计算机过程控制系统DCS课程实验指导书
0911DCS实验指导书NEW
实验一 DCS硬件组态一.实验目的(1)了解DCS系统的硬件结构;(2)了解DCS的组态环境(3)掌握DCS系统总体组态和模拟量输入点组态的方法;(5)掌握组态下载和备份的方法二.实验设备AE2000型过程控制实验装置、JX-300X集散控制系统。
三.实验内容和步骤1、了解DCS系统实验装置的基本组成部分,包括:控制站、操作站、I/O卡的数量,网络结构,是否冗余配置等。
2、在Windows2000操作系统下,双击桌面上SCKey组态软件的快捷图标——,打开SCKey组态界面。
熟悉组态环境,菜单、工具条、和组态树的使用。
3、控制站、操作站组态选中[总体信息]/<主机设置>,打开主机设置窗口,进行控制站、操作站的组态。
3.1控制站组态1)注释:CS1;2)2)IP 地址:128.128.1.4;3)运算周期:0.5 秒;4)类型:回路控制站;5)型号:SP243X;6)通讯:UDP协议;7)冗余:冗余;8) 网线使用:冗余网络;3.2操作站组态1)注释:OS1~OS8。
2)IP 地址:128.128.1.153~160(注:必须与所在操作站的TCP/IP 协议地址一致)。
3)类型:工程师站。
4、系统I/O 组态选中[控制站]/<I/O 组态>,启动系统的I/O 组态环境。
4.1数据转发卡组态1)注释:可缺省。
2)地址:设置为00。
注:数据转发卡的地址0~15 内的偶数。
数据转发卡的组态地址应与数据转发卡硬件上的跳线地址匹配,且不可重复。
3)型号:SP233。
4)冗余:冗余。
4.1 I/O 卡件组态I/O 卡件登录在I/O 卡件组态画面中进行。
1)注释:对当前I/O 卡件的文字说明,。
2)地址:定义当前I/O 卡件在挂接的数据转发卡上的地址,地址为0~15,并与它在控制站机笼中的排列编号相匹配,且不可重复。
3)型号:选定当前组态I/O 卡件的类型。
4)冗余:不冗余。
具体设置如下:地址00:SP314X电压信号输入卡;地址01:SP314X电压信号输入卡;地址02:SP314X电压信号输入卡;地址03:SP322模拟量信号输出卡;地址04:SP364继电器输出卡;4.2信号点组态1)位号:当前信号点在系统中的位号,每个信号点在系统中的位号不能重复,位号必须以字母开头,不能使用汉字,字长不得超过10个英文字符。
计算机过程控制系统(DCS)课程实验指导书
计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2、分析分别用P、PI和PID调节时的过程图形曲线。
3、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。
三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。
本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。
根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。
当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。
一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。
比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。
但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。
计算机过程控制实验指导书
计算机过程控制实验指导书计算机过程控制实验指导书一、实验目的1.了解计算机过程控制的基本原理和方法。
2.能进行动、静态过程控制实验。
3.掌握计算机程序的设计和实现方法。
二、实验环境1.硬件环境:计算机一台进口模拟电路板两块数字量输入板一块,板上有4个数字输入端口数字量输出板一块,板上有4个数字输出端口模拟量输入板一块,板上有4个模拟输入端口模拟量输出板一块,板上有4个模拟输出端口2.软件环境:C语言编程环境,Windows 操作系统三、实验内容1.实验一:模拟量动态过程控制实验在这个实验里,我们将运用计算机来控制一个简单的过程。
这个过程是一个单纯的箱子,一个装满水的管子和一个电动水泵。
箱子内的水倒出的管子是通过一个手动阀门来控制的。
我们需要通过在计算机上设置参数,在一定的时间段里将水流到箱子里面。
具体的实验流程如下:第一步:将装置的管道塞在一个抽象的状况里,包括启动点、流量量程、水箱容量和水泵能力。
第二步:选择合适的控制器和传感器,将它们连接到计算机上。
第三步:根据实际情况,制定合理的调度流程图和程序代码。
第四步:假设5毫秒为起始的抽样间隔,从传感器中采取实时数据。
第五步:将数据输入计算机,计算机按照设定的程序进行控制,实现流量的自动调整。
2.实验二:模拟量静态过程控制实验在这个实验里,同样涉及到了控制一个简单的过程。
这个过程是把一桶药液中的液体通过一个管子注入另一桶中。
我们需要通过以另一桶中的液体检测器作为输入,来决定药液流量的多少。
具体的实验流程如下:第一步:设置上下限。
第二步:通过给定的电路板读取输入信号,如在上述实验中,读取另一桶液体的高度。
第三步:通过传感器控制药液流量,调节控制变量。
第四步:将控制变量值输入计算机中,计算机按照设定的程序计算处理。
第五步:根据处理结果反馈指令,控制液体流量的调整,并根据设定的上下限来保持控制的稳定性。
四、实验步骤1.动态过程控制实验步骤:step1:安装设备,建立控制模型step2:连接设备到计算机上step3:设计控制程序,设置参数step4:模拟情况,校准传感器step5:启动数据采集程序step6:计算机处理数据step7:根据实际情况,调整程序参数 step8:记录结果并分析2.静态过程控制实验步骤:step1:安装设备,建立控制模型step2:连接设备到计算机上step3:设计控制程序,设置参数step4:根据设备情况,调节传感器 step5:启动数据采集程序step6:计算机处理数据step7:根据实际情况,调整程序参数 step8:记录结果并分析五、实验感想通过这次实验,我们掌握了计算机过程控制的基本原理和方法。
《计算机控制系统实验》指导书新编xu[1]1
目录目录 (1)实验一数据输入输出通道 (2)实验二信号采样与保持 (5)实验三数字PID控制 (7)实验四直流电机闭环调速控制 (9)实验五温度闭环数字控制 (11)实验六最少拍控制器的设计与实现 (13)附录 (15)实验一数据输入输出通道实验目的:1.学习A/D转换器原理及接口方法,并掌握ADC0809芯片的使用。
2.学习D/A转换器原理及接口方法,并掌握TLC7528芯片的使用。
实验设备:PC机一台,TD-ACC+实验系统一套,i386EX系统板一块实验内容:1.编写实验程序,将-5V~+5V的电压作为ADC0809的模拟量输入,将转换所得的8位数字量保存于变量中。
2.编写实验程序,实现D/A转换产生周期性三角波,并用示波器观察波形。
实验原理:1.A/D转换实验ADC0809芯片主要包括多路模拟开关和A/D转换器两部分,其主要特点是:单电源供电、工作时钟CLOCK最高可达到1200KHz、8位分辨率,8个单端模拟输入端,TTL电平兼容等,可以很方便地和微处理器接口。
ADC0809 芯片,其输出八位数据线以及CLOCK 线已连到控制计算机的数据线及系统应用时钟1MCLK (1MHz)上。
其它控制线根据实验要求可另外连接(A、B、C、STR、/OE、EOC、IN0~IN7)。
实验线路图1-1为:图1-1 A/D转换实验接线图上图中,AD0809 的启动信号"STR"是由控制计算机定时输出方波来实现的。
"OUT1" 表示386EX 内部1#定时器的输出端,定时器输出的方波周期=定时器时间常数。
ADC0809 芯片输入选通地址码A、B、C 为"1"状态,选通输入通道IN7;通过单次阶跃单元的电位器可以给A/D 转换器输入-5V ~ +5V 的模拟电压;系统定时器定时1ms 输出方波信号启动A/D 转换器,并将A/D 转换完后的数据量读入到控制计算机中,最后保存到变量中。
DCS实验指导
1、集散控制系统的实时监控实验1.1实验目的①了解过程控制系统综合实验的控制对象——过程控制实验装置和实验精馏塔实验装置。
②掌握过程控制系统综合实验的JX-300XP系统的规模和组成;现场控制站配置--机笼、主控制卡、数据转发卡、电源卡以及I/O卡件的型号、数量、安装位置等内容。
③通过对JX-300XP系统监控软件的具体操作,即实时监控画面上各种按钮、图标以及下拉菜单的使用,熟练掌握JX-300XP系统监控系统的各种监控画面基本操作。
④全面掌握过程监控画面(总貌画面、控制分组画面、趋势画面、流程图画面、调整画面、仪表面板画面、报警一览画面)的用途、基本结构、调用操作方法等。
⑤通过对JX-300XP系统的各种监控画面,掌握过程数据在线修改方法以及控制方式的更改。
2.2实验内容及操作步骤(1)第一部分:基于JX-300XP系统的过程控制系统综合实验的控制对象、JX-300XP系统的硬件配置①过程控制系统综合实验的控制对象分别为过程控制实验装置和实验精馏塔装置,观察过程控制实验装置的三大装置组成、名称以及与D CS 的连接。
②核对JX-300XP系统过程控制系统综合实验的实际设备,根据实际观察填写表1.1。
表1.1 JX-300XP系统过程控制系统综合实验的实验设备③根据本实验室的JX-300XP系统,仔细观察现场控制站所使用的机笼、主控制卡、数据转发卡、电源卡以及I/O卡件的数量、实装位置及作用,填写表1.2。
表1.2控制站的配置④JX-300XP系统的I/0卡件分为模拟量卡、数字量卡和特殊卡件。
所有的I/O卡件均需安装在机笼的I/0插槽中。
根据本控制站所使用的I/0卡件,进行I/O卡件型号、名称以及在机笼的安装位置填写,如表1.3。
表1.3控制站所采用I/O卡件(2)第二部分:JX-300XP系统监控软件的初步认识①操作人员的登录与维护。
操作1:在桌面上用鼠标左键双击AdvanTrol实时监控图标,弹出实时监控软件启动的。
2019-dcs操作指导书-范文模板 (9页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==dcs操作指导书篇一:DCS操作规程DCS 操作资料前言所谓集散控制系统(即DCS,英文名称为Distributed Control System),其含义是利用微处理机或微型计算机技术对生产过程进行集中管理和分散控制的系统,是一种新型的过程控制系统。
这个系统以多台微型计算机分散应用与过程控制全部信息通过通信网络由上位计算机监控,实现最佳化控制;通过CRT装置,通信总线键盘,打印机等装置又能高度集中地操作、显示和报警。
整个装置继承了常规模拟仪表控制系统和计算机集中控制系统的优点,并且克服了单微机控制系统危险性高度集中以及常规仪表控制功能单一,人/机联系差的缺点,可以方便地用于工业装置的生产控制和经营管理。
本《操作规程》是针对《某化工厂磷酸装置CENTUM CS3000 DCS控制系统》所做的,主要介绍了DCS系统使用方法,就正确使用该DCS系统向操作人员提供了指导性意见。
本规程所涉及的操作均在操作站上实现。
系统的开启与停止、操作人员口令等系统维护工作由专职人员完成,未经授权人员不得进行此操作。
操作站计算机、键盘和鼠标为专用设备,严禁挪用。
特别注意:为保证系统正常运行,不允许在操作站计算机上安装运行其它与该系统无关的软件,否则将可能造成严重后果。
网络CENTUM CS 3000 可以连到V net 或以太网。
图1-6 CENTUM CS3000的网络连接图1. V网(V-net)V net 是可以连接象FCS、HIS、BCV 和CGW 站的10Mbps 实时控制总线,它可以双冗余的,有两种类型的电缆:(1)YCB111 电缆:连接除了HIS 以外的站,最大距离500m(2) YCB141 电缆:连接HIS ,最大距离185m,YCB111 电缆和YCB141 电缆可以由电缆转换器单元或总线转发器连接,当这两种电缆混合使用,最大长度按如下计算:YCB141 电缆长度+YCB111 电缆长度×0.4≤185m2. 以太网(Ethernet)HIS与ENG、HIS 与上位机可以由以太网连在一起;上位计算机和个人计算机在以太网上可以访问CENTUM CS 3000 系统上的信息和趋势数据,以太网也也用于从HIS 发送趋势数据文件到上位机。
《过程控制及DCS技术》工作任务书2
《过程控制及DCS技术》工作任务书2第一篇:《过程控制及DCS技术》工作任务书2《过程控制及DCS技术》工作任务书《过程控制及DCS技术》工作任务书2 课程名称:过程控制及DCS技术项目名称:VVNS油气式锅炉的液位控制系统认识1.总体要求液位的检测和控制在现代工业生产自动化中具有重要的地位。
通过液位的测量,可以准确获知容器内储存原料、半成品或成品的数量;根据液位的高低,连续监视或控制容器内流入与流出物料的平衡情况,使液位保持在工艺要求的范围内,或对它的上下限位置进行报警。
本项目以锅炉汽包的液位控制为主要任务,就汽包液位的检测与控制展开讨论。
2.工艺说明为适应生产的需要,锅炉的大小、型号也有各种各样。
锅炉的大小是以锅炉每小时产出负荷设备调节阀过热蒸汽送负荷设备减温器汽包炉墙过热器热空气炉膛省煤器燃烧嘴给水冷空气烟气燃烧热空气送往炉膛空气预热器图1 锅炉工艺流程的蒸汽量来衡量的,小型锅炉每小时产几吨蒸汽,大的可产200吨以上的蒸汽。
产出的蒸汽压力有高、中、低之分。
在应用类型上,可将锅炉分为动力锅炉和工业锅炉,其中工业锅炉又分为辅助锅炉、废热锅炉、快装锅炉、夹套锅炉等。
锅炉的燃料也各不相同,有燃气型、燃油型、燃煤型和化学反应型等。
本项目以油气式锅炉为例。
锅炉的工艺流程图如图所示,生产蒸汽的过程简述如图1所示燃料和空气按一定比例混合后进入燃烧室燃烧,加热汽包内的水产生饱和蒸汽Ds,经过过热器后形成一定温度的过热蒸汽D,再汇集到蒸汽母管PM,最后经过负荷设备调节阀供给负荷设备《过程控制及DCS技术》工作任务书使用。
燃料在燃烧时产生的烟气,其热量的一部分将饱和蒸汽变成过热蒸汽,另一部分经省煤器对锅炉供水和空气进行预热,最后由送风机从烟囱排入大气。
3.控制要求根据锅炉的工作原理,按照工艺要求,锅炉的运行主要有汽包液位控制、燃烧系统控制和过热蒸汽系统控制三个方面的过程控制。
汽包液位控制系统是锅炉安全运行的必要保证,它要维持汽包内的水位在工艺允许的范围内。
dcs实验指导书
(1)本实验过程中,右上水箱出水阀不得任意改变开度大小。
(2)阶跃信号不能取得太大,以免影响正常运行;但也不能过小,以防止因读数误差和其他随机干扰影响对象特性参数的精确度。一般阶跃信号取正常输入信号的5%~15%。
(3)在输入阶跃信号前,过程必须处于平衡状态。
八、思考题
(1)在做本实验时,为什么不能任意变化右上水箱出水阀的开度大小?
SP314
0
0
模拟量输入通道(1~5V)
AI0
1号左上水箱液位信号
SP314
0
1
模拟量输入通道(1~5V)
AI1
1号右上水箱液位信号
SP314
0
2
模拟量输入通道(1~5V)
AI2
1号左下水箱液位信号
SP314
0
3
模拟量输入通道(1~5V)
AI3
1号右下水箱液位信号
SP314
1
0
模拟量输入通道(1~5V)
式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数,R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。令输入流量Q1的阶跃变化量为R0,其拉氏变换式为Q1(S)=RO/S,RO为常量,则输出液位高度的拉氏变换式为:
当t=T时,则有:
图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。
如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得:
在零初始条件下,对上式求拉氏变换,得:
标准格式实验指导书DCS
绪论 (2)第一章控制系统的组成及认识实验 (3)第一节、现场总线控制系统(FCS)的组成与认识实验 (3)第二节、下位机软件中的硬件配置和程序结构 (9)第三节、上位机组态软件简介 (15)第二章被控对象特性测试 (36)第一节、单容水箱特性测试 (36)第二节、双容水箱特性测试 (45)第三章单回路控制系统实验 (52)第一节、单回路控制系统的概述 (52)第二节、上水箱液位PID整定实验 (58)第三节、串接双容水箱液位PID整定实验 (64)第四节、三容水箱液位定值控制系统 (67)第五节、锅炉内胆水温PID控制实验 (71)第六节、锅炉夹套水温PID控制实验 (77)第七节、单闭环流量PID控制实验 (82)第四章温度位式控制系统实验 (86)第五章串级控制系统实验 (91)第一节、串级控制系统概述 (91)第二节、水箱液位串级控制实验 (95)第三节、三闭环液位控制系统 (101)第四节、锅炉夹套与内胆水温串级控制系统 (106)第五节、锅炉内胆水温与水流量串级控制实验 (110)第六节、上水箱液位与进水流量串级控制系统 (115)第六章比值控制系统实验 (120)第七章前馈-反馈控制系统实验 (126)第一节、下水箱液位前馈-反馈控制实验 (126)第二节、锅炉内胆水温前馈-反馈控制系统 (133)第八章滞后控制系统实验 (137)第一节、盘管出水口温度滞后控制实验 (137)第二节、盘管出水口流量纯滞后控制系统 (142)第九章解耦控制系统实验 (145)第一节、锅炉夹套与内胆水温解耦控制系统 (147)第二节、上水箱液位与出口水温解耦控制实验 (153)绪论现场总线技术是当今自动化领域技术发展热点之一,被誉为自动化领域的计算机局域网,它的出现标志着自动化控制技术又一个新时代的开始。
现场总线是连接设置在控制现场的仪表与设置在控制室内的控制设备的数字化、串行、多站通信的网络。
其关键标志是能支持双向、多节点、总线式的全数字通信。
计算机控制实验指导书
实验一计算机控制系统实验装置概述实验第一章硬件设备的介绍PCT-I型过程控制实验装置是基于工业过程物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置。
系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识、单回路控制、串级控制、前馈控制、比值控制等多种控制形式。
本装置还可根据用户的需要设计构成DDC、DCS、PLC、FCS、TCS等多种控制系统。
该实验装置既可作为本科、专科、高职过程控制课程的实验装置,也可作为研究生及科研人员在复杂控制系统、先进控制系统研究方面提供物理模拟对象和实现手段。
第一节水箱实验装置由被控对象和控制回路两部分组成。
其中被控对象包括:上位水箱、下位水箱、储水箱。
上位水箱和下位水箱采用进口有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录实验结果。
水箱容积高达80升,使实验效果更为理想。
水箱结构独特,下水箱有三个槽,分别是工作槽、溢流槽、缓冲槽。
当水箱进水时,水管的水先流进缓冲槽,当缓冲槽中注满水时,水流便满过缓冲槽和工作槽当中的隔板并沿此隔板缓慢注入,这样水流对工作槽中的冲击力非常小,减少振荡,以便更精确的观察和记录实验结果。
同时下水箱的缓冲槽可以做温度变比值控制,热水和冷水在此混合,控制水的温度。
上水箱有五个水槽,两个工作槽,两个缓冲槽,一个溢流槽,两个工作槽通过连通器连接,其容积比是2:1,两个水箱都可以做液位单闭环实验,可以选择不同的工作槽做串级实验,比较不同的容积和流量组成不同的串级实验的效果。
实验过程中如水位失控水流可以直接经过缓冲槽流进储水箱。
储水箱是采用不锈钢板制成,水箱内部采用覆塑工艺,有效提高实验装置的使用寿命。
其容积180升,完全能满足上下水箱的实验的需要。
储水箱上面有一个金属滤网,有效防止异物进入水箱堵塞管道。
整个系统管道采用铝塑管组成,所有的水阀采用优质球阀,彻底避免了系统生锈的可能性,有效提高了使用装置的使用年限。
过程控制系统实验、课程设计指导书
实验一 单回路温度控制系统的参数整定一、实验目的1、 掌握单回路控制系统的原理性组成;了解单回路温度控制系统实验装置的组成和原 理;掌握单回路温度控制系统的参数整定方法。
2、 掌握DCS 系统的监控和操作方法。
二、实验仪器及设备过程控制系统综合实验装置一套、SUPCON JX-300X DCS 系统一套 三、实验线路单回路温度控制系统流程示意图:温度调节器SP综合实验装置管路连接方式见图示(下页): DCS 控制站第一个机笼的I/O 卡件分布见下图:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19各块I/O卡件的信号安排见下表:说明:J1/01——J1/08卡件通道为SP313的第1路即SP313(1)J1/09——J1/16卡件通道为SP313的第2路即SP313(2)J1/17——J1/20卡件通道为SP313的第3路即SP313(3)四、实验内容及实验方法(一)、实验内容1、熟悉单回路温度控制系统的管路连接方式及各输入/输出信号与DCS卡件的连接方式。
2、根据温度控制系统管路连接方式调节相关手动球阀至对应开关位置,进行单回路控制系统参数整定的方法整定PID参数。
3、观察和比较PID参数变化对系统性能的影响。
(二)、实验方法及步骤1、按照综合实验装置管路图正确开关各手动球阀。
2、综合实验装置上电,打开水泵,等高位水箱开始溢流(恒压状态下),锅炉水位到高度的2/3时,关闭锅炉的进水阀和出水阀。
3、SUPCON JX-300X DCS系统上电,工程师站上调出监控画面(组态设计已做好),手动操作给锅炉加热到设定温度。
4、小开度打开锅炉的进、出水阀,使锅炉水流动,手动调节加热功率大小,使锅炉水温基本稳定在设定值上,初置调节器PID参数值,将DCS切换到自动控制状态。
5、在锅炉里加少量冷水或加大锅炉进水阀的开度片刻,以模拟扰动,观察系统的调节过程、响应曲线。
过程控制工程实验指导书
过程控制实验指导书(DCS篇)曾慧敏自动化教研室自动化与电子信息学院自动化教研室2015年12月5日前言本实验指导书是根据求是实验室设备-和利时DCS实验装置和A3000过程控制系统的相关内容编写的,可满足《DCS与现场总线》、《过程控制》、《过程控制与仪表》、《计算机控制》、《自动化仪表》等相关课程的实验教学要求。
过程控制通常是指石油、化工、电力、冶金、轻工、建材、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,它是自动化技术的重要组成部分。
和利时DCS实验装置根据现行教材教学的要求,设置了压力、流量、液位、温度等单回路、串级、比值及前馈等实验。
实验指导书叙述了实验装置的各个仪表的原理、工作情况,实验项目及实验原理。
并讲述了系统的一些硬件的特点和技术指标。
本书试图通过对各实验原理的认识到对实验的实践,使学生对和利时DCS实验装置和系统原理有一个较为深刻的认识。
同时学生可自行设计实验方案,进行综合性、设计性过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。
若有疏漏,恳请批评指正!目录主要内容 (4)第一部分 A3000设备简介 (6)第二部分基础学习 (9)和利时DCS的应用系统设计内容及步骤 (9)第三部分实验内容 (43)实验一水箱液位控制系统 (43)实验二液位和进口流量串级控制系统 (55)主要内容1、实验总体目标通过实验,巩固掌握DCS课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2、适用专业自动化和电气自动化专业本科生、研究生3、先修课程控制装置、自动化仪表、计算机控制系统、过程控制系统及DCS与现场总线4、实验课时分配实验环境:和利时MACS和A3000过程控制系统6、实验总体要求(1)、掌握单回路控制系统原理和参数整定方法;(2)、掌握串级控制系统原理和参数整定方法。
过程控制系统实验指导书第二版
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:
DCS系统作业指导书-11
1目的DCS自动控制系统自身的软、硬件,以及操作台盘及现场仪表状态良好和工作可靠,实现测量和控制的真实、准确、安全、可靠。
2适用范围适用于仪表车间全体人员3管理职责维护人员负责做好各项记录。
DCS拷贝申请表和联锁保护修改申请表由车间主任或部门经理批准4管理内容4.1注意事项4.1.1为备份盘的将卷标重名命标识,备份时将安装程序备份和系统备份分别建两个文件夹或两个磁盘,必须注明4.1.2在系统备份时必须注明备份日期后进行保存,并另建一工作表(见附表1)记录其修改时间、原因4.1.3为工作盘将卷标重名命标识,工作盘内只许留当前工作组态,以便维护下载4.1.4如果系统联锁保护需要修改时,必须填写联锁保护修改申请表后方可修改(附表2)4.1.5如工艺人员需拷贝流程图时,必须填写DCS拷贝申请表(见附表3)4.2DCS系统维护规程4.2.1DCS自动控制系统是由其自身的软、硬件,以及操作台盘及现场仪表(变送器、测量开关、电缆及执行结构等)组成的有机整体。
系统中任一环节出现问题,均会导致系统部分功能失效或引发控制系统故障,严重时会导致生产停车等事故。
要把构成控制系统的所有设备看成一个整体,进行全面维护管理。
4.2.2本《维护指导》是针对《山西建滔万鑫达化工有限公司JX-300X DCS控制系统》所做的,主要介绍了系统软硬件配置及标识、系统正确使用及定期维护要求,就正确使用与维护该DCS系统向系统维护人员提供了指导性意见。
4.2.3网络命名:4.2.3.1操作站标识:(一)根据IP地址分别将主机命名为:ES130(工程师站)OS131(1#操作站)网络名后数字与主机IP地址设置一一对应。
(二)操作站计算机地址及共享基本原则:●操作站在Win2000的地址及计算机名采用:工程师站IP地址130,计算机名为“Eng130”;普通操作站IP地址131、132、133……,计算机名为“OS131”、“OS132”、“OS133”……。
实验一 DCS控制系统组态
实验一DCS控制系统组态一、实验目的1、了解DCS控制系统基本组成与结构2、了解DCS系统组态软件、监控软件3、学习掌握DCS温度控制系统的组态实现方法二、实验设备及软件1、温度控制装置8套2、DCS系统控制站1个3、DCS系统操作站8台4、SCkey组态软件1套5、AdvanTrol实时监控软件8套6、WinNT4.0操作系统软件1套三、复习教材与内容化工过程计算机控制系统、DCS控制系统、DCS组态四、系统概况根据DCS温度控制系统实验,系统结构示意图如图1所示。
图1 DCS温度控制系统结构示意图DCS系统具体配置如下:五、组态内容及步骤系统组态是在工程师站上利用组态软件Sckey完成整个DCS系统方案设定,进行总体编译后,下载到控制站执行,并传送至其他操作站,成为操作站监控软件所调用的信息文件。
具体组态步骤及内容如下:5.1 总体信息组态总体信息组态主要根据项目实际情况,确定控制站、操作站的数量及其地址,步骤如下:1)启动Sckey组态软件;2)点击“总体信息”菜单下的“主机设置”,进入主控制卡和操作站组态画面;3)选择“主控卡”,增加一个控制站,填上IP地址,选择主控卡型号,并在冗余一栏选中冗余;4)选择“操作站”,增加8个操作站,在地址一栏中填上相应IP地址,在类型选择时指定1个为工程师站,其余7个为操作站。
5.2 控制站组态控制站组态主要包括I/O组态、控制方案组态、自定义变量组态等内容。
1)I/O组态:点击“控制站”下拉菜单中的“I/O组态”,进入系统的I/O组态环境,先确定数据转发卡的地址、型号及数量,其次确定该数据转发卡所在机笼下的I/O卡件地址、型号及冗余与否等内容,再进入该卡件的I/O点组态,其内容包括各信号点的位号、地址、类型、信号点的有关参数设置等。
2)控制方案组态:可分为常规控制方案和自定义控制方案组态;常规控制方案组态时,只需在对话框填入相应的回路号及该回路的输入/输出位号即可,各单回路控制器的PID参数是在监控画面中设置和调整;自定义控制方案组态可选择SCX语言编程或着选择图形化组态方式进行。
DCS实训任务书
4、监控画面的设计组态
5、系统调试说明
六、实训地点
实验楼三层机房
**********学校
实训任ห้องสมุดไป่ตู้书
题目:DCS组态实践
系别信息工程系专业计算机控制技术
班级姓名
设计时间自2011年1月15日至2011年1月21日
指导教师
课题组长
下达日期2010年12月31日
DCS实训任务书
一、实训项目: DCS综合实训
二、目的和意义
通过DCS的综合实训,深刻认识DCS的选用、配置、以及数据库、控制策略和监控画面的组态和调试,达到真正掌握“分散控制系统”课程内容的目的,为实际工作奠定找扎实的基础。
三、原始资料
某燃料搅拌器的工艺流程见下图:
其步骤为:
原料X:必须先将反应器清空并冷却。2U101阀用来填充该原料直到L1等于最大液位的20%。
搅拌器:启动2E101搅拌器电机。
原料Y:2U102阀用来混合第二种原料,直到L2等于最大液位的80%。
加热:加热到90°C。2T101温度控制器必须至少保持该温度2分钟。
排放:关掉加热开关后,产物Z必须完全排净,并且必须关闭搅拌器2E101。
四、实训要求
1、根据搅拌器的控制要求,完成测点的配置、I/O及DCS的配置,并画出DCS的体系结构图;
2、完成控制策略的组态;
3、完成监控画面的组态;
4、基于VDPU和网络的调试;
五、实训说明书应包括的内容
1、系统对象说明
2、控制系统说明
0计算机过程控制系统(DCS)课程实验指导书
启动实时监控软件正确启动实时监控软件是实现监控操作的前提。
由于组态时为各操作小组配置的监控画面及采用的网络策略不同,启动时一定要正确选择。
实时监控软件启动操作步骤如下:1.在桌面上双击快捷图标(或是点击[开始/程序/AdvanTrol-Pro2.50.04 学习版]中的“实时监控”命令),弹出实时监控软件启动的“组态文件”对话框,如图1所示:图1实时监控软件启动对话框选择组态文件:通过下拉列表框选择组态索引文件,若要打开新的组态监控,可通过浏览按钮查找新的组态文件。
登录权限:选择登录的级别。
作为下次运行的组态文件:选中此选项后,下次系统启动时自动运行实时监控软件,并以本次设定的所有选项作为缺省设置,直接启动监控画面。
仿真运行:在未与控制站相连时,可选择此选项,以便观察组态效果。
浏览按钮:选择组态索引文件。
清除按钮:清除“选择组态文件”选项下的文件列表。
登录按钮:用户登录。
确定按钮:进入监控画面。
取消按钮:退出实时监控软件启动对话框。
2.点击“浏览”命令,弹出组态文件查询对话框,如图2所示:图2 文件查询对话框3.选择要打开的组态索引文件“简化DCS”(扩展名为.IDX,保存在组态文件夹的Run 子文件夹下),点击“打开”返回到图1所示的界面。
4.点击“登录”按钮,弹出“登录”对话框,如图3所示:图3 登录对话框5.选择登录人员的用户名,输入密码,点击“确定”返回到图1所示的界面。
6.在操作小组名称列表中选择操作小组,点击“确定”按钮,弹出“选择网络策略”对话框,如图4所示:图4选择网络策略对话框7.网络策略确定了登录操作小组所用数据的来源。
选择相应的网络策略(如:本地策略),点击“确定”按钮,进入实时监控画面如图5所示:或弹出“AdvRTDC”对话框,如下图所示:点击“是”按钮,进入实时监控画面(“AdvanTrol-Pro实时监控软件—系统介绍”画面)如图5所示:图5实时监控画面标题栏:显示当前监控画面名称。
宁波工程学院 过程控制系统 CS4000DCS实验指导书 廖远江 201402(4次实验)
1)、h2(t)稳态值的渐近线h2(∞);
2)、h2(t)|t=t1=0.4h2(∞)时曲线上的
(2)用两点法和用切线对同一对象进行参数测试,它们各有什么特点?
一、实验目的
1)、熟悉双容水箱的数学模型及其阶跃响应曲线。
2)、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。
二、实验设备
CS4000型过程控制实验装置,PC机,DCS控制系统与监控软件。
三、实验原理
图2-1 双容水箱系统结构图
3)、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备
CS4000型过程控制实验装置,PC机,DCS控制系统与监控软件。
三、实验原理
图3-1为单回路上水箱液位控制系统。单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用DCS系统控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T,该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,其理论依据是:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2、分析分别用P、PI和PID调节时的过程图形曲线。
3、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。
三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。
本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。
根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。
当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。
一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。
比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。
但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。
对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。
图2-16 P、PI和PID调节的阶跃响应曲线四、实验内容和步骤1、设备的检查和连接1).关闭排水阀门,检查AE2000A型过程控制对象的储水箱水位是否达到总高度的50%以上,如不够,灌水。
2).打开以循环泵为动力的支路至上水箱的所有阀门,关闭动力支路上通往其它对象的切换阀门。
3).打开上水箱泄水阀,开至适当的开度。
4).检查电源开关是否关闭。
2、系统连线如图2-17所示:DCS接线端子排6 5 46 5 4(I/O航空插座接线端子)图2-17 单容水箱液位PID参数整定控制系统接线图1).将24芯通讯电缆I/O线,按图2-17的连法,接到对应的DCS接线端子排上。
将24芯通讯电缆H-1端即上水箱液位+(正极)接到DCS接线端子排的5-E端(即SP313电流信号输入板的正极),将24芯通讯电缆H-4端上水箱液位-(负极)接到DCS接线端子排的5-F端(即SP313电流信号输入板的负极)。
将DCS接线端子排的6-G端(即SP322模拟信号输出板的正极),接至24芯通讯电缆H-19端即调节阀的2~10V输入端的+端(即正极),DCS接线端子排的6-H端(即SP322模拟信号输出板的负极),接至24芯通讯电缆H-20端即调节阀的2~10V输入端的-端(即负极),并且在DCS接线端子排的6-G端和6-H端间连接一500Ω电阻。
2).用网线将上位机与DCS连接起来。
3).电源控制板上的电源空气开关、单相泵电源开关打在关的位置。
3、启动DCS1).将DCS控制柜的电源插头接到220V的单相交流电源。
2).打开DCS控制柜后的两个空气开关,给控制柜散热风扇、交换机和系统电源供电。
3).打开DCS控制柜前的两个电源开关,启动DCS系统。
4、启动实验装置1).将实验装置电源插头接到220V的单相交流电源。
2).将电源控制板上的“漏电保护开关”打开。
3).打开“电源总开关”, 给实验装置和控制柜供电。
4).打开“单向泵”开关, 给循环泵供电。
5).打开“调节阀”开关, 给电动调节阀供电。
6).开启“24VDC电源”开关,给信号检测仪表供电。
5、比例调节控制1).启动“AdvanTrol-Pro实时监控”软件,进入实验系统选择相应的实验,如图1所示:图1 AdvanTrol-Pro“实时监控—流程图”画面2).点击“液位控制”下方数字(文本框),弹出“显示仪表(回路)”窗口。
点击“4#单回路”按钮,进入“AdvanTrol-Pro实时监控软件—调整画面”如图2所示。
图2 AdvanTrol-Pro实时监控软件—调整画面注:图2中设定值10cm,比例系数40,积分时间0.66分,微分时间3秒,泄水阀半开。
或设定值10cm,比例系数20,积分时间0.33分,微分时间3秒,泄水阀全开。
3).设定给定值,按表1逐一调整比例度(P)。
4).待系统稳定后,对系统加扰动信号(在纯比例的基础上加扰动,一般可通过改变设定值实现)。
记录曲线在经过几次波动稳定下来后,系统有稳态误差。
5).按表1逐一调整比例度(P),重复步骤3,观察过渡过程曲线,并记录余差大小。
6).继续减小比例度重复步骤3,观察过渡过程曲线,直到出现等幅震荡,并记临界比例度和临界振荡周期值。
7).选择合适的比例系数(K),可以得到较满意的过渡过程曲线。
改变设定值,同样可以得到一条过渡过程曲线。
P=(1/K)x100%8).注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。
当设定值SV=10cm时,6、比例积分调节器(PI)控制1).在比例调节实验的基础上,加入积分作用,即在界面上设置积分时间(Ti)不为0,观察被控制量是否能回到设定值,以验证PI控制下,系统对阶跃扰动无余差存在。
2).选择合适的K和Ti值(P=60%,Ti=0.66分),使系统对阶跃输入扰动的输出响应为一条较满意的过渡过程曲线。
此曲线可通过改变设定值(如设定值变化20%,SV由10cm变到12cm)来获得。
7、比例积分微分调节(PID)控制1).在PI调节器控制实验的基础上,再引入适量的微分作用,即把软件界面上设置微分时间(Td)参数,然后加上与前面实验幅值完全相等的扰动,记录系统被控制量响应的动态曲线,并与PI控制下的曲线相比较,由此可看到微分时间(Td)对系统性能的影响。
2).选择合适的K、Ti和Td,使系统的输出响应为一条较满意的过渡过程曲线(阶跃输入可由给定值突变20%来实现)。
3).在历史曲线中选择一条较满意的过渡过程曲线进行记录。
8、用临界比例度法整定调节器的参数在实现应用中,PID调节器的参数常用下述实验的方法来确定。
用临界比例度法去整定PID调节器的参数是既方便又实用的。
它的具体做法是:1).在只有比例调节作用下(将积分时间放到最大,微分时间放到最小),先把比例系数K放在较小值上,然后逐步增加调节器的比例系数,并且每当增加一次比例系数,待被调量回复到平衡状态后,再手动给系统施加一个5%~15%的阶跃扰动,观察被调量变化的动态过程。
若被调量为衰减的振荡曲线,则应继续增加比例系数,直到输出响应曲线呈现等幅振荡为止。
如果响应曲线出现发散振荡,则表示比例系数调节得过大,应适当减少,使之出现等幅振荡。
图2-19为它的实验方块图。
图2-19 具有比例调节器的闭环系统2).在图2-20系统中,当被调量作等幅荡时,此时的比例系数K就是临界比例系数,用K m表示之,此时的临界比例度为δk,δk=1/K m,相应的振荡周期就是临界周期T m。
据此,按下表可确定PID调节器的三个参数δ、Ti和Td。
图2-20 具有周期T m的等幅振荡3).必须指出,表格中给出的参数值是对调节器参数的一个初略设计,因为它是根据大量实验而得出的结论。
若要就得更满意的动态过程(例如:在阶跃作用下,被调参量作4:1的衰减振荡),则要在表格给出参数的基础上,对δ、Ti(或Td)作适当调整。
五、实验报告要求1、画出单容水箱液位控制系统的方块图。
2、用接好线路的单回路系统进行投运练习,并叙述无扰动切换的方法。
3、用临界比例度法整定调节器的参数,写出三种调节器的余差和超调量。
4、作出P调节器控制时,不同δ值下的阶跃响应曲线。
5、作出PI调节器控制时,不同δ和Ti值时的阶跃响应曲线。
6、画出PID控制时的阶跃响应曲线,并分析微分D的作用。
7、比较P、PI和PID三种调节器对系统无差度和动态性能的影响。
六、注意事项1、实验线路接好后,必须经指导老师检查认可后方可接通电源。
七、思考题1、实验系统在运行前应做好哪些准备工作?2、为什么要强调无扰动切换?3、试定性地分析三种调节器的参数K、(K、Ti)和(K、Ti和Td)的变化对控制过程各产生什么影响?4、如何实现减小或消除余差?纯比例控制能否消除余差?实验二、上水箱中水箱液位串级控制实验一、实验目的1)、掌握串级控制系统的基本概念和组成。
2)、掌握串级控制系统的投运与参数整定方法。
3)、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。
二、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。
三、实验原理上水箱液位作为副调节器调节对象,中水箱液位做为主调节器调节对象。
控制框图如图12-1所示:12-1、上水箱、中水箱液位串级控制框图四、实验内容和步骤1、设备的连接和检查:(1)、打开以循环泵、调节阀、涡轮流量计组成的动力支路至上水箱的出水阀门,关闭动力支路上通往其他对象的切换阀门。
(2)、打开上水箱出水阀至半开,中水箱的出水阀至全开。
(3)、检查电源开关是否关闭2、系统连线图:DCS接线端子排6 5 4H F D B H F D B H F D B6 5 4(I/O航空插座接线端子)图2-2 上水箱、中水箱液位串级控制系统接线图1).24芯通讯电缆I/O线,按图2-17的连法,接到对应的DCS接线端子排上。
将24芯通讯电缆H-1端即上水箱液位+(正极)接到DCS接线端子排的5-E端(即SP313电流信号输入板的正极),将24芯通讯电缆H-2端即中水箱液位+(正极)接到DCS接线端子排的5-G端(即SP313电流信号输入板的正极),将24芯通讯电缆H-4端上、中水箱液位-(负极)接到DCS接线端子排的5-F端(即SP313电流信号输入板的负极)。
将DCS接线端子排的6-G端(即SP322模拟信号输出板的正极),接至24芯通讯电缆H-19端即调节阀的2~10V输入端的+端(即正极),DCS接线端子排的6-H端(即SP322模拟信号输出板的负极),接至24芯通讯电缆H-20端即调节阀的2~10V输入端的-端(即负极),并且在DCS接线端子排的6-G端和6-H端间连接一500Ω电阻。