引物设计 例子
干货:引物设计有妙招,有图有真相
![干货:引物设计有妙招,有图有真相](https://img.taocdn.com/s3/m/792e217f0a1c59eef8c75fbfc77da26925c59671.png)
干货:引物设计有妙招,有图有真相PCR现在已经成为分子实验室的标配,无论是基因检测、基因定量、分子克隆、组装、突变、测序等等,都离不开PCR技术。
在PCR 过程中,引物设计是非常重要的一环,特别是qPCR的引物设计,决定了我们扩增效率是否达标和扩增产物是否特异。
今天小编为大家举个例子,设计一对qPCR引物。
qPCR引物设计,通常要留意以下几点:GC含量50%-60%Tm值50℃-65℃上下游引物尽量接近引物末端最好是G或C避开二级结构复杂区域引物尽量在目的基因的3’ 端引物尽量跨越内含子目的基因是否有不同的剪切变体……这么多要注意的怎么办?!Primer-blast相信很多小伙伴们都用过,只要输入序列设置条件就可以设计得到理想的引物序列了。
但是很多情况下,我们的要求往往不仅于此。
下面,我们以人的EGFP (Epidermal growth factor receptor,表皮生长受体因子)基因为例,设计一对可以同时扩增其不同剪切变体的qPCR引物!1. 查询基因结构之前小编已经为大家介绍了如何利用NCBI查询基因结构了(错过了可以戳这里),首先查询Homo EGFP的基因结构:2. 确定设计引物位置可以看到,这个基因有多种不同的转录本,而前8个外显子区域是完全一致的(绿色小竖线)。
我们的目的是将不同的转录本都扩增出来,那将反向引物设在第8个外显子之前就可以实现了。
3. 找到mRNA的序列号,进入GenBank在该页面里继续往下拉,找到mRNA和蛋白质的GenBank序列号。
点击mRNA的序列号,进入GenBank。
借助Highlight Sequence Features,我们可以快速确定第8个外显子的位置。
4. 确定下游引物设计位置点击Highlight Sequence Features后,浏览器的下方就会出现选项,选择查看Exon,找到第8个外显子,这样就能快速定位了。
我们确定了第8个外显子到下游至1236bp为止。
如何根据要求自己设计PCR引物
![如何根据要求自己设计PCR引物](https://img.taocdn.com/s3/m/3fdb9bc9b04e852458fb770bf78a6529647d3576.png)
如何根据要求自己设计PCR引物1PCR引物设计课堂笔记○PCR这个名词大家都不陌生,但实际操作时我们常说的引物设计到底是怎么回事呢?今天我就来给大家用实例演示一下哈。
首先,我们要知道引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。
引物设计是PCR的关键,附上PCR的基本流程图:○引物设计的原则:1.引物长度:一般为15-30bp,常用的是18-27bp,但不能大于38,因为过长会导致其延伸温度大于74℃,即Taq酶的最适温度。
2.引物的特异性:引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。
3.序列Tm值:引物的Tm值一般控制在55-60度, 尽可能保证上下游引物的Tm值一致,一般不超过2度。
退火温度=4×(G+C)+2×(A+T)-(5~8)4.G+C含量:有效引物中(G+C)的比例为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物的3′端:引物的延伸是从3′端开始的,不能进行任何修饰;引物3’端的碱基一般不用A,因为A在错误引发位点的引发效率相对比较高;引物间3’端的互补、二聚体或发夹结构也可能导致PCR反应失败6.引物的5′端:引物的5′端限定着PCR产物的长度,它对扩增特异性影响不大。
因此,可以被修饰而不影响扩增的特异性。
引物5′端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入突变位点、插入与缺失突变序列和引入一启动子序列等。
下面以实例操作演示一下加酶切位点时如何自己设计引物:2用绿色荧光蛋白(GFP)标记蛋白NR1○简单点说,就是现在我们要把Plasmid 2中GFP基因片段添加到Plasmid 1中的NR1基因片段上,但是Plasmid 2中GFP基因片段本身并没有BamHⅠ这个酶切位点,也就说我们要在引物设计中人为地把BamHⅠ这个酶切位点的序列添加给GFP基因片段,这样PCR后得到的GFP基因片段就可以通过BamHⅠ这个酶切位点进入到Plasmid 1中,然后绿色荧光蛋白(GFP)就可以来标记蛋白NR1,达到我们之后实验中来观察蛋白NR1的目的,示意图见下。
pcr引物设计序列例题
![pcr引物设计序列例题](https://img.taocdn.com/s3/m/4f23ab6b443610661ed9ad51f01dc281e53a5617.png)
PCR引物设计序列例题简介P C R(聚合酶链式反应)是一种常用的分子生物学技术,通过扩增DN A 分子可用于基因克隆、检测等多个领域。
而P CR引物则是PCR反应中的关键组成部分,它们的设计直接影响P CR反应的成功与否。
本文为您提供一些关于P CR引物设计序列的例题,希望对您在实验和研究中的引物设计有所帮助。
例题一:引物序列设计为了扩增目标基因的特定片段,我们需要设计一对引物,以下是目标基因的序列,请根据该序列设计两个引物,使其具有以下要求:-引物长度在18-25个碱基对之间-引物的3'端碱基G或C-引物的理论Tm在55-65℃之间目标基因序列:A G TC GA TC GA TT AG CGA T CG AG TC GA TC GA TCG G CT AC GA TC GA解答:根据目标基因的序列,我们可以设计如下两对引物:引物1:5'-A GT CG AT CG AT TAG C GA TC-3'引物1满足引物长度在18-25个碱基对之间的要求,同时3'端碱基为C,符合要求。
接下来我们计算一下该引物的理论T m。
根据以下两个规则计算引物的理论Tm:-A与T之间的配对带来的热能释放为-2.2k J/mo l-C与G之间的配对带来的热能释放为-3.8k J/mo l根据以上规则,我们可以计算每个碱基的贡献:-A-T配对:-2.2k J/m o l-C-G配对:-3.8k J/m o l-G-C配对:-3.8k J/m o l-T-A配对:-2.2k J/m o l引物1的理论T m计算如下:(-3.8×4)+(-2.2×10)=-15.2+-22=-37.2k J/mo l该引物的理论Tm为37.2℃,低于所需的要求。
引物2:5'-C GA TC GA TC GA TCG G CT AC G-3'引物2满足引物长度在18-25个碱基对之间的要求,同时3'端碱基为G,符合要求。
《PCR引物设计》课件
![《PCR引物设计》课件](https://img.taocdn.com/s3/m/b7b33ee6294ac850ad02de80d4d8d15abe2300ea.png)
04
pcr引物的应用与案例分 析
pcr引物在基因克隆中的应用
01
pcr引物用于基因克隆的目的是为了获得目的基因的序列信息, 进而进行后续的基因功能和表达研究。
02
设计特异性引物,通过pcr技术,从基因或基因组中筛选出目的基因。
引物设计需考虑基因序列的特异性、扩增效率和避免非特异性
03
扩增等因素。
引物特异性优化
避免引物间的互补
引物之间不应存在互补序列,以避免形成引物二聚体或发夹 结构。
避免引物与模板扩增 和产物。
引物扩增效率的优化
引物与模板的匹配度
引物的3'端应与模板完全匹配,以提 高引物的扩增效率。
引物之间的匹配度
两个引物之间应有良好的匹配度,以 保证PCR反应的顺利进行。
引导合成
引物作为合成子链的起点,通过与 DNA聚合酶的结合,引导合成与 模板互补的DNA链。
决定产物长度
引物的设计决定了PCR产物的长度 ,通过选择合适的引物,可以控制 产物的大小和特异性。
pcr引物设计的基本原则
特异性
长度和序列
引物应与模板DNA具有高度的特异性,避 免与其他非目标DNA序列发生非特异性结 合。
pcr引物的未来发展方向与挑战
引物设计的自动化
随着生物信息学的发展,未来引物设计 可能更加自动化,减少人工干预和误差
。
标准化和质量控制
建立引物设计的标准化流程,加强引 物设计的质量控制,确保实验结果的
可靠性和可重复性。
新型引物设计策略
针对特定需求,开发新型引物设计策 略,提高PCR反应的特异性和灵敏度 。
引物灵敏度测试
03
测试引物在不同模板浓度下的扩增效率,选择灵敏度较高的引
引物设计实例分析DJ
![引物设计实例分析DJ](https://img.taocdn.com/s3/m/e6faf0a87d1cfad6195f312b3169a4517723e520.png)
第一步:检索DJ-1mRNA基本序列
LOCUS NM_057143
1097 bp mRNA linear ROD
1 gtgccgagca cagttactgg aaggcttaac caaagttttg atgcctggga accgcgcagg 61 aaaaacacgc ggaacgtgct tcacagtggc ggctaactgc tctcgttcgc tgtgcagagc 121 cgtctggcag ggttgacctc ctaaagggat attccatctt tattaatcat tagtagtgtg 181 gtcagagact tagcaccatt ggtctccccc aacctggtcc agacatttca gcagtttatc 241 ggaacagcaa caacagcaac aaaaccttca aaatttacaa gtctttaaga aatagaaatg 301 gcatccaaaa gagctctggt catcctagcc aaaggagcag aggagatgga gacagtgatt 361 cctgtggaca tcatgcggcg agctgggatt aaagtcaccg ttgcaggctt ggctgggaag 421 gaccccgtgc agtgtagccg tgatgtagtg atttgtccgg ataccagtct ggaagaagca 481 aaaacacagg gaccatacga tgtggttgtt cttccaggag gaaatctggg tgcacagaac 541 ttatctgagt cggctttggt gaaggagatc ctcaaggagc aggagaacag gaagggcctc 601 atagctgcca tctgtgcggg tcctacggcc ctgctggctc acgaagtagg ctttggatgc 661 aaggttacat cgcacccatt ggctaaggac aaaatgatga acggcagtca ctacagctac 721 tcagagagcc gtgtggagaa ggacggcctc atcctcacca gccgtgggcc tgggaccagc 781 ttcgagtttg cgctggccat tgtggaggca ctcagtggca aggacatggc taaccaagtg 841 aaggccccgc ttgttctcaa agactagaga gcccaagccc tggaccctgg acccccaggc 901 tgagcaggca ttggaagccc actagtgtgt ccacagccca gtgaacctgg cattggaagc 961 ccactagtgt gtccacagcc cagtgaacct caggaactaa cgtgtgaagt agcccgctgc 1021 tcaggaatct cgccctggct ctgtactatt ctgagccttg ctagtagaat aaacagttcc
实例图解简并引物设计 共25页
![实例图解简并引物设计 共25页](https://img.taocdn.com/s3/m/3c23423faf1ffc4ffe47ac75.png)
碱M
基B
代 码
D N
碱基 代码 A, G Y G, T S A, C W G, C, T V A, G, T H A, G, C, T
碱基 C, T G, C A, T A, G, C A, C, T
3. 质量评估
•(1)参数评估
将初步得到的引物序列,粘贴入Oligo Calc 的文本框内, 按下“Calculate”按钮,得到引物的相关参数,如:长 度、GC 含量、Tm 值等信息。
马铃薯Y 病毒(Potato virus Y,PVY)是侵染马铃薯、
烟草、辣椒等茄科作物并造成严重危害的病毒之一,广 泛分布全球各马铃薯种植区。RT-PCR 技术具有高度的特 异性和灵敏性等特点,已经成为 PVY 检测最常见的方法。 但由于PVY 株系分化严重,不断有新的重组株系产生, 单一的特异性引物无法适应PVY 不同株系的检测需求, 需要设计一对简并引物以能够满足生产上的检测需求。
八、详细图解
1. 序列准备: •(1)GenBank 下载PVY 全基因组序列; •(2)由于基因序列比较大,且数量多,推荐用MAFFT 多重序列比对; •(3)扩增片段区域选择,CP 基因长度及位置如下图所示:
• 先将光标定位在第一条序列任意位置,然后在左下角"Site"处直接输 入 CP 基 因 上 游 分 界 点 位 置 ( 8391 ) 后 回 车 。 接 着 点 击 “Speicaes/Abbrv”和8391 那一列的交界点时按下键盘上“Shift” 不放,移动光标到“1”那一列,此时点击鼠标右键“Delete”删除 冗余序列。
• PS : 是 否 位 于 密
码子的第3 位,可
以
通
过
“ Tranlated
基因工程作业(引物设计)讲解
![基因工程作业(引物设计)讲解](https://img.taocdn.com/s3/m/a3632d3f76c66137ee0619c5.png)
口腔鳞癌组织中肿瘤转移相关基因1(MTA1)一、选择原因及应用口腔鳞癌组织中肿瘤转移相关基因1(MTA1)在蛋白和mRNA的表达水平,揭示其与口腔鳞癌(OSCC)发生、发展的关系。
方法采用免疫组织化学法和原位杂交技术检测46例OSCC标本、15例口腔黏膜白斑与20例正常口腔黏膜标本中MTAl 基因的表达水平,并分析其与OSCC临床病理学参数的关系。
结果MTA1蛋白和MTA1mRNA在OSCC组织中的表达水平显著高于口腔黏膜白斑和正常口腔黏膜(P 〈0.05),口腔黏膜白斑中MTA1蛋白和MTA1mRNA表达水平显著高于口腔正常黏膜(P〈0.01),MTA1蛋白和MTA1mRNA表达与肿瘤浸润深度和淋巴结转移密切相关(P〈0.05)。
结论MTA1基因在蛋白和mRNA的表达水平在OSCC发生、发展及浸润转移过程中起一定促进作用,有望成为判断OSCC预后及选择治疗方案的一个新肿瘤标志物。
二、2查阅NCBI得到MTA1相关信息并获得目的基因PREDICTED: Gorilla gorilla gorilla metastasis associated 1 (MTA1), mRNANCBI Reference Sequence: XM_004055801.1FASTA GraphicsLOCUS XM_004055801 2872 bp mRNA linear PRI 03-DEC-2012DEFINITION PREDICTED: Gorilla gorilla gorilla metastasis associated 1 (MTA1),mRNA.ACCESSION XM_004055801VERSION XM_004055801.1 GI:426378238KEYWORDS .SOURCE Gorilla gorilla gorilla (western lowland gorilla) ORGANISM Gorilla gorilla gorillaEukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;Catarrhini; Hominidae; Gorilla.COMMENT MODEL REFSEQ: This record is predicted by automated computationalanalysis. This record is derived from a genomic sequence(NW_004005914) annotated using gene prediction method: GNOMON,supported by mRNA and EST evidence.Also see:Documentation of NCBI's Annotation Process##Genome-Annotation-Data-START##Annotation Provider :: NCBIAnnotation Status :: Full annotationAnnotation Version :: Gorilla gorilla Annotation Release 100Annotation Pipeline :: NCBI eukaryotic genome annotation pipelineAnnotation Method :: Best-placed RefSeq; Gnomon Features Annotated :: Gene; mRNA; CDS; ncRNA##Genome-Annotation-Data-END##FEATURES Location/Qualifierssource 1..2872/organism="Gorilla gorilla gorilla"/mol_type="mRNA"/sub_species="gorilla"/db_xref="taxon:9595"/chromosome="14"gene 1..2872/gene="MTA1"/note="Derived by automated computational analysis usinggene prediction method: GNOMON. Supporting evidence/codon_start=1/product="metastasis-associated protein MTA1"/protein_id="XP_004055849.1"/db_xref="GI:426378239"/db_xref="GeneID:101134898"/translation="MAANMYRVGDYVYFENSSSNPYLIRRIEELNKTANGNVEAKVVC FYRRRDISSTLIALADKHATLSVCYKAGPGADNGEEGEIEEEMENPEMVDLPEKLKHQ LRHRELFLSRQLESLPATHIRGKCSVTLLNETESLKSYLEREDFFFYSLVYDPQQKTL LADKGEIRVGNRYQADITDLLKEGEEDGRDQSKLETKVWEAHNPLTDKQIDQFLVVAR SVGTFARALDCSSSVRQPSLHMSAAAASRDITLFHAMDTLHKNIYDISKAISALVPQG GPVLCRDEMEEWSASEANLFEEALEKYGKDFTDIQQDFLPWKSLTSIIEYYYMWKTTD RYVQQKRLKAAEAESKLKQVYIPNYNKPNPNQISVNNVKAGVVNGTGAPGQSPGAGRA CESCYTTQSYQWYSWGPPNMQCRLCASCWTYWKKYGGLKMPTRLDGERPGPNRSNMSP HGLPARSSGSPKFAMKTRQAFYLHTTKLTRIARRLCREILRPWHAARHPYLPINSAAI KAECTARLPEASQSPLVLKQAVRKPLEAVLRYLETHPRPPKPDPVKSVSSVLSSLTPA KVAPVINNGSPTILGKRSYEQHNGVDGNMKKRLLMPSRGLANHGQTRHMGPSRNLLLN GKSYPTKVRLIRGGSLPPVKRRRMNWIDAPDDVFYMATEETRKIRKLLSSSETKRAAR RPYKPIALRQSQALPLRPPPPAPVNDEPIVIED" ORIGIN1 tcctcctctt cctctcccgc ccgcgccgcg gccctcccgt ccctgcgcgg cctcggcggc61 ctcggcggcg gcggcggcgg cggcggcagc agcgcggccc ctttaaacgc ctgcggcgccgcgccgagcg ccgcgcccgcaacatgtaca gggtcggaga241 ctacgtctac tttgagaact cctccagcaa cccatacctg atccggagga tcgaggagct301 caacaagacg gccaatggga acgtggaggc caaagtggtg tgcttctacc ggaggcggga361 catctccagc accctcatcg ccctggccga caagcacgca accctgtcag tctgctataa421 ggccggaccg ggggcggaca acggcgagga aggggaaata gaagaggaaa tggagaatcc481 ggaaatggtg gacctgcccg agaaactaaa gcaccagctg cggcatcggg agctgttcct541 ctcccggcag ctggagtctc tgcccgccac gcacatcagg ggcaagtgca gcgtcaccct601 gctcaacgag accgagtcgc tcaagtccta cctggagcgg gaggatttct tcttctattc661 tctagtctac gacccacagc agaagaccct gctggcagat aaaggagaga ttcgagtagg721 aaaccggtac caggcagaca tcaccgactt gttaaaagaa ggcgaggagg atggccgaga781 ccagtccaag ttggagacca aggtgtggga ggcgcacaac ccactcacag acaagcagat841 cgaccagttc ctggtggtgg cccgctctgt gggcaccttc gcacgggccc tggactgcag901 cagctccgtc cgacagccca gcctgcacat gagcgccgca gctgcctccc gagacatcac961 gctgttccac gccatggata ctctccacaa gaacatctat gacatctcca aggccatctc1021 ggcactggtg ccgcagggcg ggcccgtgct ctgcagggac gagatggagg agtggtctgc1081 atcagaggcc aaccttttcg aggaagccct ggaaaaatat gggaaggatt tcacggacat1141 tcagcaagat tttctcccgt ggaagtcgct gaccagcatc attgagtact actacatgtg1201 gaagaccacc gacagatacg tgcagcagaa acgcttgaaa gcagctgaag ctgagagcaa1261 gttaaagcaa gtttatattc ccaactataa caagccaaat ccgaaccaaa tcagtgtcaa1321 caacgtcaag gccggtgtgg tgaatggcac gggggcgccg ggccagagcc ctggggctgg1381 ccgggcctgc gagagctgtt acaccacaca gtcttaccag tggtattctt ggggtccccc1441 taacatgcag tgtcgtctct gcgcatcttg ttggacatat tggaagaaat atggtggctt1501 gaaaatgcca acccggttag atggagagag gccaggacca aaccgcagta acatgagtcc1561 ccacggcctc ccagcccgga gcagcgggag ccccaagttt gccatgaaga ccaggcaggc1621 tttctatctg cacacgacga agctgacgcg gatcgcccgg cgcctgtgcc gtgagatcct1681 gcgcccgtgg cacgctgcgc ggcaccccta cctgcccatc aacagtgcgg ccatcaaggc1741 cgagtgcacg gcgcggctgc ccgaagcctc ccagagcccg ctggtgctga agcaggcggt1801 acgcaagccg ctggaagccg tgcttcggta tcttgagacc cacccccgtc cccccaagcc1861 tgaccccgtg aaaagcgtgt ccagcgtgct cagcagcctg acgcccgcca aggtggcccc1921 cgtcatcaac aacggctccc ccaccatcct gggcaagcgc agctacgagc agcacaacgg1981 ggtggacggc aacatgaaga agcgcctctt gatgcccagt aggggtctgg caaaccacgg2041 acagaccagg cacatgggac caagccggaa cctcctgctc aacgggaagt cctaccccac2101 caaagtgcgc ctgatccggg ggggctccct gcccccagtc aagcggcggc ggatgaactg2161 gatcgacgcc ccggatgacg tgttctacat ggccacagag gagaccagga agatccgcaa2221 gctgctctca tcctcggaaa ccaagcgtgc tgcccgccgg ccctacaagc ccatcgccctgcgcccgtca acgacgagccgccccccgcc cctcgcccgc2401 ccacacggcc ccttcccagc cagcccgccg cccgcccctc agtttggtag tgccccacct2461 cccgccctca cctgcagaga aacgcgctcc ttggcggaca ctgagggagg agaggaagaa2521 gcgcggctaa cttattccga gaatgccgag gagttgtcgt ttttagcttt gtgtttactt2581 tttggctgga gcggagatga ggggccaccc cgtgcccctg tgctgcgggg ccttttgccc2641 ggaggccggg ccctaaggtt ttgttgtgtt ctgttgaagg tgccgtttta aattttattt2701 ttattacttt ttttgtagat gaacttgagc tctgtaactt acacctggaa tgttaggatc2761 gtgcggccgc ggccggccga gctgcctggc ggggttggcc cttgtctttt caagtaattt2821 tcatattaaa caaaaacaaa gaaaaaaatc ttataaaaag gaaaaaaacc aa//三、表达载体的选择我所选用的原核表达载体为质粒pBR322;pBR322 是一种常用的E. coli 克隆载体(1),为4,361 bp 的环状双链DNA(2)。
PCR引物设计范文
![PCR引物设计范文](https://img.taocdn.com/s3/m/5c64e59a51e2524de518964bcf84b9d528ea2ceb.png)
PCR引物设计范文PCR(聚合酶链反应)是一种快速、敏感和精确的基因扩增技术,已在分子生物学领域得到广泛应用。
PCR引物设计是PCR实验的关键步骤之一,合理设计的引物可以确保特异性扩增目标序列,并提高PCR的效率和成功率。
本文将讨论PCR引物设计的原理、策略和工具。
PCR引物设计的基本原理是通过寻找目标序列特异性区域,设计长度约为20-30个核苷酸的引物对,以特异性地扩增目标序列。
引物设计过程中需要考虑以下几个方面的因素:引物长度、GC含量、引物二聚体和自相互二聚体、特异性和特征序列。
首先,引物长度应在20-30个核苷酸左右,一般选择长度为18-25个核苷酸。
引物过短可能导致非特异性扩增,引物过长可能会影响PCR扩增效率。
其次,GC含量是指引物中GC碱基的百分比。
引物中的GC含量应在40-60%之间,GC含量过高或过低都可能导致非特异性扩增或低扩增效率。
高GC含量引物有助于引物与目标序列的稳定结合,但也容易引起引物二聚体形成。
低GC含量引物则增加了引物的特异性和稳定性。
引物二聚体和自相互二聚体是指引物之间或引物自身形成的二聚体结构。
这些结构会影响PCR扩增效率和特异性。
引物设计时需要避免引物二聚体和自相互二聚体的形成。
一种常用的方法是使用在线工具进行计算和分析。
特异性是指引物能够特异性地与目标序列结合并扩增,不与非目标序列结合。
特异性验证是引物设计的关键步骤之一、可以通过BLAST分析,在数据库中比对引物序列,以确保引物特异性。
此外,还可以进行聚合酶链反应的温度梯度试验来检查引物特异性。
在PCR引物设计中,还可以使用一些在线工具和软件来辅助引物设计。
一些常用的工具包括Primer3、OligoAnalyzer等。
这些工具可以根据输入的目标序列自动设计引物,并同时提供一系列引物参数的分析和评估。
对于复杂的目标序列设计,还可以使用引物库策略。
引物库是一种引物设计的集合,可以提高目标序列扩增的成功率。
手把手教你做PCR引物的设计 来自小木虫
![手把手教你做PCR引物的设计 来自小木虫](https://img.taocdn.com/s3/m/46c9e542caaedd3383c4d375.png)
PCR引物设计的黄金法则1. 引物最好在模板cDNA的保守区内设计。
DNA序列的保守区是通过物种间相似序列的比较确定的。
在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。
2.引物长度一般在15~30碱基之间。
引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。
3.引物GC含量在40%~60%之间,Tm值最好接近72℃。
GC含量(composition)过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。
有效启动温度,一般高于Tm值5~10℃。
若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。
4.引物3′端要避开密码子的第3位。
如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。
5.引物3′端不能选择A,最好选择T。
引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。
6. 碱基要随机分布。
引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。
降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。
尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。
7. 引物自身及引物之间不应存在互补序列。
如何设计引物
![如何设计引物](https://img.taocdn.com/s3/m/ceae2011a216147917112896.png)
引物设计原则:1.找出这种细胞物种的PTN全长核苷酸序列2.采用primer premier 5.0软件设计引物设计应注意如下要点:● 1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应[2]。
● 2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加[2]。
● 3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A[3][4]。
另外,引物二聚体或发夹结构也可能导致PCR 反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物[2]。
● 4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大[2][5]。
● 5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method) [6][7]。
● 6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应[6]。
●7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行[8]。
●8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR产物的载体的相应序列而确定。
引物设计不求人!手把手教你设计RT-qPCR引物!
![引物设计不求人!手把手教你设计RT-qPCR引物!](https://img.taocdn.com/s3/m/3975fd15974bcf84b9d528ea81c758f5f61f2914.png)
引物设计不求⼈!⼿把⼿教你设计RT-qPCR引物!RT-qPCR 全称 Real-time polymerase chain reaction, 即实时聚合酶链锁反应,是⼀种在DNA扩增反应中,以萤光染⾊剂检测每次聚合酶链锁反应(PCR)循环后产物总量的⽅法。
OK~这⾥对RT-qPCR的原理,应⽤及数据分析就不再赘述了,因为今天我们主要讲的是如何设计出好的PCR引物。
相信科研⼩伙伴们都已经⽤过Pubmed来设计引物了,基本就是 “傻⽠式操作”就解决了!但这⾥还需提醒⼩伙伴们两点:1. 需跨越⾄少⼀个外显⼦连接(⼀般我们⽤来做RT的RNA都是通过Trizol抽提法分离出来的,为了避免基因组的DNA也有可能被扩增出来,就要⾄少跨越⾄少⼀个exon-exon junction 了)。
2. 不要忘记选对“物种”!(这⾥以⼈种⽰例)但是Pubmed设计出来的引物⼀般不尽如⼈意,⽐如说引物之间存在极⼤的互补性,3’端的互补重叠,形成引物⼆聚体等等。
因为⽤Pubmed设计引物本⾝能设置的参数条件就很少,所以它才是最简单的。
所以,今天我要给⼤家介绍两款实⽤的软件,Primer Premier 6.0 和 Oligo 7.0。
今天主要讲讲第⼀款,⾄于第⼆款,改天再聊啦!当然,这两款软件,要想⽤全功能版本,都是需要付费的哦!不过...,我们伟⼤的祖国有强⼤的某宝,这⾥就不多说了哈。
好了,我们进⼊今天的正题……(说了这么多废话,终于要进⼊正题了!!!)⾸先,我们选⼀个基因举例来说,PPARA,⾄于为什么会选这个基因呢?因为啊,PPAR⽬前是肿瘤学研究中的⼀个“明星基因”,它的全称是Peroxisome proliferator-activated receptor, 即过氧化物酶体增殖物激活型受体,⽬前发现有三种亚型,PPAR a,PPARbeta/delta,PPAR r。
好吧…….听着好复杂的样⼦啊!总之,管它到底是什么呢,下⾯来说说它的引物如何设计。
设计引物事例
![设计引物事例](https://img.taocdn.com/s3/m/63ff9522eefdc8d376ee32f7.png)
PrimerPremier 5.0应用-设计4CL同源引物自从1985年KarnyMullis发明了聚合酶链式反应以来,PCR技术已成为分子生物学研究中使用最多、最广泛的手段之一,而引物设计是PCR 技术中至关重要的一环。
使用不合适的PCR引物容易导致实验失败。
现在PCR引物设计大都通过计算机软件进行。
可以直接提交模板序列到特定网页,得到设计好的引物,也可以在本地计算机上运行引物设计专业软件。
一般来说,专门进行PCR引物设计的专业软件功能更为强大,但使用起来却不太容易。
1.PrimerPremier5. 0相关介绍PrimerPremier5. 0用于PCR或测序引物以及杂交探针的设计、评估的软件,也用于检验所设计引物的PCR扩增效率和特异性。
Primer Premier 5·0作为当今引物设计的主流软件,有着操作简便、功能强大、成功率高等诸多优点。
本文结合多位研究者的实验结果对运用Primer Premier 5·0软件设计引物的经验和教训进行探讨。
Primer引物设计Primer功能板块包括了设计引物的搜索引擎软件包含了强大的自动搜索法则只需要简单的操作就可以得到合适的引物PRIMER PREMIER 也提供了人工控制搜索引擎的方法便于根据您的特殊要求制定标准输出的引物通过全面的即时分析工具计算出引物的多种参数和二级结构关键参数如Tm值GC含量和自由能G还能以图形显示还有另一个窗口来显示引物的比吸光度activity 单位nmoles/OD和ug/OD 及引物的分子量还可以将当前引物输入数据库打印或填写引物合成定购单。
为设计用于定点突变的引物该项功能板块也提供包括即使分析和限制性酶切位点分析的引物编辑工具您可以通过输入碱基或氨基酸残基来手动修改引物为分析多对反应引物如在复式及巢式PCR中使用function菜单下Multiplex/Nested选项,可以分析所有想用到的引物可以选择事先搜索的引物或手动添加引物软件提供将引物储存到数据库的功能也提供填写引物合成定购单的功能定购单上会自动填入引物序列和其他重要信息。
生物信息学PCR引物设计
![生物信息学PCR引物设计](https://img.taocdn.com/s3/m/f726897e7fd5360cba1adb92.png)
一般原则
4. 引物序列的GC 含量一般为40-60%,过高 或过低都不利于引发反应。上下游引物的 GC含量不能相差太大。 不同的算法推荐45-55%或50-60%
一般原则
5. ∆G 值是指DNA 双链形成所需的自由能, 该值反映了双链结构内部碱基对的相对稳 定性。应当选用3’端∆G 值较低(绝对值不 超过9),而5’端和中间∆G 值相对较高的 引物。引物的3’端的∆G 值过高,容易在错 配位点形成双链结构并引发DNA 聚合反应 。(能值越高越容易结合)
可以在5’端前添加G或C以提 高Tm值,或加入酶切位点, 然后再做Analyze。
决定后,将该引物选中,Ctrl+C、Ctrl+V粘贴: GCCAGTTCTGATATTTACACC
同理,编辑并保存下游引物
下游引物:AATGAAATCCAGTACGCTTC,方向默认是5’→3’
4.6 引物的二次筛选
3’ΔG的绝对值不要超过9,否则会在错配点形成双链
接下来进行引物具体分析。 点击Analyze
分析二聚体和发夹结构 点击Analyze – Duplex Formation – Forward Primer
上游引物间形成二聚体 要求ΔG小于4.5,配对碱基对不超过3
发夹结构 要求ΔG小于4.5,配对碱基对不超过3
会弹出一个页面有10秒钟的 更新提示
图形示意结果
带有genbank的链接,点击可以进入 相应的genbank序列 匹配序列描述
具体匹配情况
将四条序列保存在一个txt文档中 匹配情况,分值,e值
24
4.3 DNAMAN 同源序列比对获取保守区域
4.4 Primer Primier引物设计与筛选
三、引物设计流程
自己动手microRNA引物设计
![自己动手microRNA引物设计](https://img.taocdn.com/s3/m/031f832f3868011ca300a6c30c2259010202f31d.png)
自己动手microRNA引物设计miRNA是一类内源性非编码单链RNA,在体内以前体和成熟体的形式存在,而我们对某种的microRNA的表达检测的对象是成熟体,microRNA的成熟体长度约为19-25nt,由于其序列和性质的特殊性,我们需要使用与普通mRNA不同的方法对其进行引物的设计。
目前主流的方法有两种:茎环法和加尾法。
基本的原理图示如上,因为microRNA很短,引物为了方便接下来的检测我们可以通过具有颈环样结构的反转引物先将microRNA进行逆转录,然后再将用于表达检测的3'引物(即图中reverse)设计在反转引物上,最后结合mircoRNA的5'序列设计一个5’端的定量PCR引物(图中Forward)即可。
小结一下就是我们需要设计3条引物,一条做反转录的颈环引物,和2条用于做表达检测引物(Forward和reverse引物)。
茎环结构不但能有效地延长miRNA 的长度,同时它自身互补的构象可以避免与其他同源基因结合,减少了非特异性扩增的几率。
整个引物由 2 部分组成,一个通用的茎环结构和5 ~ 8 个与目的 miRNA 的3'端反向互补的碱基。
其序列通常为: 5'-GTCGTATCCAGTGCAGGGTC CGAGGTATTCGCACTGGATACGAC-3'。
其中下划线部分为茎环自身互补部分。
我们可以看看这个通用的茎环结构序列怎样互补成颈环的。
用DNAstar中的primer select点击report中的primer hairpins报告第一个就是我们通用的一个典型茎环结构了,接下来只需要根据我们的目标microRNA的序列在此序列后加入5-8个碱基与目的MicroRNA 的 3'端反向互补即可。
举个例子:hsa-miR-26a(注意大小写)首先需通过英国著名miRNA数据库网站miRBase (/)检索成熟miRNA序列。
在miRBase上可获得目前已经公布的各个物种的microRNA具体序列、基因分布、详细序列注册信息,可以通过浏览或搜索的方式查询目的miRNA。
引物设计实例分析GFP融合蛋白引物设计引物设计基本原则引物
![引物设计实例分析GFP融合蛋白引物设计引物设计基本原则引物](https://img.taocdn.com/s3/m/ad01b42e844769eae009edf0.png)
引物设计实例分析(GFP融合蛋白引物设计)引物设计基本原则引物长度(primer length)产物长度(product length)序列Tm值(melting temperature)G+C含量(composition)引物二聚体及发夹结构(duplex formation and hairpin)阅读框1. 引物的长度一般为15-30bp,常用的是18-27bp,但不能大于38,因为过长会导致其延伸温度大于74℃,即Taq酶的最适温度2. 产物的长度扩增片段长度为100~600碱基对。
3. Tm值引物的Tm值一般控制在55-60度,尽可能保证上下游引物的Tm 值一致,一般不超过2度。
如果引物中的G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度。
Tm=2(A+T)+4(C+G)4. 引物的GC含量有效引物中(G+C)的比例为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物自身引物间3‘端的互补、二聚体或发夹结构也可能导致PCR反应失败任务用绿色荧光蛋白(GFP)标记蛋白NR1引物要求PCR扩增GFPGFP两边添加BamHI酶切位点保证NR1的阅读框不改变第一步:扩增GFP基本序列第二步:GC比值;Tm值第三步:酶切位点第四步:阅读框第五步保护序列Primer1: 5' GCGGggatccTATGGTGAGCAAGGGCGAGGA Primer2: 5' GCGCggatccctCTTGTACAGCTCGTCCATGCC记得当初写本科论文,感到不知道讨论什么问题好。
愣是写了一大段的PCR条件摸索的讨论。
后来PCR成为实验最基本的一步了,但是发现在PCR中还是有许多需要注意的地方。
PCR的第一步就是引物设计了。
引物设计需要注意的地方很多,在大多数情况下,我们都是在知道已知模板序列时进行PCR扩增的。
在某些情况比如构建文库的时候也会在不知道模板序列的情况下进行设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.引物自身及引物之间不应存在互补序列。 发夹结构(Hairpin)使引物本身复性。尤其应避免3′端的 互补重叠以防止引物二聚体(Dimer与Crossdimer)的 形成。引物之间不能有连续4个碱基的互补。 引物二聚体及发夹结构如果不可避免的话,应尽量使其 △G值不要过高(应小于4.5kcal/mol)。否则易导致产生 引物二聚体带,并且降低引物有效浓度而使PCR反应不能 正常进行。 8.引物5′端和中间△G值应该相对较高,而3′端△G值较低。 △G值是指DNA双链形成所需的自由能,它反映了双链结 构内部碱基对的相对稳定性,△G值越大,则双链越稳定。 应当选用5′端和中间△G值相对较高,而3′端△G值较低 (绝对值不超过9)的引物。引物3′端的△G值过高,容易 在错配位点形成双链结构并引发DNA聚合反应。(不同位 置的△G值可以用Oligo6软件进行分析)
9.引物的5′端可以修饰,而3′端不可修饰 10.扩增产物的单链不能形成二级结构。 11.引物应具有特异性。 引物设计完成以后,应对其进行BLAST检测。
点开红色所指图示
常见生物医学 软件操作
1.引物设计 2.graphpad grism5 数据分析 3.endnote X7 插入文献 4.lightcycler@96 实时定量
1.引物设计
采用Primer Premier 5.0 进行引物设计 首先打开Primer Premier 5.0 ,输入序列
从NCBI里面搜索基 因序列,方法如下
PCR引物设计的原则
1.引物最好在模板cDNA的保守区内设计。 2.引物长度一般在15~30碱基之间。 3.引物GC含量在40%~6端要避开密码子的第3位 5.引物3′端不能选择A,最好选择T。 6.碱基要随机分布。