霍尔效应实验报告模板

合集下载

霍尔效应实验报告_实验报告_

霍尔效应实验报告_实验报告_

霍尔效应实验报告以下是小编给大家整理收集的霍尔效应实验报告,仅供参考。

霍尔效应实验报告1实验内容:1. 保持不变,使Im从0.50到4.50变化测量VH.可以通过改变IS和磁场B的方向消除负效应。

在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即+B, +IVH=V1—B, +VH=-V2—B,—IVH=V3+B, -IVH=-V4VH = (|V1|+|V2|+|V3|+|V4|)/40.501.601.003.201.504.792.006.902.507.983.009.553.504.0012.734.5014.34画出线形拟合直线图:Parameter Value Error------------------------------------------------------------A 0.11556 0.13364B 3.16533 0.0475------------------------------------------------------------ R SD N P------------------------------------------------------------ 0.99921 0.18395 9 <0.00012.保持IS=4.5mA ,测量Im—Vh关系VH = (|V1|+|V2|+|V3|+|V4|)/40.0501.600.1003.200.1504.790.2006.900.2507.980.3009.550.35011.0612.690.45014.31Parameter Value Error------------------------------------------------------------A 0.13389 0.13855B 31.5 0.49241------------------------------------------------------------R SD N P------------------------------------------------------------0.99915 0.19071 9 <0.0001基本满足线性要求。

(完整版)大学物理实验报告系列之霍尔效应

(完整版)大学物理实验报告系列之霍尔效应

大学物理实验报告霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。

【实验名称】霍尔效应【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。

2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。

3.确定试样的导电类型、载流子浓度以及迁移率。

【实验仪器】霍尔效应实验仪【实验原理】对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力FB=e v B(1)则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。

电场的指向取决于试样的导电类型。

对N型试样,霍尔电场逆Y方向,P 型试样则沿Y方向,有:Is(X)、B(Z)EH(Y) <0(N型)EH(Y) >0(P型)显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eE H与洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有eEH=evB(2)其中EH为霍尔电场,v是载流子在电流方向上的平均漂移速度。

设试样的宽为b,厚度为d,载流子浓度为n,则Is=nevbd(3)由(2)、(3)两式可得VH=EHb=1ISBne d=RISBH d(4)即霍尔电压VH(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。

比例系数RH=1ne称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,R H=V H d IsB⨯1081、由R H 的符号(或霍尔电压的正、负)判断样品的导电类型判断的方法是按图一所示的Is 和B 的方向,若测得的V H = V AA’触f <0,(即点A 的电位低于点A ′的电位)则R H 为负,样品属N 型,反之则为P 型。

霍尔效应实验报告.doc

霍尔效应实验报告.doc

霍尔效应实验报告篇一:霍尔效应实验报告篇二:霍尔效应的应用实验报告一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。

3.学习利用霍尔效应测量磁感应强度B 及磁场分布。

4.学习用“对称交换测量法”消除负效应产生的系统误差。

三、器材:1、实验仪:(1)电磁铁。

(2)样品和样品架。

(3)Is和IM 换向开关及VH 、Vó切换开关。

2、测试仪:(1)两组恒流源。

(2)直流数字电压表。

四、原理:霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场EH。

如图15-1所示的半导体试样,若在X方向通以电流IS ,在Z方向加磁场B,则在Y方向即试样A-A/ 电极两侧就开始聚集异号电荷而产生相应的附加电场。

电场的指向取决于试样的导电类型。

对图所示的N型试样,霍尔电场逆Y方向,(b)的P型试样则沿Y方向。

即有EH0EH0显然,霍尔电场EH是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH与洛仑兹力eB相等,样品两侧电荷的积累就达到动态平衡,故eEH?eB (1)其中EH为霍尔电场,v是载流子在电流方向上的平均漂移速度。

设试样的宽为b,厚度为d,载流子浓度为n ,则IS?nebd(2)由(1)、(2)两式可得:VH1ne?EHb?1ISBned?RHISBd即霍尔电压VH(A 、A/电极之间的电压)与ISB乘积成正比与试样厚度d成反比。

比例系数RH?称为只要测出VH (伏)以及知道IS(安)、B(高斯)和d (厘米)可按下式计算RH(厘米3/库仑):RH=VHdISB?108(4)上式中的108是由于磁感应强度B用电磁单位(高斯)而其它各量均采用CGS实用单位而引入。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告霍尔效应实验报告1实验内容:1.保持不变,使Im从0.50到4.50变化测量VH.可以通过改变I和磁场B的方向消除负效应。

在规定电流和磁场正反方向后,分别测量以下四组不同方向的I和B组合的VH,即+B,+IVH=V1—B,+VH=-V2—B,—IVH=V3+B,-IVH=-V4VH=(|V1|+|V2|+|V3|+|V4|)/40.501.601.003.201.504.792.006.902.507.983.009.553.5011.174.0012.734.5014.34画出线形拟合直线图:ParameterValueError------------------------------------------------------------A0.115560.13364B3.165330.0475------------------------------------------------------------RDNP------------------------------------------------------------0.999210.183959<0.00012.保持I=4.5mA,测量Im—Vh关系VH=(|V1|+|V2|+|V3|+|V4|)/40.0501.600.1003.200.1504.790.2006.900.2507.980.3009.550.35011.060.40012.690.45014.31ParameterValueError------------------------------------------------------------A0.133890.13855B31.50.49241------------------------------------------------------------RDNP------------------------------------------------------------0.999150.190719<0.0001根本满足线性要求。

霍尔效应实验报告[共8篇]

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

这时光的偏振面与P2的透光轴平行,因而有光通过。

在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。

于是原来的扭曲结构被破坏,成了均匀结构。

从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。

这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。

霍尔效应实验报告[共8篇]

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

霍尔效应实验报告(附带实验结论)(总3页)

霍尔效应实验报告(附带实验结论)(总3页)

霍尔效应实验报告(附带实验结论)(总3页)实验内容:实验中我们将会介绍霍尔效应,包括霍尔现象背后的原理,如何建立实验并如何分析实验结果。

霍尔效应是一个经典的材料物理学现象,主要是指当一个电流通过一块具有特殊形状的半导体晶体时,在晶体内部会产生一个垂直于电流方向和晶面法向的电场。

这个电场会导致从侧面进入材料的一个外部磁场中电荷载流子弯曲轨迹,从而引起电荷载流子的偏转和最终的偏差。

霍尔效应实验是通过使用霍尔元件来测量材料中电子的电荷密度、电阻率以及磁感应强度等物理量。

通过使用一个差分放大器来隔离高电阻元件所测量的低电压信号,实现误差最小化。

实验原理:霍尔现象是指当一个电流通过材料时,电荷载流子会遭受到一个垂直于电流方向和晶面法向的洛伦兹力。

这个力是由外磁场和载流子的运动速度所决定。

通过等效电路模型来表示这个效应,可以得出以下公式:$R_H=\frac{V_H}{IB}$其中$R_H$是霍尔系数,$V_H$是霍尔电压,$I$是传输电流,$B$是外磁场的磁感应强度。

实验步骤:1、使用霍尔元件进行实验测量。

首先我们将要求对外磁场变量进行变动。

我们将会使用自制的霍尔元件来测量材料的电阻率和磁感应强度。

此外我们还需要在实验中加入一个电压测量电路和一个高阻放大器,以便测量霍尔电压。

2、调整电路和实验装置,确保高电阻元件测得的信号能够被放大器隔离并接收到计算机来进行数据采集和分析。

3、进行霍尔效应实验并测量霍尔电压。

当电流通过材料时,霍尔电压会在样品上产生。

我们会使用磁感应计来测量磁场的强度,并利用霍尔元件来测量霍尔电压。

为了确保测量精度和可靠性,我们需要在实验期间不断进行复位校准。

实验结果:我们执行了多次霍尔效应实验,每次实验中都测得了数据。

我们将测得的数据进行了计算,并绘制了以下的实验曲线。

经过分析实验结果,我们得出以下重要结论:1、随着磁感应强度的增加,电流的方向和样品中霍尔电压的值都会发生变化。

2、我们在实验中发现,霍尔元件的特性随着温度和磁场强度的变化而变化。

霍尔效应实验报告模板

霍尔效应实验报告模板

---一、实验名称:霍尔效应二、实验目的:1. 了解霍尔效应的基本原理及其产生条件。

2. 学习使用霍尔效应测量磁感应强度的方法。

3. 掌握霍尔元件的基本特性和工作原理。

4. 熟悉实验仪器的操作及数据记录、处理方法。

三、实验原理:霍尔效应是指当电流通过一个置于磁场中的导体或半导体时,会在垂直于电流和磁场的方向上产生电动势的现象。

这一电动势称为霍尔电压(VH),其大小与磁感应强度(B)、电流(I)和霍尔元件的厚度(d)有关,具体关系为:\[ VH = B \cdot I \cdot d \cdot R_H \]其中,\( R_H \) 为霍尔系数,其值取决于材料的导电类型。

四、实验仪器与设备:1. 霍尔效应实验仪2. 电源3. 电流表4. 电压表5. 磁场发生器6. 电阻箱7. 导线8. 电磁铁9. 磁棒10. 仪器支架五、实验步骤:1. 仪器连接:按照实验仪说明书连接电路,确保连接正确无误。

2. 调整仪器:调节霍尔元件支架,使霍尔元件处于磁场中心位置。

3. 设置参数:调节电源电压,设定电流表和电压表的量程。

4. 测量霍尔电压:在不同电流和磁场强度下,测量霍尔电压,并记录数据。

5. 数据处理:根据实验数据,绘制霍尔电压与电流、磁场强度的关系曲线。

6. 计算霍尔系数:根据霍尔电压、电流和磁场强度计算霍尔系数。

7. 验证实验结果:对比理论值和实验值,分析误差来源。

六、实验数据记录与处理:| 磁场强度 B (T) | 电流 I (A) | 霍尔电压 VH (V) | 霍尔系数RH (V·T^-1·m^-1) ||-----------------|------------|-----------------|---------------------------|| ... | ... | ... | ... |七、实验结果与分析:1. 霍尔电压与电流、磁场强度的关系:分析霍尔电压与电流、磁场强度之间的关系,验证霍尔效应原理。

霍尔效应实验报告kh(参考)

霍尔效应实验报告kh(参考)

霍尔效应实验报告‎k h霍尔效应实‎验报告kh‎‎篇一:‎霍尔效应‎实验报告大学‎本(专)科实验报‎告课程名称:‎姓名:‎学院‎:系:‎专业‎:年‎级:学‎号:‎指导教师:‎成绩:‎年月日‎(实验报告目录)‎实验名称‎一、实验‎目的和要求‎二、实验原理‎三、主要实‎验仪器四‎、实验内容及实验‎数据记录‎五、实验数据处理‎与分析六‎、质疑、建议霍尔‎效应实验一.实‎验目的和要求:‎1‎、了解霍尔效应原‎理及测量霍尔元件‎有关参数.‎2、测绘霍尔元‎件的VH?Is,‎V H?IM曲线了‎解霍尔电势差VH‎与霍尔元件控制(‎工作)电流Is、‎励磁电流IM之间‎的关系。

‎3、学习利用霍尔‎效应测量磁感应强‎度B及磁场分布。

‎4、判断‎霍尔元件载流子的‎类型,并计算其浓‎度和迁移率。

‎5、学习用“对‎称交换测量法”消‎除负效应产生的系‎统误差。

二.实‎验原理:‎1、霍尔‎效应霍尔效应是‎导电材料中的电流‎与磁场相互作用而‎产生电动势的效应‎,从本质上讲,霍‎尔效应是运动的带‎电粒子在磁场中受‎洛仑兹力的作用而‎引起的偏转。

当带‎电粒子(电子或空‎穴)被约束在固体‎材料中,这种偏转‎就导致在垂直电流‎和磁场的方向上产‎生正负电荷在不同‎侧的聚积,从而形‎成附加的横向电场‎。

如右图‎(1)所示,磁场‎B位于Z的正向,‎与之垂直的半导体‎薄片上沿X 正向通‎以电流Is(称为‎控制电流或工作电‎流),假设载流子‎为电子(N 型半‎导体材料),它沿‎着与电流Is相反‎的X负向运动。

‎由于洛伦兹力fL‎的作用,电子即向‎图中虚线箭头所指‎的位于y轴负方向‎的B侧偏转,并使‎B侧形成电子积累‎,而相对的A侧形‎成正电荷积累。

与‎此同时运动的电子‎还受到由于两种积‎累的异种电荷形成‎的反向电场力fE‎的作用。

随着电荷‎积累量的增加,f‎E增大,当两力大‎小相等(方向相反‎)时,fL=-f‎E,则电子积累便‎达到动态平衡。

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vhis,vhim曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 feeehevh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,flfe vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为isne (2)由(1),(2)两式可得 vhehlib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh/ (4)式中为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

霍尔效应实验报告RH(共10篇)

霍尔效应实验报告RH(共10篇)

篇一:大学物理实验报告系列之霍尔效应大学物理实验报告)篇二:霍尔效应及其应用实验报告霍尔效应及其应用实验报告(物理学创新实验班41306187)【摘要】 szy 本实验通过了解霍尔原理及霍尔元器件的使用,测绘vh?is和vh?im 的图像并测量霍尔系数、电导率。

试验在测量过程中,由于各种副效应会引起各种误差。

在此做以分析和修正,采用vh对称测量法以消除副效应。

经过修正后的实验,更大程度地降低了实验误差,使k的测量更加接近真实值。

【关键词】霍尔片载流子密度霍尔系数霍尔电压 mathematica 【引言】霍尔效应是霍尔于1879年发现的,这一效应在科学实验和工程技术中有着广泛的应用。

霍尔系数的准确测量在应用中有着十分重要的意义。

由于霍尔系数在测量过程中伴随着各种副效应,使得霍尔系数在测量过程中变得比较困难。

因此我们在测量过程中采取了“对称测量法”消除副效应。

【正文】一、实验原理起的偏转。

当带电粒子被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。

图(1、a)所示的n型半导体试样,若在x方向的电极d、e上通以电流is,在z方向加磁场b,试样中载流子将受洛仑兹力:f ? e v b ①其中e为载流子电量, b为磁感v应强度。

无论载流子是正电荷还是负电荷,fg的方向均沿y方向,在此力的作用下,载流子发生便移,则在y方向即试样a、a′电极两侧就开始聚积异号电荷而在试样a、a′两侧产生一个电位差vh,形成相应的附加电场e—霍尔电场,相应的电压vh称为霍尔电压,电极a、a′称为霍尔电极。

g(a)(b)图(1) 原理图显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与fg方向相反的横向电场力:fe=eeh ②其中eh为霍尔电场强度。

fe随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力e eh与洛仑兹力evb 相等,样品两侧电荷的积累就达到平衡,故有eeh?eevb③设试样的宽度为b,厚度为d,载流子浓度为n,则电流强度is与的关系为? is bd ④由(3)、(4)两式可得ib1isbvh?ehb??ksnedd d ⑤即霍尔电压vh(a、a′电极之间的电压)与isb乘积成正比与试样厚度d成反比。

霍尔效应实验报告(共8篇).doc

霍尔效应实验报告(共8篇).doc

霍尔效应实验报告(共8篇).doc
实验名称:霍尔效应实验
实验目的:通过测量半导体中霍尔电压和霍尔电流,了解半导体中的电子输运性质。

实验器材:霍尔电流源、霍尔电压计、半导体样品、直流电源、数字万用表等。

实验原理:当一个导电材料中存在磁场时,载流子将在该磁场下发生偏转,从而导致材料的横向电场。

这种结果被称为霍尔效应。

V_H = KBIB/Tne
其中V_H为霍尔电压,B为外磁场强度,I为霍尔电流,n为携带载流子的数量密度。

实验步骤:
1. 将半导体样品制成薄片,并对其进样操作。

2. 通过在泳道中流动电流,产生磁场,测量霍尔电压和磁场。

3. 通过改变霍尔电流来改变携带量子的数量密度。

4. 通过改变温度来研究电子输运性质。

实验数据:
实验中测得的数据如下表所示:
B(T) | I(mA) | V_H(mV) | n(cm^-3)
0.002 | 3 | 3.5 | 2.2*10^12
0.004 | 5 | 7.0 | 2.5*10^12
0.006 | 7 | 10.5 | 2.8*10^12
0.008 | 9 | 14.0 | 3.5*10^12
0.01 | 10 | 17.5 | 4.0*10^12
实验结果:
通过上述数据,我们可以绘制出霍尔电压与磁场的曲线,通过分析该曲线,可以获得半导体的部分参数,如携带载流子的数量密度、迁移率和磁场的线性范围。

除了以上的结论,该实验还可以用于检测半导体的杂质和掺杂浓度等质量因素,并可用于研究半导体中的输运行为(例如迁移率),以便确定相应观察特性的重要性及其与材料的性质之间的关联性。

霍尔效应测磁场实验报告(共7篇)

霍尔效应测磁场实验报告(共7篇)

篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。

由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。

六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。

利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。

由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。

此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。

近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。

在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。

了解这一富有实用性的实验,对今后的工作将大有益处。

教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。

2. 掌握用霍尔元件测量磁场的原理和方法。

3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。

教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。

实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。

这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。

2、掌握用霍尔效应测量磁场的方法。

3、学会使用霍尔效应实验仪器,测量霍尔电压、电流等物理量。

二、实验原理当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。

霍尔电压$V_H$ 与通过导体的电流$I$、磁感应强度$B$ 以及导体在磁场中的厚度$d$ 之间存在如下关系:$V_H = K\frac{IB}{d}$其中,$K$ 为霍尔系数,它与导体的材料有关。

假设导体中的载流子为电子,其电荷量为$e$,平均漂移速度为$v$,导体的横截面积为$S$,则电流$I = nevS$ ($n$ 为电子浓度)。

当电子受到的洛伦兹力$f_L = e(v\times B)$与电场力$f_E =eE$ 平衡时,达到稳定状态,此时有:$evB = E$又因为电场强度$E =\frac{V_H}{b}$($b$ 为导体宽度),所以可得:$V_H =\frac{1}{ne}\frac{IB}{d}$三、实验仪器1、霍尔效应实验仪:包括霍尔元件、励磁线圈、直流电源、电压表、电流表等。

2、特斯拉计:用于测量磁感应强度。

四、实验步骤1、连接实验仪器,将霍尔元件放置在励磁线圈中间,确保其位置准确。

2、打开电源,调节励磁电流,使磁场达到一定强度。

3、调节工作电流,分别测量不同工作电流下的霍尔电压。

4、改变励磁电流的方向和大小,重复测量霍尔电压。

5、记录实验数据,包括工作电流、励磁电流、霍尔电压等。

五、实验数据记录与处理|工作电流 I(mA)|励磁电流 I M(A)|霍尔电压 V H (mV)||||||100|050|250||100|100|500||100|150|750||200|050|500||200|100|1000||200|150|1500|根据实验数据,以霍尔电压$V_H$ 为纵坐标,工作电流$I$ 和励磁电流$I_M$ 的乘积$I\times I_M$ 为横坐标,绘制曲线。

霍尔效应的数据分析报告(3篇)

霍尔效应的数据分析报告(3篇)

第1篇一、引言霍尔效应(Hall Effect)是一种在导电材料中,当电流和磁场同时存在时,垂直于电流方向和磁场方向的电势差产生的现象。

这一效应最早由美国物理学家爱德华·霍耳在1879年发现,因此得名。

霍尔效应在半导体材料的研究、磁场的测量、电流的检测等方面有着广泛的应用。

本报告旨在通过对霍尔效应实验数据的分析,探讨霍尔效应的基本规律和影响因素。

二、实验背景与目的1. 实验背景霍尔效应实验是研究半导体物理和磁电效应的重要实验之一。

通过霍尔效应实验,可以了解材料的电学性质、磁电性质以及半导体器件的原理。

2. 实验目的(1)验证霍尔效应的存在;(2)测量霍尔系数;(3)分析霍尔效应的影响因素;(4)探讨霍尔效应在实际应用中的意义。

三、实验原理与装置1. 实验原理霍尔效应的基本原理是:当电流垂直于磁场通过半导体材料时,会在垂直于电流和磁场方向的两侧产生电势差,即霍尔电势。

霍尔电势的大小与电流、磁感应强度以及半导体材料的霍尔系数有关。

2. 实验装置实验装置主要包括以下部分:(1)霍尔样品:采用N型或P型半导体材料,尺寸为1cm×1cm×0.1cm;(2)电流源:提供稳定的电流;(3)磁场发生器:产生均匀磁场;(4)电压表:测量霍尔电势;(5)数据采集系统:实时采集实验数据。

四、实验数据与分析1. 实验数据(1)不同电流下的霍尔电势:| 电流(A) | 霍尔电势(V) || :-------: | :----------: || 0.1 | 0.0012 || 0.2 | 0.0024 || 0.3 | 0.0036 || 0.4 | 0.0048 || 0.5 | 0.0060 |(2)不同磁场下的霍尔电势:| 磁感应强度(T) | 霍尔电势(V) || :--------------: | :----------: || 0.1 | 0.0012 || 0.2 | 0.0024 || 0.3 | 0.0036 || 0.4 | 0.0048 || 0.5 | 0.0060 |2. 数据分析(1)验证霍尔效应的存在:由实验数据可知,随着电流和磁感应强度的增加,霍尔电势逐渐增大,说明霍尔效应确实存在。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告以下是CN人才公文网小编给大家整理收集的霍尔效应实验报告,仅供参考。

霍尔效应实验报告1实验内容:1. 保持不变,使Im从0.50到4.50变化测量VH.可以通过改变IS和磁场B的方向消除负效应。

在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即+B, +IVH=V1—B, +VH=-V2—B,—IVH=V3+B, -IVH=-V4VH = (|V1|+|V2|+|V3|+|V4|)/40.501.601.003.201.504.792.006.902.507.983.009.5511.174.0012.734.5014.34画出线形拟合直线图:Parameter Value Error------------------------------------------------------------A 0.11556 0.13364B 3.16533 0.0475------------------------------------------------------------ R SD N P------------------------------------------------------------ 0.99921 0.18395 9 <0.00012.保持IS=4.5mA ,测量Im—Vh关系VH = (|V1|+|V2|+|V3|+|V4|)/40.0501.600.1003.200.1504.790.2006.900.2507.980.3009.550.3500.40012.690.45014.31Parameter Value Error------------------------------------------------------------A 0.13389 0.13855B 31.5 0.49241------------------------------------------------------------R SD N P------------------------------------------------------------0.99915 0.19071 9 <0.0001基本满足线性要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霍尔效应实验报告Screen and evaluate the results within a certain period, analyze the deficiencies, learn from them and form Countermeasures.姓名:___________________单位:___________________时间:___________________编号:FS-DY-24467霍尔效应实验报告一、实验名称: 霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。

三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。

对于图1所示。

半导体样品,若在x方向通以电流,在z方向加磁场,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。

显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。

设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有: (1-1)因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。

只要测出、以及知道和,可按下式计算: (1-3)(1-4)为霍尔元件灵敏度。

根据RH可进一步确定以下参数。

(1)由的符号(霍尔电压的正负)判断样品的导电类型。

判别的方法是按图1所示的和的方向(即测量中的+ ,+ ),若测得的<0(即A′的电位低于A的电位),则样品属N型,反之为P型。

(2)由求载流子浓度,即。

应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。

严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

(3)结合电导率的测量,求载流子的迁移率。

电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。

产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图2所示。

(1)厄廷好森效应引起的电势差。

由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势。

可以证明。

的正负与和的方向有关。

(2)能斯特效应引起的电势差。

焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。

与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差。

若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。

(3)里纪-勒杜克效应产生的电势差。

上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势。

的正负仅与的方向有关,而与的方向无关。

(4)不等电势效应引起的电势差。

由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场,3、4两点间也会出现电势差。

的正负只与电流的方向有关,而与的方向无关。

综上所述,在确定的磁场和电流下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。

可以通过对称测量方法,即改变和磁场的方向加以消除和减小副效应的影响。

在规定了电流和磁场正、反方向后,可以测量出由下列四组不同方向的和组合的电压。

即:,:,:,:,:然后求,,,的代数平均值得:通过上述测量方法,虽然不能消除所有的副效应,但较小,引入的误差不大,可以忽略不计,因此霍尔效应电压可近似为(1-6)3、直螺线管中的磁场分布1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度,测量出和,就可以计算出所处磁场的磁感应强度。

(1-7)2、直螺旋管离中点处的轴向磁感应强度理论公式:(1-8)式中,是磁介质的磁导率,为螺旋管的匝数,为通过螺旋管的电流,为螺旋管的长度,是螺旋管的内径,为离螺旋管中点的距离。

X=0时,螺旋管中点的磁感应强度(1-9)五、实验内容:测量霍尔元件的、关系;1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。

2、接通电源,电流表显示“0.000”。

有时,调节电位器或调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。

电压表显示“0.0000”。

3、测定关系。

取=900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。

顺时针转动“ 调节”旋钮,依次取值为1.00,2.00,…,10.00mA,将和极性开关选择置“+” 和“-”改变与的极性,记录相应的电压表读数值,填入数据记录表1。

4、以为横坐标,为纵坐标作图,并对曲线作定性讨论。

5、测定关系。

取=10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。

顺时针转动“ 调节”旋钮,依次取值为0,100,200,…,900 mA,将和极性开关择置“+” 和“-”改变与的极性,记录相应的电压表读数值,填入数据记录表2。

6、以为横坐标,为纵坐标作图,并对曲线作定性讨论。

测量长直螺旋管轴向磁感应强度1、取=10 mA,=900mA。

2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置(水平移动游标尺上读出),先从14.00cm开始,最后到0cm 点。

改变和极性,记录相应的电压表读数值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度。

3、以为横坐标,为纵坐标作图,并对曲线作定性讨论。

4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值比较,用百分误差的形式表示测量结果。

式中,其余参数详见仪器铭牌所示。

六、注意事项:1、为了消除副效应的影响,实验中采用对称测量法,即改变和的方向。

2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。

3、实验间隙要断开螺线管的励磁电流与霍尔元件的工作电流,即和的极性开关置0位。

4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。

七、数据记录:KH=23.09,N=3150匝,L=280mm,r=13mm表1 关系( =900mA)(mV) (mV) (mV) (mV)1.00 0.28 -0.27 0.31 -0.30 0.292.00 0.59 -0.58 0.63 -0.64 0.613.00 0.89 -0.87 0.95 -0.96 0.904.00 1.20 -1.16 1.27 -1.29 1.235.00 1.49 -1.46 1.59 -1.61 1.546.00 1.80 -1.77 1.90 -1.93 1.857.00 2.11 -2.07 2.22 -2.25 2.178.00 2.41 -2.38 2.65 -2.54 2.479.00 2.68 -2.69 2.84 -2.87 2.7710.00 2.99 -3.00 3.17 -3.19 3.09表2 关系( =10.00mA) (mV) (mV) (mV) (mV)0 -0.10 0.08 0.14 -0.16 0.12 100 0.18 -0.20 0.46 -0.47 0.33 200 0.52 -0.54 0.80 -0.79 0.66 300 0.85 -0.88 1.14 -1.15 1.00 400 1.20 -1.22 1.48 -1.49 1.35 500 1.54 -1.56 1.82 -1.83 1.69 600 1.88 -1.89 2.17 -2.16 2.02700 2.23 -2.24 2.50 -2.51 2.37800 2.56 -2.58 2.84 -2.85 2.71900 2.90 -2.92 3.18 -3.20 3.05表3 关系=10.00mA,=900mA(mV) (mV) (mV) (mV) B ×10-3T0 0.54 -0.56- 0.73 -0.74 2.880.5 0.95 -0.99 1.17 -1.18 4.641.0 1.55 -1.58 1.80 -1.75 7.232.0 2.33 2.37- 2.88 -2.52 10.574.0 2.74 -2.79 2.96 -2.94 12.306.0 2.88 -2.92 3.09 -3.08 12.908.0 2.91 -2.95 3.13 -3.11 13.1010.0 2.92 -2.96 3.13 -3.13 13.1012.0 2.94 -2.99 3.15 -3.06 13.2014.0 2.96 -2.99 3.16 -3.17 13.3八、数据处理:(作图用坐标纸)九、实验结果:实验表明:霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间成线性的关系。

长直螺旋管轴向磁感应强度:B=UH/KH*IS=1.33x10-2T理论值比较误差为: E=5.3%Foonshion创意设计有限公司Fengshun Creative Design Co., Ltd。

相关文档
最新文档