竞赛中,4 000名考生的竞赛成绩(单位:分)统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()A.成绩在[70,80)的考生人数最多B.不及格的考生人数为1 000C.考生竞赛成绩的平均数约为70.5D.考生竞赛成绩的中位数约为75解析由频率分布直方图可知,成绩在[70,80)的考生人数最多,所以A正确.不及格的人数为4 000×(0.01+0.015)×10=1 000,所以B正确.考生竞赛成绩的平均数约为(45×0.01+55×0.015+65×0.02+75×0.03+85×0.015+95×0.01)×10=70.5,所以C正确.设考生竞赛成绩的中位数约为x0,因为(0.01+0.015+0.02)×10=0.45<0.5,(0.01+0.015+0.02+0.03)×10=0.75>0.5,所以0.45+(x0-70)×0.03=0.5,解得x0≈71.7,D错误.故选ABC.答案ABC12.下列结论正确的是()A.若a>b>0,c<d<0,则一定有b c> a dB.若x>y>0,且xy=1,则x+1y>y2x>log2(x+y)C.设{a n}是等差数列,若a2>a1>0,则a2>a1a3D.若x∈[0,+∞),则ln(1+x)≥x-1 8x2解析对于A,由c<d<0,可得-c>-d>0,则-1d>-1c>0,又a>b>0,所以-ad>-bc,则bc>ad,故A正确.对于B,取x=2,y=12,则x+1y=4,y2x=18,log2(x+y)=log 252>1,故B 不正确.对于C ,由题意得a 1+a 3=2a 2且a 1≠a 3,所以a 2=12(a 1+a 3)>12×2a 1a 3=a 1a 3,故C 正确.对于D ,设h (x )=ln(1+x )-x +18x 2,则h ′(x )=11+x -1+x 4=x (x -3)4(x +1),当0<x <3时,h ′(x )<0,则h (x )单调递减,h (x )<h (0)=0,故D不正确.故选AC. 答案 AC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.已知圆C :(x -2)2+y 2=r 2(r >0)与双曲线E :x 2-y 2=1的渐近线相切,则r =________.解析 ∵双曲线x 2-y 2=1的渐近线为x ±y =0.依题意,得r =21+1=1. 答案 114.已知等差数列{a n },其前n 项和为S n .若a 2+a 5=24,S 3=S 9,则a 6=________,S n 的最大值为________.(本小题第一空2分,第二空3分)解析 由S 3=S 9,得a 4+a 5+…+a 9=0,则a 6+a 7=0.又a 2+a 5=24,所以设等差数列{a n }的公差为d ,可得⎩⎨⎧a 1+5d +a 1+6d =0,a 1+d +a 1+4d =24,解得⎩⎨⎧a 1=22,d =-4,所以a 6=a 1+5d =2,S n =-2n 2+24n =-2(n -6)2+72,故当n =6时,S n 取得最大值72. 答案 2 7215.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =________. 解析 由已知得C 25·22+a ·C 35·23=20,解得a =-14. 答案 -1416.(2020·河南百校大联考)魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”(如图所示),刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4.若“牟合方盖”的体积为163,则正方体的外接球的表面积为________.解析因为“牟合方盖”的体积为163,又正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4,所以正方体的内切球的体积V球=π4×163=43π.则内切球的半径r=1,正方体的棱长为2.所以正方体的体对角线d=23,因此正方体外接球的直径2R=d=23,则半径R= 3.所以正方体的外接球的表面积为S=4πR2=4π(3)2=12π.答案12π限时练(二)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,复数z=1-3i1+i在复平面内对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限解析z=1-3i1+i=(1-3i)(1-i)(1+i)(1-i)=-1-2i,∴复数z在复平面内对应的点(-1,-2)在第三象限.答案 B2.若集合A={x|x(x-2)>0},B={x|x-1≤0},则A∩(∁R B)=()A.{x|x>1或x<0}B.{x|1<x<2}C.{x|x>2}D.{x|x>1}解析易知A={x|x>2或x<0},∁R B={x|x>1},∴A∩(∁R B)={x|x>2}.答案 C3.某公司一种型号的产品近期销售情况如下表:根据上表可得到回归直线方程y ^=0.75x +a ^,据此估计,该公司7月份这种型号产品的销售额为( ) A.19.5万元 B.19.25万元 C.19.15万元D.19.05万元解析 易知x -=4,y -=16.8.∵回归直线y ^=0.75x +a ^过点(4,16.8),∴a ^=16.8-4×0.75=13.8,则y ^=0.75x +13.8.故7月份的销售额y ^=0.75×7+13.8=19.05(万元). 答案 D4.⎝ ⎛⎭⎪⎫2x 2-x 43的展开式中的常数项为( ) A.-3 2B.3 2C.6D.-6解析 通项T r +1=C r 3⎝ ⎛⎭⎪⎫2x 23-r(-x 4)r=C r 3(2)3-r(-1)r x -6+6r , 当-6+6r =0,即r =1时为常数项,T 2=-6. 答案 D5.已知等比数列{a n }中,a 1=2,数列{b n }满足b n =log 2a n ,且b 2+b 3+b 4=9,则a 5=( ) A.8B.16C.32D.64解析 由{a n }是等比数列,且b n =log 2a n , ∴{b n }是等差数列,又b 2+b 3+b 4=9,所以b 3=3.由b 1=log 2a 1=1,知公差d =1,从而b n =n , 因此a n =2n ,于是a 5=25=32. 答案 C6.(2020·青岛质检)某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”“升级题型”“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率是( ) A.112125B.80125C.113125D.124125解析 某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”“升级题型”“创新题型”三类题型,每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为45,且各次答对与否相应独立,则该参赛者答完三道题后至少答对两道题的概率:P =⎝ ⎛⎭⎪⎫453+C 23⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫15=112125. 答案 A7.函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π,且x ≠0)的图象可能为( )解析 由f (-x )=-f (x )及-π≤x ≤π,且x ≠0判定函数f (x )为奇函数,其图象关于原点对称,排除A ,B 选项;当x >0且x →0时,-1x →-∞,cos x →1,此时f (x )→-∞,排除C 选项,故选D. 答案 D8.在△ABC 中,AB =3,AC =2,∠BAC =120°,点D 为BC 边上的一点,且BD →=2DC →,则AB →·AD →=( ) A.13B.23C.1D.2解析 以A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,如图所示.则A (0,0),B (3,0),C (-1,3),∵BD→=2DC →,∴BD →=23BC →=23(-4,3)=⎝ ⎛⎭⎪⎫-83,233,则D ⎝ ⎛⎭⎪⎫13,233,∴AD→=⎝ ⎛⎭⎪⎫13,233,AB →=(3,0), 所以AB →·AD→=3×13+0×233=1. 答案 C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·淄博模拟)甲、乙、丙三家企业的产品成本(万元)分别为10 000,12 000,15 000,其成本构成比例如图,则下列关于这三家企业的说法正确的是( )A.成本最大的企业是丙B.其他费用支出最高的企业是丙C.支付工资最少的企业是乙D.材料成本最高的企业是丙解析 由扇形统计图可知,甲企业的材料成本为10 000×60%=6 000(万元),支付工资10 000×35%=3 500(万元),其他费用支出为10 000×5%=500(万元); 乙企业的材料成本为12 000×53%=6 360(万元),支付工资为12 000×30%= 3 600(万元),其他费用支出为12 000×17%=2 040(万元);丙企业的材料成本为15 000×60%=9 000(万元),支付工资为15 000×25%= 3 750(万元),其他费用支出为15 000×15%=2 250(万元).所以成本最大的企业是丙,其他费用支出最高的企业是丙,支付工资最少的企业是甲,材料成本最高的企业是丙.故选ABD.答案 ABD10.(2020·海南模拟)将函数f (x )=sin(2x +φ)(0<φ<π)的图象向右平移π4个单位长度后得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象,则下列说法正确的是( )A.φ=π6B.函数f (x )的最小正周期为πC.函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0成中心对称D.函数f (x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12解析 由题意可知函数f (x )的最小正周期T =2π2=π,B 正确;将函数f (x )=sin(2x +φ)(0<φ<π)的图象向右平移π4个单位长度后得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象,所以sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+φ=sin ⎝ ⎛⎭⎪⎫2x -π2+φ=sin ⎝ ⎛⎭⎪⎫2x +π6,所以-π2+φ=π6,所以φ=2π3∈(0,π),A 错误;f (x )=sin ⎝ ⎛⎭⎪⎫2x +2π3,令2x +2π3=k π,k ∈Z ,则x =k π2-π3,k ∈Z ,C 错误;令2k π+π2≤2x +2π3≤2k π+3π2,k ∈Z ,解得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12,D 正确.故选BD.答案 BD11.已知实数a >b >0,则下列不等关系正确的是( ) A.b a <b +4a +4B.lga +b 2>lg a +lg b2C.a +1b <b +1aD.a -b >a -b解析 对于A ,因为b a -b +4a +4=b (a +4)-a (b +4)a (a +4)=4(b -a )a (a +4),又a >b >0,所以b a <b +4a +4,故A 正确;因为lg a +lgb 2=lg ab ,又a +b 2≥ab ,当且仅当a =b 时等号成立,由a >b >0,得a +b 2>ab ,所以lg a +b 2>lg ab ,即lg a +b 2>lg a +lg b2,故B 正确;因为a +1b -⎝ ⎛⎭⎪⎫b +1a =(a -b )+⎝ ⎛⎭⎪⎫1b -1a =(a -b )+a -b ab =(a -b )·⎝ ⎛⎭⎪⎫1+1ab ,又a >b >0,所以a +1b -⎝ ⎛⎭⎪⎫b +1a >0,即a +1b >b +1a ,故C 错误;因为a >b >0,所以a-b >0,则(a -b )2=a +b -2ab ,而(a -b )2=a -b ,即(a -b )2-(a -b )2=2b -2ab =2(b -ab ),又a >b >0,所以b -ab <0,所以(a -b )2<(a -b )2,即a -b <a -b ,故D 错误.故选AB. 答案 AB12.(2020·临沂模拟)已知点P 在双曲线C :x 216-y 29=1上,点F 1,F 2是双曲线C 的左、右焦点.若△PF 1F 2的面积为20,则下列说法正确的是( ) A.点P 到x 轴的距离为203 B.|PF 1|+|PF 2|=503 C.△PF 1F 2为钝角三角形 D.∠F 1PF 2=π3解析 由双曲线C :x 216-y 29=1可得,a =4,b =3,c =5,不妨设P (x P ,y P ),由△PF 1F 2的面积为20,可得12|F 1F 2||y P |=c |y P |=5|y p |=20,所以|y P |=4,选项A 错误.将|y P |=4代入双曲线C 的方程x 216-y 29=1中,得x 2P16-429=1,解得|x P |=203.由双曲线的对称性,不妨设点P 在第一象限,则P ⎝ ⎛⎭⎪⎫203,4,可知|PF 2|=⎝ ⎛⎭⎪⎫203-52+(4-0)2=133.由双曲线的定义可知|PF 1|=|PF 2|+2a =133+8=373,所以|PF 1|+|PF 2|=373+133=503,选项B 正确.在△PF 1F 2中,|PF 1|=373>2c =10>|PF 2|=133,且cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=-513<0,则∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,选项C 正确.由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=319481≠12,所以∠F 1PF 2≠π3,选项D 错误.故选BC. 答案 BC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.某年级有1 000名学生,一次数学考试成绩服从正态分布X ~N (105,102),P (95≤X ≤105)=0.34,则该年级学生此次数学成绩在115分以上的人数大约为________.解析 ∵数学考试成绩服从正态分布X ~N (105,102),∴考试成绩关于X =105对称.∵P (95≤X ≤105)=0.34,∴P (X >115)=12×(1-0.68)=0.16,∴该年级学生此次数学成绩在115分以上的人数大约为0.16×1 000=160. 答案 160 14.曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x (x +2)2=2(x +2)2,∴y ′|x =-1=2,∴曲线在点(-1,-1)处的切线斜率为2,∴所求切线方程为y +1=2(x +1),即2x -y +1=0.答案 2x -y +1=015.已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为________,此时S n =________.(本小题第一空3分,第二空2分)解析 所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;……;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27. 答案 27 54616.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 在线段BC 1上运动,有下列判断:①平面PB 1D ⊥平面ACD 1; ②A 1P ∥平面ACD 1;③异面直线A 1P 与AD 1所成角的取值范围是⎝ ⎛⎦⎥⎤0,π3;④三棱锥D 1-APC 的体积不变.其中,正确的是________(把所有正确判断的序号都填上). 解析 在正方体中,B 1D ⊥平面ACD 1,B 1D ⊂平面PB 1D ,所以平面PB 1D ⊥平面ACD 1,所以①正确.连接A 1B ,A 1C 1,如图,容易证明平面A 1BC 1∥平面ACD 1,又A 1P ⊂平面A 1BC 1,所以A 1P ∥平面ACD 1,所以②正确.因为BC 1∥AD 1,所以异面直线A 1P 与AD 1所成的角就是直线A 1P 与BC 1所成的角,在△A 1BC 1中,易知所求角的范围是⎣⎢⎡⎦⎥⎤π3,π2,所以③错误.VD 1-APC =VC -AD 1P ,因为点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥D 1-APC 的体积不变,所以④正确. 答案 ①②④限时练(三)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河南联检)已知集合A ={x ∈N |x 2<8x },B ={2,3,6},C ={2,3,7},则B ∪(∁A C )=( ) A.{2,3,4,5} B.{2,3,4,5,6} C.{1,2,3,4,5,6}D.{1,3,4,5,6,7}解析 因为A ={x ∈N |0<x <8}={1,2,3,4,5,6,7},所以∁A C ={1,4,5,6},所以B∪(∁A C)={1,2,3,4,5,6}.故选C.答案 C2.若z=(3-i)(a+2i)(a∈R)为纯虚数,则z=()A.163i B.6i C.203i D.20解析因为z=3a+2+(6-a)i为纯虚数,所以3a+2=0,解得a=-23,所以z=203i.故选C.答案 C3.(2020·潍坊模拟)甲、乙、丙、丁四位同学各自对变量x,y的线性相关性进行试验,并分别用回归分析法求得相关系数r,如下表:哪位同学的试验结果能体现出两变量有更强的线性相关性?()A.甲B.乙C.丙D.丁解析由于丁同学求得的相关系数r的绝对值最接近于1,因此丁同学的试验结果能体现出两变量有更强的线性相关性.故选D.答案 D4.设a=ln 12,b=-5-12,c=log132,则()A.c<b<aB.a<c<bC.c<a<bD.b<a<c解析由题意易知-a=ln 2,-b=5-12,-c=log32.因为12=log33<log32<ln 2<1,0<5-12<4-12=12,所以-b<-c<-a,所以a<c<b.故选B.答案 B5.(2020·青岛质检)已知某市居民在2019年用手机支付的个人消费额ξ(元)服从正态分布N(2 000,1002),则该市某居民在2019年用手机支付的消费额在(1 900,2 200]内的概率为()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 7,P(μ-2σ<ξ≤μ+2σ)≈0.954 5,P(μ-3σ<ξ≤μ+3σ)≈0.997 3.A.0.975 9B.0.84C.0.818 6D.0.477 2解析 ∵ξ服从正态分布N (2 000,1002),∴μ=2 000,σ=100,则P (1 900<ξ≤ 2 200)=P (μ-σ<ξ≤μ+σ)+12[P (μ-2σ<ξ≤μ+2σ)-P (μ-σ<ξ≤μ+σ)]≈0.682 7+12(0.954 5-0.682 7)=0.818 6.故选C. 答案 C6.设抛物线C :y 2=2px (p >0)的焦点为F ,斜率为k 的直线过F 交C 于点A ,B ,且AF →=2FB →,则直线AB 的斜率为( ) A.2 2 B.2 3 C.±2 2D.±2 3解析 由题意知k ≠0,F ⎝ ⎛⎭⎪⎫p 2,0,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程消去x ,得y 2-2p k y -p 2=0.不妨设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2).因为AF →=2FB →,所以y 1=-2y 2.又y 1y 2=-p 2.所以y 2=-22p ,x 2=p 4,所以k AB=-22p -0p 4-p 2=2 2.根据对称性,直线AB 的斜率为±2 2. 答案 C7.已知点A (1,0),B (1,3),点C 在第二象限,且∠AOC =150°,OC →=-4OA →+λOB →,则λ=( ) A.12B.1C.2D.3解析 设|OC→|=r ,则OC →=⎝ ⎛⎭⎪⎫-32r ,12r ,由已知,得OA →=(1,0),OB →=(1,3),又OC→=-4OA →+λOB →,∴⎝ ⎛⎭⎪⎫-32r ,12r =-4(1,0)+λ(1,3)=(-4+λ,3λ),∴⎩⎪⎨⎪⎧-32r =-4+λ,12r =3λ,解得λ=1.答案 B8.在△ABC中,AB=AC,D,E分别在AB,AC上,DE∥BC,AD=3BD,将△ADE 沿DE折起,连接AB,AC,当四棱锥A-BCED体积最大时,二面角A-BC-D 的大小为()A.π6 B.π4 C.π3 D.π2解析因为AB=AC,所以△ABC为等腰三角形,过A作BC的垂线AH,垂足为H,交DE于O,∴当△ADE⊥平面BCED时,四棱锥A-BCED体积最大.由DE⊥AO,DE⊥OH,AO∩OH=O,可得DE⊥平面AOH,又BC∥DE,则BC⊥平面AOH,∴∠AHO为二面角A-BC-D的平面角,在Rt△AOH中,由AOOH=ADDB=3,∴tan∠AHO=AOOH=3,则二面角A-BC-D的大小为π3.答案 C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·济宁模拟)“悦跑圈”是一款社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月每月跑步的里程(十公里)的数据绘制了下面的折线图,根据该折线图,下列结论正确的是()A.月跑步里程数逐月增加B.月跑步里程数的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程数D.1月至5月的月跑步里程数相于6月至11月波动性更小,变化比较平稳 解析 根据折线图可知,2月跑步里程数比1月小,7月跑步里程数比6月小,10月跑步里程数比9月小,A 错误.根据折线图可知,9月的跑步里程数最大,B 正确.一共11个月份,将月跑步里程数从小到大排列,根据折线图可知,跑步里程的中位数为8月份对应的里程数,C 正确.根据折线图可知D 正确.故选BCD. 答案 BCD10.下列各式中,值为12的是( ) A.sin 15°cos 15°B.cos 2π6-sin 2π6C.1+cos π62D.tan 22.5°1-tan 222.5°解析 sin 15°cos 15°=sin 30°2=14,排除A ;cos 2π6-sin 2π6=cos π3=12,B 正确;1+cos π62=1+322=2+32,排除C ;tan 45°=2tan 22.5°1-tan 222.5°,得tan 22.5°1-tan 222.5°=12,D 正确.故选BD.答案 BD11.已知{a n }是等比数列,若a 6=8a 3=8a 22,则( )A.a n =2n -1B.a n =2nC.S n =2n -1D.S n =2n +1-2解析 设数列{a n }的公比为q ,由a 6=8a 3,得a 3·q 3=8a 3,则q 3=8,所以q =2.又8a 3=8a 22,则a 2·q =a 22,又a 2≠0,所以a 2=2,即a n =a 2q n -2=2n -1,所以a 1=1,S n =a 1(1-q n )1-q =2n -1,故选AC.答案 AC12.数列{F n }:1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n项和为S n,则下列结论正确的是()A.F n=F n-1+F n-2(n≥3)B.S4=F6-1C.S2 019=F2 020-1D.S2 019=F2 021-1解析根据题意有F n=F n-1+F n-2(n≥3),所以S3=F1+F2+F3=1+F1+F2+F3-1=F3+F2+F3-1=F4+F3-1=F5-1,S4=F4+S3=F4+F5-1=F6-1,S5=F5+S4=F5+F6-1=F7-1,…,所以S2 019=F2 021-1.答案ABD三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.设a=210+1211+1,b=212+1213+1,则a,b的大小关系为________.解析法一由题意知,a-b=210+1211+1-212+1213+1=(210+1)(213+1)-(212+1)(211+1)(211+1)(213+1)=3×210(211+1)(213+1)>0,故a>b.法二可考虑用函数的单调性解题.令f(x)=2x+12x+1+1=12⎝⎛⎭⎪⎫1+12x+1+1,则f(x)在定义域内单调递减,所以a=f(10)>b=f(12).答案a>b14.(2020·深圳统测)很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123).已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为________.解析由0,1,2,…,9中的四个数字随机组成的“递增型验证码”共有C410个,而首位数字是1的“递增型验证码”有C38个.因此某人收到的“递增型验证码”的首位数字是1的概率p=C38C410=415.答案4 1515.设双曲线C:x2a2-y2b2=1(a>0,b>0)的左焦点为F,直线4x-3y+20=0过点F且与双曲线C在第二象限的交点为P,O为原点,|OP|=|OF|,则双曲线C的右焦点的坐标为________,离心率为________.(本小题第一空2分,第二空3分)解析如图,∵直线4x-3y+20=0过点F,∴F(-5,0),半焦距c=5,则右焦点为F2(5,0).连接PF2.设点A为PF的中点,连接OA,则OA∥PF2.∵|OP|=|OF|,∴OA⊥PF,∴PF2⊥PF.由点到直线的距离公式可得|OA|=205=4,∴|PF2|=2|OA|=8.由勾股定理,得|FP|=|FF2|2-|PF2|2=6.由双曲线的定义,得|PF2|-|PF|=2a=2,∴a=1,∴离心率e=ca=5.答案(5,0) 516.(2020·厦门质检)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在侧面D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q所形成的轨迹的长度为________.解析因为QB∥平面D1NT,所以点Q在过点B且与平面D1NT平行的平面内,如图,取DC的中点E1,取A1G=1,则平面BGE1∥平面D1NT.延长BE1,交AD 的延长线于点E,连接EG,交DD1于点I.显然,平面BGE∩平面D1DAA1=GI,所以点Q的轨迹是线段GI.∵DE1綊12AB,∴DE1为△EAB的中位线,∴D为AE的中点.又DI∥AG,∴DI=12AG=1,∴GI=(2-1)2+32=10.答案10限时练(四)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=log2(x-2)},B={x|x2≥9},则A∩(∁R B)=()A.[2,3)B.(2,3)C.(3,+∞)D.(2,+∞)解析A={x|y=log2(x-2)}=(2,+∞),∵B={x|x2≥9}=(-∞,-3]∪[3,+∞),∴∁R B=(-3,3),则A∩(∁R B)=(2,3).答案 B2.设x,y∈R,i为虚数单位,且3+4iz=1+2i,则z=x+y i的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限解析z=3+4i1+2i=(3+4i)(1-2i)5=115-25i,则z-=115+25i,z-对应点⎝⎛⎭⎪⎫115,25在第一象限.答案 A3.(2020·福建漳州适应性测试)如图是某地区从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.若该地区从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列{a n},{a n}的前n项和为S n,则下列说法中正确的是()A.数列{a n}是递增数列B.数列{S n}是递增数列C.数列{a n}的最大项是a11D.数列{S n}的最大项是S11解析因为1月28日新增确诊人数小于1月27日新增确诊人数,即a7>a8,所以{a n }不是递增数列,所以A 错误;因为2月23日新增确诊病例数为0,所以S 33=S 34,所以数列{S n }不是递增数列,所以B 错误;因为1月31日新增病例数最多,从1月21日算起,1月31日是第11天,所以数列{a n }的最大项是a 11,所以C 正确;由a n ≥0,知S n +1≥S n ,故数列{S n }的最大项是最后一项,所以D 错误.故选C. 答案 C4.大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A.112B.12C.13D.16解析 大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总个数n =C 24A 33=36,小明恰好分配到甲村小学包含的基本事件个数m =A 33+C 23A 22=12,所以小明恰好分配到甲村小学的概率p =m n =1236=13. 答案 C5.(2020·荆门模拟)在二项式⎝ ⎛⎭⎪⎫x 12+12x 7的展开式中,有理项的项数为( ) A.1B.2C.3D.4解析 该二项展开式的通项为T r +1=C r 7x7-r 2⎝ ⎛⎭⎪⎫12x r=C r 7⎝ ⎛⎭⎪⎫12r ·x 7-3r 2,r =0,1,2,…,7.当r =1,3,5,7时,T r +1为有理项,共有4项.故选D. 答案 D6.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为( )A.π2 B.π3 C.π4D.π6解析 以A 为原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (0,2,0),∴D ⎝ ⎛⎭⎪⎫22,22,0,∴AD →=⎝ ⎛⎭⎪⎫22,22,0,A 1C →=(0,2,-2), ∴cos 〈AD →,A 1C →〉=AD →·A 1C →|AD →||A 1C →|=12,∴〈AD →,A 1C →〉=π3. 答案 B7.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB→|=2,OC →=13OA →+23OB →,若M是线段AB 的中点,则OC →·OM →的值为( )A. 3B.2 3C.2D.3解析 由OC→=13OA →+23OB →,又OM →=12(OA →+OB →), 所以OC →·OM →=⎝ ⎛⎭⎪⎫13OA →+23OB →·12(OA →+OB →)=16(OA →2+2OB →2+3OA →·OB →), 又△OAB 为等边三角形,所以OA →·OB →=2×2cos 60°=2,OA →2=4,OB →2=4,所以OC →·OM →=3. 答案 D8.(2020·天津适应性测试)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,2x -4x ,x >0.若函数F (x )=f (x )-|kx -1|有且只有3个零点,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,916 B.⎝ ⎛⎭⎪⎫916,+∞C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫-116,0∪⎝ ⎛⎭⎪⎫0,916解析 当k =12时,|kx -1|=⎪⎪⎪⎪⎪⎪12x -1=⎩⎪⎨⎪⎧12x -1,x ≥2,1-12x ,x <2.作出函数y =f (x )与y =⎪⎪⎪⎪⎪⎪12x -1的图象,如图.此时两函数的图象有且只有3个交点,此时F (x )有且只有3个零点,排除B ,C.当k =-120时,|kx -1|=⎪⎪⎪⎪⎪⎪-120x -1=⎩⎪⎨⎪⎧-120x -1,x ≤-20,1+120x ,x >-20,作出函数y =⎪⎪⎪⎪⎪⎪-120x -1的图象,如图.由图可得函数y =f (x )的图象与y =⎪⎪⎪⎪⎪⎪-120x -1的图象有且只有3个交点,此时F (x )有且只有3个零点,排除A.故选D. 答案 D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知0<c <1,1>a >b >0,则下列不等式成立的是( )A.c a <c bB.a a +c <b b +cC.ba c >ab cD.log a c >log b c解析 构造函数y =c x ,因为0<c <1,所以函数y =c x 是减函数,而a >b >0,根据指数函数的单调性得c a<c b,故A 正确;由题意得a +c a =1+c a ,b +c b =1+cb ,因为0<c <1,1>a >b >0,所以0<c a <c b ,即0<a +c b <b +c b ,取倒数得a a +c >b b +c ,故B 错误;由题意得⎝ ⎛⎭⎪⎫a b c <a b ,整理得ba c <ab c ,故C 错误;由已知得log a c >0,log b c >0,又0<log c a <log c b ,所以1log c a >1log c b ,则log a c >log b c ,故D 正确.故选AD.答案 AD10.已知f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则函数f (x )的对称中心可以为( )A.⎝ ⎛⎭⎪⎫2π3,0B.⎝ ⎛⎭⎪⎫π6,1 C.⎝ ⎛⎭⎪⎫-π6,1 D.⎝ ⎛⎭⎪⎫π3,1 解析 由图象知A =3+12=2,B =3-12=1,又T =2⎝ ⎛⎭⎪⎫7π12-π12=π,所以ω=2.由2×π12+φ=π2+2k π(k ∈Z )且|φ|<π2,得φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.令2x +π3=k π(k ∈Z ),得x =-π6+k π2(k ∈Z ),取k =0,有x =-π6;k =1,x =π3. 答案 CD11.对于函数f (x )=ln xx ,下列说法正确的是( )A.f (x )在x =e 处取得极大值1eB.f (x )有两个不同的零点C.f (4)<f (π)<f (3)D.π4<4π解析 f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2.令f ′(x )=0,得x =e.∴f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,因此f (x )在x =e 处取得极大值f (e)=1e ,A 正确.令f (x )=0,解得x =1,故函数f (x )有且仅有一个零点,B 错误.由f (x )在(e ,+∞)上单调递减,得f (4)<f (π)<f (3),则C 正确.因为f (4)<f (π),即ln 44<ln ππ,所以ln 4π<ln π4,则4π<π4,D 错误.综上知,正确的为AC. 答案 AC12.(2020·烟台诊断)已知P 是双曲线C :x 23-y 2m =1(m >0)上任意一点,A ,B 是双曲线C 上关于坐标原点对称的两点.设直线P A ,PB 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|≥t 恒成立,且实数t 的最大值为233,则下列说法正确的是( )A.双曲线C 的方程为x 23-y 2=1 B.双曲线C 的离心率为2C.函数y =log a (x -1)(a >0,a ≠1)的图象恒过双曲线C 的一个焦点D.直线2x -3y =0与双曲线C 有两个交点解析 设A (x 1,y 1),P (x 2,y 2).由A ,B 是双曲线C 上关于坐标原点对称的两点,得B (-x 1,-y 1),则x 213-y 21m =1,x 223-y 22m =1.两式相减,得x 21-x 223=y 21-y 22m ,所以y 21-y 22x 21-x 22=m 3.又直线P A ,PB 的斜率分别为k 1,k 2,所以k 1k 2=y 1-y 2x 1-x 2×-y 1-y 2-x 1-x 2=y 21-y 22x 21-x 22=m3.所以|k 1|+|k 2|≥2|k 1||k 2|=2m3,当且仅当|k 1|=|k 2|时取等号.又|k 1|+|k 2|≥t 恒成立,且实数t 的最大值为233,所以2m 3=233,解得m =1.因此双曲线C 的方程为x 23-y 2=1,则A 项正确.因为a =3,b =1,所以c =a 2+b 2=2,所以双曲线C 的离心率e =c a =23=233,则B 项不正确.双曲线C 的左、右焦点分别为(-2,0),(2,0),而当x =2时,y =log a (2-1)=log a 1=0,所以函数y =log a (x -1)(a >0,a ≠1)的图象恒过双曲线C 的一个焦点(2,0),则C 项正确.由⎩⎪⎨⎪⎧2x -3y =0,x 23-y 2=1消去y ,得x 2=-9,此方程无实数解,所以直线2x -3y =0与双曲线C 没有交点,则D 项不正确.故选AC. 答案 AC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.设{a n }是公差不为零的等差数列,S n 为其前n 项和.已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为________.解析 设等差数列{a n }的公差为d (d ≠0),则由S 1,S 2,S 4成等比数列,得S 22=S 1S 4,即(2a 3-3d )2=(a 3-2d )·(4a 3-2d ).又a 3=5,所以(10-3d )2=(5-2d )(20-2d ),解得d =2.所以数列{a n }的通项公式为a n =a 3+(n -3)d =2n -1. 答案 a n =2n -114.已知点E 在y 轴上,点F 是抛物线y 2=2px (p >0)的焦点,直线EF 与抛物线交于M ,N 两点,若点M 为线段EF 的中点,且|NF |=12,则p =________. 解析 由题意知,直线EF 的斜率存在且不为0,故设直线EF 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,与抛物线方程y 2=2px 联立,得k 2x 2-p (k 2+2)x +p 2k 24=0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=p 24.又F ⎝ ⎛⎭⎪⎫p 2,0,点M 为线段EF 的中点,得x 1=p 22=p 4.由|NF |=x 2+p 2=12,得x 2=12-p2.由x 1x 2=p 4⎝ ⎛⎭⎪⎫12-p 2=p 24,得p =8或p =0(舍去).答案 815.(2020·长郡中学适应性考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,E 分别为棱AA 1,AB ,AD 的中点,以A 为圆心,1为半径,分别在面ABB 1A 1和面ABCD 内作弧MN 和NE ,并将两弧各五等分,分点依次为M ,P 1,P 2,P 3,P 4,N 以及N ,Q 1,Q 2,Q 3,Q 4,E .一只蚂蚁欲从点P 1出发,沿正方体的表面爬行至点Q 4,则其爬行的最短距离为________.(参考数据:cos 9°≈0.987 7,cos 18°≈0.951 1,cos 27°≈0.891 0)解析 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,E 分别为棱AA 1,AB ,AD 的中点,以A 为圆心,1为半径,分别在平面ABB 1A 1和平面ABCD 内作弧MN 和NE .将平面ABCD 绕AB 旋转至与平面ABB 1A 1共面的位置,如图(1),则∠P 1AQ 4=180°10×8=144°,所以P 1Q 4=2sin 72°.将平面ABCD 绕AD 旋转至与平面ADD 1A 1共面的位置,将ABB 1A 1绕AA 1旋转至与平面ADD 1A 1共面的位置,如图(2),则∠P 1AQ 4=90°5×2+90°=126°,所以P 1Q 4=2sin 63°.因为sin 63°<sin 72°,且由诱导公式可得sin 63°=cos 27°,所以最短距离为|P 1Q 4|=2sin 63°≈2×0.891 0=1.782 0.图(1)图(2)答案 1.782 016.已知函数f (x )=⎩⎨⎧x +2,x <a ,x 2,x ≥a ,若函数f (x )在R 上是单调的,则实数a 的取值范围是________;若对任意的实数x 1<a ,总存在实数x 2≥a ,使得f (x 1)+f (x 2)=0,则实数a 的取值范围是________(本小题第一空2分,第二空3分).解析 令x +2=x 2,得x =-1或x =2.作出函数y =f (x )的图象如图所示,若函数f (x )在R 上单调,只需a ≥2.若对任意的实数x 1<a ,总存在实数x 2≥a ,使得f (x 1)+f (x 2)=0,可得x 1+2+x 22=0,即-x 22=x 1+2,即有a +2≤0,解得a ≤-2.答案 [2,+∞) (-∞,-2]限时练(五)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =i1+i(i 是虚数单位)的虚部是( ) A.12B.-12C.12iD.-12i解析 z =i 1+i =i (1-i )(1+i )(1-i )=i 2+12,∴z 的虚部为12.答案 A 2.已知集合A ={-1,0,1,2,3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x +1≥0,则A ∩B 中元素的个数为( )A.1B.2C.3D.4解析 由x -2x +1≥0,得x ≥2或x <-1,则B ={x |x ≥2,或x <-1},∴A ∩B ={2,3},A ∩B 中有2个元素.答案 B3.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x ≤0,2x +1,x >0,则f (-2)+f (1)=( )A.6+32B.6-32C.72D.52解析 f (-2)=sin ⎝ ⎛⎭⎪⎫-2π+π6=12,f (1)=21+1=3.∴f (-2)+f (1)=3+12=72. 答案 C4.在某项检测中,测量结果服从正态分布N (2,1),若P (X <1)=P (X >1+λ),则λ=( ) A.0B.2C.3D.5解析 依题意,正态曲线关于x =2对称,又P (X <1)=P (X >1+λ),因此1+λ=3,∴λ=2. 答案 B5.(2020·天津适应性测试)如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A.3B.4C.6D.12解析 ∵CE =2EC 1,∴V E -BCD =13×12×23×V ABCD -A 1B 1C 1D 1=19×36=4.故选B. 答案 B6.函数f (x )=x 2-2ln|x |的图象大致是( )。
矩阵与变换二阶矩阵平面逆变换等二轮复习专题练习(三)含答案人教版高中数学高考真题汇编
![矩阵与变换二阶矩阵平面逆变换等二轮复习专题练习(三)含答案人教版高中数学高考真题汇编](https://img.taocdn.com/s3/m/59bd8e22ad02de80d5d8406c.png)
高中数学专题复习
《矩阵与变换二阶矩阵平面逆变换等》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.若点P 在矩阵1234⎡⎤⎢⎥⎣⎦
对应的变换下得到点'P (5,11),则点P 的坐标是 .(1,2)
2.把实数a ,b ,c ,d 排成形如⎪⎪⎭⎫ ⎝
⎛d c b a 的形式,称之为二行二列矩陈。
定义矩阵的一种运算⎪⎪⎭⎫ ⎝⎛d c b a ·),(dy cx by ax y x ++=⎪⎪⎭
⎫ ⎝⎛,该运算的几何意义为平面上的点(x ,y )在矩阵⎪⎪⎭⎫
⎝⎛d c b a 的作用下变换成点),(dy cx by ax ++,若点A 在矩阵⎪⎪⎭
⎫ ⎝⎛-1112的作用下变换成点(2,4),则点A 的坐标为 . 评卷人
得分 二、解答题
3.选修4—2:矩阵与变换
已知矩阵⎥⎦⎤⎢⎣⎡=d c A 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属。
小题专练20-2021届高考数学二轮复习新高考版(含解析)
![小题专练20-2021届高考数学二轮复习新高考版(含解析)](https://img.taocdn.com/s3/m/473159c30b4e767f5bcfce57.png)
小题专练20一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(考点:复数,★)设复数z满足|z+1|=|z-2i|,且z在复平面内对应的点为(x,y),则().A.x+2y-3=0B.2x+4y-3=0C.2x-4y+3=0D.x-2y+3=02.(考点:随机抽样,★)中国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡应派遣人数为().A.104B.108C.112D.1203.(考点:等差数列,★)已知等差数列{a n}的前n项和为S n,满足a4=5,S n+S n-2=2S n-1+2(n≥3),则().A.a n=nB.a n=2n-3C.a1=-2D.S n=n(n-1)24.(考点:基本初等函数,★)设a=log0.25,b=0.23,c=(14)-0.2,则a,b,c的大小关系为().A.a<b<cB.a<c<bC.b<a<cD.b<c<a5.(考点:直线和圆的综合,★★)圆C:x2+y2-2x-4y+3=0被直线l:ax+y-1-a=0截得的弦长的最小值为().A.1B.2C.√2D.√36.(考点:二项式定理,★★)若(1-2x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则a3a4的值为().A.1B.2C.-23D.127.(考点:函数图象的判断,★★)已知定义在R上的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)={-x2+2x,x∈[0,1),2-x,x∈[1,2],则函数y=f(x)在[2,4]上的大致图象是().8.(考点:函数的零点,★★★)已知函数f (x )={13f (x -2),x >2,1-|x -1|,x ≤2,则函数g (x )=9[f (x )]2+17f (x )-2的零点个数为( ).A .4B .5C .6D .7二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:样本的数学特征,★)如图所示的是某人根据2019年1月至2019年11月期她每月步行的里程(单位:十公里)的数据绘制的折线图.根据该折线图,下列结论正确的是( ). A .月步行里程逐月增加B .月步行里程的最大值出现在10月C .月步行里程的中位数为7月份对应的里程数D .1月至5月的月步行里程相对于6月至11月波动性更小,变化比较平稳10.(考点:立体几何的综合运用,★★)如图,在四棱锥P-ABCD 中,AB ∥CD ,AB=BC=2,CD=4,∠APB=∠CBA=90°,PA=PB ,平面PAB ⊥平面ABCD ,M 为棱PD 上一点,则下列说法正确的是( ). A .PA ⊥平面PB C B .V P-ABCD =43C .AD ⊥平面AMCD .若PB//平面MAC ,则PM MD =1211.(考点:函数的综合运用,★★★)已知定义域为R 的奇函数f (x ),满足f (x )={22x -3,x >2,x 2-2x +2,0<x ≤2,则下列说法正确的是( ).A .存在实数k ,使函数y=f (x )的图象与直线y=kx 有7个不同的交点B .当-1<x 1<x 2<1时,恒有f (x 1)>f (x 2)C .若当x ∈(0,a ]时,f (x )的最小值为1,则a ∈[1,52]D .若关于x 的方程f (x )=32和f (x )=m 的所有实数根之和为零,则m=-3212.(考点:抛物线,★★★)已知抛物线x 2=2py (p>0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q.若抛物线C 上存在一点E (t ,2)到焦点F 的距离等于3,则下列说法正确的是( ). A .抛物线的方程是x 2=2yB .抛物线的准线方程是y=-1C .sin ∠QMN 的最小值是12D .线段AB 的最小值是6三、填空题:本题共4小题,每小题5分,共20分. 13.(考点:三角恒等变换,★)已知θ∈(0,π2),cos θ=2√55,则tanθcos2θ= .14.(考点:双曲线,★★)已知F 1,F 2分别为双曲线C :x 29-y 227=1的左、右焦点,点M (2,0),点A ∈C ,点I ∈AM ,且I 是△F 1AF 2的内心,则|AI ||IM |= .15.(考点:新定义题型,★★★)如果存在函数g (x )=ax+b (a ,b 为常数),使得对函数f (x )定义域内的任意x 都有f (x )≤g (x )成立,那么称g (x )为函数f (x )的一个“线性覆盖函数”.给出如下四个结论: ①函数f (x )=2x 存在“线性覆盖函数”;②对于给定的函数f (x ),其“线性覆盖函数”可能不存在,也可能有无数个; ③g (x )=12x+12为函数f (x )=√x 的一个“线性覆盖函数”;④若g (x )=2x+b 为函数f (x )=-x 2的一个“线性覆盖函数”,则b>1.16.(考点:与球有关的计算,★★★)如图,在四棱锥C-ABDE 中,四边形ABDE 为矩形,EA=CA=CB=2,AC ⊥CB ,F ,G 分别为AB ,AE 的中点,平面ABDE ⊥平面ABC ,则四面体CFDG 的体积为 ;若四面体CFDG 的各个顶点均在球O 的球面上,则球O 的体积为 .答案解析:1.(考点:复数,★)设复数z 满足|z +1|=|z-2i |,且z 在复平面内对应的点为(x ,y ),则( ).A.x+2y-3=0B.2x+4y-3=0C.2x-4y+3=0D.x-2y+3=0【解析】由题意知z=x+y i(x,y∈R),代入|z+1|=|z-2i|得√(x+1)2+y2=√x2+(y-2)2,化简得2x+4y-3=0.【答案】B2.(考点:随机抽样,★)中国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡应派遣人数为().A.104B.108C.112D.120×300=108,故选B.【解析】由题意,得北乡应派遣人数为81008100+7488+6912【答案】B3.(考点:等差数列,★)已知等差数列{a n}的前n项和为S n,满足a4=5,S n+S n-2=2S n-1+2(n≥3),则().A.a n=nB.a n=2n-3C.a1=-2D.S n=n(n-1)2【解析】由已知得S3+S1=2S2+2,即2a1+a2+a3=2a1+2a2+2,所以a3=a2+2,则公差d=a3-a2=2,所以a n=a4+(n-4)×2=2n-3,即a1=-1,=n(n-2).所以S n=n(-1+2n-3)2综上可知,B正确.【答案】B)-0.2,则a,b,c的大小关系为().4.(考点:基本初等函数,★)设a=log0.25,b=0.23,c=(14A.a<b<cB.a<c<bC.b<a<cD.b<c<a【解析】因为函数y=log0.2x单调递减,所以a=log0.25<log0.21=0;因为函数y=0.2x单调递减,所以0<b=0.23<0.20=1;)-0.2=20.4>20=1.所以a<0<b<1<c.因为函数y=2x单调递增,所以c=(14【答案】A5.(考点:直线和圆的综合,★★)圆C:x2+y2-2x-4y+3=0被直线l:ax+y-1-a=0截得的弦长的最小值为().A.1B.2C.√2D.√3【解析】直线l:ax+y-1-a=0可化为l:a(x-1)+(y-1)=0,故直线l恒过点P(1,1).圆C:x2+y2-2x-4y+3=0的圆心为C(1,2),半径为√2,当直线l 垂直于直线PC 时,截得的弦长最短,此时弦长d=2√2-1=2. 【答案】B6.(考点:二项式定理,★★)若(1-2x )6=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a3a 4的值为( ).A .1B .2C .-23D .12【解析】该二项展开式的通项公式为T r+1=C 6r (-2x )r ,∴T 3+1=C 63(-2x )3=-160x 3,T 4+1=C 64(-2x )4=240x 4,∴a 3=-160,a 4=240,∴a 3a 4=-23.故选C .【答案】C7.(考点:函数图象的判断,★★)已知定义在R 上的函数f (x )满足f (x+2)=2f (x ),当x ∈[0,2]时,f (x )={-x 2+2x ,x ∈[0,1),2-x ,x ∈[1,2],则函数y=f (x )在[2,4]上的大致图象是( ).【解析】因为f (x+2)=2f (x ),所以f (x )=2f (x-2), 若x ∈[2,4],则x-2∈[0,2],因为当x ∈[0,2]时,f (x )={-x 2+2x ,x ∈[0,1),2-x ,x ∈[1,2],所以当x ∈[2,4]时,f (x )={-2(x -2)2+4(x -2),x ∈[2,3),4-2(x -2),x ∈[3,4],化简可得f (x )={-2(x -3)2+2,x ∈[2,3),8-2x ,x ∈[3,4].画出函数图象(图略)可知B 正确. 【答案】B8.(考点:函数的零点,★★★)已知函数f (x )={13f (x -2),x >2,1-|x -1|,x ≤2,则函数g (x )=9[f (x )]2+17f (x )-2的零点个数为( ).A .4B .5C .6D .7【解析】当2<x ≤4时,0<x-2≤2, 此时f (x )=13f (x-2)=13(1-|x-2-1|)=13-13|x-3|, 当4<x ≤6时,2<x-2≤4,此时f (x )=13f (x-2)=13(13-13|x -2-3|)=19-19|x-5|, 则f (1)=1,f (3)=13f (1)=13,f (5)=13f (3)=19.由g (x )=9[f (x )]2+17f (x )-2=0,得f (x )=19或f (x )=-2.当f (x )=19时,g (x )有5个零点,当f (x )=-2时,g (x )有一个零点,故g (x )共有6个零点.【答案】C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:样本的数学特征,★)如图所示的是某人根据2019年1月至2019年11月期她每月步行的里程(单位:十公里)的数据绘制的折线图.根据该折线图,下列结论正确的是( ).A .月步行里程逐月增加B .月步行里程的最大值出现在10月C .月步行里程的中位数为7月份对应的里程数D .1月至5月的月步行里程相对于6月至11月波动性更小,变化比较平稳【解析】由折线图可知,月步行里程逐月不是递增的,故A 错误;月步行里程的最大值出现在10月,故B 正确;由图可知月步行里程的中位数为6月份对应的里程数,故C 错误;1月至5月的月步行里程相对于6月至11月波动性更小,变化比较平稳,故D 正确,故选BD . 【答案】BD10.(考点:立体几何的综合运用,★★)如图,在四棱锥P-ABCD 中,AB ∥CD ,AB=BC=2,CD=4,∠APB=∠CBA=90°,PA=PB ,平面PAB ⊥平面ABCD ,M 为棱PD 上一点,则下列说法正确的是( ).A .PA ⊥平面PBC B .V P-ABCD =43C .AD ⊥平面AMC D .若PB//平面MAC ,则PM MD =12【解析】A 正确,∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD=AB ,BC ⊥AB ,BC ⊂平面ABCD ,∴BC ⊥平面PAB ,又AP ⊂平面PAB ,∴AP ⊥BC ,又AP ⊥BP ,BC ∩BP=B ,∴AP ⊥平面PB C; B 错误,V P-ABCD =13×12×(2+4)×2×1=2;C 错误,由条件只能得出AD ⊥AC ,在平面AMC 中找不出其他线与AD 垂直; D 正确,如图,连接BD 交AC 于点O ,连接OM ,∵PB ∥平面MAC ,PB ⊂平面PBD ,平面PBD ∩平面MAC=OM ,∴PB ∥OM ,∴PM MD =BO OD,又AB ∥CD ,∴BO OD =ABCD ,∴PM MD =12. 【答案】AD11.(考点:函数的综合运用,★★★)已知定义域为R 的奇函数f (x ),满足f (x )={22x -3,x >2,x 2-2x +2,0<x ≤2,则下列说法正确的是( ).A .存在实数k ,使函数y=f (x )的图象与直线y=kx 有7个不同的交点B .当-1<x 1<x 2<1时,恒有f (x 1)>f (x 2)C .若当x ∈(0,a ]时,f (x )的最小值为1,则a ∈[1,52]D .若关于x 的方程f (x )=32和f (x )=m 的所有实数根之和为零,则m=-32 【解析】因为该函数是奇函数,故f (x )在R 上的解析式为 f (x )={ 22x+3(x <-2),-x 2-2x -2(-2≤x <0),0(x =0),x 2-2x +2(0<x ≤2),22x -3(x >2),绘制该函数的图象如图所示:直线l 1与f (x )的图象有7个交点,故A 正确; 当-1<x 1<x 2<1时,f (x )不是减函数,故B 错误; 直线l 2:y=1与f (x )的图象交于点(1,1),(52,0), 故当f (x )的最小值为1时,a ∈[1,52],故C 正确;方程f (x )=32的所有实数根之和为256,若使得其与f (x )=m 的所有零点之和为0,则m=-32或m=-38,故D 错误.故选AC . 【答案】AC12.(考点:抛物线,★★★)已知抛物线x 2=2py (p>0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q.若抛物线C 上存在一点E (t ,2)到焦点F 的距离等于3,则下列说法正确的是( ). A .抛物线的方程是x 2=2y B .抛物线的准线方程是y=-1 C .sin ∠QMN 的最小值是12 D .线段AB 的最小值是6【解析】由题意得,抛物线的准线方程为y=-p2,点E (t ,2)到焦点F 的距离等于3,∴2+p2=3,解得p=2,∴抛物线C的方程为x 2=4y ,准线方程为y=-1,∴A 错误,B 正确;由题知直线l 的斜率存在,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y=kx+1,由{y =kx +1,x 2=4y ,消去y 得x 2-4kx-4=0,∴x 1+x 2=4k ,x 1x 2=-4,∴y 1+y 2=k (x 1+x 2)+2=4k 2+2, ∴AB 的中点Q 的坐标为(2k ,2k 2+1),|AB|=y 1+y 2+p=4k 2+4≥4,D 错误;圆Q 的半径r=2k 2+2, 在等腰△QMN 中,sin ∠QMN=|y Q |r=2k 2+12k 2+2=1-12k 2+2≥1-12=12,当且仅当k=0时取等号,∴sin ∠QMN 的最小值为12,∴C 正确. 【答案】BC三、填空题:本题共4小题,每小题5分,共20分.13.(考点:三角恒等变换,★)已知θ∈(0,π2),cos θ=2√55,则tanθcos2θ= .【解析】θ∈(0,π2),cos θ=2√55,所以sin θ=2θ=√55,tan θ=sinθcosθ=12.因为cos 2θ=2cos 2θ-1=35,tan θ=12,所以tanθcos2θ=56.【答案】5614.(考点:双曲线,★★)已知F 1,F 2分别为双曲线C :x 29-y 227=1的左、右焦点,点M (2,0),点A ∈C ,点I ∈AM ,且I 是△F 1AF 2的内心,则|AI ||IM |= .【解析】不妨设点A 在双曲线的右支上,由已知得AM 为∠F 1AF 2的平分线,∴ |AF 1||AF 2|=|F 1M ||MF 2|=84=2,又∵|AF 1|-|AF 2|=2a=6,解得|AF 1|=12,∵I 是△F 1AF 2的内心,∴|AI ||IM |=|AF 1||MF 1|=128=32.【答案】3215.(考点:新定义题型,★★★)如果存在函数g (x )=ax+b (a ,b 为常数),使得对函数f (x )定义域内的任意x 都有f (x )≤g (x )成立,那么称g (x )为函数f (x )的一个“线性覆盖函数”.给出如下四个结论: ①函数f (x )=2x 存在“线性覆盖函数”;②对于给定的函数f (x ),其“线性覆盖函数”可能不存在,也可能有无数个; ③g (x )=12x+12为函数f (x )=√x 的一个“线性覆盖函数”;④若g (x )=2x+b 为函数f (x )=-x 2的一个“线性覆盖函数”,则b>1. 其中所有正确结论的序号是 .【解析】①错误,由函数f (x )=2x 的图象可知,不存在“线性覆盖函数”.②正确,如f (x )=sin x ,则g (x )=B (B>1)就是“线性覆盖函数”,且有无数个,再如①中的函数f (x )=2x 就没有“线性覆盖函数”.③正确,设函数h (x )=√x -12x-12, 则h'(x )=2√x -12=√x2√x. 当0<x<1 时,h'(x )>0,h (x )在(0,1)上单调递增.当x>1 时,h'(x )<0,h (x )在(1,+∞)上单调递减.∴h (x )≤h (1)=0,即f (x )≤g (x ), 故g (x )=12x+12为函数f (x )=√x 的一个“线性覆盖函数”.④错误,设函数F (x )=-x 2-2x-b ,则F (x )=-(x+1)2+1-b ,当b=1时,g (x )=2x+b 为函数f (x )=-x 2的一个“线性覆盖函数”.【答案】②③ 16.(考点:与球有关的计算,★★★)如图,在四棱锥C-ABDE 中,四边形ABDE 为矩形,EA=CA=CB=2,AC ⊥CB ,F ,G 分别为AB ,AE 的中点,平面ABDE ⊥平面ABC ,则四面体CFDG 的体积为 ;若四面体CFDG 的各个顶点均在球O 的球面上,则球O 的体积为 .【解析】因为F 为AB 的中点,CA=CB ,所以CF ⊥AB.因为平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC=AB ,所以CF ⊥平面ABDE ,则CF ⊥FD ,CF ⊥FG.易知在矩形ABDE 中,AB 2=AC 2+BC 2=8,FG 2=AF 2+AG 2=3,FD 2=FB 2+BD 2=6,DG 2=GE 2+ED 2=9, 所以DG 2=GF 2+FD 2,则GF ⊥FD ,所以四面体CFDG 的体积V 1=13CF ·S △GFD =13CF ·12GF ·FD=13×√2×12×√3×√6=1.因为点F ,C ,D ,G 均在球O 的球面上,所以以F 为顶点,FC ,FD ,FG 为相邻棱的长方体的所有顶点均在球O 的球面上, 则球O 的直径2R=√FC 2+FD 2+FG 2=√11,即R=√112, 则球O 的体积V 2=43πR 3=43π×(√112)3=11√116π. 【答案】111√116π 1.(考点:集合,★)已知集合A={x |x -2x -1≥0},则R A=( ).A .{x|1<x<2}B .{x|1≤x<2}C .{x|x<1或x>2}D .{x|x ≤1或x>2}【解析】由x -2x -1≥0,得{x -2≥0,x -1>0或{x -2≤0,x -1<0,解得x ≥2或x<1,即A={x|x<1或x ≥2},故R A={x|1≤x<2},故选B . 【答案】B2.(考点:复数,★)已知i 为虚数单位,z 1=2-3i -(1-2i),z ·2z1=z 1,则关于复数z 的说法正确的是( ). A .z+z =2B .z 在复平面内对应的点在第三象限C .z 的虚部为-iD .|z|=1【解析】因为z 1=2-3i -(1-2i)=1-i,所以z=(1-i )22=-i,所以|z|=1,故D 正确. 【答案】D3.(考点:直线和圆的综合,★)若直线y=√3x+b 与圆x 2+y 2=1相交于P ,Q 两点,且∠POQ=120°(其中O 为坐标原点),则b 的值为( ).A .1B .√2C .±1D .±√2【解析】∵∠POQ=120°,圆的半径为1,∴|PQ|=√12+12-2×1×1×cos120°=√3,圆心(0,0)到直线y=√3x+b 的距离d=√1+3=|b |2,∴(b 2)2+(√32)2=1,解得b=±1.【答案】C4.(考点:样本分布与数字特征,★)国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如图所示.则下列结论中正确的是( ).A .12个月的PMI 值不低于50%的频率为23B .12个月的PMI 值的平均值低于50%C .12个月的PMI 值的众数为49.5%D .12个月的PMI 值的中位数为50.3%【解析】A 错误,从图中数据变化看,PMI 值不低于50%的月份有4个,所以12个月的PMI 值不低于50%的频率为412=13;B 正确,由图可以看出,PMI 值的平均值低于50%;C 错误,12个月的PMI 值的众数为49.4%;D 错误,12个月的PMI 值的中位数为49.6%.【答案】B5.(考点:三角函数的图象与性质,★★)已知函数f (x )=sin πx 6·cos πx 6-√3sin 2πx 6+√32,x ∈[-1,a ],a ∈N *,若函数f (x )的图象与直线y=1至少有2个交点,则a 的最小值为( ).A .7B .9C .11D .12【解析】函数f (x )=sin πx 6cos πx 6-√3sin 2πx 6+√32=12sin πx 3+√32cos πx 3=sin (π3x +π3),所以函数f (x )的最小正周期T=6.又函数f (x )的图象与直线y=1至少有2个交点,即函数f (x )在[-1,a ]上至少存在两个最大值,结合图象可得a-(-1)≥T+T 4=7.5,解得a ≥6.5,所以正整数a 的最小值为7.【答案】A6.(考点:概率,★★)现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为( ).A .12B .13C .16D .112【解析】由题意,现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数n=C 42C 22A 22×A 22=6,其中乙、丙两人恰好参加同一项活动的基本事件个数m=C 22C 22A 22=2,所以乙、丙两人恰好参加同一项活动的概率p=m n =13,故选B .【答案】B7.(考点:函数图象的判断,★★)函数f (x )=2|x|·sin (π2+x)-12e |x|在[-32,32]上的图象大致为( ).【解析】由已知得f (x )=2|x|cos x-12e |x|,x ∈-32,32,因为f (-x )=2|-x|cos(-x )-12e |-x|=f (x ),所以函数f (x )为偶函数, 当x ∈[0,1]时,f (x )=2x cos x-12e x ,所以f'(x )=2cos x-2x sin x-12e x ,f'(0)=32>0,f'(1)=2cos 1-2sin 1-12e <0,即f (x )在[0,1]上有极值点,f (x )在x=1处的切线斜率小于0,且f (0)=-12<0,满足上述条件的选项为A .8.(考点:解三角形,★★)已知△ABC的内角A,B,C对应的边长分别是a,b,c,且a=2,b=1,C=2A,则c的值为().A.√3B.√5C.√6D.2√3【解析】如图所示,作∠ACB的角平分线与AB交于点D.则ADBD =ACBC=12,设AD=m,则BD=2m,CD=m,分别利用余弦定理得到cos∠ADC=2m2-12m2,cos∠BDC=5m2-44m2.由∠ADC+∠BDC=π,得2m 2-12m2+5m2-44m2=0,解得m=√63,c=AB=3m=√6.【答案】C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:命题的真假,★)已知a,b,c,d均为实数,则下列命题中的真命题为().A.若a>b,c>d,则ac>bdB.若ab>0,bc-ad>0,则ca -db>0C.若a>b,c>d,则a-d>b-cD.若a>b,c>d>0,则ad >b c【解析】若a>0>b,0>c>d,则ac<bd,故A错误;若ab>0,bc-ad>0,则bc-adab >0,化简得ca-db>0,故B正确;若c>d,则-d>-c,又a>b,则a-d>b-c,故C正确;若a=-1,b=-2,c=2,d=1,则ad =-1,bc=-1,ad=bc,故D错误.【答案】BC10.(考点:数列的综合运用,★★)已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则().A.数列{a n}为等差数列B.数列{a n}为等比数列C.a12+a22+…+a n2=4n-13【解析】由题意,当n=1时,S 1=2a 1-2,解得a 1=2,当n ≥2时,S n-1=2a n-1-2,所以a n =S n -S n-1=2a n -2-(2a n-1-2)=2a n -2a n-1,所以a na n -1=2,数列{a n }是首项a 1=2,公比q=2的等比数列,其通项公式a n =2n ,故A 错误,B 正确;数列{a n 2}是首项a 12=4,公比q 1=4的等比数列,所以a 12+a 22+…+a n 2=a 12(1-q 1n )1-q 1=4×(1-4n )1-4=4n+1-43,故C 错误;a m a n =2m 2n =2m+n =64=26,所以m+n=6,为定值,故D 正确.【答案】BD11.(考点:新定义题型,★★★)若存在m ,使得f (x )≥m 对任意x ∈D 恒成立,则函数f (x )在D 上有下界,其中m 为函数f (x )的一个下界;若存在M ,使得f (x )≤M 对任意x ∈D 恒成立,则函数f (x )在D 上有上界,其中M 为函数f (x )的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.则下列说法正确的是( ).A .1是函数f (x )=x+1x (x>0)的一个下界B .函数f (x )=x ln x 有下界,无上界C .函数f (x )=e x x 2有上界,无下界D .函数f (x )=sinx x 2+1有下界,无上界【解析】A 正确,当x>0时,x+1x ≥2(当且仅当x=1时取等号),∴f (x )>1恒成立,∴1是f (x )的一个下界. B 正确,f'(x )=ln x+1(x>0),∴当x ∈(0,1e )时,f'(x )<0,当x ∈(1e ,+∞)时,f'(x )>0,∴f (x )在(0,1e)上单调递减,在(1e ,+∞)上单调递增,∴f (x )≥f (1e )=-1e ,∴f (x )有下界.又当x →+∞时,f (x )→+∞,∴f (x )无上界.综上所述,f (x )=x ln x 有下界,无上界.C 错误,∵x 2>0,e x >0,∴e x x 2>0,∴f (x )有下界.D 错误,∵sin x ∈[-1,1],∴-1x 2+1≤sinx x 2+1≤1x 2+1.又-1x 2+1≥-1,1x 2+1≤1,∴-1<sinx x 2+1<1,∴f (x )既有上界又有下界.【答案】AB12.(考点:椭圆,★★★)椭圆C :x 24+y 2=1的左、右焦点分别为F 1,F 2,O 为坐标原点,以下说法正确的是( ).A .过点F 2的直线与椭圆C 交于A ,B 两点,则△ABF 1的周长为8B .椭圆C 上存在点P ,使得PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0C .椭圆C 的离心率为12D .P 为椭圆C 上一点,Q 为圆x 2+y 2=1上一点,则点P ,Q 的最大距离为3【解析】对于A,依题意,由椭圆定义可得|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a=4,因此△ABF 1的周长为|AF 1|+|BF 1|+|AB|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a=8,故A 正确;对于B,设点P (x ,y )为椭圆C :x 24+y 2=1上任意一点,则点P 的坐标满足x 24+y 2=1,且-2≤x ≤2,又F 1(-√3,0),F 2(√3,0),所以PF 1⃗⃗⃗⃗⃗⃗⃗ =(-√3-x ,-y ),PF 2⃗⃗⃗⃗⃗⃗⃗ =(√3-x ,-y ),因此PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =(-√3-x )(√3-x )+y 2=x 2+1-x 24-3=3x 24-2,由PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =3x 24-2=0,可得x=±2√63∈[-2,2],故B 正确; 对于C,因为a 2=4,b 2=1,所以c 2=4-1=3,即c=√3,所以离心率e=c a =√32,故C 错误;对于D,点P (x ,y )到圆x 2+y 2=1的圆心的距离为|PO|=√x 2+y 2=√4-4y 2+y 2=√4-3y 2,因为-1≤y ≤1,所以|PQ|max =|PO|max +1=√4-0+1=3.故D 正确.故选ABD .【答案】ABD三、填空题:本题共4小题,每小题5分,共20分.13.(考点:二项式定理,★★)在二项式(ax +1x )6的展开式中,常数项是-160,则a 的值为 .【解析】展开式的通项公式为T r+1=C 6r (ax )6-r ·(1x )r =C 6r a 6-r x 6-2r ,令6-2r=0,得r=3,故C 63·a 3=-160,解得a=-2. 【答案】-214.(考点:平面向量,★★)若非零向量a ,b 满足|a|=1,a ·(2a-b )=2,则向量a 与b 的夹角为 .【解析】因为a ·(2a-b )=2|a|2-a ·b=2,|a|=1,所以a ·b=0,故两向量的夹角为90°.【答案】90°15.(考点:立体几何的综合,★★)如图,在矩形ABCD 中,AB=12BC=√2,E 为BC 的中点,将△DCE 沿直线DE 翻折成△DC 1E ,连接C 1A ,则当三棱锥C 1-ADE 的体积最大时,∠ADC 1= .【解析】当平面C 1DE ⊥平面ABCD 时,三棱锥C 1-ADE 的体积最大.如图,取DE 的中点F ,AD 的中点G ,连接C 1F ,FG ,C 1G.∵C 1D=C 1E ,∴C 1F ⊥DE ,又平面C 1DE ∩平面ABCD=DE ,∴C 1F ⊥平面ABCD ,又FG ⊂平面ABCD ,∴C 1F ⊥FG.在Rt △C 1FG 中,C 1G=√12+12=√2,在△C 1DG 中,C 1D=DG=C 1G=√2,∴△C 1DG 为正三角形,故∠ADC 1=π3.【答案】π3 16.(考点:函数性质的综合,★★★)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),且当x ∈[-1,1]时,f (x )=x ,现给出下列四个结论:①f (2020)=0;②函数f (x )的最小正周期为2;③当x ∈[-2020,2020]时,方程f (x )=12有2018个根;④方程f (x )=log 5|x|有5个根.其中正确结论的序号是 .【解析】∵f (x+2)=-f (x ),∴f (x+4)=-f (x+2)=f (x ),∴函数f (x )的最小正周期为4,故②错误,∴f (2020)=f (4×505)=f (0). ∵当x ∈[-1,1]时,f (x )=x ,∴f (0)=0,即f (2020)=0,故①正确.∵函数f (x )在实数集R 上为奇函数,∴-f (x )=f (-x ),∴f (x+2)=f (-x ),即函数f (x )的图象关于直线x=1对称.画出函数f (x )的图象如图所示.由图象可得,当x ∈[-2,2]时,方程f (x )=12有2个根,故当x ∈[-2020,2020]时,方程f (x )=12有2×505×2=2020个根,故③错误.画出y=log 5|x|的图象如图所示,该图象与函数f (x )的图象有5个交点,故④正确.【答案】①④。
高考数学(文)二轮复习专题三 不等式 第2讲 三个二次关系与恒成立问题、存在性问题 Word版含答案
![高考数学(文)二轮复习专题三 不等式 第2讲 三个二次关系与恒成立问题、存在性问题 Word版含答案](https://img.taocdn.com/s3/m/5b1dfdcabe23482fb5da4c50.png)
第2讲三个二次关系与恒成立问题、存在性问题【课前热身】第2讲三个二次关系与恒成立问题、存在性问题(本讲对应学生用书第21~22页)1.(必修5 P69练习3改编)不等式x2+x-2<0的解集为.【答案】(-2,1)【解析】方程x2+x-2=0的根为x1=-2,x2=1,故不等式x2+x-2<0的解集为(-2,1).2.(必修5 P73习题6改编)已知不等式ax2+bx-1<0的解集为{x|x<3或x>4},则a=,b=.【答案】-112712【解析】由题意知3和4是方程ax2+bx-1=0的两根,所以a(x-3)(x-4)=0,所以a=-1 12,b=7 12.3.(必修5 P94习题11改编)已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a 的取值范围是.【答案】(0,8)【解析】因为x2-ax+2a>0在R上恒成立,所以Δ=a2-4×2a<0,所以0<a<8.4.(必修5 P71练习5改编)在R上定义运算:x*y=x(1-y),若不等式(x-a)*(x+a)<1对任意实数x恒成立,则实数a的取值范围是.【答案】13 -22⎛⎫ ⎪⎝⎭,【解析】依题意知x-a-x2+a2<1恒成立,即21-2x⎛⎫⎪⎝⎭+23-4a a⎛⎫+⎪⎝⎭>0恒成立,于是a2-a-34<0恒成立,解得-12<a<32.5.(必修1 P32习题7改编)若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是.【答案】{m|0≤m≤4}【解析】由函数的对称轴为x=2,且在[0,2]上为增函数,知a<0,根据函数图象可得实数m的取值范围是{m|0≤m≤4}.【课堂导学】含参一元二次不等式的解法例1解关于x的一元二次不等式(x-2)(ax-2)>0.【解答】当a=0时,原不等式可化为x-2<0,所以x<2.当a≠0时,原不等式化为a(x-2)x-2a>0,①当a>1时,2a<2,原不等式化为(x-2)2-xa⎛⎫⎪⎝⎭>0,所以x<2a或x>2.②当a=1时,2a=2,原不等式化为(x-2)2>0,所以x∈R且x≠2.③当0<a<1时,2a>2,原不等式化为(x-2)2-xa⎛⎫⎪⎝⎭>0,则x<2或x>2a.④当a<0时,2a<2,原不等式化为(x-2)2-xa⎛⎫⎪⎝⎭<0,所以2a<x<2.综上所述,当a=0时,原不等式的解集为{x|x<2};当a>1时,原不等式的解集为2|2x x xa⎧⎫<>⎨⎬⎩⎭或;当a=1时,原不等式的解集为{x|x∈R且x≠2};当0<a<1时,原不等式的解集为22x x xa⎧⎫<>⎨⎬⎩⎭或;当a<0时,原不等式的解集为22x xa⎧⎫<<⎨⎬⎩⎭.变式解关于x的一元二次不等式ax2+(a-1)x-1>0. 【解答】由ax2+(a-1)x-1>0,得(ax-1)(x+1)>0.当a>0时,(ax-1)(x+1)>0⇔1-xa⎛⎫⎪⎝⎭(x+1)>0⇔x<-1或x>1a;当-1<a<0时,(ax-1)(x+1)>0⇔1-xa⎛⎫⎪⎝⎭(x+1)<0⇔1a<x<-1;当a=-1时,(ax-1)(x+1)>0⇔-(x+1)2>0⇔(x+1)2<0⇔x∈∅;当a<-1时,(ax-1)(x+1)>0⇔1-xa⎛⎫⎪⎝⎭(x+1)<0⇔-1<x<1a.综上所述,当a>0时,不等式的解集为1|-1x x xa⎧⎫<>⎨⎬⎩⎭或;当-1<a<0时,不等式的解集为1|-1x xa⎧⎫<<⎨⎬⎩⎭;当a=-1时,不等式的解集为∅;当a<-1时,不等式的解集为1|-1x xa⎧⎫<<⎨⎬⎩⎭.三个二次之间的关系例2 (2016·苏州调研测试)已知函数f (x )=x|x-a|,a ∈R ,g (x )=x 2-1. (1)当a=1时,解不等式f (x )≥g (x );(2)记函数f (x )在区间[0,2]上的最大值为F (a ),求F (a )的表达式. 【解答】(1)由f (x )≥g (x ),当a=1时,即解不等式x|x-1|≥x 2-1. 当x ≥1时,不等式为x 2-x ≥x 2-1,解得x ≤1,所以x=1;当x<1时,不等式为x-x 2≥x 2-1,解得-12≤x ≤1, 所以-12≤x<1.综上,不等式f (x )≥g (x )的解集为1-12⎡⎤⎢⎥⎣⎦,. (2)因为x ∈[0,2],当a ≤0时,f (x )=x 2-ax ,则f (x )在区间[0,2]上是增函数,所以F (a )=f (2)=4-2a.当0<a<2时,f (x )=22-0-2x ax x a x ax a x ⎧+≤<⎨≤≤⎩,,,,则f (x )在区间02a ⎡⎤⎢⎥⎣⎦,上是增函数,在区间2a a ⎡⎤⎢⎥⎣⎦,上是减函数,在区间[a ,2]上是增函数,所以F (a )=max (2)2a f f ⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭,,而f 2a ⎛⎫ ⎪⎝⎭=24a ,f (2)=4-2a ,令f 2a ⎛⎫ ⎪⎝⎭<f (2),即24a <4-2a ,解得-4-42<a<-4+42,所以当0<a<2-4时,F (a )=4-2a ;令f 2a ⎛⎫ ⎪⎝⎭≥f (2),即24a ≥4-2a , 解得a ≤-4-42或a ≥-4+2,所以当42-4≤a<2时,F (a )=24a . 当a ≥2时,f (x )=-x 2+ax ,当1≤2a <2,即2≤a<4时,f (x )在区间02a ⎡⎤⎢⎥⎣⎦,上是增函数,在22a ⎡⎤⎢⎥⎣⎦,上是减函数,则F (a )=f 2a ⎛⎫ ⎪⎝⎭=24a ;当2a≥2,即a ≥4时,f (x )在区间[0,2]上是增函数,则F (a )=f (2)=2a-4;综上,F (a )=24-242-442-4442-4 4.a a aa a a ⎧<⎪⎪≤<⎨⎪≥⎪⎩,,,,,变式 (2016·苏锡常镇一调)已知函数f (x )=2x-1+a ,g (x )=bf (1-x ),其中a ,b ∈R .若关于x 的不等式f (x )≥g (x )的解的最小值为2,则实数a 的取值范围是 .【答案】(-∞,-2]∪1-4∞⎛⎫+ ⎪⎝⎭, 【解析】因为g (x )=b (2-x +a ),所以f (x )≥g (x ),即2x-1+a ≥2xb+ab ,即(2x )2-2a (b-1)2x -2b ≥0.由二次不等式与二次方程的根的关系知,关于2x 的方程(2x )2-2a (b-1)2x -2b=0的2x 的值分别为4,-2b .因为2x 取正值,要想2x 最小为4,所以-2b≤0,即b ≥0.又因为4-2b =2a (b-1),所以b=4(2)41a a ++≥0,解得a ≤-2或a>-14.恒成立问题与存在性问题例3已知函数f(x)=x2+2ax-a+2.(1)若对于任意的x∈R,f(x)≥0恒成立,求实数a的取值范围;(2)若对于任意的x∈[-1,1],f(x)≥0恒成立,求实数a的取值范围;(3)若对于任意的a∈[-1,1],x2+2ax-a+2>0恒成立,求实数x的取值范围. 【点拨】恒成立问题中注意变更主元法的运用.【解答】(1)若对于任意的x∈R,f(x)≥0恒成立,需满足Δ=4a2-4(-a+2)≤0,解得-2≤a≤1.故实数a的取值范围是[-2,1].(2)由题知对称轴方程为x=-a,当-a<-1,即a>1时,f(x)min=f(-1)=3-3a≥0,解得a≤1,与已知矛盾,舍去;当-a>1,即a<-1时f(x)min=f(1)=3+a≥0,解得-3≤a<-1;当-1≤a≤1时,f(x)min=f(-a)=-a2-a+2≥0,解得-1≤a≤1.综上,实数a的取值范围是[-3,1].(3)对于任意的a∈[-1,1],x2+2ax-a+2>0恒成立,等价于g(a)=(2x-1)a+x2+2>0,所以222-120-2120x xx x⎧++>⎨++>⎩,,解得x≠-1,所以x的取值范围是{x|x ≠-1}.变式(2016·盐城中学)已知函数f(x)=22x x ax++,x∈[1,+∞).(1)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围;(2)若对任意的a∈[-1,1],f(x)>4恒成立,求实数x的取值范围.【解答】(1)若对任意的x∈[1,+∞),f(x)>0恒成立,即22 x xax++>0,x∈[1,+∞)恒成立,亦即x2+2x+a>0,x∈[1,+∞)恒成立,即a>-x2-2x,x∈[1,+∞)恒成立,即a>(-x2-2x)max,x∈[1,+∞),而(-x2-2x)max=-3,x∈[1,+∞),所以a>-3.所以实数a的取值范围为{a|a>-3}.(2)因为a∈[-1,1]时,f(x)>4恒成立,即22x x ax++>4,x∈[1,+∞)恒成立,所以x2-2x+a>0对a∈[-1,1]恒成立,把g(a)=a+x2-2x看成a的一次函数,则使g(a)>0对a∈[-1,1]恒成立的条件是(1)0(-1)0gg>⎧⎨>⎩,,即22-210-2-10x xx x⎧+>⎨>⎩,,解得x<1-2或x>2+1.又x≥1,所以x>2+1,故所求x的取值范围是(2+1,+∞).【课堂评价】1.(2016·全国卷Ⅰ)设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=. 【答案】332⎛⎫⎪⎝⎭,【解析】因为集合A=(1,3),B=32∞⎛⎫+ ⎪⎝⎭,,所以A ∩B=332⎛⎫ ⎪⎝⎭,.2.(2016·启东调研测试)已知偶函数f (x )在[0,+∞)上单调递增,且f (3)=0,则不等式f (x 2-2x )<0的解集为 . 【答案】(-1,3)【解析】根据偶函数的性质,可得-3<x 2-2x<3,解得-1<x<3,从而不等式的解集为(-1,3).3.(2016·扬州中学)已知函数f (x )=13x 3+2x ,对任意的t ∈[-3,3],f (tx-2)+f (x )<0恒成立,则实数x 的取值范围是 .【答案】51--33⎛⎫⎪⎝⎭,【解析】易知函数f (x )=13x 3+2x 是R 上的奇函数且单调递增,f (tx-2)+f (x )<0化为f (tx-2)<f (-x ),即tx-2<-x ,问题变为g (t )=(x+1)t-2<0在t ∈[-3,3]上恒成立,故有(-3)0(3)0g g <⎧⎨<⎩,,解得-53<x<-13.4.(2016·徐州、连云港、宿迁三检)已知对满足x+y+4=2xy 的任意正实数x ,y ,都有x 2+2xy+y 2-ax-ay+1≥0,则实数a 的取值范围是 .【答案】17-4∞⎛⎤⎥⎝⎦, 【解析】对于正实数x ,y ,由x+y+4=2xy ,得x+y+4=2xy ≤2()2x y +,解得x+y ≥4.不等式x 2+2xy+y 2-ax-ay+1≥0可化为(x+y )2-a (x+y )+1≥0,令t=x+y (t ≥4),则该不等式可化为t 2-at+1≥0,即a ≤t+1t 对于任意的t ≥4恒成立,令u (t )=t+1t (t ≥4),则u'(t )=1-21t =22-1t t >0对于任意的t ≥4恒成立,从而函数u (t )=t+1t (t ≥4)为单调增函数,所以u (t )min =u (4)=4+14=174,于是a ≤174.5.(2015·宿迁一模)已知函数f (x )=x 2-2ax+a 2-1,若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是 . 【答案】(-∞,-2]【解析】因为f (x )=[x-(a+1)][x-(a-1)],所以f (f (x ))<0等价于[f (x )-(a+1)][f (x )-(a-1)]<0,从而a-1<f (x )<a+1,要使f (f (x ))<0的解集为空集,根据函数的图象,则需y=a+1与y=f (x )至多有一个交点.又因为f (x )=(x-a )2-1≥-1,所以a+1≤-1,解得a ≤-2.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第11~12页.【检测与评估】第2讲 三个二次关系与恒成立问题、存在性问题一、 填空题1.若关于x 的不等式ax 2+2x+a>0的解集为R ,则实数a 的取值范围是 .2.(2016·安徽省六校联考)若正实数x,y满足x+y=2,且1xy≥M恒成立,则M的最大值为.3.(2016·南师附中)若当x>-3时,不等式a≤x+23x 恒成立,则实数a的取值范围是.4.若对任意实数x∈[-1,1],不等式x2+ax-3a<0恒成立,则实数a的取值范围是.5.(2016·常州中学)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是.6.(2016·启东中学)已知f(x)=x2+2x+a ln x,若f(x)在区间(0,1]上恒为单调函数,则实数a的取值范围为.7.(2016·江苏信息卷)若对任意实数x>1,y>12,不等式p≤22-1xy+24-1yx恒成立,则实数p的最大值为.8.(2016·苏大考前卷)已知不等式(ax+3)(x2-b)≤0对任意x∈(0,+∞)恒成立,其中a,b是整数,则a+b的取值集合为.二、解答题9.(2016·江苏怀仁中学)设函数f(x)=ax2+(b-2)x+3(a≠0).(1)若不等式f(x)>0的解集为(-1,3),求a,b的值;(2)若f(1)=2,a>0,b>0,求1a+4b的最小值.10.(2016·泰州中学)已知函数f(x)=ax2+2x+c(a,c∈N*)满足①f(1)=5;②6<f(2)<11.(1)求函数f(x)的表达式;(2)若对任意的x∈[1,2],都有f(x)-2mx≥0恒成立,求实数m的取值范围.11.(2015·浙江卷)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=24a+1时,求函数f(x)在区间[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在区间[-1,1]上存在零点,且0≤b-2a≤1,求实数b的取值范围.【检测与评估答案】第2讲三个二次关系与恒成立问题、存在性问题一、填空题1. (1,+∞)【解析】当a=0时,易知条件不成立;当a≠0时,要使不等式ax2+2x+a>0的解集为R,必须满足24-40aa>⎧⎨∆=<⎩,,解得a>1.2.1【解析】因为正实数x,y满足x+y=2,所以xy≤2()4x y+=224=1,所以1xy≥1.又1xy≥M恒成立,所以M≤1,即M的最大值为1.3. (-∞,-3]【解析】设f(x)=x+23x+=(x+3)+23x+-3,因为x>-3,所以x+3>0,故f(x)≥23=2-3,当且仅当-3时等号成立,所以a的取值范围是(-∞,-3].4.12∞⎛⎫+⎪⎝⎭,【解析】设f(x)=x2+ax-3a.因为对任意实数x∈[-1,1],不等式x2+ax-3a<0恒成立,所以(-1)1--30(1)1-30f a af a a=<⎧⎨=+<⎩,,解得a>12.5.(-1,2)【解析】原不等式变形为m2-m<12x⎛⎫⎪⎝⎭,因为函数y=12x⎛⎫⎪⎝⎭在(-∞,-1]上是减函数,所以12x⎛⎫⎪⎝⎭≥-112⎛⎫⎪⎝⎭=2.当x∈(-∞,-1]时,m2-m<12x⎛⎫⎪⎝⎭恒成立等价于m2-m<2,解得-1<m<2.6. (-∞,-4]∪[0,+∞)【解析】由题意知f'(x)=2x+2+ax=222x x ax++,因为f(x)在区间(0,1]上恒为单调函数,所以f'(x)在区间(0,1]上恒大于等于0或恒小于等于0,所以2x2+2x+a≥0或2x2+2x+a≤0在区间(0,1]上恒成立,即a≥-(2x2+2x)或a≤-(2x2+2x),而函数y=-2x2-2x在区间(0,1]上的值域为[-4,0),所以a≥0或a≤-4.7. 8【解析】令a=2y-1,b=x-1,则22-1xy+24-1yx=2(1)ba++2(1)ab+,问题转化为求2(1)ba++2(1)ab+的最小值.又2(1)b a ++2(1)a b +≥2×ab =2×ab =2ab ab ab ⎛++ ⎪⎭≥2×(2+2)=8,当且仅当a=b=1,即x=2,y=1时取等号.8. {8,-2} 【解析】当b ≤0时,由(ax+3)(x 2-b )≤0得ax+3≤0在x ∈(0,+∞)上恒成立,则a<0,且a ·0+3≤0,矛盾,故b>0.当b>0时,由(ax+3)(x 2-b )≤0可设f (x )=ax+3,g (x )=x 2-b ,又g (x )的大致图象如图所示,那么由题意可知03-a b a <⎧⎪⎨=⎪⎩,,再由a ,b 是整数得到-19a b =⎧⎨=⎩,或-31a b =⎧⎨=⎩,,因此a+b=8或-2.(第8题)二、 解答题9. (1) 由题意得(-1)0(3)0f f =⎧⎨=⎩,,即-5093-30a b a b +=⎧⎨+=⎩,, 解得-14.a b =⎧⎨=⎩,(2) 因为f (1)=2,所以a+b=1,所以1a +4b =(a+b )14a b ⎛⎫+ ⎪⎝⎭=5+b a +4a b ≥9,当且仅当b=2a=12时取等号.10. (1) 由题知5=a+c+2,即c=3-a.又6<4a+c+4<11,所以-13<a<43.又a∈N*,所以a=1,c=2. 所以f(x)=x2+2x+2.(2) 由已知得2(m-1)≤x+2x在x∈[1,2]上恒成立.因为当x∈[1,2]时,x+2x∈3⎡⎤⎣⎦,所以2(m-1)≤2,即m+1,所以实数m的取值范围为(-∞+1].11. (1) 当b=24a+1时,函数f(x)=22ax⎛⎫+⎪⎝⎭+1,故其图象的对称轴为直线x=-2a.当a≤-2时,g(a)=f(1)=24a+a+2;当-2<a≤2时,g(a)=f-2a⎛⎫⎪⎝⎭=1;当a>2时,g(a)=f(-1)=24a-a+2.综上,g(a)=222-2 41-22-2 2.4aa aaaa a⎧++≤⎪⎪⎪<≤⎨⎪⎪+>⎪⎩,,,,,(2) 设s,t为方程f(x)=0的解,且-1≤t≤1,则-.s t a st b+=⎧⎨=⎩,因为0≤b-2a≤1,所以-22tt+≤s≤1-22tt+(-1≤t≤1).当0≤t≤1时,2-22tt+≤st≤2-22t tt+,由于-23≤2-22tt+≤0和-13≤2-22t tt+≤9-4,所以-23≤b≤9-.当-1≤t<0时,2-22t tt+≤st≤2-22tt+,由于-2≤2-22tt+<0和-3≤2-22t tt+<0,所以-3≤b<0.故b的取值范围是-3⎡⎣,.。
2022年高考数学二轮复习题型专项练3 客观题12+4标准练(C)
![2022年高考数学二轮复习题型专项练3 客观题12+4标准练(C)](https://img.taocdn.com/s3/m/da3eff4d65ce050877321344.png)
题型专项练3 客观题12+4标准练(C)一、单项选择题1.复数z=1-i 31+2i的虚部为( )A.-15iB.15iC.-15D.152.已知集合M={x|lg(x-1)≤0},N={x||x|<2},则M ∪N=( ) A.⌀ B.(1,2)C.(-2,2]D.{-1,0,1,2}3.4位优秀党务工作者到3个基层单位进行百年党史宣讲,每人宣讲1场,每个基层单位至少安排1人宣讲,则不同的安排方法数为( ) A.81 B.72C.36D.64.若向量a ,b 满足|a |=2,|b |=√3,且(a -b )⊥(2a +3b ),则a 与b 夹角的余弦值为( ) A.√112B.√336C.√215D.√365.核酸检测分析是用荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量X n 与扩增次数n 满足lg X n =n lg(1+p )+lg X 0,其中p 为扩增效率,X 0为DNA 的初始数量.已知某被测标本DNA 扩增10次后,数量变为原来的100倍,则该样本的扩增效率p 约为( ) (参考数据:100.2≈1.585,10-0.2≈0.631) A.0.369B.0.415C.0.585D.0.6316.某地区为落实乡村振兴战略,帮助农民脱贫致富,引入一种特色农产品种植,该农产品上市时间仅能维持5个月,预测上市初期和后期会因产品供应不足使价格持续上涨,而中期又将出现供大于求使价格连续下跌.经研究其价格模拟函数为f (t )=t (t-3)2+4(0≤t ≤5,其中t=0表示5月1日,t=1表示6月1日,以此类推).为保护农户的经济效应,当地政府计划在价格下跌时积极拓宽外销,请你预测该农产品价格下跌的月份为( ) A.5月和6月 B.6月和7月 C.7月和8月 D.8月和9月7.已知双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,若双曲线C 上存在点P 满足∠F 2PO=2∠F 1PO=π3,则该双曲线的离心率为( ) A.√3+1B.√2+1C.√3D.√28.已知函数f (x )的定义域为R ,f (5)=4,f (x+3)是偶函数,任意x 1,x 2∈[3,+∞)满足f (x 1)-f (x 2)x1-x 2>0,则不等式f (3x-1)<4的解集为( ) A.(23,3) B.(-∞,23)∪(2,+∞)C.(2,3)D.(23,2)二、多项选择题9.已知函数f(x)=cos(x+π6),则()A.2π为f(x)的一个周期B.f(x)的图象关于直线x=4π3对称C.f(x)在区间(π2,π)内单调递减D.f(x+π)的一个零点为π310.已知ln x>ln y>0,则下列结论正确的是()A.1x <1yB.(13)x>(13)yC.log y x>log x yD.x2+4y(x-y)>811.如图,在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.D1D⊥平面AEFB.A1G∥平面AEFC.异面直线A1G与EF所成角的余弦值为√1010D.点G到平面AEF的距离是点C到平面AEF的距离的2倍12.如图,在数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和,则下列说法正确的是()1 3 5 7 9 11…4 8121620…12202836……A.第6行第1个数为192B.第10行的数从左到右构成公差为210的等差数列C.第10行前10个数的和为95×29D.数表中第2 021行第2 021个数为6 061×22 020三、填空题13.在一次期中考试中某学校高三全部学生的数学成绩X 服从正态分布N (μ,σ2),若P (X ≥90)=0.5,且P (X ≥110)=0.2,则P (X ≤70)= .14.已知两条直线l 1:y=2x+m ,l 2:y=2x+n 与圆C :(x-1)2+(y-1)2=4交于A ,B ,C ,D 四点,且四边形ABCD 为正方形,则|m-n|的值为 . 15.如图,O 是滑槽AB 的中点,短杆ON 可绕点O 转动,长杆MN 通过点N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动.当点D 在滑槽AB 内作往复移动时,带动点N 绕点O 转动,点M 也随之运动.记点N 的运动轨迹为C 1,点M 的运动轨迹为C 2.若ON=DN=1,MN=3,过轨迹C 2上的点P 向轨迹C 1作切线,则切线长的最大值为 .16.阿基米德在他的著作《论球和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球(与圆柱的两底面及侧面都相切的球)的体积与圆柱的体积之比等于它们的表面积之比.可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比,则该比值的最大值为 .题型专项练3 客观题12+4标准练(C)1.C 解析 因为z=1-i 31+2i=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35−15i,所以复数z 的虚部为-15.2.C 解析 根据题意,由lg(x-1)≤0,得0<x-1≤1,即1<x ≤2,则集合M={x|lg(x-1)≤0}={x|1<x ≤2}.由|x|<2,得-2<x<2,则N={x||x|<2}={x|-2<x<2}.故M ∪N={x|-2<x ≤2}=(-2,2].3.C 解析 根据题意,必有两人去同一个基层单位进行宣讲,故先从4位优秀党务工作者中选两人,有C 42=6种选法,将其看成整体,再和另外两人分配到3个基层单位,有A 33=6种分配方案,所以共有6×6=36种不同的安排方案.4.D 解析 由已知得(a -b )·(2a +3b )=2a 2+a ·b -3b 2=0,|a |=2,|b |=√3,则2√3cos <a ,b >-1=0,故cos <a ,b >=√36.5.C 解析 由题意知lg(100X 0)=10lg(1+p )+lg X 0,即2+lg X 0=10lg(1+p )+lg X 0,所以1+p=100.2≈1.585,解得p ≈0.585.6.B 解析 由f (t )=t (t-3)2+4(t ∈[0,5]),得f'(t )=(t-3)2+2t (t-3)=3(t-1)(t-3),当t ∈[0,1)时,f (t )单调递增;当t ∈(1,3)时,f (t )单调递减;当t ∈(3,5]时,f (t )单调递增.根据题意,可知该农产品价格下跌的月份为6月和7月.7.A解析由∠F2PO=2∠F1PO=π3,可知∠F1PF2=π2,又O为F1F2的中点,所以∠F1F2P=π3.根据题意可知|F1F2|=2c,则|PF2|=c,|PF1|=√3c,所以√3c-c=2a,所以e=ca =√3-1=√3+1.8.D解析因为f(x+3)是偶函数,所以f(x)的图象关于直线x=3对称,所以f(5)=f(1)=4.因为任意x1,x2∈[3,+∞)满足f(x1)-f(x2)x1-x2>0,所以f(x)在区间[3,+∞)内单调递增,在区间(-∞,3)内单调递减,所以f(3x-1)<4等价于1<3x-1<5,解得23<x<2.9.AD解析函数f(x)=cos(x+π6)的最小正周期为2π,故A正确;由x+π6=kπ,k∈Z,得x=-π6+kπ,k∈Z,无论k取何值,x≠4π3,故B错误;函数f(x)=cos(x+π6)在区间(π2,5π6)内单调递减,在区间(5π6,π)内单调递增,故C错误;∵f(x+π)=cos(x+7π6),∴f(π3+π)=cos7π6+π3=cos3π2=0,故D正确.10.ACD解析因为ln x>ln y>0,所以x>y>1,所以1x <1y,所以A正确;因为x>y>1,所以(13)x<(13)y,所以B错误;因为x>y>1,所以log y x>log y y=1,log x y<log x x=1, 所以log y x>log x y,所以C正确;因为x>y>1,所以0<y(x-y)≤[y+(x-y)2]2=x24,所以x2+4y(x-y)≥x2+16x2≥8,当且仅当x=2,y=1时,等号成立,又y>1,所以x2+4y(x-y)>8,所以D正确.11.BCD解析对于A,假设D1D⊥平面AEF,因为D1D∥A1A,所以AA1⊥平面AEF,显然不可能,所以假设不成立,故A错误;对于B,取B1C1的中点Q,连接GQ,A1Q(图略),则GQ∥EF,A1Q∥AE,可知GQ∥平面AEF,A1Q∥平面AEF,又GQ∩A1Q=Q,所以平面A1GQ∥平面AEF,又A1G⊂平面A1GQ,所以A1G∥平面AEF,故B正确;对于C,因为EF ∥GQ ,所以∠A 1GQ 或其补角为异面直线A 1G 与EF 所成的角, 设正方体的棱长为2,则A 1G=A 1Q=√5,QG=√2, 由余弦定理得cos ∠A 1GQ=2×√5×√2=√1010,故C 正确;对于D,连接GC ,交FE 于点O ,连接GF (图略),则△OCE ∽△OGF ,所以OGOC =GFCE =2,所以点G 到平面AEF 的距离是点C 到平面AEF 的距离的2倍,故D 正确.12.ABD 解析 数表中,每行是等差数列,且第1行的首项是1,公差为2,第2行的首项是4,公差为4,第3行的首项是12,公差为8,每行的第1个数满足a n =n×2n-1,每行的公差构成一个以2为首项,2为公比的等比数列,公差满足d n =2n .对于选项A,第6行第1个数为a 6=6×26-1=192,故A 正确;对于选项B,第10行的数从左到右构成公差为d 10=210的等差数列,故B 正确;对于选项C,第10行第1个数为a 10=10×210-1=10×29,公差为210,所以前10个数的和为10×10×29+10×92×210=190×29,故C 错误;对于选项D,数表中第2 021行第1个数为a 2 021=2 021×22 021-1=2 021×22 020,第2 021行的公差为22 021,故数表中第2 021行第2 021个数为2 021×22 020+(2 021-1)×22 021=6 061×22 020,故D 正确.13.0.2 解析 由题意易得μ=90,所以P (X ≤70)=P (X ≥110)=0.2. 14.2√10 解析 由题意知l 1∥l 2,若四边形ABCD 为正方形,则正方形的边长等于直线l 1,l 2之间的距离d ,d=√5, 设圆C 的半径为r ,由正方形的性质知d=√2r=2√2, 即√5=2√2, 故|m-n|=2√10. 15.√15 解析 以滑槽AB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系如图所示.因为|ON|=1,所以点N 的运动轨迹C 1是以O 为圆心,半径为1的圆,其方程为x 2+y 2=1.设点N 的坐标为(cos θ,sin θ),由于|ON|=|DN|=1,易得D (2cos θ,0),由|MN|=3,得NM ⃗⃗⃗⃗⃗⃗⃗ =3ND⃗⃗⃗⃗⃗⃗ ,设M (x ,y ),则(x-cos θ,y-sin θ)=3(cos θ,-sin θ),可得M (4cos θ,-2sin θ),所以点M的运动轨迹C2是椭圆,其方程为x 216+y24=1.设轨迹C2上的点P(4cos α,2sin α),则|OP|2=16cos2α+4sin2α=4+12cos2α≤16,故切线长为√|OP|2-12≤√16-1=√15,即切线长的最大值为√15.16.12解析设圆锥的底面半径为r,母线长为l,圆锥内切球的半径为R,作出圆锥的轴截面如图所示.设∠OBC=θ,∵tan θ=Rr ,∴r=Rtanθ.∵OD⊥AB,OE⊥BC,∴∠DBE+∠DOE=π,又∠AOD+∠DOE=π,∴∠AOD=∠DBE=2θ,∴AD=R tan 2θ,∴l+r=AD+BD+r=AD+2r=R tan 2θ+2Rtanθ.又圆锥表面积S1=πr(l+r),圆锥内切球的表面积S2=4πR2,故所求比值为S2S1= 4πR2πR tanθ(2Rtanθ1-tan2θ+2Rtanθ)=2tan2θ(1-tan2θ).令t=tan2θ>0,则S2S1=2t(1-t)=-2t2+2t, 故当t=12时,S2S1取得最大值12.。
2014年高考数学二轮复习精品资料-高效整合篇专题03 三角函数与解三角形(文)(预测)
![2014年高考数学二轮复习精品资料-高效整合篇专题03 三角函数与解三角形(文)(预测)](https://img.taocdn.com/s3/m/b0154d64011ca300a6c39031.png)
专题三 三角函数与解三角形强化测试卷(一) 选择题(12*5=60分)1. 【广东省珠海市2014届高三9月摸底考试数学(文)】s i n480的值为( )A .12-B .2-C .12D .22.【广东省广州市海珠区2014届高三入学摸底考试数学文试题】将函数()sin(2)6f x x π=+的图像向 右平移6π个单位,那么所得的图像所对应的函数解析式是( ) .A sin 2y x = .B cos 2y x = .C 2sin(2)3y x π=+.D sin(2)6y x π=-3.【浙江省绍兴市第一中学2014届高三上学期回头考】已知cos 23θ=则44sin cos θθ-的值为 ( )A3 B 3- C 1811D 29-4.【内蒙古赤峰市全市优质高中2014届高三摸底考试(文)】已知0ω>,函数()cos()4f x x πω=+在(,)2ππ上单调递增,则ω的取值范围是( )A .15[,]24B .17[,]24C .39[,]44D .37[,]245.【2014届吉林市普通高中高中毕业班复习检测】为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A.向右平移6π个单位长度 B. 向右平移3π个单位长度 C.向左平移6π个单位长度D. 向左平移3π个单位长度6.【安徽省六校教育研究会2014届高三素质测试文】函数)42sin()(π-=x x f 在]2,0[π上的单增区间是 ( ) A .]8,0[π B .]2,8[ππC .]83,0[πD .]2,83[ππ7.【安徽省池州一中2014届高三第一次月考数学(文)】已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<,其导函数()f x '的部分图像如图所示,则函数()f x 的解析式为( )A .1()2sin 24f x x π⎛⎫=+ ⎪⎝⎭B .1()4sin 24f x x π⎛⎫=+ ⎪⎝⎭C .()4sin 4f x x π⎛⎫=+ ⎪⎝⎭D .13()4sin 24f x x π⎛⎫=+⎪⎝⎭8.【安徽省示范高中2014届高三上学期第一次联考数学(文)】若sin()3πα-=-且3(,)2παπ∈,则sin()22πα+=( )A .3-B .6-C .6D .3得9.【吉林市普通中学2013-2014学年度高中毕业班摸底测试文】已知函数()sin()3cos()(0,||)2f x x x πωφωφωφ=+-+><,其图象相邻的两条对称轴方程为0x =与2x π=,则( )A .()f x 的最小正周期为2π,且在(0,)π上为单调递增函数B .()f x 的最小正周期为2π,且在(0,)π上为单调递减函数C .()f x 的最小正周期为π, 且在(0,)2π上为单调递增函数 D .()f x 的最小正周期为π, 且在(0,)2π上为单调递减函数10.【江西师大附中高三年级2013-2014开学考试】已知函数2()sin 22cos 1f x x x =+-,将()f x 的图象上各点的横坐标缩短为原来的12倍,纵坐标不变,再将所得图象向右平移4π个单位,得到函数()y g x =的图象,则函数()y g x =的解析式为( )A .()2g x x =B .()2g x x =C .3()2)4g x x π=-D .()2g x x =11.【四川省德阳中学2014届高三“零诊”试题文科】定义在R 上的偶函数()f x 满足(2)()f x f x -=,且在[3,2]--上是减函数,,αβ是钝角三角形的两个锐角,则下列不等式中正确的是( )A.(sin )(cos )f f αβ>B.(sin )(cos )f f αβ<C.(cos )(cos )f f αβ<D.(cos )(cos )f f αβ>12.【广东省广州市越秀区2014届高三上学期摸底考试(文)】在△ABC 中,4cos 5A =,8AB AC ⋅=,则△ABC 的面积为 ( )A.65B.3C.125D.6填空题(4*5=20分)13.【江苏省泰州中学2013-2014学年度第一学期高三数学考试】函数()2sin()4f x xπ=-,[,0]x π∈-的单调递减区间单间为__________.14.【吉林市普通中学2013-2014学年度高中毕业班摸底测试文】在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒.则b = .15.【四川省德阳中学2014届高三“零诊”试题文科】已知2242-=--)sin()cos(πααπ,则_______sin cos =+αα16.【安徽省池州一中2014届高三第一次月考数学(文)】已知函数()cos sin f x x x =⋅,给出下列五个说法:①19211124f π⎛⎫= ⎪⎝⎭.②若12()()f x f x =-,则12x x =-.③()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增. ④将函数()f x 的图象向右平移34π个单位可得到1cos22y x =的图象. ⑤()f x 的图象关于点,04π⎛⎫- ⎪⎝⎭成中心对称.其中正确说法的序号是 .中心.(二) 解答题(10+5*12=70分)17. 【江西师大附中2014届高三年级10月测试试卷文】已知函数(i n c o s )()2c o s ,x f x x x x R -=∈.(I)求函数()f x 图像的对称中心;(Ⅱ)求函数()f x 在区间⎥⎦⎤⎢⎣⎡43,8ππ上的最小值和最大值.18.【湖北省重点中学2014届高三10月阶段性统一考试(文)】已知函数()()sin ,0,0,2f x A x x R A πωϕωϕ⎛⎫=+∈>>< ⎪⎝⎭的部分图象如图3所示.(1)试确定函数()f x 的解析式; (2)若123f απ⎛⎫=⎪⎝⎭,求2cos 3πα⎛⎫- ⎪⎝⎭的值.19.[山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考文】已知函数2()sin(2)2cos 1()6f x x x x R π=-+-∈.(1)求()f x 的单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知1()2f A =,2a b c =+,18bc =.求a 的值.20. 【宁夏银川一中2014届高三年级第一次月考文科】已知函数x x x f cos 2sin 32)(-= (Ⅰ)若],0[π∈x ,求)(x f 的最大值和最小值;(Ⅱ)若0)(=x f ,求)4sin(21sin 2cos 22π+--x x x的值.21.【江苏省苏州市2014届高三九月测试试卷】已知向量(co s,s i n )A A =-m ,(cos ,sin )B B =n ,cos 2C ⋅=m n ,其中,,A B C 为ABC ∆的内角.(Ⅰ)求角C 的大小;(Ⅱ)若6AB =,且18CA CB ⋅= ,求,AC BC 的长.22. 【广东省广州市越秀区2014届高三上学期摸底考试(文)】已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<,x ∈R 的最大值是1,最小正周期是2π,其图像经过点(0,1)M .(1)求()f x 的解析式;(2)设A 、B 、C 为△ABC 的三个内角,且3()5f A =,5()13f B =,求()f C 的值.(四)附加题(15分)23.如图4所示,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O 为半圆的圆心,1AB =,2BC =,现要将此铁皮剪出一个等腰三角形PMN ,其底边MN BC ⊥.(1)设30MOD ∠=,求三角形铁皮PMN 的面积;(2)求剪下的铁皮三角形PMN 的面积的最大值.68;。
《创新设计》2021届高考数学(理)二轮复习(全国通用) 训练专题三 数列 第1讲 Word版含答案
![《创新设计》2021届高考数学(理)二轮复习(全国通用) 训练专题三 数列 第1讲 Word版含答案](https://img.taocdn.com/s3/m/6c2b89df7e192279168884868762caaedd33ba66.png)
一、选择题1.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A.3 B.4 C.5D.6解析 由已知得S m -S m -1=a m =-16,S m +1-S m =a m +1=32, 故公比q =-2,又S m =a 1-a m q1-q =-11,故a 1=-1,又a m =a 1q m -1=-16,代入可求得m =5. 答案 C2.(2022·新课标全国Ⅱ卷)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于( ) A.n (n +1) B.n (n -1) C.n (n +1)2D.n (n -1)2解析 由a 2,a 4,a 8成等比数列,得a 24=a 2a 8,即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2.∴S n =2n +n (n -1)2×2=2n +n 2-n =n (n +1). 答案 A3.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A.150 B.-200 C.150或-200D.400或-50解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30.又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,则S 40=S 30+(S 30-S 20)2S 20-S 10=70+40220=150. 答案 A4.(2021·浙江卷)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A.a 1d >0,dS 4>0 B.a 1d <0,dS 4<0 C.a 1d >0,dS 4<0D.a 1d <0,dS 4>0解析 ∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )·(a 1+7d ),整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d 3,∴dS 4=-2d 23<0,故选B.答案 B5.(2022·福州二模)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A.6 B.7 C.8D.9解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的状况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的状况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4. ∴p =5,q =4,∴p +q =9,故选D. 答案 D 二、填空题6.(2022·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________.解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎨⎧a 1=8,q =12,∴a 1a 2…a n =⎝ ⎛⎭⎪⎫12(-3)+(-2)+…+(n -4)=⎝ ⎛⎭⎪⎫1212n (n -7)=⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494, 当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494取到最小值-6,此时⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -722-494取到最大值26,所以a 1a 2…a n 的最大值为64. 答案 647.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意正整数m ,n ,都有a m +n =a m ·a n ,若S n <t 恒成立,则实数t 的最小值为________.解析 令m =1,可得a n +1=15a n ,所以{a n }是首项为15,公比为15的等比数列,所以S n =15⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫15n 1-15=14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫15n <14,故实数t 的最小值为14.答案 148.(2021·新课标全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 设数列{a n }的首项和公差分别为a 1,d , 则⎩⎪⎨⎪⎧10a 1+45d =0,15a 1+105d =25,⎩⎨⎧a 1=-3,d =23, 则nS n =n ⎣⎢⎡⎦⎥⎤-3n +n (n -1)3=n 33-103n 2. 设函数f (x )=x 33-103x 2,则f ′(x )=x 2-203x ,当x ∈⎝ ⎛⎭⎪⎫0,203时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫203,+∞时,f ′(x )>0,所以函数f (x )min =f ⎝ ⎛⎭⎪⎫203,但6<203<7,且f (6)=-48,f (7)=-49, 由于-48>-49,所以最小值为-49. 答案 -49 三、解答题9.(2022·新课标全国Ⅱ卷)已知数列{a n }满足a 1=1,a n +1=3a n +1, (1)证明{a n +12}是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32.证明 (1)由a n +1=3a n +1,得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.由于当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n<32.10.数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意,可得2a n +1+S n -2=0.①当n ≥2时,2a n +S n -1-2=0.②①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2).由于a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列. 所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12n -1.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2,明显{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.11.(2022·太原模拟)已知数列{a n }的前n 项和为S n ,且S n =a n +1+n -2,n ∈N *,a 1=2. (1)证明:数列{a n -1}是等比数列,并求数列{a n }的通项公式; (2)设b n =3nS n -n +1(n ∈N *)的前n 项和为T n ,证明:T n <6.证明 (1)由于S n =a n +1+n -2,当n ≥2时,S n -1=a n +(n -1)-2=a n +n -3, 两式相减,得a n =a n +1-a n +1, 即a n +1=2a n -1.设c n =a n -1,代入上式,得c n +1+1=2(c n +1)-1, 即c n +1=2c n .又S n =a n +1+n -2,则a n +1=S n -n +2, 故a 2=S 1-1+2=3.所以c 1=a 1-1=1,c 2=a 2-1=2,故c 2=2c 1.综上,对于正整数n ,c n +1=2c n 都成立,即数列{a n -1}是等比数列,其首项a 1-1=1,公比q=2.所以a n -1=1×2n -1,故a n =2n -1+1.(2)由S n =a n +1+n -2,得S n -n +2=a n +1=2n +1,故S n -n +1=2n .所以b n =3n2n . 所以T n =b 1+b 2+...+b n -1+b n =32+622+ (3)2n ,① 2×①,得2T n =3+62+3×322+ (3)2n -1,②②-①,得T n =3+32+322+…+32n -1-3n2n=3⎝ ⎛⎭⎪⎫1+12+122+…+12n -1-3n 2n=3×1-⎝ ⎛⎭⎪⎫12n 1-12-3n 2n =6-3n +62n .由于3n +62n >0,所以T n =6-3n +62n <6.。
高考数学二轮总复习专题三综合测试题 理
![高考数学二轮总复习专题三综合测试题 理](https://img.taocdn.com/s3/m/beae33a8b0717fd5360cdc5f.png)
专题三综合测试题(时间:120分钟满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆O的方程是x2+y2-8x-2y+10=0,过点M(3,0)的最短弦所在的直线方程是( )A.x+y-3=0 B.x-y-3=0C.2x-y-6=0 D.2x+y-6=0解析:x2+y2-8x-2y+10=0,即(x-4)2+(y-1)2=7,圆心O(4,1),设过点M(3,0)的直线为l,则k OM=1,故k l=-1,∴y=-1×(x-3),即x+y-3=0.答案:A2.过点(-1,3)且平行于直线x-2y+3=0的直线方程为( )A.x-2y+7=0 B.2x+y-1=0C.x-2y-5=0 D.2x+y-5=0解析:因为直线x-2y+3=0的斜率是12,故所求直线的方程为y-3=12(x+1),即x-2y+7=0.答案:A3.曲线y=2x-x3在横坐标为-1的点处的切线为l,则点P(3,2)到直线l的距离为( )A.722B.922C.1122D.91010解析:曲线y=2x-x3在横坐标为-1的点处的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k=y′|x=-1=2-3×(-1)2=-1,故切线l的方程为y-(-1)=-1×[x -(-1)],整理得x+y+2=0,由点到直线的距离公式得点P(3,2)到直线l的距离为|3+2+2|12+12=722.答案:A4.若曲线x2+y2+2x-6y+1=0上相异两点P、Q关于直线kx+2y-4=0对称,则k 的值为( )A .1B .-1 C.12D .2解析:曲线方程可化为(x +1)2+(y -3)2=9,由题设知直线过圆心,即k ×(-1)+2×3-4=0,∴k =2.故选D.答案:D5.直线ax -y +2a =0(a ≥0)与圆x 2+y 2=9的位置关系是( ) A .相离 B .相交 C .相切D .不确定解析:圆x 2+y 2=9的圆心为(0,0),半径为3.由点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2得该圆圆心(0,0)到直线ax -y +2a =0的距离d =2aa 2+-12=2aa 2+12,由基本不等式可以知道2a ≤a 2+12,从而d =2aa 2+12≤1<r =3,故直线ax -y +2a =0与圆x 2+y 2=9的位置关系是相交.答案:B6.设A 为圆(x +1)2+y 2=4上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25B .(x +1)2+y 2=5C .x 2+(y +1)2=25D .(x -1)2+y 2=5解析:设圆心为O ,则O (-1,0),在Rt △AOP 中,|OP |=|OA |2+|AP |2=4+1= 5. 答案:B7.(2011·济宁一中高三模拟)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .-14B .-4C .4D.14解析:双曲线标准方程为:y 2-x 2-1m=1,由题意得-1m=4, ∴m =-14.答案:A8.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值是( )A .2B .4C .6D .8解析:如图,当点P 、M 、N 在如图所示的位置时,|PM |-|PN |可取得最大值,注意到两圆圆心分别为双曲线两焦点,故|PM |-|PN |=(|PF 1|+|F 1M |)-(|PF 2|-|F 2N |)=|PF 1|-|PF 2|+|F 1M |+|F 2N |=2a +2R =6.答案:C9.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是上述椭圆和双曲线的离心率,则( )A.1e 21+1e 22=4B .e 21+e 22=4C.1e 21+1e 22=2D .e 21+e 22=2解析:设椭圆的长半轴长为a ,双曲线的实半轴长为m ,则⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ①||PF 1|-|PF 2||=2m ②.①2+②2得2(|PF 1|2+|PF 2|2)=4a 2+4m 2,又|PF 1|2+|PF 2|2=4c 2,代入上式得4c 2=2a 2+2m 2, 两边同除以2c 2,得2=1e 21+1e 22,故选C.答案:C10.已知双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,则双曲线的离心率为( )A. 3B. 2C.52D.22解析:两条渐近线y =±b a x 互相垂直,则-b 2a2=-1,则b 2=a 2,双曲线的离心率为e =c a =2a 2a=2,选B. 答案:B11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )A. 2B. 3C. 5D .2解析:焦点到渐近线的距离等于实轴长,可得b =2a ,e 2=c 2a 2=1+b 2a2=5,所以e = 5.答案:C12.(2011·济南市质量调研)已知点F 1、F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)解析:依题意得,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e<2,e2-2e -1<0,(e -1)2<2,所以1<e <1+2,选D. 答案:D二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上. 13.(2011·安徽“江南十校”联考)设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆定义|PM |+|PF 1|=|PM |+2×5-|PF 2|,而|PM |-|PF 2|≤|MF 2|=5,所以|PM |+|PF 1|≤2×5+5=15.答案:1514.(2011·潍坊市高考适应性训练)已知双曲线的中心在坐标原点,焦点在x 轴上,且一条渐近线为直线3x +y =0,则该双曲线的离心率等于________.解析:设双曲线方程为x 2a 2-y 2b 2=1,则b a =3,b 2a 2=3,c 2-a 2a 2=3,∴e =ca=2.答案:215.(2011·潍坊2月模拟)双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析:双曲线右焦点为(3,0),渐近线方程为:y =±2x ,则由点到直线的距离公式可得距离为 6.答案: 616.(2011·郑州市质量预测(二))设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.解析:∵x 2=4y ,∴p =2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=8.∵|AF →|=y 1+p2,|BF →|=y 2+p2,∴|AF →|+|BF →|=y 1+y 2+p =8+2=10.答案:10三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)(2011·陕西)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解:(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上,∴x 2+⎝⎛⎭⎫54y 2=25,即点M 的轨迹C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为 |AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎫1+1625x 1-x 22=4125×41=415. 18.(本小题满分12分)(2011·广东)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.(1)求圆C 的圆心轨迹L 的方程;(2)已知点M ⎝ ⎛⎭⎪⎫355,455,F (5,0)且P 为L 上动点,求||MP |-|FP ||的最大值及此时点P 的坐标.解:(1)设动圆C 的圆心C (x ,y ),半径为r .两个定圆半径均为2,圆心分别为F 1(-5,0),F 2(5,0),且|F 1F 2|=2 5.若⊙C 与⊙F 1外切与⊙F 2内切,则 |CF 1|-|CF 2|=(r +2)-(r -2)=4 若⊙C 与⊙F 1内切与⊙F 2外切,则|CF 2|-|CF 1|=(r +2)-(r -2)=4. ∴||CF 1|-|CF 2||=4且4<2 5.∴动点C 的轨迹是以F 1,F 2为焦点,实轴长为4的双曲线.这时a =2,c =5,b =c 2-a 2=1,焦点在x 轴上. ∴点C 轨迹方程为x 24-y 2=1.(2)若P 在x 24-y 2=1的左支上,则||PM |-|PF ||<|MF |. 若P 在x 24-y 2=1的右支上,由图知,P 为射线MF 与双曲线右支的交点,||FM |-|PF ||max =|MF |= ⎝ ⎛⎭⎪⎫5-3552+⎝ ⎛⎭⎪⎫4552=2. 直线MF :y =-2(x -5).由⎩⎪⎨⎪⎧y =-2x -5x 24-y 2=1得15x 2-325x +84=0,解之得:⎩⎪⎨⎪⎧x 1=655y 1=-255,或⎩⎪⎨⎪⎧x 2=14515<5y 2=-58515舍,所以P 点坐标为⎝ ⎛⎭⎪⎫655,-255. 19.(本小题满分12分)(2011·安徽)设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.解:由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy . ①再设B (x 1,y 1),由BQ →=λQA →,即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=1+λx -λ,y 1=1+λy 0-λ.②将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=1+λx -λ,y 1=1+λ2x 2-λ1+λy -λ.③又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2.(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2. 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0. 因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1. 20.(本小题满分12分)(2011·天津)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解:(1)设F 1(-c,0),F 2(c,0)(c >0),由题意,可得|PF 2|=|F 1F 2|,即a -c 2+b 2=2c ,整理得2⎝⎛⎭⎫c a 2+c a -1=0,得c a =-1(舍)或c a =12,所以e =12. (2)由(1)知a =2c ,h =3c ,可得椭圆方程为3x 2+4y 2=12c 2. 直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3x -c .消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎪⎨⎪⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y ,于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝ ⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 21.(本小题满分12分)(2011·山东)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点.(1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值; (3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62?若存在,判断△DEG的形状;若不存在,请说明理由.解:(1)证明:①当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称. 所以x 2=x 1,y 2=-y 1, 因为P (x 1,y 1)在椭圆上,因此x 213+y 212=1. ①又因为S △OPQ =62.所以|x 1|·|y 1|=62. ② 由①②得|x 1|=62,|y 1|=1, 此时x 21+x 22=3,y 21+y 22=2.②当直线l 的斜率存在时,设直线l 的方程为y =kx +m . 由题意知m ≠0,将其代入x 23+y 22=1得(2+3k 2)x 2+6kmx +3(m 2-2)=0. 其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0.即3k 2+2>m 2. (*) 又x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-22+3k 2.所以|PQ |=1+k 2·x 1+x 22-4x 1x 2=1+k 2·263k 2+2-m 22+3k 2.因为点O 到直线l 的距离为d =|m |1+k2所以S △OPQ =12|PQ |·d=121+k 2·263k 2+2-m 22+3k 2·|m |1+k 2=6|m |3k 2+2-m 22+3k 2又S △OPQ =62. 整理得3k 2+2=2m 2,且符合(*)式.此时,x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝⎛⎭⎫-6km 2+3k 22-2×3m 2-22+3k 2=3.y 21+y 22=23(3-x 21)+23(3-x 22)=4-23x 21+x 22)=2.综上所述,x 21+x 22=3;y 21+y 22=2,结论成立.(2)解法一:①当直线l 的斜率不存在时. 由(1)知|OM |=|x 1|=62.|PQ |=2|y 1|=2. 因此|OM |·|PQ |=62×2= 6. ②当直线l 的斜率存在时,由(1)知:x 1+x 22=-3k 2m .y 1+y 22=k⎝⎛⎭⎫x 1+x 22+m =-3k 22m m =-3k 2+2m 22m =1m.|OM |2=⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=9k 24m 2+1m 26m 2-24m 2=12⎝⎛⎭⎫3-1m 2.|PQ |2=(1+k 2)243k 2+2-m 22+3k 22=22m 2+1m2=2⎝⎛⎭⎫2+1m 2.所以|OM |2·|PQ |2=12×⎝⎛⎭⎫3-1m 2×2×⎝⎛⎭⎫2+1m 2=⎝⎛⎭3-1m 2⎝⎛⎭⎫2+1m 2≤⎝ ⎛⎭⎪⎪⎫3-1m 2+2+1m 222=254. 所以|OM |·|PQ |≤52,当且仅当3-1m 2=2+1m 2,即m =±2时,等号成立.综合(1)(2)得|OM |·|PQ |的最大值为52.解法二:因为4|OM |2+|PQ |2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 21+x 22)-(y 21+y 22)]=10.所以2|OM |·|PQ |≤4|OM |2+|PQ |22=102=5.即|OM |·|PQ |≤52,当且仅当2|OM |=|PQ |=5时等号成立.因此|OM |·|PQ |的最大值为52. (3)椭圆C 上不存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62. 证明:假设存在D (u ,v ),E (x 1,y 1),O (x 2,y 2)满足S △ODE =S △ODG =S △OEG =62, 由(1)得u 2+x 21=3,u 2+x 22=3,x 21+x 22=3,v 2+y 21=2,v 2+y 22=2,y 21+y 22=2,解得:u 2=x 21=x 22=32,v 2=y 21=y 22=1.因此,u ,x 1,x 2只能从±62中选取,v ,y 1,y 2只能从±1中选取,因此D 、E 、G 只能在⎝ ⎛⎭⎪⎫±62,±1这四点中选取三个不同点,而这三点的两两连线中必有一条过原点. 与S △ODE =S △ODG =S △OEG =62矛盾. 所以椭圆C 上不存在满足条件的三点D ,E ,G . 22.(本小题满分14分)(2011·江苏)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆x 24+y 22=1的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k .(1)若直线PA 平分线段MN ,求k 的值; (2)当k =2时,求点P 到直线AB 的距离d ;(3)对任意的k >0,求证:PA ⊥PB .解:(1)由题设知,a =2,b =2,故M (-2,0),N (0,-2),所以线段MN 中点的坐标为⎝ ⎛⎭⎪⎫-1,-22.由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以k =-22-1=22.(2)直线PA 的方程为y =2x ,代入椭圆方程得x 24+4x 22=1,解得x =±23, 因此P ⎝⎛⎭⎫23,43,A ⎝⎛⎭⎫-23,-43.于是C ⎝⎛⎭⎫23,0,直线AC 的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0.因此,d =⎪⎪⎪⎪23-43-2312+12=223.(3)证法一:将直线PA 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k 2记μ=21+2k 2,则P (μ,μk ),A (-μ,-μk ).于是C (μ,0).故直线AB 的斜率为0+μk μ+μ=k2其方程为y =k2(x -μ),代入椭圆方程得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0, 解得x =μ3k 2+22+k 2或x =-μ.因此B ⎝⎛⎭⎫μ3k 2+22+k 2,μk 32+k 2. 于是直线PB 的斜率k 1=μk 32+k2-μk μ3k 2+22+k2-μ=k3-k2+k23k2+2-2+k2=-1k.因此k1k=-1,所以PA⊥PB.证法二:设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(-x1,-y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=0--y1x1--x1=y12x1=k2.从而k1k+1=2k1k2+1=2·y2-y1x2-x1·y2--y1x2--x1+1=2y22-2y21x22-x21+1=x22+2y22-x21+2y21x22-x21=4-4x22-x21=0.因此k1k=-1,所以PA⊥PB.。
《名师伴你行》2022高考数学(理)二轮复习检测:专项突破训练3分类与整合思想 Word版含答案
![《名师伴你行》2022高考数学(理)二轮复习检测:专项突破训练3分类与整合思想 Word版含答案](https://img.taocdn.com/s3/m/de5b1f49ff4733687e21af45b307e87101f6f81a.png)
专项突破训练(三) 分类与整合思想(时间:45分钟 分数:80分) 一、选择题(每小题5分,共30分)1. (2021·江西上饶一模)函数f (x )=2|log 2 x |-⎪⎪⎪⎪⎪⎪x -1x 的图象为( )答案:D解析:函数f (x )的定义域为(0,+∞),当0<x <1时,f (x )=1x +⎝ ⎛⎭⎪⎫x -1x =x ;当x ≥1时,f (x )=x -⎝ ⎛⎭⎪⎫x -1x =1x ,故选D.2.(2021·山东聊城模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( )A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x 2 答案:D解析:将y =ax 2化为x 2=1a y ,当a >0时,准线y =14a ,由已知得3+14a =6,∴1a =12,∴a =112.当a <0时,准线y =-14a ,由已知得⎪⎪⎪⎪⎪⎪3+14a =6,∴a =-136或a=112(舍).∴抛物线方程为y =x 212或y =-136x 2,故选D.3.(2021·四川绵阳二诊)某人依据自己爱好,期望从{W ,X ,Y ,Z }中选2个不同字母,从{0,2,6,8}中选3个不同数字编拟车牌号,要求前3位是数字,后两位是字母,且数字2不能排在首位,字母Z 和数字2不能相邻,那么满足要求的车牌号有( )A .198个B .180个C .216个D .234个 答案:A解析:不选2时,有A 33A 24=72个;选2,不选Z 时,有C 12C 23A 22A 23=72个; 选2,选Z 时,2在数字的中间,有A 23C 12C 13=36个,当2在数字的第三位时,A 23A 13=18个.依据分类加法计数原理知,共有72+72+36+18=198个,故选A.4.(2021·山西高校附中月考)若m 是2和8的等比中项,则圆锥曲线x 2+y2 m =1的离心率是( )A.32B. 5C.32或52D.32或 5答案:D解析:∵m 是2,8的等比中项,∴m 2=2×8=16,∴m =±4,若m =4,∴椭圆x 2+y 2m =1的方程为x 2+y 2m =1,∴其离心率e =1-14=32,若m =-4,则双曲线方程为x 2-y24=1,离心率e =1+4=5,故选D.5.(2021·福建厦门质检)已知f (x )是定义在R 上的奇函数,且f (x -2)=f (x +2),当0<x <2时,f (x )=1-log 2(x +1),则当0<x <4时,不等式(x -2)f (x )>0的解集是( )A .(0,1)∪ (2,3)B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)答案:D解析:当0<x <2时,x -2<0,不等式可化为⎩⎨⎧x -2<0,f (x )<0.即⎩⎨⎧x -2<0,1-log 2(x +1)<0,解得1<x <2,当2<x <4时,x -2>0,不等式可化为⎩⎨⎧x -2>0,f (x )>0,由函数f (x )是奇函数,得f (-x )=-f (x ),又f (x -2)=f (x +2),则f (x )=f (x -2+2)=f (x -2-2)=-f (4-x ),由于0<4-x <2,不等式可化为⎩⎨⎧x -2<0,-1+log 2(5-x )>0,解得2<x <3,所以原不等式的解集为(1,2)∪(2,3),故选D.6.已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 相交于A ,B 两点,则|OA |2+|OB |2(O 为坐标原点)的最小值为( )A .4B .8C .10D .12答案:C解析:设直线l 的斜率为k (k 存在时),与抛物线交于A (x 1,y 1),B (x 2,y 2),则直线l 方程为y =kx -k ,由⎩⎨⎧y 2=4x ,y =kx -k ,得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 2=2k 2+4k2,x 1x 2=1,于是|OA |2+|OB |2=x 21+y 21+x 22+y 22=x 21+4x 1+x 22+4x 2 =⎝ ⎛⎭⎪⎪⎫2k 2+4k 22+8k 2+16k 2-2=16⎝ ⎛⎭⎪⎫1k 2+12-6>10,当斜率不存在时,此时直线l 垂直x 轴,得A (1,2),B (1,-2),所以|OA |2+|OB |2=12+22+12+22=10.综合可知,|OA |2+|OB |2的最小值为10.二、填空题(每小题5分,共20分)7.若三角形三边成等比数列,则公比q 的范围是________.答案:⎝ ⎛⎭⎪⎫5-12,1+52解析:设三边为a ,qa ,q 2a ,其中q >0,则由三角形三边不等关系得①当q ≥1时,a +qa >q 2a ,即q 2-q -1<0, 解得1-52<q <1+52,此时1≤q <1+52.②当q <1时,a 为最大边,qa +q 2a >a ,即q 2+q -1>0,解得q >5-12或q <-1+52.又q >0,此时q >5-12.综合①②,得q ∈ ⎝ ⎛⎭⎪⎪⎫5-12,1+52.8.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是________. 答案:32或34解析:由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC cos B , ∴12=(3)2+BC 2-2×3×BC ×32. 整理,得BC 2-3BC +2=0.∴BC =1或2. 当BC =1时,S △ABC =12AB ·BC sin B =12×3×1×12=34.当BC =2时,S △ABC =12AB ·BC sin B =12×3×2×12=32.综上,△ABC 的面积为32或34.9.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.答案:72或2解析:若∠PF 2F 1=90°,则|PF 1|2=|PF 2|2+|F 1F 2|2.又∵|PF 1|+|PF 2|=6,|F 1F 2|=25,解得|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, ∴|PF 1|2+(6-|PF 1|)2=20, ∴|PF 1|=4,|PF 2|=2,∴|PF 1||PF 2|=2.综上知,|PF 1||PF 2|=72或2.10.(2021·江西南昌一模)已知函数f (x )=⎩⎨⎧a x -1,x ≤0,lg x ,x >0,若关于x 的方程f (f (x ))=0有且只有一个实数解,则实数a 的取值范围为________.答案:(-1,0)∪(0,+∞) 解析:当a >0时,若x >1,f (x )>0,∴f (f (x ))=f (lg x )=lg(lg x )=0⇒lg x =1,∴x =10成立.若x ≤1,f (x )<0,f (f (x ))=f ⎝ ⎛⎭⎪⎪⎫a x -1=a a x -1-1=0无解. ∴a >0时f (f (x ))=0有且只有一个实数解. 当a <0时, 若x >1, f (x )>0,f (f (x ))=f (lg x )=lg(lg x )=0,∴x =10成立.若0<x ≤1,f (x )<0,f (f (x ))=f (lg x )=alg x -1=0无解.若x ≤0,f (x )=a x -1>0,∴f (f (x ))=lg a x -1=0⇒ax -1=1.∴a =x -1.∵x -1≤-1,∴a ≤-1时有解. ∴-1<a <0时无解.综上实数a 的取值范围a >0或-1<a <0. 三、解答题(每题10分,共30分)11.(2021·东北三校一模)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点为F 1,F 2,点A (2,2)在椭圆上,且AF 2与x 轴垂直.(1)求椭圆的方程;(2)过A 作直线与椭圆交于另外一点Β,求△AOB 面积的最大值. 解:(1)由已知得c =2,b 2a =2, 所以a =22,b 2=4, 故椭圆方程为x 28+y 24=1.(2)当AB 斜率不存在时,S ΔAOB =12×22×2=2 2. 当AB 斜率存在时,设其方程为y -2=k ()x -2⎝ ⎛⎭⎪⎫k ≠22.由⎩⎪⎨⎪⎧y =kx +(2-2k ),x 2+2y 2=8,得 ()2k 2+1x 2+4()2-2k kx +2()2-2k 2-8=0.则Δ=16()2-2k 2k 2-8()2k 2+1[]()2-2k 2-4 =8()2k +22>0,所以k ≠-22,||AB =1+k 2·22·||2k +22k 2+1.O 到直线AB 的距离:d =||2-2k 1+k2, 所以S △ABC =12||AB d =2⎪⎪⎪⎪⎪⎪2-42k 2+1.由于k ≠±22,所以2k 2+1≠2, 所以2k 2+1∈ [ 1, )2∪()2,+∞, 所以2-42k 2+1∈ [ -2, )0 ∪()0,2,此时S △AOB ∈(0,2 2 ].综上,△AOB 面积的最大值为2 2.12.(2021·东北三省四市联考)定义在R 上的函数f (x )满足f (x )=f ′(1)2·e 2x -2+x2-2f (0)x ,g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a .(1) 求函数f (x )的解析式; (2) 求函数g (x )的单调区间;(3)假如s ,t ,r 满足|s -r |≤|t -r |,那么称s 比t 更靠近r . 当a ≥2且x ≥1时,试比较ex 和e x -1+a 哪个更靠近ln x ,并说明理由.解:(1)∵f ′(x )=f ′(1)e 2x -2+2x -2f (0), ∴f ′(1)=f ′(1)+2-2f (0),即f (0)=1. 又f (0)=f ′(1)2·e -2,∴f ′(1)=2e 2, ∴f (x )=e 2x +x 2-2x .(2)∵f (x )=e 2x -2x +x 2,∴g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a =e x +14x 2-x -14x 2+(1-a )x +a =e x -a (x -1),∴g ′(x )=e x -a .①当a ≤0时,g ′(x )>0,函数f (x )在R 上单调递增; ②当a >0时,由g ′(x )>e x -a =0得x =ln a , ∴x ∈(-∞,ln a )时,g ′(x )<0,g (x ) 单调递减; x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.综上,当a ≤0时,函数g (x )的单调递增区间为(-∞,+∞);当a >0时,函数g (x )的单调递增区间为(ln a ,+∞),单调递减区间为(-∞,ln a ).(3)设p (x )=ex -ln x ,q (x )=e x -1+a -ln x ,∵p ′(x )=-e x 2-1x <0,∴p (x )在x ∈[1,+∞)上为减函数,又p (e)=0, ∴当1≤x ≤e 时,p (x )≥0,当x >e 时,p (x )<0. ∵q ′(x )=ex -1-1x ,q ″(x )=e x -1+1x 2>0,∴q ′(x )在x ∈[1,+∞)上为增函数,又q ′(1)=0, ∴x ∈[1,+∞)时,q ′(x )≥0, ∴q (x )在x ∈[1,+∞)上为增函数, ∴q (x )≥q (1)=a +2>0.①当1≤x ≤e 时,|p (x )|-|q (x )|=p (x )-q (x )=e x -e x -1-a , 设m (x )=e x -e x -1-a ,则m ′(x )=-ex 2-e x -1<0, ∴m (x )在x ∈[1,+∞)上为减函数, ∴m (x )≤m (1)=e -1-a ,∵a ≥2,∴m (x )<0,∴|p (x )|<|q (x )|,∴ex 比e x -1+a 更靠近ln x . ②当x >e 时,设n (x )=2ln x -e x -1-a , 则n ′(x )=2x -e x -1,n ″(x )=-2x 2-e x -1<0,∴n ′(x )在x >e 时为减函数,∴n ′(x )<n ′(e)=2e -e e -1<0, ∴n (x )在x >e 时为减函数,∴n (x )<n (e)=2-a -e e -1<0, ∴|p (x )|<|q (x )|,∴ex 比e x -1+a 更靠近ln x . 综上,在a ≥2且x ≥1时,ex 比e x -1+a 更靠近ln x .13.(2021·山东师大附中模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0),且点⎝⎛⎭⎪⎫-1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知定点Q ⎝⎛⎭⎪⎫54,0和过F 的动直线l ,直线l 与椭圆C 相交于A ,B 两点,求QA →·QB→. 解:(1)2a =(-1-1)2+⎝ ⎛⎭⎪⎫22-02+(-1+1)2+⎝ ⎛⎭⎪⎫22-02=22, ∴a =2,b =1.∴椭圆C 的标准方程为x 22+y 2=1. (2)①若直线斜率不存在,则l :x =1,∴A ⎝ ⎛⎭⎪⎫1,22,B ⎝⎛⎭⎪⎫1,-22,∴QA →·QB →=⎝ ⎛⎭⎪⎫1-54,22·⎝⎛⎭⎪⎫1-54,-22=116-12=-716.②当直线斜率存在时,设l :y =k (x -1)联立方程⎩⎨⎧x 22+y 2=1,y =k (x -1)消去y ,得(2k 2+1)x 2-4k 2x +2(k 2-1)=0, Δ=(-4k 2)2-4×(2k 2+1)×2(k 2-1) =8(k 2+1)>0.令A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 22k 2+1,x 1x 2=2(k 2-1)2k 2+1∴QA →·QB →=⎝⎛⎭⎪⎫x 1-54,y 1·⎝⎛⎭⎪⎫x 2-54,y 2=⎝ ⎛⎭⎪⎫x 1-54⎝ ⎛⎭⎪⎫x 2-54+y 1y 2 =⎝ ⎛⎭⎪⎫x 1-54⎝ ⎛⎭⎪⎫x 2-54+k 2(x 1-1)(x 2-1) =(k 2+1)x 1x 2-⎝⎛⎭⎪⎫k 2+54(x 1+x 2)+k 2+2516=(k 2+1)2(k 2-1)2k 2+1-⎝⎛⎭⎪⎫k 2+544k 22k 2+1+k 2+2516=-2+2516=-716.综上述可知,QA →·QB →=-716.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
2sisniαn2cαo-sαc+osc2oαs2α=( )
A.1 B.2
2
C.3 D.-3
5
8
10.[2018·太和一中押题卷]任取 k∈[- 3, 3],直线 l:kx-y+3=0 与圆 C:x2+y2
-4x-6y+9=0 相交于 M,N 两点,则|MN|≥2 3的概率是( )
A. 3 B. 3
多少衰出之,问各几何?”其意为:“今有甲带了 560 钱,乙带了 350 钱,丙带了 180 钱,
三人一起出关,共需要交关税 100 钱,依照钱的多少按比例出钱”,则乙应出(所得结果四舍
五入,保留整数)钱数为( )
A.17 B.28
C.30 D.32
9.[2018·河北衡水月考]已知曲线 f(x)=2x3 在点(1,f(1))处的切线的倾斜角为 α,则
A.f2(x)<f(x2)<f(x) B.f(x2)<f2(x)<f(x)
C.f(x)<f(x2)<f2(x) D.f(x2)<f(x)<f2(x)
6.[2018·东莞市模拟]已知焦点在 x 轴上的双曲线的一条渐近线的倾斜角为6π,且其焦 点到渐近线的距离为 2,则该双曲线的标准方程为( )
A.x2-y2=1 B.x2-y2=1
A.(-2,-1)∪(1,2) B.(-1,0)∪(1,4]
C.(1,2)
D.(1,3]
4.[2018·齐鲁名校联考]阅读下边程序框图,任意输入 x(-2≤x≤2)与 y(-1≤y≤1),则
能够输出“2019 高考必胜”的概率为( )
A.π B.1-π
8
8
C. π D.1- π
16
16
5.[2018·台州中学模拟]当 0<x<1 时,f(x)=lnxx,则下列大小关系正确的是( )
2.[2018·陕西渭南质量检测]
已知一组数据的茎叶图如图所示,下列说法错误的是( )
A.该组数据的极差为 12 B.该组数据的中位数为 91
C.该组数据的平均数为 91 D.该组数据的方差为 10
3.[2018·河南中原名校预测]函数 f(x)=-x2+2(a-2)x 与 g(x)=ax+-11,这两个函数在 区间[1,2]上都是减函数,则实数 a 的取值范围是( )
接球的半径为 2,则该三棱锥三个侧面面积之和的最大值是________.
16.[2018·河北武邑第五次模拟]设 f′(x)是函数 y=f(x)的导数,若 f″(x)是 f′(x)的导数,
方程 f″(x)=0 有实数解 x0,则称点(x0,f(x0))为函数 y=f(x)的“拐点”.已知:任何三次函数既
32
3
1
C.x2-y2=1 D. x2 -y2=1
64
12 4
7.[2018·保定二模]将函数 f(x)= 2sin2x- 2cos2x+1 的图象向左平移4π个单位,再
向下平移 1 个单位,得到函数 y=g(x)的图象,则下列关于函数 y=g(x)的说法错误的是( )
A.函数 y=g(x)的最小正周期为 π
小题限时训练(三)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.[2018·成都经开区实验中学月考]已知集合 A={-3,-2,-1,0,1,2},B=
{x|x2≤3},则 A∩B=( )
A.{0,2}
B.{-1,0,1}
C.{-3,-2,-1,0,1,2} D.[0,2]
( ) f2(x)-f(x)=lnxx22-lnxx=lnxx lnxx-1 >0,
∴f(x)<f2(x),∴f(x2)<f(x)<f2(x).故选 D.
6.D 由题可知Error!∴Error! ∴双曲线的标准方程为 x2 -y2=1,故选 D.
12 4
3
7.D f(x)= 2sin2x- 2cos2x+1
有拐点,又有对称中心,且拐点就是对称中心.设 f(x)=13x3-2x2+83x+2,数列{an}的通项
公式为 an=n-1 008,则2
019
∑
f(ai)=________.
i=1
小题限时训练(三)
1.B A∩B={-1,0,1},故选 B.
2.D 由茎叶图可知数据的极差为 97-85=12,
中位数为 91,
若 a·b=4,则 a-2b=________.
14.[2018·江苏苏北六市调研]在平面直角坐标系 xOy 中,若动圆 C 上的点都在不等式
组Error!表示的平面区域内,则面积最大的圆 C 的标准方程为________.
15.[2018·南昌二中第二次模拟]在三棱锥 O-ABC 中,OA,OB,OC 两两垂直,其外
[ ) A. -e-2π,e-2π B.(-e-π,e-2π) ( ) C. -eπ,e-52π D.(-e-3π,eπ)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中的横线上.
13.[2018·辽宁省重点高中协作校第三次模拟考试]已知向量 a=(t,0),b=(-1,3),
B.函数 y=g(x)的图象的一条对称轴为直线 x=8π C.函数 y=g(x)的一个零点为3π
8
[ ] D.函数 y=g(x)在区间 1π2,58π 上单调递减
8.[2018·山东日照高三校际联合考试]《九章算术》第三章“衰分”中有如下问题:“今有
甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数
平均数为1(85+87+90+90+91+91+94+94+97)=91,
9
方差为1(62+42+12+12+02+02+32+32+62)=106,∴D 错.故选 D.
9
9
3.D 由题可得Error!∴1<a≤3,故选 D.
4.A P= π =π. 4×2 8
5.D ∵0<x<1,∴0<x2<x<1 f(x2)-f(x)=2xln2x-lnxx=lnxx22-x<0, ∴f(x2)<f(x),
2
3
C.1 D.1
23
11.[2018·湖北鄂州第三次模拟]如下图是某几何体的三视图,则该几何体最长的棱长
为( )
A.2 3 B.2 2 C.3 D考]若函数 g(x)=mx+seinxx在区间(0,2π)有一个极大值和一个 极小值,则实数 m 的取值范围是( )