过程控制系统实验指导书解析
过程控制系统课程实习指导书
过程控制系统课程实习指导书赵黎明张冰广东海洋大学信息学院自动化系2009-09-08一.实习目的实习题目主要是加强理论与实践的联系,增强学生对于社会、国情和专业背景的了解;增强劳动观点和社会主义事业心,责任感;通过考察和实践,扩宽学生视野,巩固和运用课堂教学所掌握的理论知识,了解控制系统设计发展的状况,培养学生分析问题、解决问题的能力和创新能力;增强劳动观念,培养学生的敬业、创业精神;积极探索“学、研、产”相结合的人才培养新途径,提高人才培养质量。
二.实习内容实习内容主要是基于PCS3000高级型过程控制实验装置上,借助数字控制仪表,可编程控制器PLC和WINCC组态软件对其单容液位对象、多容液位对象、温度对象、压力对象和流量对象等进行全程监控。
实习过程中要理论联系实际结合以往学过的课程理论,如《过程控制工程》、《过程控制仪表》、《可编程逻辑控制器》,重点强化培养解决实际问题的能力,实践能力和动手能力。
具体内容如下:1.全面熟悉PCS3000高级型过程控制系统实习装置平台。
2.液位、压力、温度和流量信号检测。
3.单容水箱特性测试。
4.串联水箱特性测试。
5.锅炉温度特性测试。
6.水箱液位定值PID调节。
7.管道压力PID调节。
8.水箱液位多位式调节。
9.锅炉温度定值PID调节。
10.管道流量PID调节。
11.纯延迟水箱液位定值PID调节。
12.串联水箱液位定值PID调节。
13.实验数据收集整理,撰写实习报告和参加实习考核。
以上内容只是这次实习的总体规划,具体实施时应根据学生班级人数和具体情况灵活调整,可能只是其中一部分或若干部分。
三.实习时间自动化专业拟定二周;电气工程及其自动化专业拟定三周。
四.实习方式和安排实习方式为校内集中实习;地点安排在科技502。
具体实习内容安排详见实习计划表及其附录。
五.考核内容和方式及成绩评定标准考核内容及方式由三方面综合:平时表现、实习报告质量、答辩成绩。
实习最终成绩根据实习表现,实习报告情况和答辩情况来综合确定。
过程控制系统实验指导书以及实验报告格式要求解析
《过程控制技术与系统》实验指导书过程控制系统组编华北电力大学前言1.实验总体目标通过实验,巩固掌握课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2.适用专业自动化、测控、集控专业本科生3.所修课程过程控制技术与系统或热工控制系统4.实验课时分配⒌PCS-B过程控制系统⒍实验总体要求1、掌握对象动态特性测量方法;2、掌握单回路控制系统原理和参数整定方法;3、掌握串级控制系统原理和参数整定方法。
⒎本实验的重点、难点及教学方法建议实验通过对控制系统的基本理论和方法有一个感性认识和更好地理解。
实验的重点及难点是:对象动态特性测量基本方法;单回路控制系统投运和参数整定方法;串级控制系统投运和参数整定方法。
目录实验一上水箱动态特性测试实验 (3)实验二上水箱液位控制系统实验 (6)实验三上下水箱液位串级控制系统实验 (11)附录一硬件介绍 (16)附录二软件使用说明 (34)附件三实验报告格式要求 (40)实验一上水箱动态特性测试实验一、实验目的1、被控对象动态特性测试;2、学习和了解DCS系统的原理及它在过程控制中的应用。
二、实验类型综合型三、实验装置1、DCS过程控制实验装置(其中使用:电动调节阀、上水箱及液位变送器、储水箱、增压泵等),液位变送器的量程一般在出厂前已调试好。
2、DCS控制机柜3、安装有组态及监控软件的计算机上水箱动态特性测试实验系统见图1-1图1-1 上水箱单容特性测试实验流程图四、实验步骤1、将过程控制综合实验装置的手动阀门1V1、V4打开, 1V2、1V3、1V7关闭。
2、确认实验装置和控制机柜电源正常。
3、点击主界面上方的“单容水箱特性”按钮进入单容水箱特性实验界面。
图1-2 实验系统主界面4、点击“开始实验”按钮,确认增压泵启动正常,调节阀开度为5%。
5、设置阀门开度值(点击设置按钮,在弹出的对话框中输入阀门开度,以0-100百分数表示),使上水箱水位稳定后。
计算机过程控制系统(DCS)课程实验指导书
计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2、分析分别用P、PI和PID调节时的过程图形曲线。
3、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。
三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。
本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。
根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。
当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。
一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。
比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。
但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。
过程控制系统及装置实验指导书(简写本)^
过程控制系统及装置实验指导书刘解生重庆科技学院电子信息学院实验1离心泵、液位控制操作实习一、实验设备及实验目的1、实验设备:PC计算机、化工过程操作实习软件2、熟悉过程操作实习仿真软件的使用。
3、了解离心泵、液位的工艺流程。
4、掌握实际离心泵、液位过程控制的操作方法。
二、工艺说明1.工作原理离心泵一般由电动机带动。
启动前须在离心泵的壳体内充满被输送的液体。
当电机通过联轴结带动叶轮高速旋转时,液体受到叶片的推力同时旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外沿,以高速流入泵壳,当液体到达蜗形通道后,由于截面积逐渐扩大,大部分动能变成静压能,于是液体以较高的压力送至所需的地方。
当叶轮中心的流体被甩出后,泵壳吸入口形成了一定的真空,在压差的作用下,液体经吸入管吸入泵壳内,填补了被排出液体的位置。
2.“气缚”现象离心泵若在启动前未充满液体,则离心泵壳内极易存在空气,由于空气密度很小,所产生的离心力就很小。
此时在吸入口处形成的真空不足以将液体吸入离心泵内,因而不能输送液体,这种现象为“气缚”。
所以离心泵在开动前必须首先将被输送的液体充满泵体,并进行高点排气。
3.“汽蚀”现象通常,离心泵叶轮入口处是压力最低的部位,如果这个部位液体的压力等于或低于在该温度下液体的饱和蒸汽压力,就会有蒸汽及溶解在液体中的气体从液体中大量逸出,形成许多蒸汽和气体混合物的汽泡。
这些小汽泡随着液体流入高压区后,汽泡破裂重新凝结。
在凝结过程中,质点加速运动相互撞击,产生很高的局部压力。
在压力很大、频率很高的连续打击下,离心泵体金属表面逐渐因疲劳而损坏,寿命大为缩短。
离心泵的安装位置不当、流量调节不当或入口管路阻力太大时都会造成“汽蚀”。
4.离心泵的特性曲线离心泵的流量(F)、扬程(H)、功率(N)和效率(η)是其重要的性能参数。
这些性能参数之间存在一定的关系,可以通过实验测定。
通过实验测定所绘制的曲线,称为离心泵的特性曲线。
常用的离心泵特性曲线有如下三种。
过程控制实验指导书
过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力变送器的使用方法。
3、掌握实验装置的基本操作与变送器仪表的调整方法。
二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。
并将挂件的三芯蓝插头插于相应的插座中。
2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。
3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。
4)、关闭各个挂件的电源进行连线。
2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。
2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。
3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。
对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。
过控实验指导书分解
过控实验指导书分解《过程控制系统》实验指导书安阳⼯学院电⼦信息与电⽓⼯程学院⽬录第⼀章实验装置说明 (2)1.1 系统概述 (2)1.1.1 实验对象 (2)1.1.2 被控对象 (3)1.1.3 检测装置: (3)1.1.4 执⾏机构: (4)1.2 THSA-1型过控综合⾃动化控制系统实验平台 (4)1.2.1 控制屏组件 (4)1.2.2 智能仪表控制组件 (5)1.2.3 远程数据采集控制组件 (9)1.2.4 PLC控制组件 (10)1.3 软件介绍 (10)1.4 实验要求及安全操作规程 (11)1.4.1 实验前的准备 (11)1.4.2 实验过程的基本程序 (11)1.4.3 实验安全操作规程 (11)第⼆章实验部分 (12)实验⼀双容⽔箱特性测试 (19)实验⼆双容⽔箱液位定值控制系统(单回路) (23)实验三双容⽔箱液位定值控制系统(串级) (26)第⼀章实验装置说明1.1 系统概述THSA-1型过控综合⾃动化控制系统是由THJ-3⾼级过程控制对象系统实验装置、THSA-1型综合⾃动化控制系统实验平台及上位PC机三部分组成。
该装置结合了当今⼯业现场过程控制的实际,是⼀套集仪表技术、计算机技术、通讯技术、⾃动控制技术及现场总线技术为⼀体的多功能实验设备。
包括流量、温度、液位、压⼒等热⼯参数,可实现系统参数辨识、单回路控制、串级控制、前馈-反馈控制、滞后控制、⽐值控制、解耦控制等多种控制形式,还可根据需要设计成智能仪表、DDC远程数据采集、DCS分布式控制、PLC可编程控制、FCS现场总线控制等多种控制系统。
1.1.1 实验对象实验对象貌图如图1-1所⽰。
实验装置对象主要由⽔箱、锅炉和盘管三⼤部分组成。
供⽔系统分两路:⼀路由三相磁⼒驱动泵(380V恒压供⽔)、电动调节阀、直流电磁阀、涡轮流量计及⼿⽀调节阀组成;另⼀路由变频器、三相磁⼒驱动泵(220V变频调速)、涡轮流量计及⼿动调节阀组成。
过程控制系统实验、课程设计指导书
实验一 单回路温度控制系统的参数整定一、实验目的1、 掌握单回路控制系统的原理性组成;了解单回路温度控制系统实验装置的组成和原 理;掌握单回路温度控制系统的参数整定方法。
2、 掌握DCS 系统的监控和操作方法。
二、实验仪器及设备过程控制系统综合实验装置一套、SUPCON JX-300X DCS 系统一套 三、实验线路单回路温度控制系统流程示意图:温度调节器SP综合实验装置管路连接方式见图示(下页): DCS 控制站第一个机笼的I/O 卡件分布见下图:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19各块I/O卡件的信号安排见下表:说明:J1/01——J1/08卡件通道为SP313的第1路即SP313(1)J1/09——J1/16卡件通道为SP313的第2路即SP313(2)J1/17——J1/20卡件通道为SP313的第3路即SP313(3)四、实验内容及实验方法(一)、实验内容1、熟悉单回路温度控制系统的管路连接方式及各输入/输出信号与DCS卡件的连接方式。
2、根据温度控制系统管路连接方式调节相关手动球阀至对应开关位置,进行单回路控制系统参数整定的方法整定PID参数。
3、观察和比较PID参数变化对系统性能的影响。
(二)、实验方法及步骤1、按照综合实验装置管路图正确开关各手动球阀。
2、综合实验装置上电,打开水泵,等高位水箱开始溢流(恒压状态下),锅炉水位到高度的2/3时,关闭锅炉的进水阀和出水阀。
3、SUPCON JX-300X DCS系统上电,工程师站上调出监控画面(组态设计已做好),手动操作给锅炉加热到设定温度。
4、小开度打开锅炉的进、出水阀,使锅炉水流动,手动调节加热功率大小,使锅炉水温基本稳定在设定值上,初置调节器PID参数值,将DCS切换到自动控制状态。
5、在锅炉里加少量冷水或加大锅炉进水阀的开度片刻,以模拟扰动,观察系统的调节过程、响应曲线。
过程控制系统实验指导书以及实验报告格式要求解析
《过程控制技术与系统》实验指导书过程控制系统组编华北电力大学前言1.实验总体目标通过实验,巩固掌握课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2.适用专业自动化、测控、集控专业本科生3.所修课程过程控制技术与系统或热工控制系统4.实验课时分配⒌PCS-B过程控制系统⒍实验总体要求1、掌握对象动态特性测量方法;2、掌握单回路控制系统原理和参数整定方法;3、掌握串级控制系统原理和参数整定方法。
⒎本实验的重点、难点及教学方法建议实验通过对控制系统的基本理论和方法有一个感性认识和更好地理解。
实验的重点及难点是:对象动态特性测量基本方法;单回路控制系统投运和参数整定方法;串级控制系统投运和参数整定方法。
目录实验一上水箱动态特性测试实验 (3)实验二上水箱液位控制系统实验 (6)实验三上下水箱液位串级控制系统实验 (11)附录一硬件介绍 (16)附录二软件使用说明 (34)附件三实验报告格式要求 (40)实验一上水箱动态特性测试实验一、实验目的1、被控对象动态特性测试;2、学习和了解DCS系统的原理及它在过程控制中的应用。
二、实验类型综合型三、实验装置1、DCS过程控制实验装置(其中使用:电动调节阀、上水箱及液位变送器、储水箱、增压泵等),液位变送器的量程一般在出厂前已调试好。
2、DCS控制机柜3、安装有组态及监控软件的计算机上水箱动态特性测试实验系统见图1-1图1-1 上水箱单容特性测试实验流程图四、实验步骤1、将过程控制综合实验装置的手动阀门1V1、V4打开, 1V2、1V3、1V7关闭。
2、确认实验装置和控制机柜电源正常。
3、点击主界面上方的“单容水箱特性”按钮进入单容水箱特性实验界面。
图1-2 实验系统主界面4、点击“开始实验”按钮,确认增压泵启动正常,调节阀开度为5%。
5、设置阀门开度值(点击设置按钮,在弹出的对话框中输入阀门开度,以0-100百分数表示),使上水箱水位稳定后。
过程控制实验指导书讲解
过程控制实验指导书授课学时:16课时授课专业:自动化授课教师:姜倩倩目录过程控制实验项目一览表 ............................................................................................ - 1 - 实验一:一阶系统数学模型的建立 ............................................................................ - 2 - 实验二:PID控制器参数自整定............................................................................... - 4 - 实验三水箱液位PID控制........................................................................................ - 8 - 实验四水箱压力的PID调节控制 .......................................................................... - 14 - 实验五串级水位控制系统设计 ............................................................................ - 17 - 实验六前馈-反馈控制系统仿真实验 .................................................................... - 19 - 实验七单片机液位控制系统 .................................................................................. - 22 - 实验八单容液位PLC控制 ...................................................................................... - 25 -过程控制实验项目一览表实验参考书:GK-1型操作说明书.实验指导书实验一:一阶系统数学模型的建立一、实验目的1.熟悉利用计算法建立系统一阶惯性环节加纯迟延的近似数学模型的方法;2.学会利用MATLAB/Simulink对系统建模的方法。
过程控制系统实验指导书第二版
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:
过程控制系统实验指导书
实验一 单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备1.实验对象及控制屏,SA-11挂件一个,SA-14挂件一个,计算机一台。
万用表一个;2. SA-12挂件一个,3. SA-44-1挂件一个4. SA-24-1 挂件一个5. SA-21 挂件一个 SA-22挂件一个 SA-23挂件一个三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图2-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。
液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。
若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q 2=A dtdh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=Adt h d ∆ (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏离某一平衡状态的增量;A ——水箱截面积。
在平衡时, Q 1=Q 2, dtdh =0; 当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化。
(a )结构图 (b )方框图 由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=Rh ∆ 或 R=2Q ∆∆h (2-3) 式中:R ——阀F1-11的阻力,称为液阻。
过程控制系统实验指导书.doc
过程控制系统实验指导书信息与控制学院实验一PID 参数整定与单回路过程控制系统仿真一、 实验目的(1) 熟悉Simulink 的常用界面以及常用的功能模块; (2) 掌握C-C 工程整定参数的方法; (3) 掌握Z-N 工程整定参数的方法。
二、 实验内容已知被控广义对象的传递函数为:采用工程整定参数的方法,利用PID 控制器,完成P 、PI 、PID 控制时的参数整定、系统仿真图、单位阶跃响应。
三、 实验原理由题目可知系统的增益K 、时间常数T 和纯迟延时间τ分别为:K =8、τ=180s 、T =360s 。
1、C-C 工程整定参数方法根据C-C 工程整定方法的计算公式,可得 ① P 控制时:Kc=(T/τ+0.333)/K=0.2916利用图1.1所示的Simulink 系统方框图,将仿真时间设置为2000,启动仿真,便可在示波器中看到如图1.1所示的系统在P 控制时的单位阶跃响应曲线。
sp e s s G 180)1360(8)(-+=图1.1 系统仿真图及阶跃响应曲线(P控制)② PI控制时:K c=(0.9*T/τ+0.082)/K=0.2353;T i =(3.33*τ/T+0.3*(τ/T)^2)/(1+2.2*τ/T)*T=298.2857利用图1.2所示的Simulink系统方框图,将仿真时间设置为2000,启动仿真,便可在示波器中看到如图1.2所示的系统在PI控制时的单位阶跃响应曲线。
图1.2 系统仿真图及阶跃响应曲线(PI控制)③ PID控制时:Kc=(1.35*T/τ+0.27)/K=0.3713;Ti =(2.5*τ/T+0.5*(τ/T)^2)/(1+0.6*τ/T)*T= 380.7692Td=(0.37*τ/T)/(1+0.2*τ/T)*T=60.5455图1.3 系统仿真图及阶跃响应曲线(PID控制)由图1.3可知,根据C-C工程整定方法得到的控制器参数,系统在PID控制时阶跃响应的超调量大约为60%,上升时间大约为300s;过渡过程时间大约为2000s。
过程控制实验指导书
出流量 G 成正比。 本装置的调节阀采用线性的理想特性, 当水源压力 P 稳定的情况下, 由于管 道压力损失很小, 因此调节阀在系统中 S 接近于 1, 其工作特性基本上是线性的。 所以系统的广义对象是线性的,所构成的控制系统为线性控制系统。 2 控制面板: 1) O 为插座孔。 2) C1、C2、C3 为三个控制器,框中的 PV、SP、OUT 分别为控制器的测量 值、外给定、输出值; 3) 流量变送器 1、流量变送器 2 分别为两套管路的流量检测变送值经 F/I 转 换后的标准电流输出信号; 4) 电气转换器 1、电气转换器 2 分别为两套管路的调节阀输入信号插座孔, 接收来自控制器的标准电流输出信号并经电气转换器转换成标准气信号后 送到气动调节阀; 5) 比值器,即乘除运算器,左插孔、中插孔连结二个输入信号,右插孔将乘 除运算结果信号输出。乘法运算由比值模块控制器设置参数,当 AB=0 时为 乘法,当 AB=1 时为除法。 本装置的气动调节阀采用线性理想特性,s=1,系统的广义对象是线性的, 故本装置是线性控制系统。
符号
名称
说明 .无禁锁 (可修改一、二级参数)。 .禁 锁 (设定参数不可修改)。 .可进入修改仪表日期及时间。 .无禁锁(可进入修改三级参数设定)。 .显示程序比例带的设定值。 .显示程序积分时间的设定值。 .解除比例控制所产生的残留偏差。 .显示程序微分时间的设定值。
00
50 200
D
微分时间 积 分
B. 控制器的操作方式
1. 仪表的上电 打开控制器上端的红色电源开关按钮,指示灯点亮,即控制器进入工作状 态 。 2. 仪表设备号及版本号的显示 仪表在投入电源后,可立即确认仪表设备号及版本号。3秒种后,仪表自动 转入工作状态,PV显示测量值,SV显示控制目标值或输出量的百分比。如要求 再次自检,可按一下面板右下方的复位键,仪表将重新进入自检状态。
过程控制系统实验指导书
过程控制系统实验指导书实验一:基本的过程控制系统概念实验目的:1. 了解过程控制系统的基本概念和结构;2. 掌握过程控制系统中的传感器和执行器的作用和应用方法;3. 学会使用PLC进行基本的控制。
实验原理:过程控制系统的主要功能是对系统中的各种变量进行测量和控制。
通常包括传感器、执行器和控制器三个部分。
传感器负责采集过程变量的数值,执行器负责对控制对象进行控制,控制器负责数据的处理和算法的实现。
传感器主要用于测量过程中的各种参数,如温度、压力、流量等,把这些参数转化为电信号,通过信号传输到控制器进行处理。
传感器的种类繁多,能够根据测量范围、精度、稳定性等不同要求选用不同传感器。
执行器主要用于对控制对象进行控制,例如控制阀门的开闭、启动或停止泵等。
执行器的种类也很多,根据不同的控制需求,需要选择不同的执行器。
控制器是整个系统的中枢部分,主要负责调节和控制传感器和执行器之间的信号和数据。
控制器一般采用计算机和程序控制器,通过不断的接收、处理、输出数据,实现对控制对象的实时监控和控制。
在本实验中,我们将使用PLC进行控制,PLC是工业控制中最为常见的控制器之一,其硬件和软件具有可编程性、可扩展性等优点,可实现较复杂的控制功能。
实验步骤:1. PLC硬件结构的讲解与认识我们首先要理解PLC的硬件结构,如输入模块、输出模块、中央处理器(CPU)和编程接口等部分。
其中输入模块、输出模块用于将模拟量或数字量的信号转化为PLC识别的信号,在输出时将PLC的信号。
通过CPU控制,实现对各种执行器的控制。
编程接口是一个开发平台,具有图形设计和文字描述的功能,对于初学者来说非常简单实用。
2. 了解信号的类型及其转换方法为了实现对过程的监控和控制,我们需要测量过程参数,并将其转化为PLC可以识别的信号。
我们需要了解信号的类型及其转换方法。
通常包括电压、电流、频率、数字信号等类型。
我们可以使用一些基本的传感器,如温度传感器、压力传感器等,将它们的数值转化为电信号,并通过输入模块输入PLC。
过程控制系统实验指导书
三、对给定被控过程,设计节器
实验二 串级控制系统的建模与仿真
1. 对给定三阶系统,设计单回路PID调节器,观察并记录曲线,上升时间、超调量、调节时间、稳态误差。改变PID参数值,观察输出曲线的变化规律。
2.设计串级控制调节器,观察并记录曲线,上升时间、超调量、调节时间、稳态误差。
4. 综合题
1)假设被控对象的数学模型为 ,设计PI控制,使其超调控制在55%以下,用Matlab进行仿真,
2)加入纯滞后环节后变为: ,观察系统输出波形,用Matlab进行仿真,
3)设计Smith预估补偿控制,并求其输出波形,用Matlab进行仿真。
改变调节器参数值,观察输出曲线的变化规律。
比较两种控制方案,从中可得到什么结论?
3. 假设隧道窑的燃烧室、烧成带的数学模型为惯性加纯滞后环节 ,分别为 和 ,其控制系统的框图为:
图1隔焰式隧道窑温度控制系统框图
1. 请根据已知的燃烧室、烧成带的数学模型对隔焰式隧道窑温度进行控制,使其满足超调小于40%,用Matlab进行仿真,并给出仿真图形
2. 在此基础上设计串级控制回路,画出串级控制系统框图,用Matlab进行仿真,并给出仿真图形。
3. 给出加入一次扰动、二次扰动的仿真图,比较在单回路控制及串级控制作用下,同时加入一次扰动、二次扰动的仿真结果。
实验三 前馈控制系统
1.对给定惯性纯滞后过程对象、观察单回路PID调节器曲线,并记录上升时间、超调量、调节时间、稳态误差。
实验一 单回路控制系统的建模与仿真………………………………1
实验二 串级控制系统的建模与仿真…………………………………3
实验三 前馈控制系统…………………………………………………5
过程控制实验指导书(DOC)
实验系统认知A3000高级过程控制实验系统独创现场系统概念,而不是对象系统。
现场系统包括了实验对象单元、供电系统、传感器、执行器(包括电动调节阀、变频器及调压器)、以及半模拟屏,从而组成了一个只需接受外部标准控制信号的完整、独立的现场环境。
1、A3000特点(1)现场系统通过一个现场控制机柜,集成供电系统、变频器、移相调压器、以及现场继电器,所有驱动电力由现场系统提供。
它仅需通过标准接线端子接收标准控制信号即能完成所有实验功能。
从而实现了现场系统与控制系统完全独立的模块化设计。
(2)现场控制机柜内有工业标准接线端子。
这种标准信号接口可以使现场系统与用户自行选定的DCS系统、PLC系统、DDC系统方便连接,甚至用户自己用单片机组成的系统都可以对现场系统进行控制。
(3)现场系统的设计另外的优势是保证动力线与控制线的电磁干扰隔离。
(4)现场系统的设计保证了控制系统只需要直流低压就可以了,使得系统设计更模块化,更安全、具有更大的扩展性。
A3000-FS现场及系统结构原理图如图2-1,图2-2所示。
图2-1 A3000现场实物图图2-2 A3000现场系统结构图现场系统包括三个水箱,一个大储水箱,一个锅炉,一个工业用板式换热器,两个水泵,大功率加热管,滞后时间可以调整的滞后系统,一个硬件联锁保护系统。
传感器和执行器系统包括5个温度、3个液位、1个压力,1个电磁流量计,1个涡轮流量计,1个电动调节阀,两个电磁阀,2个液位开关。
2、现场系统机柜面板Ø 电源:220V AC单相总电源空开,380V AC三相总电源空开。
Ø 开关:两个两位自锁旋钮开关,分别是加热器电源开关和变频器电源开关。
四个三位自锁旋钮开关,分别是1#、2#电磁阀手自动以及关闭开关。
变频器手自动启动信号以及关闭开关,2#水泵手自动运行以及关闭开关。
Ø 电压表:显示24VDC开关电源的电压值。
Ø 变频器:对于A3000FBS系统,则具有Profibus DP控制端子。
单回路控制系统实验(过程控制实验指导书)
单回路控制系统实验单回路控制系统概述实验三单容水箱液位定值控制实验实验四双容水箱液位定值控制实验实验五锅炉内胆静(动)态水温定值控制实验实验三实验项目名称:单容液位定值控制系统实验项目性质:综合型实验所属课程名称:过程控制系统实验计划学时:2学时一、实验目的1.了解单容液位定值控制系统的结构与组成。
2.掌握单容液位定值控制系统调节器参数的整定和投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验内容和(原理)要求本实验系统结构图和方框图如图3-4所示。
被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
三、实验主要仪器设备和材料1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。
四、实验方法、步骤及结果测试本实验选择中水箱作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。
具体实验内容与步骤按二种方案分别叙述。
(一)、智能仪表控制1.按照图3-5连接实验系统。
将“LT2中水箱液位”钮子开关拨到“ON”的位置。
图3-4 中水箱单容液位定值控制系统(a)结构图(b)方框图图3-5 智能仪表控制单容液位定值控制实验接线图2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给智能仪表及电动调节阀上电。
过程控制实验指导书(DOC)
实验系统认知A3000高级过程控制实验系统独创现场系统概念,而不是对象系统。
现场系统包括了实验对象单元、供电系统、传感器、执行器(包括电动调节阀、变频器及调压器)、以及半模拟屏,从而组成了一个只需接受外部标准控制信号的完整、独立的现场环境。
1、A3000特点(1)现场系统通过一个现场控制机柜,集成供电系统、变频器、移相调压器、以及现场继电器,所有驱动电力由现场系统提供。
它仅需通过标准接线端子接收标准控制信号即能完成所有实验功能。
从而实现了现场系统与控制系统完全独立的模块化设计。
(2)现场控制机柜内有工业标准接线端子。
这种标准信号接口可以使现场系统与用户自行选定的DCS系统、PLC系统、DDC系统方便连接,甚至用户自己用单片机组成的系统都可以对现场系统进行控制。
(3)现场系统的设计另外的优势是保证动力线与控制线的电磁干扰隔离。
(4)现场系统的设计保证了控制系统只需要直流低压就可以了,使得系统设计更模块化,更安全、具有更大的扩展性。
A3000-FS现场及系统结构原理图如图2-1,图2-2所示。
图2-1 A3000现场实物图图2-2 A3000现场系统结构图现场系统包括三个水箱,一个大储水箱,一个锅炉,一个工业用板式换热器,两个水泵,大功率加热管,滞后时间可以调整的滞后系统,一个硬件联锁保护系统。
传感器和执行器系统包括5个温度、3个液位、1个压力,1个电磁流量计,1个涡轮流量计,1个电动调节阀,两个电磁阀,2个液位开关。
2、现场系统机柜面板Ø 电源:220V AC单相总电源空开,380V AC三相总电源空开。
Ø 开关:两个两位自锁旋钮开关,分别是加热器电源开关和变频器电源开关。
四个三位自锁旋钮开关,分别是1#、2#电磁阀手自动以及关闭开关。
变频器手自动启动信号以及关闭开关,2#水泵手自动运行以及关闭开关。
Ø 电压表:显示24VDC开关电源的电压值。
Ø 变频器:对于A3000FBS系统,则具有Profibus DP控制端子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制系统实验指导书王永昌西安交通大学自动化系2015.3实验一先进智能仪表控制实验一、实验目的1.学习YS—170、YS—1700等仪表的使用;2.掌握控制系统中PID参数的整定方法;3.熟悉Smith补偿算法。
二、实验内容1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序;2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验;3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。
4.了解单回路控制,串级控制及顺序控制的概念,组成方式。
三、实验原理1、YS—1700介绍YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。
其外形图如下:YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。
高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。
能在一个屏幕上对串级或两个独立的回路进行操作。
标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。
对YS1700编程可直接在PC机上完成。
SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。
(2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。
(3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。
当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式单回路控制器具有丰富和灵活可变的运算控制功能;即具有连续控制功能,也具有一定的顺序控制及处理批量生产过程的能力。
具有通信功能,能与集中监视操作站及上位计算机交互信息,构成集散控制系统。
具有自诊断功能,有助于系统维护。
4、单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数恒定,而调节器只接收一个测量信号,其输出也只控制一个执行机构。
单回路控制系统主要由四个基本环节组成,即被控对象(简称对象)、测量变送装置、控制器和执行器。
5、SLPC 内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC ,内含1个调节单元CNT1,相当于模拟仪表中的l 台PID 调节器,可用来组成各种单回路调节系统。
(2)串级控制模块CSC ,内含2个互相串联的调节单元CNTl 、CNT2,可组成串级调节系统(3)选择控制模块SSC ,内含2个并联的调节单元CNTl 、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。
6、Smith 补偿法改善大滞后对象在过程控制中,常遇到纯滞后时间很长的对象,特别是纯滞后时间L 与其惯性时间常数T 之比较大的对象,使用常规PID 调节效果不佳。
为此,在对象数学模型确知的情况下,采用Smith 补偿法可以取得的较好的效果。
Smith 补偿结构是先估计一个没有滞后环节的系统模型,用PID 算法对该模型进行控制,这样等同于对原系统进行控制。
由于控制回路中没有滞后环节,因此对于大滞后的对象,Smith 补偿能取得很好的效果。
Smith 补偿的困难之处在于对象模型估计的准确性,估计的准不准直接关系到控制效果的好坏。
(1)Smith 补偿控制器的预测控制器结构(2)标准Smith 补偿控制器的数字调节器实现+-K P.I.D sT Ke s L 010+-y w u+Ls-+p y m y d +)(ˆt L t y +实验二三容水箱液位控制系统一、实验目的1.了解三容水箱液位定值控制系统的结构和组成。
2.掌握三阶系统调节器参数的整定与投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.分析P、PI、PD、PID四种控制方式对本实验系统的作用。
5.综合分析五种控制方案的实验效果。
二、实验设备(实验对象总貌图)1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI通讯电缆一根。
三、实验原理图3-14 三容液位定值控制系统(a)结构图 (b)方框图本实验系统结构图和方框图如图3-14所示。
本实验以上、中、下三只水箱串联作被控对象,下水箱的液位高度为系统的被控制量。
由第二章双容特性测试实验可推知,三容对象是一个三阶系统,可用三个惯性环节来描述。
本实验要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI 或PID 控制。
调节器的参数整定可采用本章第一节所述任意一种整定方法。
调节器参数的整定方法调节器参数的整定一般有两种方法:一种是理论计算法,即根据广义对象的数学模型和性能要求,用根轨迹法或频率特性法来确定调节器的相关参数;另一种方法是工程实验法,通过对典型输入响应曲线所得到的特征量,然后查照经验表,求得调节器的相关参数。
工程实验整定法有以下四种:(一)经验法若将控制系统按照液位、流量、温度和压力等参数来分类,则属于同一类别的系统,其对象往往比较接近,所以无论是控制器形式还是所整定的参数均可相互参考。
表3-1为经验法整定参数的参考数据,在此基础上,对调节器的参数作进一步修正。
若需加微分作用,微分时间常数按T D =(31~41)T I 计算。
系 统 参 数δ(%) T I (min) T D (min) 温 度 20~60 3~10 0.5~3 流 量 40~100 0.1~1 压 力 30~70 0.4~3 液 位20~80(二)临界比例度法图3-4 具有周期T S的等幅振荡这种整定方法是在闭环情况下进行的。
设T I=∞,T D=0,使调节器工作在纯比例情况下,将比例度由大逐渐变小,使系统的输出响应呈现等幅振荡,如图3-4所示。
根据临界比例度δk和振荡周期T S,按表3-2所列的经验算式,求取调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。
调节器参数δT I(S) T D(S) 调节器名称P 2δkPI 2.2δk T S/1.2PID 1.6δk0.5T S0.125T S临界比例度法的优点是应用简单方便,但此法有一定限制。
首先要产生允许受控变量能承受等幅振荡的波动,其次是受控对象应是二阶和二阶以上或具有纯滞后的一阶以上环节,否则在比例控制下,系统是不会出现等幅振荡的。
在求取等幅振荡曲线时,应特别注意控制阀出现开、关的极端状态。
(三)衰减曲线法(阻尼振荡法)在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶跃扰动观察输出响应的衰减过程,直至出现图3-5所示的4:1衰减过程为止。
这时的比例度称为4:1衰减比例度,用δS表示之。
相邻两波峰间的距离称为4:1衰减周期T S。
根据δS和T S,运用表3-3所示的经验公式,就可计算出调节器预整定的参数值。
调节器参数δ(%)T I(min) T D(min) 调节器名称P δSPI 1.2δS0.5T SPID 0.8δS0.3T S0.1 T S(四)动态特性参数法 所谓动态特性参数法,就是根据系统开环广义过程阶跃响应特性进行近似计算的方法,即根据第二章中对象特性的阶跃响应曲线测试法测得系统的动态特性参数(K 、T 、τ等),利用表3-4所示的经验公式,就可计算出对应于衰减率为4:1时调节器的相关参数。
如果被控对象是一阶惯性环节,或具有很小滞后的一阶惯性环节,若用临界比例度法或阻尼振荡法(4:1衰减)就有难度,此时应采用动态特性参数法进行整定。
调节器参数调节器名称δ(%)T I T D P T K τ×100% PI 1.1T K τ×100%3.3τ PID0.85TK τ×100%2τ0.5τ四、实验内容1) 熟悉液位控制系统的操作方法与步骤。
2) 利用组态王软件画出液位控制系统工艺流程图,连接控制系统。
3) 适量增加给定值,观察液位变化,组态画面中曲线变化,跟踪情况及表上数值的变化。
4) 观察电动调节阀的开度变化规律。
5) 改变几组P I D 参数,领会其对控制系统的影响。
6) 观察控制效果,分析控制数据。
7) 利用手动阀加扰动,观察液位控制系统的调节过程。
本实验选择上、中、下三只水箱串联组成三容对象(三阶系统)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9、中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀门开度F1-9 > F1-10 > F1-11),其余阀门均关闭。
五、实验报告要求1.画出三容水箱液位定值控制实验的结构框图。
2.用实验方法确定调节器的相关参数,并写出整定过程。
3.根据实验数据和曲线,分析三阶系统在阶跃扰动作用下的静、动态性能。
4.比较在相同的阶跃扰动下不同PID 参数对系统性能产生的影响。
5.比较在相同的PID参数下,阶跃扰动作用在不同位置对系统性能产生的影响。
6.分析P、PI、PD、PID四种控制方式对本实验系统的作用。
7.综合分析五种控制方案的实验效果。
六、思考题1.为什么对三个水箱的出水阀开度大小要求不同?2.改变比例度δ和积分时间T I对系统的性能产生什么影响?3.如果在相同阶跃信号作用下,要求系统的被控制量具有与前面两个实验完全相同的动态性能指标,本实验中调节器的PID参数应如何设置?附录1 实验装置介绍第一节系统概述一、概述“THSA-1型过控综合自动化控制系统实验平台”是由实验控制对象、实验控制台及上位监控PC机三部分组成。
它是本企业根据工业自动化及其他相关专业的教学特点,并吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证而推出的一套全新的综合性实验装置。
本装置结合了当今工业现场过程控制的实际,是一套集自动化仪表技术、计算机技术、通讯技术、自动控制技术及现场总线技术为一体的多功能实验设备。