(完整word版)时间序列分析考试卷及答案
统计基础知识第五章时间序列分析习题及答案
第五章时间序列分析一、单项选择题1.构成时间数列的两个基本要素是( C )(2012年1月)A.主词和宾词B.变量和次数C.现象所属的时间及其统计指标数值D.时间和次数2.某地区历年出生人口数是一个( B )(2011年10月)A.时期数列 B.时点数列C.分配数列D.平均数数列3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10)A.时期指标B.时点指标C.前者是时期指标,后者是时点指标D.前者是时点指标,后者是时期指标4.累计增长量( A ) (2010年10)A.等于逐期增长量之和B.等于逐期增长量之积C.等于逐期增长量之差D.与逐期增长量没有关系5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10)万元万元万元万元6.下列指标中属于时点指标的是( A ) (2009年10)A.商品库存量B.商品销售量C.平均每人销售额D.商品销售额7.时间数列中,各项指标数值可以相加的是( A ) (2009年10)A.时期数列B.相对数时间数列C.平均数时间数列D.时点数列8.时期数列中各项指标数值( A )(2009年1月)A.可以相加B.不可以相加C.绝大部分可以相加D.绝大部分不可以相加10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月)%+15%+18%%×15%×18%C.(108%+115%+118%)-1 %×115%×118%-1二、多项选择题1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月)A.相邻两个环比发展速度之商等于相应的定基发展速度B.环比发展速度的连乘积等于定基发展速度C.定基发展速度的连乘积等于环比发展速度D.相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3.常用的测定与分析长期趋势的方法有( ABC ) (2011年1月)A.时距扩大法B.移动平均法C.最小平方法D.几何平均法E.首末折半法4.时点数列的特点有( BCD ) (2010年10)A.数列中各个指标数值可以相加B.数列中各个指标数值不具有可加性C.指标数值是通过一次登记取得的D.指标数值的大小与时期长短没有直接的联系E.指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于( AC )(2010年1)A.增加一个百分点所增加的绝对量B.增加一个百分点所增加的相对量C.前期水平除以100D.后期水平乘以1%E.环比增长量除以100再除以环比发展速度6.计算平均发展速度常用的方法有( AC )(2009年10)A.几何平均法(水平法)B.调和平均法C.方程式法(累计法)D.简单算术平均法E.加权算术平均法7.增长速度( ADE )(2009年1月)A.等于增长量与基期水平之比B.逐期增长量与报告期水平之比C.累计增长量与前一期水平之比D.等于发展速度-1E.包括环比增长速度和定基增长速度8.序时平均数是( CE )(2008年10月)A.反映总体各单位标志值的一般水平B.根据同一时期标志总量和单位总量计算C.说明某一现象的数值在不同时间上的一般水平D.由变量数列计算E.由动态数列计算三、判断题1.职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
[财经类试卷]统计从业资格统计基础知识与统计实务(时间序列)模拟试卷2及答案与解析
6【正确答案】D
【试题解析】当时间序列中所包含的总量指标都是反映社会经济现象在某一瞬间上所达到的水平时,这种总量指标时间序列就称为时点序列。2011~2015年某银行的年末存款余额是时点序列,可根据间隔时间相等的间断时点序列的计算方法计算各年平均存款余额,此方法为首末折半法(简单序时平均法)。
【知识模块】时间序列
2【正确答案】A
【试题解析】这是时期相等的平均指标时间序列,可直接采用简单算术平均法来计算,所以,二季度该网站的月平均员工人数= =80(人)。
【知识模块】时间序列
3【正确答案】A
【试题解析】这属于根据间隔相等的间断时点序列求序时平均数,因此应采用“首末折半法”,用公式表示如下: 代入数据即得A项。
(A)甲;丙
(B)乙;丙
(C)甲;乙
(D)乙;丁
7累计增长量等于相应的各个逐期增长量( )。
(A)之差
(B)之商
(C)之和
(D)之积
8已知前五年的平均增长速度10%,后五年的平均增长速度为8%,求这10年的平均增长速度,下列计算方法正确的是( )。
9环比增长速度是( )。
(A)报告期观察值与前一时期观察值之比减1
【知识模块】时间序列
4【正确答案】C
【试题解析】A项是时期序列序时平均数的计算公式;B项是间隔相等的间断时点序列的序时平均数的计算公式;D项是分组资料的连续时点序列序时平均数的计算公式。
【知识模块】时间序列
5【正确答案】D
【试题解析】A项是由时期序列计算序时平均数的计算公式;C项是由间隔不等的间断时点序列计算序时平均数的计算公式。
【知识模块】时间序列
20【正确答案】B,C
【试题解析】逐期增长量与累计增长量的关系是:①逐期增长量之和等于累计增长量,即(a1-a0)+(a2-a1)+(a3-a2)+…+(an-an-1)=an-a0;②相邻的累计增长量两两相减之差值为逐期增长量,即(an-a0)-(an-1-a0)=an-an-1。
10-11上学期时间序列分析A卷及答案
1. 若 { X t , t T } 为白噪声序列, 则 (t , s) 等于 0 , t , s T , t s. 2. 若时间序列 { X t , t T } 平稳, 则其自协方差函数 (t , s ), t , s T 只与 t s 有关, 而
ˆ (l ) 的均方误差为 的 MA(q) 序列, 则已知 X t , X t 1 , X t 2 , 时, X t l 的最佳线性预测 X t
2 (1 12 l21 ) , l 1, , q .
二、选择题(每小题 2 分, 共 20 分):
1. 对于正态序列来说, 其严平稳性与(宽)平稳性是 a a.等价的, b.不等价的.
1.试求模型的传递形式. 2.试求模型的逆转形式. 3.试求满足模型的 ARMA(1,1) 序列 { X t , t 0, 1, 2,} 的均值和自协方差函数.
-3-
-4-
得 分
评卷人
四、计算题(每小题 5 分, 共 15 分) 设 { X t , t 0, 1, 2,} 是满足 AR(2) 模型
.
2. 为了度量序列中两个随机变量之间真实的相关程度, 应该使用 b . a.自相关函数, b.偏相关函数. .
3. 平稳序列的偏相关函数 p 步截尾是其为 AR( p) 序列的 b a.充分条件, 4. 若一序列严平稳, 则其 a.一定, b b.充要条件.
是(宽)平稳的.
b.不一定. .
5. 满足平稳 ARMA 模型的 ARMA 序列有 a a.一个, b.无穷多个. .
中, 用白噪声序列 { t , t 0, 1, 2,} 线性地表示 ARMA( p, q) 序列称为模型的 a
完整word版时间序列测验2解答1北师珠时间序列
=2 测试2解答(第三、四章)1.设{ X t }为一时间序列,且■^X t =X t —X t-1,▽ PX ^7p-1(7x t ),J X t = X t — X t-k ,Bx t =Xt-1,记 V (72x t )二①(B) X t ,则①(B ) =?解:根据k 步差分和P 阶差分与延迟算子之间的关系,得①(B)=(1-B3 4 5 6)(1-B)22.已知 AR (1)模型为:X t =0.7X t-1 + 名t ,街 ~WN(0,cr ;) o(P )模型平稳性的特征根判别法要求所有特征根绝对值小于 1; (1) 模型平稳性的平稳域判别法要求|% |<1, (2) 模型平稳性的平稳域判别法要求:|% |<1,聽±% <1 0 二1 =弋.8特征根判别法:平稳;I % |=0.8<1,平稳域判别法:=1.3特征根判别法:非平稳; ® | = 1.3:>1,平稳域判别法:21特征方程为: 6入—k — 1 = 0 即(2入—1)(3入中1) = 0,礼=――,3由特征根判别法:平稳;11|=- ", $2=— <1, ©2 =0",平稳域判别法:平稳;63⑷ 特征方程为:A 2 — A —2 = 0即a + 1)a —2)= 0,人=—1,几2 由特征根判别法:非平稳;|纟|=2>1, *2中°1=3》1, *2-^=1不小于1,平稳域判别法:非平稳。
P . 46其中, g t }均为服从标准正态分布的白噪声序列。
求: E(x t ), Var(x t ),P 2和 *22。
解: (1) 由平稳序列E (x t) *0=E ( X t-1)和 E (名t ) = 0,得 E ( X t ) = 0_=0 (-% =0) P或 - A.Var(X t ) =0.72Var(X t 」)+Var(g t ) = 0.49Var (X t )+^72 2bpCT 2V a rx t)=——j 止 1.96° -1 -0.49 0.51 E(k > 0),p 2 =转(1)模型偏自相关系数截尾:AR (1)模型P k =样 AR=0.72 P. 47P.49= 0.49P.503.分别用特征根判别法和平稳域判别法检验下列四个AR 模型的平稳性。
时间序列期末试题及答案
时间序列期末试题及答案1. 试题考试时间:3小时考试形式:闭卷注意:请将答案写在答题纸上,不要在试卷上直接作答。
题目一:简答题(每题10分)1. 什么是时间序列分析?时间序列分析具有哪些应用领域?2. 请解释平稳时间序列的概念,并提供一个平稳时间序列的例子。
3. 什么是季节性、趋势性和周期性?请分别举一个例子。
4. 时间序列分析的步骤是什么?5. 请解释自相关函数(ACF)和偏自相关函数(PACF)的概念,并说明它们在时间序列分析中的作用。
题目二:计算题(每题20分)1. 从某超市取得了一组销售额数据,包括2004年到2019年的年度销售额。
请计算该时间序列的移动平均值,并绘制移动平均图。
2. 下表是某公司2005年到2019年每个季度的销售额数据,请利用季节性指数法预测2020年第一季度的销售额。
| 年份 | 第一季度销售额 ||-------|--------------|| 2005 | 100 || 2006 | 120 || 2007 | 140 || 2008 | 160 || 2009 | 180 || 2010 | 200 || 2011 | 220 || 2012 | 240 || 2013 | 260 || 2014 | 280 || 2015 | 300 || 2016 | 320 || 2017 | 340 || 2018 | 360 || 2019 | 380 |3. 通过对某股票每周收益率进行分析,发现其自相关系数和偏自相关系数都在95%置信区间之外。
该时间序列数据是否呈现ARCH效应?请解释原因。
4. 将某商品销售额数据建模为自回归移动平均模型(ARMA),请给出该模型的阶数,并解释原因。
2. 答案题目一:简答题1. 时间序列分析是一种研究时间相关数据的统计方法,通过对时间序列的特征进行分析,揭示其随时间变化的规律和趋势。
时间序列分析广泛应用于经济学、金融学、气象学、社会学等领域。
(完整word版)时间序列分析考试卷及答案
考核课程 时间序列分析(B 卷)考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,1--=∇t t t Y Y Y 。
一、单项选择题(每小题3 分,共24 分。
)1。
若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。
A. MA(2)B.ARMA(1,1) C 。
AR (2) D 。
MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。
A. )1(MAB.)1(AR C 。
)1,1(ARMA D.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。
(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C)5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B ).A.ARMA(2,1)B.ARIMA(1,1,1)C.ARIMA(0,1,1)D.ARIMA(1,2,1)5. AR (2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。
A 。
0 B.64.0 C. 16.0 D 。
2.06.对于一阶滑动平均模型MA (1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。
A.5.0- B 。
25.0 C. 4.0- D. 8.07。
若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。
A. MA (2)B.)2,1(IMAC.)1,2(ARI D 。
(完整word版)《时间序列》试卷
《时间序列分析》试卷注意:请将答案直接写在试卷上一、填空题(1分*20空=20分)1. 德国药剂师、业余天文学家施瓦尔发现太阳黑子的活动具有11年周期依靠的是 时序分析方法。
2. 时间序列预处理包括 和 。
3. 平稳时间序列有两种定义,根据限制条件的严格程度,分为和 。
使用序列的特征统计量来定义的平稳性属于 。
4. 统计时序分析方法分为 和 。
5. 为了判断一个平稳的序列中是否含有信息,即是否可以继续分析,需对该序列进行 检验,该检验用到的统计量服从 分布;原假设和备择假设分别是 和 。
6. 图1为2000年1月——2007年12月中国社会消费品零售总额时间序列图,据此判断,该序列{}t X 是否平稳(填“是”或者“否”) ;要使其平稳化,应该对原序列进行 和 差分处理。
用Eviews 软件对该序列做差分运算的表达式是 。
7. ARIMA 模型的实质 是和的结合。
8. 差分运算的实质是使用的方式提取确定性信息。
9. 用延迟算子表示中心化的AR(P)模型是 。
二、不定项选择题(下列每小题至少有一个答案是正确的,请将正确答班级 姓名 学号50010001500200025003000350040009394959697989900图1案代码填入相应括号内,2分*5题=10分)1.下列属于白噪声序列{}t ε所满足的条件的是( )A. 任取T t ∈,有με=)(t E (μ为常数)B. 任取T t ∈,有0)(=t E εC.)(0),(s t Cov s t ≠∀=εεD. 2)(εσε=t Var (2εσ为常数) 2.使用n 期中心移动平均法对序列{}t x 进行平滑时,下列表达式正确的是( )A.n x x x x x n x n t n t t n t n t t ),(1~2112112121-+--++----++++++=ΛΛ为奇数;B. n x x x x x n x n t n t t n t n t t ),(1~212122+-++--++++++=ΛΛ为偶数;C. )(1~11+--+++=n t t t t x x x n x Λ; D. n x x x x x n x n t n t t n t n t t ),2121(1~212122+-++--++++++=ΛΛ为偶数。
(完整word版)时间序列习题(附答案)
一、单项选择题1.时间数列与变量数列()A都是根据时间顺序排列的B都是根据变量值大小排列的C前者是根据时间顺序排列的,后者是根据变量值大小排列的D前者是根据变量值大小排列的,后者是根据时间顺序排列的2.时间数列中,数值大小与时间长短有直接关系的是()A平均数时间数列B时期数列C时点数列D相对数时间数列3.发展速度属于( )A比例相对数B比较相对数C动态相对数D强度相对数4.计算发展速度的分母是( )A报告期水平B基期水平C实际水平D计划水平5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为()矚慫润厲钐瘗睞枥庑赖.A150万人B150.2万人C150.1万人D无法确定7.由一个9项的时间数列可以计算的环比发展速度()A有8个B有9个C有10个D有7个8.采用几何平均法计算平均发展速度的依据是( )A各年环比发展速度之积等于总速度B各年环比发展速度之和等于总速度C各年环比增长速度之积等于总速度D各年环比增长速度之和等于总速度9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为()聞創沟燴鐺險爱氇谴净.A 5%6.58B 5%6.158158 C 6%6.58 D 6%6.10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是()A简单平均法B几何平均法C加权序时平均法D首末折半法11、时间序列在一年内重复出现的周期性波动称为()A、长期趋势B、季节变动C、循环变动D、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B残骛楼諍锩瀨濟溆塹籟。
二、多项选择题1.对于时间数列,下列说法正确的有( )A数列是按数值大小顺序排列的B数列是按时间顺序排列的C数列中的数值都有可加性D数列是进行动态分析的基础E编制时应注意数值间的可比性2.时点数列的特点有( )A数值大小与间隔长短有关B数值大小与间隔长短无关C数值相加有实际意义D数值相加没有实际意义E数值是连续登记得到的3.下列说法正确的有( )A平均增长速度大于平均发展速度B平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( ) A%100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D %100⨯-=基期水平基期水平报告期水平增长速度E%100⨯=基期水平报告期水平增长速度5.采用几何平均法计算平均发展速度的公式有( )A 1231201-⨯⨯⨯⨯=n na a a a a a a a nx B 0a a n x n = C1a a nx n = D n R x = E n x x ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( ) A 第二年的环比增长速度=定基增长速度=10% B 第三年的累计增长量=逐期增长量=200万元 C 第四年的定基发展速度为135% D 第五年增长1%绝对值为14万元E第五年增长1%绝对值为13.5万元7.下列关系正确的有()A环比发展速度的连乘积等于相应的定基发展速度B定基发展速度的连乘积等于相应的环比发展速度C环比增长速度的连乘积等于相应的定基增长速度D环比发展速度的连乘积等于相应的定基增长速度E平均增长速度=平均发展速度—18.测定长期趋势的方法主要有()A时距扩大法B方程法C最小平方法D移动平均法E几何平均法9.关于季节变动的测定,下列说法正确的是()A目的在于掌握事物变动的季节周期性B常用的方法是按月(季)平均法C需要计算季节比率D按月计算的季节比率之和应等于400%E季节比率越大,说明事物的变动越处于淡季10.时间数列的可比性原则主要指()A时间长度要一致B经济内容要一致C计算方法要一致D总体范围要一致E计算价格和单位要一致答案1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。
时间序列分析与预测课后习题答案
22 7336 18 0766 20 2040
第八章 时间序列分析与预测
练习题第五题答案
2000
季度 销售量
长期趋势
一季度 13 1
9 3324
二季度 13 9
9 9722
三季度 79
10 6121
四季度 86
11 2519
2001
Y/T 销售量 长期趋势
1 4037 10 8
11 8918
1 3939 11 5
9
2 10
10
2 50
Y 1 1 = 0 . 3 6 5 3 3 3 + 0 . 1 9 2 6 4 8 1 1 = 2 . 4 8 6 6 6 7
2024/1/18
第八章 时间序列分析与预测
练习题第五题
某县2000—2003年各季度鲜蛋销售量如表所示单位:万公斤 1用移动平均法消除季节变动 2拟合线性模型测定长期趋势 3预测2004年各季度鲜蛋销售量
13 95 0 987174
2024/1/18
第八章 时间序列分析与预测
练习题第五题答案
2用线形趋势模型法测定时间序列的长期趋势
年份 2000 2001 2002 2003
季度 一 二 三 四 一 二 三 四 一 二 三 四 一 二 三 四
2024/1/18
销售量
13 1 13 9
t 1 3 6 , t= 8 .5 , t2 = 1 4 9 6
0 9177 17 5
15 0910 1 1596
20 0 17 6504 1 1331 1 1511 1 1472 20 2099
0 7364 16 0
15 7309 1 0171
16 9 18 2903 0 9240 0 8555 0 8526 20 8497
(完整word版)《时间序列》试卷
《时间序列分析》试卷注意:请将答案直接写在试卷上一、填空题(1分*20空=20分)1. 德国药剂师、业余天文学家施瓦尔发现太阳黑子的活动具有11年周期依靠的是 时序分析方法。
2. 时间序列预处理包括 和 。
3. 平稳时间序列有两种定义,根据限制条件的严格程度,分为和 。
使用序列的特征统计量来定义的平稳性属于 。
4. 统计时序分析方法分为 和 。
5. 为了判断一个平稳的序列中是否含有信息,即是否可以继续分析,需对该序列进行 检验,该检验用到的统计量服从 分布;原假设和备择假设分别是 和 。
6. 图1为2000年1月——2007年12月中国社会消费品零售总额时间序列图,据此判断,该序列{}t X 是否平稳(填“是”或者“否”) ;要使其平稳化,应该对原序列进行 和 差分处理。
用Eviews 软件对该序列做差分运算的表达式是 。
7. ARIMA 模型的实质 是和的结合。
8. 差分运算的实质是使用的方式提取确定性信息。
9. 用延迟算子表示中心化的AR(P)模型是 。
二、不定项选择题(下列每小题至少有一个答案是正确的,请将正确答班级 姓名 学号50010001500200025003000350040009394959697989900图1案代码填入相应括号内,2分*5题=10分)1.下列属于白噪声序列{}t ε所满足的条件的是( )A. 任取T t ∈,有με=)(t E (μ为常数)B. 任取T t ∈,有0)(=t E εC.)(0),(s t Cov s t ≠∀=εεD. 2)(εσε=t Var (2εσ为常数) 2.使用n 期中心移动平均法对序列{}t x 进行平滑时,下列表达式正确的是( )A.n x x x x x n x n t n t t n t n t t ),(1~2112112121-+--++----++++++=ΛΛ为奇数;B. n x x x x x n x n t n t t n t n t t ),(1~212122+-++--++++++=ΛΛ为偶数;C. )(1~11+--+++=n t t t t x x x n x Λ; D. n x x x x x n x n t n t t n t n t t ),2121(1~212122+-++--++++++=ΛΛ为偶数。
(完整word版)时间序列分析基于R__习题答案及解析
第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
时间序列分析习题答案
时间序列分析习题答案时间序列分析习题答案时间序列分析是一种广泛应用于统计学和经济学领域的方法,用于研究随时间变化的数据。
通过对时间序列数据的建模和分析,我们可以揭示数据背后的规律和趋势,从而进行预测和决策。
下面我将给出一些时间序列分析习题的答案,希望能对大家的学习和理解有所帮助。
1. 什么是时间序列?时间序列是按照时间顺序排列的一系列数据观测值。
它可以是连续的,比如每天的股票价格,也可以是离散的,比如每个月的销售额。
时间序列分析的目标是通过对这些数据的分析和建模,揭示数据背后的规律和趋势。
2. 时间序列分析的步骤是什么?时间序列分析一般包括以下几个步骤:- 数据收集:收集并整理时间序列数据,确保数据的准确性和完整性。
- 数据可视化:通过绘制时间序列图,观察数据的趋势、季节性和周期性等特征。
- 数据平稳性检验:通过统计检验方法,判断时间序列数据是否平稳。
如果不平稳,需要进行差分处理。
- 模型选择:根据数据的特征和目标,选择适合的时间序列模型,比如ARIMA模型、季节性ARIMA模型等。
- 模型拟合:利用选定的模型,对时间序列数据进行拟合和参数估计。
- 模型诊断:对拟合的模型进行诊断,检验模型的残差序列是否符合模型假设。
- 模型预测:利用已拟合的模型,对未来的数据进行预测。
3. 如何判断时间序列数据的平稳性?平稳性是时间序列分析的基本假设之一,它要求时间序列的均值、方差和自相关函数在时间上都是常数。
常用的平稳性检验方法有:- 绘制时间序列图:观察数据是否具有明显的趋势、季节性和周期性。
- 平稳性统计检验:常用的统计检验方法有ADF检验、KPSS检验等。
这些检验方法的原理是基于单位根检验,判断序列是否存在单位根,从而判断序列的平稳性。
4. 如何选择适合的时间序列模型?选择适合的时间序列模型需要考虑数据的特征和目标。
常用的时间序列模型有:- AR模型:自回归模型,利用过去的观测值对当前值进行预测。
- MA模型:移动平均模型,利用过去的白噪声误差对当前值进行预测。
(精校版)时间序列分析试卷及答案
(完整word版)时间序列分析试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)时间序列分析试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)时间序列分析试卷及答案的全部内容。
时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA (p , q)模型_________________________________,其中模型参数为____________________.2. 设时间序列{}t X ,则其一阶差分为_________________________。
3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________.4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________.5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳.6. 对于一阶自回归模型MA (1): 10.3t t t X εε-=-,其自相关函数为______________________.7. 对于二阶自回归模型AR (2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。
8. 设时间序列{}t X 为来自ARMA (p,q )模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________.9. 对于时间序列{}t X ,如果___________________,则()~t X I d .10. 设时间序列{}t X 为来自GARCH (p ,q )模型,则其模型结构可写为_____________。
统计基础知识第五章时间序列分析习题及答案
A. 140 万元B.150 万元6. 下列指标中属于时点指标的是 ( A ) A. 商品库存量 C .平均每人销售额7. 时间数列中,各项指标数值可以相加的是 A. 时期数列 C. 平均数时间数列8. 时期数列中各项指标数值( A ) A. 可以相加C .绝大部分可以相加10.某校学生人数 2005年比 2004年增长了8%,2006年比 2005年增长了 15%,2007年比 2006 年增长了 18%,则 2004-2007 年学生人数共增长了( D )( 2008年 10月)A.8 % +15% +18%B.8 %X 15%X 18%C. ( 108% +115% +118%) -1D.108%X 115%X 118%-1二、多项选择题1. 将不同时期的发展水平加以平均而得到的平均数称为 ( ABD ) (2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E. 一般平均数2. 定基发展速度和环比发展速度的关系是 ( BD ) (2011年 10月) A. 相邻两个环比发展速度之商等于相应的定基发展速度、单项选择题 第五章 时间序列分析1. 构成时间数列的两个基本要素是 ( A.主词和宾词 ) (2012年 1月)B. 变量和次数 C .现象所属的时间及其统计指标数值 2.某地区历年出生人口数是一个 ( A.时期数列 D.时间和次数2011年 10 月)B. 时点数列 C .分配数列 D .平均数数列3. 某商场销售洗衣机, 2008 年共销售 (2010年 10) A. 时期指标 C. 前者是时期指标,后者是时点指标4. 累计增长量 ( A ) ( 2010年 10) A. 等于逐期增长量之和 C.等于逐期增长量之差5. 某企业银行存款余额 4 月初为 80 万元, 6000 台,年底库存 50 台,这两个指标是 ( C )B. 时点指标D. 前者是时点指标,后者是时期指标B. 等于逐期增长量之积 D •与逐期增长量没有关系160 万元,则该企业第二季度的平均存款余额为(5 月初为 150 万元,6 月初为 210 万元,7 月初为C )( 2009年 10)C.160 万元 D .170万元( 2009年 10) B. 商品销售量 D .商品销售额 ( A )(2009年10)B.相对数时间数列 D. 时点数列2009年1月)B. 不可以相加D. 绝大部分不可以相加B. 环比发展速度的连乘积等于定基发展速度C. 定基发展速度的连乘积等于环比发展速度D .相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3. 常用的测定与分析长期趋势的方法有A. 时距扩大法( ABC )(2011年1 月)B.移动平均法C. 最小平方法4. 时点数列的特点有( BCD )A. 数列中各个指标数值可以相加D.几何平均法2010年10)E. 首末折半法B. 数列中各个指标数值不具有可加性C. 指标数值是通过一次登记取得的D. 指标数值的大小与时期长短没有直接的联系E. 指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于(AC )(2010年1)A.增加一个百分点所增加的绝对量B. 增加一个百分点所增加的相对量C .前期水平除以100 D. 后期水平乘以1% E .环比增长量除以100再除以环比发展速度6. 计算平均发展速度常用的方法有( A.几何平均法(水平法) C•方程式法(累计法)E.加权算术平均法7. 增长速度(ADEA. 等于增长量与基期水平之比C.累计增长量与前一期水平之比AC )(2009年10)B.调和平均法D.简单算术平均法)(2009年1 月)B. 逐期增长量与报告期水平之比D. 等于发展速度-1E .包括环比增长速度和定基增长速度8. 序时平均数是(CE )A.反映总体各单位标志值的一般水平2008年10月)B.根据同一时期标志总量和单位总量计算C•说明某一现象的数值在不同时间上的一般水平D. 由变量数列计算E. 由动态数列计算三、判断题1. 职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
时间序列分析试卷及答案
时间序列分析试卷及答案时间序列分析试卷1一、填空题(每小题2分, 共计20分)1.ARMA(p,q)模型是一种常用的时间序列模型, 其中模型参数为p和q。
2.设时间序列{Xt}, 则其一阶差分为Xt-Xt-1.3.设ARMA (2.1): Xt=0.5Xt-1+0.4Xt-2+εt-0.3εt-1, 则所对应的特征方程为1-0.5B-0.4B^2+0.3B。
4.对于一阶自回归模型AR(1):Xt=10+φXt-1+εt, 其特征根为φ, 平稳域是|φ|<1.5.设ARMA(2.1):Xt=0.5Xt-1+aXt-2+εt-0.1εt-1, 当a满足|a|<1时, 模型平稳。
6.对于一阶自回归模型Xt=φXt-1+εt, 其平稳条件是|φ|<1.7.对于二阶自回归模型AR(2):MA(1):Xt=εt-0.3εt-1, 其自相关函数为Xt=0.5Xt-1+0.2Xt-2+εt, 则模型所满足的XXX-Walker方程是ρ1-0.5ρ2=0.2, ρ2-0.5ρ1=1.8.设时间序列{Xt}为来自ARMA(p,q)模型: Xt=φ1Xt-1+。
+φpXt-p+εt+θ1εt-1+。
+θqεt-q, 则预测方差为σ^2(1+θ1^2+。
+θq^2)。
9.对于时间序列{Xt}, 如果它的差分序列{ΔXt}是平稳的, 则Xt~I(d)。
10.设时间序列{Xt}为来自GARCH(p,q)模型, 则其模型结构可写为σt^2=α0+α1εt-1^2+。
+αpεt-p^2+β1σt-1^2+。
+βqσt-q^2.二、(10分)设时间序列{Xt}来自ARMA(2,1)过程, 满足(1-B+0.5B^2)Xt=(1+0.4B)εt, 其中{εt}是白噪声序列, 并且E(εt)=0, Var(εt)=σ^2.1)判断ARMA(2,1)模型的平稳性。
根据特征方程1-φ1B-φ2B^2, 求得其根为0.5±0.5i, 因此模型的平稳条件是|φ1-0.5i|<1和|φ1+0.5i|<1, 即-1<φ1<1.因为0.5i不在实轴上, 所以模型不是严平稳的, 但是是宽平稳的。
时间序列练习题
时间序列练习题时间序列分析是一种用于研究以时间为顺序的数据变动规律的方法。
它可以帮助我们理解和预测未来的趋势,对于决策和规划具有重要的意义。
本文将通过一些时间序列练习题,帮助读者更好地理解和应用时间序列分析。
练习题一:季度销售数据分析某公司的销售数据按照季度记录如下:季度销售额Q1 100Q2 200Q3 300Q4 400请你根据这些数据,进行以下的分析和预测:1. 绘制季度销售额的时间序列图。
2. 计算季度销售额的平均值。
3. 判断季度销售额是否存在趋势性,并进行趋势线的拟合。
4. 判断季度销售额是否存在季节性,如果存在,请进行季节性分解。
5. 使用你认为最适合的模型进行未来一年季度销售额的预测,并给出预测结果。
练习题二:月度股票收益率分析某股票连续12个月的收益率数据如下:月份收益率1 0.032 0.053 -0.024 0.025 -0.016 0.047 -0.038 0.019 0.0210 -0.0511 0.0112 0.03请你根据这些数据,进行以下的分析和预测:1. 绘制月度股票收益率的时间序列图。
2. 计算月度收益率的平均值和标准差。
3. 判断股票收益率是否存在趋势性,并进行趋势线的拟合。
4. 判断股票收益率是否存在季节性,如果存在,请进行季节性分解。
5. 使用你认为最适合的模型进行未来三个月股票收益率的预测,并给出预测结果。
练习题三:年度气温分析某城市过去10年(2011年至2020年)的年度平均气温数据如下:年份平均气温(摄氏度)2011 192012 212013 202014 182015 172016 182017 202018 222019 232020 21请你根据这些数据,进行以下的分析和预测:1. 绘制年度平均气温的时间序列图。
2. 计算年度平均气温的平均值、中位数和极差。
3. 判断气温是否存在趋势性,并进行趋势线的拟合。
4. 判断气温是否存在季节性,如果存在,请进行季节性分解。
时间序列作业试题及答案
第六章动态数列-、判斷题若将某地区社会商品库存额按时间先后顺序排列,此种动态数二、1.列属于时期数列。
()定基发展速度反映了现象在一定时期内发展的总速度,环比发三、2.展速度反映了现象比前一期的增长程度。
()平均增长速度不是根据各期环比增长速度直接求得的,而是根四、3.据平均发展速度计算的。
()•用水平法计算的平均发展速度只取决于最初发展水平和最末发五、4展水平,与中间各期发展水平无关。
()平均发展速度是环比发展速度的平均数,也是一种序时平均六、5.数。
()1> X 2、X 3、J 4、V 5. Vo七、单项选择题•根据时期数列计算序时平均数应采用()。
八、1几何平均法 B.加权算术平均法C.简单九、 A.算术平均法 D.首末折半法十、2•下列数列中哪一个属于动态数列()。
十-、 A.学生按学习成绩分组形成的数列 B.工业企业按地区分组形成的数列十二、 C.职工按工资水平高低排列形成的数列 D.出口额按时间先后顺序排列形成的数列十三、3.已知某企业1月、2月、3月、4月的平均职工人数分别为190人、195人、193人和201人。
则该企业一季度的平均职工人数的计算方法为()。
十四、心(190+195+193+201)4B.190+195 + 1933十五.(190/2)+195+193 + (201/2) 、[190/2)+195+193+(201/2)C・D・ ---------------------------------4-1 44.说明现象在较长时期内发展的总速度的指标是()。
A、环比发展速度 B.平均发展速度 C.定基发展速度 D.环比增长速度5•已知各期环比增长速度为2%、5%、8%和7%,则相应的定基增长速度的计算方法为()。
A.(102%X105%X108%X107%) -100%B.102%X105%X108%X107%C.2%X5%X8%X7%D.(2%X5%X8%X7%) -100%6•定基增长速度与环比增长速度的关系是()。
时间序列分析习题及答案
时间序列分析第一题:1、绘制时序图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc gplot data=ex1_1;plot x*time=1;symbol1 c=black v=star i=join;run;时序图:2、绘制自相关图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc arima data=ex1_1;identify var=x;run;样本自相关图:白噪声检验输出结果:因为P值小于α,所以该序列为非白噪声序列,根据时序图看出数据并不在一个常数值附近随机波动,后期有递减的趋势,所以不是平稳序列。
第二题:1、选择拟合模型方法一:首先绘制该序列的时序图,直观检验序列平稳性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 页(共 4 页)考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,1--=∇t t t Y Y Y 。
一、单项选择题(每小题3 分,共24 分。
)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。
A. MA(2) B.ARMA(1,1) C.AR(2) D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B)。
A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA 3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。
(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。
A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。
A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。
A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。
A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2) 8. 记∇为差分算子,则下列不正确的是( C )。
A. 12-∇-∇=∇t t t Y Y YB. 2122--+-=∇t t t t Y Y Y YC. k t t t kY Y Y --=∇ D. t t t t Y X Y X ∇+∇=+∇)( 二、填空题(每题3分,共24分);1. 若{}t Y 满足: 1312112---Θ-Θ--=∇∇t t t t t e e e e Y θθ, 则该模型为一个季节周期为=s __12____的乘法季节s ARIMA )1,1_,0(_)1_,1_,0(⨯模型。
2 页(共 4 页)2. 时间序列{}t Y 的周期为s 的季节差分定义为: =∇t s Y _____s t t Y Y --________________________。
3. 设ARMA (2, 1):1211.025.0----+-=t t t t t e e Y Y Y则所对应的AR 特征方程为___025.012=--x x _____________,其MA 特征方程为________01.01=-x _____________。
4. 已知AR (1)模型为:),0(~x 4.0x 2t t 1-t t εσεεWN ,+=,则)(t x E =_______0_____________, 偏自相关系数11φ=________8.0__________________,kk φ=________0__________________(k>1);5.设{}t Y 满足模型:t t t t e Y aY Y ++=--218.0,则当a 满足______2.02.0<<-a __________时,模型平稳。
6.对于时间序列t t t t e e Y Y ,9.01+=-为零均值方差为2e σ的白噪声序列,则)(t Y Var =_______81.012-e σ____________________。
7.对于一阶滑动平均模型MA(1): 16.0--=t t t e e Y ,则其一阶自相关函数为_______________36.016.0+-________________________________。
8.一个子集),(q p ARMA 模型是指_形如__),(q p ARMA 模型但其系数的某个子集为零的模型_。
三、计算题(每小题5分,共10分)已知某序列{}t Y 服从MA(2)模型:218.06.040--+-+=t t t t e e e Y ,若6,4,2,20212-=-===--t t t e e e e σ(a)预测未来2期的值;(b)求出未来两期预测值的95%的预测区间。
解:(1)()121112118.06.040),,8.06.040((),,(1ˆ--+++-=⋅⋅⋅+-+=⋅⋅⋅=t t t t t t t t t e e Y Y Y e e e E Y Y Y Y E Y =6.35)4(8.026.040=-⨯+⨯- =6.4128.040=⨯+ (2)注意到()∑-==122][l j j e tl e Var ψσ,1≥l 。
因为,6.0,110-==ψψ故有()20]1[=t e Var ,()2.27)36.01(20]2[=+=t e Var 。
未来两期的预测值的%95的预测区间为:3 页(共4 页)()()[]()()[]()l e Var z l Y l e Var zl Y t t t t025.0025.0ˆ,ˆ+-,其中2,1,96.1025.0==l z。
代入相应数据得未来两期的预测值的%95的预测区间为:未来第一期为: )2096.16.35,2096.16.35(+-,即 )3654.44 ,8346.26(; 未来第二期为: )2.2796.16.41,2.2796.16.41(+-,即)8221.15 ,3779.31(。
四、计算题(此题10分)设时间序列}{t X 服从AR(1)模型:t t t e X X +=-1φ,其中}{t e 是白噪声序列,2)(,0)(e t t e Var e E σ==)(,2121x x x x ≠为来自上述模型的样本观测值,试求模型参数2,e σφ的极大似然估计。
解:依题意2=n ,故无条件平方和函数为 212221212212222)1()()(x x x x x x x S t φφφφ-+=-+-=∑= 易见(见p113式(7.3.6))其对数似然函数为所以对数似然方程组为⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0),(0),(222φσφσσφe ee,即⎪⎪⎩⎪⎪⎨⎧=-+-=-+02122222122212221e e x x x x x x σφφσφ。
解之得()()⎪⎪⎩⎪⎪⎨⎧+-=+=22212222122221212ˆ2ˆx x x x x x x x εσφ。
五、计算题(每小题6分,共12分)判定下列模型的平稳性和可逆性。
(a) 114.08.0---+=t t t t e e Y Y (b)21215.06.14.18.0----++=+-t t t t t t e e e Y Y Y解:(a)其AR 特征方程为: 08.01=-x ,其根25.1=x 的模大于1,故满足平稳性条件,该模型平稳。
其MA 特征方程为:04.01=-x ,其根5.2=x 的模大于1,故满足可逆性条件。
该模型可逆。
综上,该模型平稳可逆。
(b) 其AR 特征方程为: 04.18.012=+-x x ,其根为4.126.564.08.02,1⨯-±=x ,故其根的模为4.126.5⨯小于1,从而不满足平稳性条件。
该模型是非平稳的。
MA 特征方程为:05.06.112=++x x ,其有一根5.02256.26.1⨯-+-=x 的模小于1,故不满足可逆性条件。
所以该模型不可逆。
综上,该模型非平稳且不可逆。
六、计算题(每小题5分,共10分)某AR 模型的AR 特征多项式如下:4 页(共 4 页)(1) 写出此模型的具体表达式。
(2) 此模型是平稳的吗?为什么? 解:(1)该模型为一个季节ARIMA 模型,其模型的具体表达式是(其中B 为延迟算子) 或者 t t t t t t t e Y Y Y Y Y Y =-+-+------1413122156.036.18.07.07.1。
(2)该模型是非平稳的,因为其AR 特征方程)8.01)(7.07.11(122x x x -+-=0有一根1=x 的模小于等于1,故不满足平稳性条件。
七、计算题(此题10分)设有如下AR(2)过程: t t t t e Y Y Y +-=--211.07.0,t e 为零均值方差为 1 的白噪声序列。
(a) 写出该过程的Yule-Walker 方程,并由此解出21,ρρ;(6分) (b) 求t Y 的方差。
(4分)解答:(a)其Yule-Walker 方程(见课本P55公式(4.3.30))为:解之得 5519,11721==ρρ。
(b )由P55公式(4.3.31)得27516255191.01177.0111.07.01)(2120=⨯+⨯-=+-==ρρσγe t Y Var 。