迭代法

合集下载

迭代法

迭代法

迭代方法也称为滚动方法。

Bai是一个过程,其中变量Du的旧值用于重现新值。

迭代算法是解决计算机问题的基本方法。

它利用了运算速度快的特点,并且适合重复操作,因此计算机可以重复执行一组指令(或某些步骤)。

每次执行指令组(或这些步骤)时,都会从变量的原始值中得出一个新值。

迭代方法分为精确迭代和近似迭代。

典型的迭代方法(例如二分法和牛顿迭代)属于近似迭代。

扩展数据:
对于区间[a,b]和f(a)·f(b)<0上的连续函数y=f(x),通过连续除以函数f(x)零点所在的区间,间隔的两个端点逐渐接近零点,然后获得零点的近似值称为二分法。

令[a,b]为R的封闭区间。

连续二等分方法将创建以下区间序列([an,BN]),如下所示:A0=a,B0=B,并且对于任何自然数n,[an+1,BN+1]等于[an,cn]或等于[cn,BN],其中CN表示[an,BN]的中点。

方法介绍
迭代法是一类利用递推公式或循环算法通过构造序列来求问题近似解的方法。

例如,对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。

若对某一正整数,当时,与k无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。

称所构造的序
列为迭代序列。

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法
迭代法是一种通过迭代逼近的方式来求解方程的方法。

它的基本思想是通过不断逼近
方程的解,使得逼近值与真实解的差距越来越小,最终得到方程的解。

下面介绍三种新的迭代法:牛顿迭代法,弦截法和切线法。

一、牛顿迭代法
牛顿迭代法是一种通过利用函数导数的信息来逼近方程解的方法。

它的迭代公式为:
x_(n+1) = x_n - f(x_n)/f'(x_n)
x_n表示第n次迭代得到的逼近解,f(x_n)表示在x_n处的函数值,f'(x_n)表示在x_n 处的导数值。

牛顿迭代法的优点是收敛速度快,通常是二阶收敛,但其缺点是需要计算函数的导数,如果导数计算困难或者导数为零的情况下,该方法可能不适用。

二、弦截法
三、切线法
切线法的优点和牛顿迭代法类似,但其缺点是需要计算函数的导数,且对于初始逼近
解的选择比较敏感。

牛顿迭代法、弦截法和切线法都是三种常用的非线性方程迭代法。

它们各自有着优点
和缺点,适用的领域和条件也不尽相同。

在实际问题中,需要根据具体情况选择合适的方
法来求解非线性方程。

迭代法(iterative method

迭代法(iterative method

迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。

这种方法通常用于求解方程、优化问题、积分问题等。

迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。

这个终止条件可以是精度要求、迭代次数限制等。

常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。

2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。

3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。

4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。

同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。

2.2 迭代法

2.2 迭代法

x k +1 = 3 x k + 1
计算结果如下: 计算结果如下:
k=0,1,2,3…….
计算方法
k 0 1 2 3 4
xk
1.5 1.35721 1.33086 1.32588 1.32494
k 5 6 7 8
xk
1.32476 1.32473 1.32Байду номын сангаас72 1.32472
精确到小数点后五位
x = 1.32472
′( x* ) = ϕ ′′( x* ) = L = ϕ ( p−1) ( x* ) = 0, ϕ ( p ) ( x* ) ≠ 0 ϕ 邻域是p阶收敛的。 则迭代过程在 x * 邻域是p阶收敛的。
证: 由于 ϕ ′( x * ) = 0 * ′( x* ) < 1 , 即在 x 邻域 ϕ ϕ ( xk ) 在 x * 处 有局部收敛性, 所以 xk+1 = ϕ( xk ) 有局部收敛性, 将 泰勒展开
计算方法
一、迭代法的基本思想: 迭代法的基本思想: 为求解非线性方程f(x)=0的根,先将其写成便于 的根, 为求解非线性方程 的根 迭代的等价方程
x = ϕ ( x)
的连续函数。 其中ϕ ( x ) 为x的连续函数。 的连续函数
(2.3)
计算方法
即如果数 α 使 f(x)=0, 则也有 α = ϕ (α ) , 反之, 反之, 若α = ϕ (α ) ,则也有 f (α ) = 0 的右端, 任取一个初值 x ,代入式 x = ϕ ( x ) 的右端, 得到 0
ϕ ′( x ) ≤ L < 1
计算方法
则对于任意的初始值 x0 ∈ S ,由迭代公式 收敛于方程的根。 产生的数列 { xn } 收敛于方程的根。 (这时称迭代法在 α 的S邻域具有局部收敛性。) 邻域具有局部收敛性。)

迭代法

迭代法

取 x(0)=(0,0,0)T 计算结果如下:
k
x1(k)
1 0.72
x2(k) 0.83
x3(k) 0.84
2 0.971 1.07
1.15
……


11 1.099993 1.199993 1.299991
12 1.099998 1.199998 1.299997
上页 下页
例2 用Gauss—Seidel 迭代法解上题.
x (0 ) (初 始 向 量),
x
(
k
1
)
Bx (k)
f
(k 0,1, , ),
( 2 .7 )
其中B=I-(D-L)-1A= (D-L)-1U=G, f=(D-L)-1b. 称矩 阵G=(D-L)-1U为解Ax=b的高斯—塞德尔迭代法的迭 代矩阵.
上页 下页
由高斯—塞德尔迭代法(2.7)有
(k j
)
)
/
a
i
i
,
j1
ji1
x (k 1) i
(1
)
x
( i
k
)
x~
( i
k
1
)
x(k) i
( x~i(k 1)
x
( i
k
)
),
( i 1 ,2 , , n ).

i1
n
x ( k 1) i
x
(k i
)
(bi
a
i
j
x
( j
k
1
)
a
i
j
x
( j
k
)
)
/
a
i
i

常用算法——迭代法

常用算法——迭代法

常用算法——迭代法常用算法,迭代法迭代法(iteration method)是一种通过重复执行相同的步骤来逐步逼近问题解的方法。

它在计算机科学和数学中被广泛应用,可以解决各种问题,比如求近似解、优化问题、图像处理等。

迭代法的基本思想是通过不断迭代的过程,逐渐逼近问题的解。

每一次迭代都会将上一次迭代的结果作为输入,并进行相同的操作,直到满足其中一种停止条件。

在每次迭代中,我们可以根据当前的状态更新变量的值,进而改善我们对问题解的估计。

迭代法最常用的应用之一是求解方程的近似解。

对于一些复杂方程,很难通过解析方法求得解析解,这时我们可以利用迭代法来逼近方程的解。

具体地,我们可以选择一个初始的近似解,然后将其代入方程,得到一个新的近似解。

重复这个过程,直到得到一个满足我们要求的解。

这个方法被称为迭代法求解方程。

另一个常用的迭代法示例是求解优化问题。

在优化问题中,我们需要找到能使一些目标函数取得最大或最小值的变量。

迭代法可以通过不断优化变量值的方法来求解这种问题。

我们可以从一个初始解开始,然后根据目标函数的导数或近似导数的信息来更新变量的值,使得目标函数的值逐步接近最优解。

这种方法被称为迭代优化算法。

迭代法还可以应用于图像处理等领域。

在图像处理中,我们常常需要对图片进行修复、增强或变形。

迭代法可以通过对图片像素的重复操作来达到修复、增强或变形的目的。

例如,如果我们想要修复一张受损的图片,可以通过迭代地修复每个像素点,以逐渐恢复整个图片。

除了上述示例,迭代法还有很多其他应用,比如求解线性方程组、图像压缩、机器学习等。

总之,迭代法是一种非常灵活和强大的算法,可以解决各种问题。

在实际应用中,迭代法的效果往往受到选择合适的初始值、迭代次数和停止条件的影响。

因此,为了获得较好的结果,我们需要在迭代过程中不断优化这些参数。

同时,迭代法也可能会陷入局部最优解的问题,因此我们需要设计合适的策略来避免这种情况。

总的来说,迭代法是一种重要的常用算法,它可以解决各种问题。

2.2 迭代法

2.2 迭代法
* lim | x xk | 0 要证结论(1)成立,即要证 k
首先用归纳假设证明如下不等式
| x* xk | Lk | x* x1 |
38
当k=1时 x x1 L x x0 ,已证成立。
k 1 x x L x x0 成立,可得 假设 k 1
不动点迭代的几何解释 y=f(x)=x y=g(x)
38
不动点判定定理
设g是一连续函数,且 { pn } 是由不动点迭代 n 0
生成的序列。若 lim pn p ,则p是g(x)的不动点
n
pn 1 p pn p ,则 lim 证:lim n n
g ( p ) g (lim pn ) lim g( pn ) lim pn1 p
1 1 x xk x k 1 x k ( x k ) ( x k 1 ) 1 L 1 L L Lk x k x k 1 x1 x0 1 L 1 L

L越小,收敛越快
38
不动点迭代的图形解释
一般来说从 f ( x ) 0 , 构造 ( x )不止一种,有的
38
由介值定理,存在 x [a , b] 使 f ( x ) 0



x ( x ).
②设方程 x ( x ) 还有一根 , 即 a (a ). 则由微分中值定理有
x ( x ) ( ) ( )( x ) L x
x4 2x 2 x 3 0 x 2 ( x)
x 4 1
x 3 ( x) x4 2x2 3
(其中第二式 x4 2 x 2 1=x 4 )

常用算法(一)——迭代法

常用算法(一)——迭代法

常用算法——迭代法一、迭代法迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。

设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:(1)选一个方程的近似根,赋给变量x0;(2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;(3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。

上述算法用C程序的形式表示为:【算法】迭代法求方程的根{ x0=初始近似根;do {x1=x0;x0=g(x1);/*按特定的方程计算新的近似根*/} while ( fabs(x0-x1)>Epsilon);printf(“方程的近似根是%f\n”,x0);}迭代算法也常用于求方程组的根,令X=(x0,x1,…,xn-1)设方程组为:xi=gi(X) (I=0,1,…,n-1)则求方程组根的迭代算法可描述如下:【算法】迭代法求方程组的根{ for (i=0;i<n;i++)x=初始近似根;do {for (i=0;i<n;i++)y=x;for (i=0;i<n;i++)x=gi(X);for (delta=0.0,i=0;i<n;i++)if (fabs(y-x)>delta) delta=fabs(y-x);} while (delta>Epsilon);for (i=0;i<n;i++)printf(“变量x[%d]的近似根是%f”,I,x);printf(“\n”);}具体使用迭代法求根时应注意以下两种可能发生的情况:(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。

数值分析--第三章--迭代法

数值分析--第三章--迭代法

数值分析--第三章--迭代法迭代⼀般⽅程:本⽂实例⽅程组:⼀.jacobi迭代法从第i个⽅程组解出xi。

线性⽅程组Ax=b,先给定⼀组x的初始值,如[0,0,0],第⼀次迭代,⽤x2=0,x3=0带⼊第⼀个式⼦得到x1的第⼀次迭代结果,⽤x1=0,x3=0,带⼊第⼆个式⼦得到x2的第⼀次迭代结果,⽤x1=0,x2=0带⼊第三个式⼦得到x3的第⼀次迭代结果。

得到第⼀次的x后,重复第⼀次的运算。

转化成⼀般的形式:(其中L是A的下三⾓部分,D是A的对⾓元素部分,U 是上三⾓部分)得到迭代公式:其中的矩阵B和向量f如何求得呢?其实,矩阵B的计算也很简单,就是每⾏的元素/该⾏上的对⾓元素⼆.Gauss-Seidel迭代法【收敛速度更快】这个可以和jacobi法对⽐进⾏理解,我们以第⼆次迭代为例(这⾥的第⼀次迭代结果都⽤⼀样的,懒得去换)从上表对⽐结果可以看出,Jacobi⽅法的第⼆次迭代的时候,都是从第⼀次迭代结果中,获取输⼊值。

上⼀次迭代结果[2.5,3.0,3.0],将这个结果带⼊上⾯式⼦1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带⼊第⼆个式⼦的运算,这⾥得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输⼊第三个式⼦计算X3=1.0.这就完成了这⼀次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下⼀次迭代。

特点:jacobi迭代法,需要存储,上⼀次的迭代结果,也要存储这⼀次的迭代结果,所以需要两组存储单元。

⽽Gauss-Seidel迭代法,每⼀次迭代得到的每⼀个式⼦得到的值,替换上⼀次迭代结果中的值即可。

所以只需要⼀组存储单元。

转化成⼀般式:注意:第⼆个式⼦中的是k+1次迭代的第⼀个式⼦的值,不是第k次迭代得值。

计算过程同jacobi迭代法的类似三.逐次超松弛法SOR法上⾯仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。

迭代法求解方程

迭代法求解方程

迭代法求解方程1 什么是迭代法?迭代法是一种求解方程的方法,通常用于在数值计算中。

迭代法的基本思想是通过不断重复一个固定的计算过程来逼近目标解,直到精度满足要求为止。

迭代法在理论研究和实际应用中都有广泛应用,例如在数学、物理、工程学等领域。

2 迭代法的例子在数学中,迭代法最常用于求解方程。

例如,我们有一个方程f(x) = 0,我们希望找到它的一个解x。

迭代法的一般形式是从一个初始值x0开始,通过重复应用某个公式,得到序列{x0, x1, x2, …, xn},使得xn逐步逼近解。

具体而言,每一次迭代都利用前一次的计算结果,求出新的解,即:xn+1 = g(xn)其中g(x)是某个函数,也被称为迭代函数。

当序列{x0, x1,x2, …, xn}满足一定条件时,我们称其为收敛序列,此时xn就是方程f(x) = 0的解。

3 迭代法的实现迭代法需要满足一定的收敛条件,才能有效地找到解。

在迭代函数的选择中,一般应满足以下要求:1. 迭代函数必须是连续的。

2. 选取的初值必须接近解。

3. 迭代函数的值域必须包含自变量的定义域。

4. 迭代函数的导数要通常利于计算。

基于以上原则,我们可以通过编写程序来实现迭代法求解方程。

代码示例如下:```python定义迭代函数def g(x):return (x**2 + 2) / 3定义初始值x0 = 1设置迭代次数n = 20进行迭代for i in range(n):x1 = g(x0)print("x{} = {}".format(i+1, x1))x0 = x1```这段代码中,我们定义了一个迭代函数g(x) = (x² + 2) / 3,初始值为x0 = 1,迭代次数为20次。

通过重复调用迭代函数g(x),我们依次求得了序列{x1, x2, …, x20},并输出每一次迭代的结果。

4 迭代法的优缺点迭代法的优点主要包括:1. 迭代法适用于求解各种类型的方程,具有较高的通用性。

22第二节 迭代法

22第二节 迭代法

上述令p→∞, 及limxk+p=x* (p→∞)即得第一式.
L x xk xk xk 1 1 L

数学学院 信息与计算科学系
3 2 f ( x ) x 4 x 10 0 在 例2 用迭代法求方程
[1,2] 内的一个近似根,取初始近似值 x0 1.5

原方程的等价方程可以有以下不同形式
x ( x ) ( ) ( )( x ) L x
此式仅当 x 0 才能成立, 因此 x 。 ( 2) 再证迭代格式 xk 1 ( xk ) 收敛 任取 x0∈[ a, b ],由微分中值定理,有
数学学院 信息与计算科学系
10 x n 1 4 xn xn 1 3 xn 1 10 xn 2 10 xn 1 4 xn
数学学院 信息与计算科学系
考察四种迭代法在根附近的收敛情况,取根的 x0 1.5。 近似值为 解
(1) ( x ) x x 3 4 x 2 10
( x ) 1 3 x 2 8 x (1.5) 17.75 1
e k 1 c ( k , c 0) p ek 则称迭代格式 xk 1 ( xk ) 是 p 阶收敛的.
特别地, p = 1时称为线性收敛, p = 2 时称为二阶(平方)收敛,
p>1时称为超线性收敛. 显然, 收敛阶越大, 收敛越快
利用微分中值定理及泰勒展式可得下面的定理3.
数学学院 信息与计算科学系
定理 3
x x ( x ) 设x 为 之根,在 的邻域 U内
x x ( x ) 在[a , b]上有唯一根 ;
(2) 对任意迭代初值 x0∈[a , b],迭代序列 xk 1 ( xk ) ( k 0,1, 2,) 收敛于 x 。

计算方法第六章迭代法

计算方法第六章迭代法

计算方法第六章迭代法迭代法是一种重要的数值计算方法,在数学和计算机科学中有广泛的应用。

本章将介绍迭代法的基本概念、原理和应用,以及相关的数学原理和计算技巧。

首先,我们来了解迭代法的基本概念。

迭代法是通过逐步逼近的方式得到一个问题的解。

迭代法的基本思路是从一个初始值开始,通过重复计算和更新,得到更加接近最终解的近似值。

迭代法的优点是简单和灵活,但需要注意选择合适的迭代公式和初始值,以及控制迭代的停止条件。

迭代法的原理可以用以下的一般形式表示:```x_(n+1)=f(x_n)```其中,x_n表示第n次迭代得到的近似值,x_(n+1)表示第(n+1)次迭代的近似值,f是一个函数,表示迭代公式。

迭代法的思想是通过不断迭代更新x的值,直到满足一些停止条件为止。

迭代法的应用非常广泛,特别是在求解非线性方程和优化问题方面有重要的应用。

在求解非线性方程时,我们可以将方程转化为形式为f(x)=0的等式,然后通过迭代法逼近方程的根。

在优化问题中,我们可以通过最小化或最大化一个函数来寻找最优解,也可以使用迭代法逐步逼近最优解。

在迭代法的实际应用中,我们需要注意一些数学原理和计算技巧。

首先,迭代法的收敛性是关键的,即通过迭代公式逐步逼近的值是否趋于问题的解。

在评估迭代法的收敛性时,常用的方法有判断迭代序列的极限是否存在和是否满足一些收敛条件。

其次,选择合适的迭代公式和初始值对于迭代法的成功应用非常重要。

迭代公式应该是简单和有效的,能够在迭代过程中逐步逼近问题的解。

初始值的选择也会直接影响迭代的结果,通常需要根据问题的特点和经验进行选择。

另外,迭代法的计算精度和计算效率也是需要考虑的问题。

在迭代过程中,我们需要根据问题的要求不断调整迭代的次数和迭代的停止条件,以达到较高的计算精度。

同时,我们也需要通过优化迭代公式和使用更加高效的计算技巧来提高计算的效率。

最后,迭代法的应用还可以进一步扩展到其他领域。

例如,在图像处理中,我们可以使用迭代法逐步改进图像的质量;在机器学习中,我们可以使用迭代法来调整模型的参数,以求得更好的拟合效果。

迭代法

迭代法

一,对迭代法进行简介迭代法又称为辗转法,是用计算机解决问题的一种基本方法,为一种不断用变量的旧值递推新值的过程,与直接法相对应,一次性解决问题。

迭代法分为精确迭代和近似迭代,“二分法”和“牛顿迭代法”属于近似迭代法。

迭代法利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。

一般可以做如下定义:对于给定的线性方程组x=Bx+f(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式x(k+1)=Bx(k)+f(括号中为上标,代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。

如果k趋向无穷大时limx(k)存在,记为x*,称此迭代法收敛。

显然x*就是此方程组的解,否则称为迭代法发散。

跟迭代法相对应的是直接法(或者称为一次解法),即一次性的快速解决问题,例如通过开方解决方程x +3= 4。

一般如果可能,直接解法总是优先考虑的。

但当遇到复杂问题时,特别是在未知量很多,方程为非线性时,我们无法找到直接解法(例如五次以及更高次的代数方程没有解析解,参见阿贝耳定理),(这是为什么迭代法可以求解复杂方程的原因之一)。

这时候或许可以通过迭代法寻求方程(组)的近似解(还是没有详细解释选用迭代法的原因)。

最常见的迭代法是牛顿法。

其他还包括最速下降法、共轭迭代法、变尺度迭代法、最小二乘法、线性规划、非线性规划、单纯型法、惩罚函数法、斜率投影法、遗传算法、模拟退火等等。

利用迭代算法解决问题,需要做好以下三个方面的工作:1.确定迭代变量在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

线性代数方程组迭代法PPT课件

线性代数方程组迭代法PPT课件

超松弛法
收敛速度快
总结词
总结词
计算量较大
ABCD
详细描述
超松弛法具有较快的收敛速度,尤其对于大型线 性方程组,能够显著减少迭代次数。
详细描述
由于超松弛法的计算量较大,因此在实际应用中 可能需要考虑计算效率的问题。
CHAPTER 04
迭代法的实现步骤
初始化
设置初值
为方程组的解向量设定一个初始值。
迭代法的应用场景
当方程组的系数矩阵难以直接求解时 ,迭代法可以作为一种有效的替代方 案。
在科学计算、工程技术和经济领域中 ,许多问题可以转化为线性代数方程 组求解,而迭代法在这些领域有广泛 的应用。
迭代法的优缺点
优点
迭代法通常比直接法更加灵活和通用,对于大规模和高维度的线性代数方程组, 迭代法更加高效。
缺点
迭代法需要选择合适的迭代公式和参数,并且需要满足收敛条件,否则可能无 法得到正确的解。此外,迭代法的计算过程比较复杂,需要较高的计算成本。
CHAPTER 02
迭代法的基本原理
迭代法的数学模型
迭代法是一种求解线性代数方程组的数值方法,通过不断迭代逼近方程的 解。
迭代法的数学模型通常表示为:$x_{n+1} = T(x_n)$,其中$x_n$表示第 $n$次迭代时的近似解,$T(x)$表示迭代函数。
03
非线性方程组的迭代法在求解优化问题、控制问题 等领域有广泛应用。
在优化问题中的应用
01
迭代法在优化问题中也有广泛应用,如求解无约束优化问题、 约束优化问题和多目标优化问题等。
02
常见的优化问题迭代法包括梯度下降法、牛顿法和共轭梯度法
等。
这些方法通过不断迭代来逼近最优解,广泛应用于机器学习、

迭代法

迭代法

2 迭代法2.1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。

迭代法的基本思想是一种逐次逼近的方法。

首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。

对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。

这里,主要看看解方程迭代式的构造。

对方程(1.1),在区间],[b a 内,可改写成为:)(x x ϕ= (2.1)取],[0b a x ∈,用递推公式:)(1k k x x ϕ=+, Λ,2,1,0=k(2.2)可得到序列:∞==0210}{,,,,k k k x x x x x ΛΛ(2.3) 当∞→k 时,序列∞=0}{k k x 有极限x ~,且)(x ϕ在x ~附近连续,则在式(2.2)两边极限,得,)~(~x x ϕ=即,x ~为方程(2.1)的根。

由于方式(1.1)和方程(2.1)等价,所以,x x ~*= 即,*lim x x k k =∞→ 式(2.2)称为迭代式,也称为迭代公式;)(x ϕ可称为迭代函数。

称求得的序列∞=0}{k k x为迭代序列。

2.2 程序和实例下面是基于MATLAB 的迭代法程序,用迭代格式)(1n n x g p =+,求解方程)(x g x =,其中初始值为0p 。

**************************************************************************function[p,k,err,P]=fixpt(f1021,p0,tol,max1)% f1021是给定的迭代函数。

% p0是给定的初始值。

% tol 是给定的误差界。

% max1是所允许的最大迭代次数。

% k 是所进行的迭代次数加1。

% p 是不动点的近似值。

% err 是误差。

% P = {p1,p2,…,pn}P(1) = p0;for k = 2:max1P(k) = feval('f1021', P(k-1));k, err = abs(P(k) - P(k-1))p = P(k);if(err<tol),break;endif k == max1disp('maximum number of iterations exceeded');endendP=P;****************************************************************************例2.1 用上述程序求方程0sin 2=-x x 的一个近似解,给定初始值5.00=x ,误差界为510-。

迭代法

迭代法


• • • • • • • • • • • • • • • • •
int main() { double x,precision; int maxcyc; printf("输入初始迭代值x0:"); scanf("%lf",&x); printf("输入最大迭代次数:"); scanf("%d",&maxcyc); printf("迭代要求的精度:"); scanf("%lf",&precision); if(Newton(&x,precision,maxcyc)==1) //若函数返回值为1 printf("该值附近的根为:%lf\n",x); else //若函数返回值为0 printf("迭代失败!\n"); getch(); return 0; }
解非线性方程f(x)=0的牛顿法是把非线性方程线性化 的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部 分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前 两项,则有f(x0)+f'(x0)(x-x0)-f(x)=0 设f'(x0)≠0则其解为 x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列: x(n+1)=x(n)-f(x(n))/f'(x(n))。
谢 谢!
邮箱:lihaicg@
迭代关系式: • if (y<=3) • f=f1=f2=f3=1; • else • { f=f1+f3; • f1=f2; • f2=f3; • f3=f; • } • 相信大家都能理解!!!

常用算法——迭代法

常用算法——迭代法

常用算法——迭代法迭代法是一种常见的算法设计方法,它通过重复执行一定的操作来逐步逼近问题的解。

迭代法是一种简单有效的求解问题的方法,常用于求解数值问题、优化问题以及函数逼近等领域。

本文将介绍迭代法的基本概念、原理以及常见的应用场景。

一、迭代法的基本概念迭代法的思想是通过反复应用一些函数或算子来逐步逼近问题的解。

对于一个需要求解的问题,我们首先选择一个初始解或者近似解,然后通过不断迭代更新来逼近真实解。

迭代法的核心是找到一个递推关系,使得每次迭代可以使问题的解越来越接近真实解。

常见的迭代法有不动点迭代法、牛顿迭代法、梯度下降法等。

这些方法的求解过程都是基于迭代的思想,通过不断逼近解的过程来得到问题的解。

二、迭代法的原理迭代法的基本原理是通过不断迭代求解迭代方程的解,从而逼近问题的解。

迭代法的求解过程通常分为以下几个步骤:1.选择适当的初始解或者近似解。

初始解的选择对迭代法的收敛性和效率都有影响,一般需要根据问题的特点进行合理选择。

2.构建递推关系。

通过分析问题的特点,构建递推关系式来更新解的值。

递推关系的构建是迭代法求解问题的核心,它决定了每次迭代如何更新解的值。

3.根据递推关系进行迭代。

根据递推关系式,依次更新解的值,直到满足收敛条件为止。

收敛条件可以是解的变化小于一定阈值,或者达到一定的迭代次数。

4.得到逼近解。

当迭代停止时,得到的解即为问题的逼近解。

通常需要根据实际问题的需求来判断迭代停止的条件。

三、迭代法的应用迭代法在数值计算、优化问题以及函数逼近等领域有广泛的应用。

下面将介绍迭代法在常见问题中的应用场景。

1.数值计算:迭代法可以用于求解方程的根、解线性方程组、求解矩阵的特征值等数值计算问题。

这些问题的解通常是通过迭代的方式逼近得到的。

2.优化问题:迭代法可以应用于各种优化问题的求解,如最大值最小化、参数估计、模式识别等。

迭代法可以通过不断调整参数的值来逼近问题的最优解。

3.函数逼近:迭代法可以应用于函数逼近问题,通过不断迭代来逼近一个函数的近似解。

迭代法的原理

迭代法的原理

迭代法的原理
迭代法(IterativeMethods),又称顺序近似法,是求解用数学模型表示的问题的一
种有效方法。

它是建立在一组数值变量之间一种有效动态关系的基础上,使用迭代格式求
解问题的一种数学技术。

迭代法的基本原理是:将要求的接近的解的迭代过程,转换成一系列的子解,每个子
解满足某些约束条件。

然后,使用某种有效算法,将这些子解迭代直至满足所需的最终目
标值或损失函数的最小值。

迭代法的基本思想,主要是将一个解求解问题过程转化为一系列的子问题,对这些子
问题进行求解,以获得问题最优解。

可以将迭代法总结为以下几个步骤:
第一步:确定问题的初始值;
第二步:使用某种有效算法,将这些初始值迭代改变成满足所需最终目标的子解;
第三步:重复第二步,直至解的精度达到一定的要求;
第四步:求解完成,输出最终结果。

迭代法求解内容有:迭代解方程组,求函数极值和最优化等;优点是解的收敛速度较快,有较强的数值模拟能力,应用范围广,缺点是实现起来较为复杂,并且存在收敛障碍,很难得到满意解。

迭代法

迭代法

迭代法迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

迭代法又分为精确迭代和近似迭代。

“二分法”和“牛顿迭代法”属于近似迭代法。

迭代算法是用计算机解决问题的一种基本方法。

它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代变量。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

例 1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。

如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?分析:这是一个典型的递推问题。

我们不妨假设第 1 个月时兔子的只数为u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有u 1 = 1 , u 2 = u 1 +u 1 × 1 = 2 , u 3 = u 2 +u 2 × 1 =4 ,……根据这个规律,可以归纳出下面的递推公式:u n = u n - 1 × 2 (n ≥ 2)对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:y=x*2x=y让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迭代法
迭代法也叫辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。

若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。

称所构造的序列为迭代序列。

求通项公式的方法(用迭代法)已知数列{An},a1=2,an=2a(n-1)-1(n>或=2)求通项公式
an=2a(n-1)-1 an-1=2(a(n-1)-1 ) n>或=2
所以an-1 为等比数列
an-1=(a1-1)*2^(n-1)
an-1=2^(n-1)
an=2^(n-1)+1
牛顿迭代法求开方
数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数的泰勒级数的前面几项来寻找方程的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收
敛。

另外该方法广泛用于计算机编程中。

用迭代法求平方根
对于A>1,求其平方根可构造用如下公式迭代:
f(x)=(1/a)(x+a/x),a=A/(A-1),迭代初值x0=[√A]+1,[x]为x的取整.如想求70的平方根,可令初值x0=9.
对于A1,用如上方法求出平方根后,在成10^(-n),即得结果.。

相关文档
最新文档