lamp引物设计实例

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核酸环介导等温扩增技术(LAMP)引物设计与实例Time:2009-12-07 PM 14:52 Author:bioer Hits: 1459 times 烟头整理

LAMP的特点

LAMP与以往的核酸扩增方法相比具有如下优点:

(1)操作简单

LAMP核酸扩增是在等温条件下进行,对于中小医院只需要水浴锅即可,产物检测用肉眼观察或浊度仪检测沉淀浊度即可判断。对于RNA的扩增只需要在反应体系中加入逆转录酶就可同步进行(RT-LAMP),不需要特殊的试剂及仪器。

(2)快速高效

因为不需要预先的双链DNA热变性,避免了温度循环而造成的时间损失。核酸扩增在l h内均可完成,添加环状引物后时间可以节省1/2,多数情况在20-30 rain均可检测到扩增产物。且产物可以扩增至109倍,达0.5 mg/mL。应用专门的浊度仪可以达到实时定量检测。

(3)高特异性

由于是针对靶序列6个区域设计的4种特异性引物。6个区域中任何区域与引物不匹配均不能进行核酸扩增。故其特异性极高。

(4)高灵敏度

对于病毒扩增模板可达几个拷贝,比PCR高出数量级的差异。

缺点:

由于LAMP扩增是链置换合成,靶序列长度最好在300 bp以内。>500 bp则较难扩增。故不能进行长链DNA的扩增。由于灵敏度高。极易受到污染而产生假阳性结果。故要特别注意严谨操作,以及在产物的回收鉴定、克隆、单链分离方面均逊色于传统的PCR 方法。

引物设计实例

LAMP引物设计的在线网站(http://primerexplorer.jp/e/),只要导入靶基因就能自动生成成组引物。

以某一微生物的鞭毛基因为例讲解一下LAMP引物设计的过程:

首先单击浏览按钮选择靶基因序列文件,靶序列默认的是小于22 kbp。支持三个类型的文件,普通文本格式(仅含序列), FASTA格式和GenBank 格式文件。

第二,从下面三个选项中选择定参数设定(引物设计条件)条件。基于GC含量的自动判断, 起始的参数是特定的:如果GC含量小于或等于45%.,则选取AT丰度高的区,如果GC含量高于60%,则选取GC丰度高的区,其它情况是标准设定状态。

设计合适的引物是进行LAMP反应的关键,通过考虑碱基组成,GC含量,二级结构的形成,Tm值等因素可以通过Pimer Explore)(一种专门设计LAMP引物的软件)来设计

LAMP反应的引物。

在进行LAMP引物设计的时候有以下几个关键点需要考虑:

1. 引物之间的距离

F2区段的5’端到B2区段的5’端(LAMP反应扩增的区域)之间的距离建议是120~180bp。F3区段的3’端到F2区段的5’端之间的距离是0~20bp(同理B2和B3之间的距离是0~20bp)。F2区段的5’端到F1区段的5f端(形成环的部分)之间的距离是40~60bp。

2. 引物的Tm值

引物的Tm值采用近邻分析法(the nearest-neighbor method)来计算,这种方法是目前认为计算值最接近真实值的一种方法。计算Tm值的时候会受到盐浓度(salt concentration)、寡核苷酸的浓度等实验条件的影响,所以最好是在确定的实验条件下来计算Tm值。

例如:寡核苷酸的浓度为0.1µmol,钠离子的浓度是50mM,镁离子的浓度4 mM等。

Tm(退火温度=△h*1000/[△S+Rln(C/4)]-273.15+16.6log[Na+]

式中,Tm为退火温度,℃;为摩尔气体常数,1. 987ca1/℃•mol ;△H为焓变;△s 为熵变;C为寡聚核苷酸的浓度;[Na+]为钠离子浓度。

对于GC含量正常或是GC含量富集的引物Tm值为60~65℃,而对于AT富集的引物Tm值为55~60℃。在设计引物的时候,F1c和B1c的Tm值大概是65℃(64~66℃), F2,B2, B31的Tm值大概是60℃(59~61℃)。

3. 引物末端的稳定性

引物的末端作为DNA合成的起点必须有一定的稳定性,自由能改变值(△G)是指反应物的自由能与产物的自由能之差,反应朝着自由能减小的方向运行。引物和目的基因之间的退火反应是一个动态平衡的反应,自由能改变值(△G)越小,引物与模板之间的退火反应越容易发生。

一般在进行引物设计的时候,F2/B2\F3/B3的3’端和F1 c/B1c的5’端的自由能改变值小于或等于-4Kcal/mol。F1C的5’端扩增以后相当于F1的3’端,所以它的稳定性很重要。

4. GC含量

引物在设计的时候使其GC含量介于40%~65%之间,但是当引物的GC含量介于50%~60%时,引物的质量相对好一些。

5. 二级结构

引物在设计的时候要防止形成二级结构,这一点是十分重要的,特别是内引物。

本文来源于:生物问问博客,原文地址:/html/346.html

相关文档
最新文档