医科达直线加速器、西门子3.0磁共振简介ppt课件
合集下载
医科达直线加速器、西门子30磁共振简介综述

检查室有强磁场,进入该室需取下各种 磁性卡、证件、手机、铁质工具等易被磁 化的物品,避免意外发生。
机房内需保持温度22摄氏度,相对湿度50%以下,应 定期清洗空调过滤网。
2.MRI日常注意 (1)停电 MRI主电源采用三相五线制。如遇停电,设备 配有UPS电源,但仅对操作系统供电,机架、水 冷机、机房配套设备均无电。核磁冷头会停止工 作,冷头主要是对磁体保持一个恒温状态,非常 重要。如果冷头长时间停止工作会导致磁体温度 上升,磁体内液氦挥发,严重时会引起失超,一 旦出现失超现象,设备要整机重新返厂,损失严 重。
XX医院
大型设备简介
一、西门子3.0T MRI
1.设备简介 核磁共振是利用强磁场对人体检查部位 进行成像,适用于人体所有器官包括心脏、 脊柱、腹部、头颅。我院2010年引进西门 子3.0T MRI,设备性能及图像清晰度远远 超于其他核磁设备。整个系统由控制台、 机架、检查床、机房设备及水冷系统等组 成。所谓T,指磁场强度,3.0T属于高场强。
2.直加日常注意 突发性/计划性停电 直线加速器配有多个电源柜,以下依次为:
主电源柜
机房电源柜
直加主电源采用380伏三相五线制,配 有双电源。遇停电或电源故障,设备除操 作台有UPS供电外,机架及水冷机均无电。 加速器严格要求在高真空或超高真空内工 作,一旦停电,真空泵将停止工作,真空 状态无法维持(一般停电不超过8小时)。 如长时间停电,需告知后勤设备保障部相 关部门(水电组)改由发电机组供电。
遇突发性停电或计划性停电均需第一时 间告知临床科室及后勤设备保障部,启动 备用电源,严格按照停电应急预案进行。
图上依次为主电源箱、水冷机电源、水冷机控制箱
(2)停水 冷头正常工作需要循环水支持,如果停 水而冷头正常工作的话,需要关闭进水总 阀保持水箱水位。如遇水冷机电源出现故 障需打开外循环水路,必要时通知后勤设 备保障部相关科室。
医用直线加速器的性能与特点ppt课件

ppt课件.
21
目前市场上常用的医用电子 直线加速器按能量分为三型:
低能医用直线加速器:只提
供一档X射线能量,大部分为
6MV。国产加速器多为此型
经济实用,可满足80%~85%
肿瘤患者需要
ppt课件.
22
中能医用电子直线加速器:
提供一档或二档X射线(6~ 10MV),并提供4~5档不同 能量的电子线(5~15MeV)
中能加速器除能治疗深部
肿瘤外,还可以治疗大部分表 浅肿瘤。
ppt课件.
23
高能医用电子直线加速器:提
供二档X射线,商业上称为双光子 方式,有些公司产品如:瑞典医科 达生产的加速器可以提供三档X射 线,称为三光子方式,多档设置的 目的是适应不同体厚病人不同肿瘤 深度治疗的需要。可提供更高能量 的电子线(5~22MeV),分为5~9 档,扩大了对表浅肿瘤的治疗深度 范围
ppt课件.
24
随着科学的不断发展和进
步,近代医用直线加速器还可
以提供更多的功能选择,如: 全自动多叶准直器系统MLC 适时影像系统(EPID) X刀治疗系统是利用加速器产
生的X射线束达到治疗的目的
ppt课件.
25
全自动多叶光栅(MLC)
ppt课件.
26
EPID
ppt课件.
27
ppt课件.
验证片
疗计划系统等设备。
ppt课件.
33
≪放射诊疗管理规定≫
放射治疗场所应当按照下列要求配备并使 用安全防护装置、辐射检测仪器和个人防护用 品:
✓ 多重安全联锁系统 ✓ 剂量监测系统 ✓ 影像监控 ✓ 对讲装置 ✓ 固定式剂量监测报警装置 ✓ 配备放疗剂量仪 ✓ 剂量扫描装置
医用直线加速器原理【放射治疗科】 ppt课件

We eEz L 设行波电场的强度为EZ , 处于波峰上
的电子,经 L 距离后,获得的能量为
医学物理
行波加速管结构
•前端束流孔径由大变小,盘片间距由小变大-聚束段 •后面的束流孔径、盘片间距保持不变-光速段
医学物理
微波电场加速电子
+
++
谐振腔 TM010模
医学物理
•微波频率为3GHz,即电场在 1s内,方向变化30亿次
T 0.5C
医学物理
• 日本三菱公司ML-4M医用驻波电子直线加速器的频率特性曲线
束流偏转系统
医学物理
束流传输系统
• 束流传输系统的主要组成:[电子枪] ,聚焦线圈,导向线圈, 偏转系统(90°偏转,270°偏转), [靶(电子窗)]
医学物理
导向线圈的位置及结构
医学物理
• 90º偏转
偏转方案
• 其它
– 返波管 – 行波管 – 回旋管
医学物理
微波产生
医学物理
磁控管的基本构造及工作原理
医学物理
多腔磁控管的基本构造
医学物理
•能量输出装置
医学物理
磁钢
医学物理
•调频机构 •冷却
医学物理
多腔磁控管的基本工作原理
几个重要概念:
•临界状态 •π型振荡 •同步条件
r m0v eH
2n (n 0,1,2,......) N
医学物理
相位移动
由于粒子质量相对论增长,导致粒子的回旋周 期增大,从而粒子所在的加速相位移动。
Tc=Trf Tc>Trf Tc<Trf
V(f )=Vacos(f )
V(f )=Vacos(f )
医学物理
的电子,经 L 距离后,获得的能量为
医学物理
行波加速管结构
•前端束流孔径由大变小,盘片间距由小变大-聚束段 •后面的束流孔径、盘片间距保持不变-光速段
医学物理
微波电场加速电子
+
++
谐振腔 TM010模
医学物理
•微波频率为3GHz,即电场在 1s内,方向变化30亿次
T 0.5C
医学物理
• 日本三菱公司ML-4M医用驻波电子直线加速器的频率特性曲线
束流偏转系统
医学物理
束流传输系统
• 束流传输系统的主要组成:[电子枪] ,聚焦线圈,导向线圈, 偏转系统(90°偏转,270°偏转), [靶(电子窗)]
医学物理
导向线圈的位置及结构
医学物理
• 90º偏转
偏转方案
• 其它
– 返波管 – 行波管 – 回旋管
医学物理
微波产生
医学物理
磁控管的基本构造及工作原理
医学物理
多腔磁控管的基本构造
医学物理
•能量输出装置
医学物理
磁钢
医学物理
•调频机构 •冷却
医学物理
多腔磁控管的基本工作原理
几个重要概念:
•临界状态 •π型振荡 •同步条件
r m0v eH
2n (n 0,1,2,......) N
医学物理
相位移动
由于粒子质量相对论增长,导致粒子的回旋周 期增大,从而粒子所在的加速相位移动。
Tc=Trf Tc>Trf Tc<Trf
V(f )=Vacos(f )
V(f )=Vacos(f )
医学物理
磁共振的原理和结构PPT讲稿

当前你正在浏览到的事第十页PPTT,共七十二页。
(二)外磁场对原子核自旋的影响
由于有无数个质子在 进动,其磁矩在X和Y轴 方向上的分量将相互抵 消,只有沿Z轴方向的分 量叠加起来形成了纵向 磁化矢量,它不能被直接
测量。
当前你正在浏览到的事第十一页PPTT,共七十二页。
(三〕电磁感应现象
•电流通过金属导线可以产生磁场 •金属导线切割磁力线产生电流 •变化磁场强度在金属导线(线圈〕内 可以产生感应电压和感应电流
该层面中包括各种组织影像的图像。
当前你正在浏览到的事第二十三页PPTT,共七十二页。
(七〕自由感应衰减
磁共振设备中,接收信号用的线圈平面与主磁场平 行,工作频率接近拉莫频率。
当质子磁化矢量只受主磁场作用时,由于自由进动
与主磁场方向一致,所以无法测量。而当RF脉冲对组 织激励又停止后,组织出现了弛豫过程,横向磁 化矢量的变化能使位于被检体周围的接收线圈产 生随时间变化的感应电流,其大小与横向磁化矢 量成正比,将这个电流信号放大后即为MR信号,
当前你正在浏览到的事第十二页PPTT,共七十二页。
(四〕射频脉冲
电场和磁场随时间而变化称为电磁辐射。
射频(RF〕脉冲是一种无线电波,也是电磁波 的一种,它的主要作用是扰乱沿外加磁场方向 宁静进动的质子的进动。只有RF脉冲与自旋质 子的进动频率相同时,才能向质子传递能量。
当前你正在浏览到的事第十三页PPTT,共七十二页。
(六〕核磁共振弛豫
在磁共振领域中,将质子周围的原子统称为晶格。 纵向弛豫就是质子自旋磁矩将能量释放传递给晶格原
子的过程,所以也叫自旋-晶格弛豫。 RF脉冲停止后,纵向磁化矢量恢复到原来的数值所
需要的时间称为纵向弛豫时间,简称T1,实际中将纵向 磁化矢量从0恢复到最大值的63%所需的时间定义为 T1 时间。
(二)外磁场对原子核自旋的影响
由于有无数个质子在 进动,其磁矩在X和Y轴 方向上的分量将相互抵 消,只有沿Z轴方向的分 量叠加起来形成了纵向 磁化矢量,它不能被直接
测量。
当前你正在浏览到的事第十一页PPTT,共七十二页。
(三〕电磁感应现象
•电流通过金属导线可以产生磁场 •金属导线切割磁力线产生电流 •变化磁场强度在金属导线(线圈〕内 可以产生感应电压和感应电流
该层面中包括各种组织影像的图像。
当前你正在浏览到的事第二十三页PPTT,共七十二页。
(七〕自由感应衰减
磁共振设备中,接收信号用的线圈平面与主磁场平 行,工作频率接近拉莫频率。
当质子磁化矢量只受主磁场作用时,由于自由进动
与主磁场方向一致,所以无法测量。而当RF脉冲对组 织激励又停止后,组织出现了弛豫过程,横向磁 化矢量的变化能使位于被检体周围的接收线圈产 生随时间变化的感应电流,其大小与横向磁化矢 量成正比,将这个电流信号放大后即为MR信号,
当前你正在浏览到的事第十二页PPTT,共七十二页。
(四〕射频脉冲
电场和磁场随时间而变化称为电磁辐射。
射频(RF〕脉冲是一种无线电波,也是电磁波 的一种,它的主要作用是扰乱沿外加磁场方向 宁静进动的质子的进动。只有RF脉冲与自旋质 子的进动频率相同时,才能向质子传递能量。
当前你正在浏览到的事第十三页PPTT,共七十二页。
(六〕核磁共振弛豫
在磁共振领域中,将质子周围的原子统称为晶格。 纵向弛豫就是质子自旋磁矩将能量释放传递给晶格原
子的过程,所以也叫自旋-晶格弛豫。 RF脉冲停止后,纵向磁化矢量恢复到原来的数值所
需要的时间称为纵向弛豫时间,简称T1,实际中将纵向 磁化矢量从0恢复到最大值的63%所需的时间定义为 T1 时间。
磁共振基础知识及3.0T磁共振PPT精选课件

30
八、DWI及DTI
• 1.DWI在神经系统的应用:图1 • 2.DWI在体部的临床应用:图2 • 3.全身DWI技术(类PET):图3 • 4.扩散张量成像技术(DTI):图4
31
图1:DWI在早期脑梗塞中的应用
32
图2:DWI在体部肿瘤诊断中的价值
33
图3:全身类PET
34
图4:DTI图像显示脑白质纤维素的走行方向
• 1.胃部病变的MRI检查 • 2.小肠病变的MRI检查 • 3.结肠病变的MRI检查 • 4.直肠病变的MRI检查
65
(七)肝胆胰脾的MRI检查
• 1.肝脏的常规MRI检查 • 2.磁共振特殊技术在肝脏的应用 • 3.胆道的MRI检查 • 4.胰腺及脾脏的MRI检查
66
(八)泌尿生殖系统及乳腺的MRI检 查
• 十、脑功能成像技术及磁敏感加权成像技术
• 十一、磁共振波普技术
• 十二、磁共振成像对比剂
• 十三、MRI检查的注意事项及禁忌症
• 十四、磁共振在临床各系统中的应用
1
一、磁共振成像仪硬件基本知识
• 磁共振设备的组成:
• 1.主磁体:磁共振的分类的依据:
• ①永磁型磁体(低场磁共振):<0.5T
• ②电磁型磁体及超导型磁体(中高场磁共振): 1.5T、3.0T
• 2.梯度系统
• 3.射频系统
• 4.计算机系统及其他辅助设备
2
西门子0.2T磁共振
3
西门子1.5T磁共振
4
西门子3.0T磁共振
5
二、磁共振成像物理学原理
• 1.磁共振成像的物质基础: • 人体由很多分子组成,分子由原子组成; • 所有原子的核心都是原子核;
磁共振一般原理PPT课件

磁共振一般原理
磁共振信号强度
磁共振一般原理
磁共振一般原理
9.信号与频谱
• 对于一个单一正弦信号可用其幅度和频率描述, 而对于一个复杂的信号可用其频谱来描述,即把 信号进行分解为各种不同的频率成份和不同的 幅度.也即把随时间变化的幅度函数变成随频率 变化幅度函数(二维付立叶变换,2DFT)
磁共振一般原理
磁共振一般原理
电磁波谱图
磁共振一般原理
不同原子核的MRI特性
磁共振一般原理
1.核磁
• 质子、中子或质子 和中子数不成对的 原子核,高速自旋 时产生的磁矩,相 当于一个微型磁棒。
磁共振一般原理
2.磁化
• 如将生物组织置于一个大的外加磁场中 (又称主磁场,用矢量B0表示),则 质子磁矩方向发生变化,结果是较多的 质子磁矩指向与主磁场方向相同,而较 少的质子与B0方向相反,与B0方向相 反的质子具有较高的位能。常温下,顺 主磁场排列的质子数目较逆主磁场排列 的质子稍多,因此,出现与主磁场B0方 向一致的净宏观磁矩M,如图所示。
• 为了重建图像,必须确定组织间的空间 位置,涉及两个方面:
• 1)层面选择 • 2)层面上共振信号的空间编码
磁共振一般原理
1.层面选择
• 由于共振频率是磁场 强度的函数,在人体 长轴方向上附加一梯 度磁场Gz,则每一 横断面的共振频率均 不一样,层面厚度取 决于磁场梯度和射频 带宽。
磁共振一般原理
磁共振的物理基础
磁共振一般原理
1924年Pauli发现原子核象带电自旋的 球体具有角动量及磁矩, 1945 年Bloch 和 Purcell 证实了原子核 自旋的确实存在, 他 们 为此共同获得了1952 年诺贝尔物理学 奖。
五、六十年代磁共振主要为化学家及
磁共振信号强度
磁共振一般原理
磁共振一般原理
9.信号与频谱
• 对于一个单一正弦信号可用其幅度和频率描述, 而对于一个复杂的信号可用其频谱来描述,即把 信号进行分解为各种不同的频率成份和不同的 幅度.也即把随时间变化的幅度函数变成随频率 变化幅度函数(二维付立叶变换,2DFT)
磁共振一般原理
磁共振一般原理
电磁波谱图
磁共振一般原理
不同原子核的MRI特性
磁共振一般原理
1.核磁
• 质子、中子或质子 和中子数不成对的 原子核,高速自旋 时产生的磁矩,相 当于一个微型磁棒。
磁共振一般原理
2.磁化
• 如将生物组织置于一个大的外加磁场中 (又称主磁场,用矢量B0表示),则 质子磁矩方向发生变化,结果是较多的 质子磁矩指向与主磁场方向相同,而较 少的质子与B0方向相反,与B0方向相 反的质子具有较高的位能。常温下,顺 主磁场排列的质子数目较逆主磁场排列 的质子稍多,因此,出现与主磁场B0方 向一致的净宏观磁矩M,如图所示。
• 为了重建图像,必须确定组织间的空间 位置,涉及两个方面:
• 1)层面选择 • 2)层面上共振信号的空间编码
磁共振一般原理
1.层面选择
• 由于共振频率是磁场 强度的函数,在人体 长轴方向上附加一梯 度磁场Gz,则每一 横断面的共振频率均 不一样,层面厚度取 决于磁场梯度和射频 带宽。
磁共振一般原理
磁共振的物理基础
磁共振一般原理
1924年Pauli发现原子核象带电自旋的 球体具有角动量及磁矩, 1945 年Bloch 和 Purcell 证实了原子核 自旋的确实存在, 他 们 为此共同获得了1952 年诺贝尔物理学 奖。
五、六十年代磁共振主要为化学家及
磁共振3.0优势PPT演示课件

影会表现的更为突出 2. 对FIESTA,由于磁敏感效应容易引起的带状伪影 3. 垂体扫描会受影响
•3.0T与1.5T比较:电介质效应(Dielectric Effects
•电介质效应存在于所有场强的磁共振 •场强越高,电介质效应越明显 •电介质效应原因是射频脉冲在人体内分布不均匀
•3.0T与1.5T比较:电介质效应(Dielectric Effects
•3.0T与1.5T比较:化学位移效应(Chemical Shift)
•由于化合物周围都围绕 着电子云,电子云对外 界施加磁场有屏蔽作用 ,所以实际到达化合物 氢质子的磁场强度要小 于外界所施加的磁场。
•3.0T与1.5T比较:化学位移效应(Chemical Shift)
• 由于不同的化合物 周围的电子云浓密不一样 ,真正到达在不同化合物 中的氢质子的磁场强度是 不一样的,所以不同的化 合物中氢质子的进动频率 是不一样的。
射频脉冲-RF 是一种间断性发射的电磁波 主要的危害是产热 RF的累及被称为Specific Absorption
Rate (SAR) 影响SAR的因素包括
物理因素 生理因素 环境因素
•SNR
•0.2T •1.0T •1.5T •3.0T
•3.0T磁共振射频场
•SAR值的影因素
• RF 的多少 — 包括exciting RF和rephasing
•At 1.5T (63.86 MHz) : 0 4.68 m Tissue r 80
t 52 cm
•At 3.0T (127 MHz) :
0 2.34 m Tissue r 60
t 30 cm
•Permittivity is also a function of frequency !
•3.0T与1.5T比较:电介质效应(Dielectric Effects
•电介质效应存在于所有场强的磁共振 •场强越高,电介质效应越明显 •电介质效应原因是射频脉冲在人体内分布不均匀
•3.0T与1.5T比较:电介质效应(Dielectric Effects
•3.0T与1.5T比较:化学位移效应(Chemical Shift)
•由于化合物周围都围绕 着电子云,电子云对外 界施加磁场有屏蔽作用 ,所以实际到达化合物 氢质子的磁场强度要小 于外界所施加的磁场。
•3.0T与1.5T比较:化学位移效应(Chemical Shift)
• 由于不同的化合物 周围的电子云浓密不一样 ,真正到达在不同化合物 中的氢质子的磁场强度是 不一样的,所以不同的化 合物中氢质子的进动频率 是不一样的。
射频脉冲-RF 是一种间断性发射的电磁波 主要的危害是产热 RF的累及被称为Specific Absorption
Rate (SAR) 影响SAR的因素包括
物理因素 生理因素 环境因素
•SNR
•0.2T •1.0T •1.5T •3.0T
•3.0T磁共振射频场
•SAR值的影因素
• RF 的多少 — 包括exciting RF和rephasing
•At 1.5T (63.86 MHz) : 0 4.68 m Tissue r 80
t 52 cm
•At 3.0T (127 MHz) :
0 2.34 m Tissue r 60
t 30 cm
•Permittivity is also a function of frequency !
磁共振成像的基本原理ppt课件

4
•磁场中的原子核:如图 平行方向(低能级) 反平行方向(高能级)
磁共振成像的基本原理
5
• 1H的原子核结构及特性
• 1H原子核仅有一个质子,无中子 • 其磁化敏感度高,在人体的自然 丰富度很
高,是很好的磁共振靶核
磁共振成像的基本原理
6
• 拉摩进动: f(进动频率)=R(磁旋比)B`(主磁场矢量)
62
磁共振成像的基本原理
63
磁共振成像的基本原理
64
磁共振成像的基本原理
65
磁共振成像的基本原理
66
磁共振成像的基本原理
67
磁共振成像的基本原理
68
磁共振成像的基本原理
69
磁共振成像的基本原理
70
磁共振成像的基本原理
71
二 .颅脑肿瘤 (一 ). 颅脑肿瘤MRI诊断要点: . 肿瘤的部位,数目. . 肿瘤的信号特点. . 肿瘤的边缘. . 肿瘤的血供. . 肿瘤的水肿情况. . 肿瘤的增强情况
2级:成星形细胞瘤,系偏良性。在1级的 基础上向周围组织浸润,界限不清肿 瘤生长较快。
磁共振成像的基本原理
74
3、4级:为多形性胶质母细胞瘤,恶性度 高。病灶位置较深,易越过中线 白质联合到对侧。肿瘤一般较大 边界尚清,但无包膜。
磁共振成像的基本原理
72
一、胶质瘤
• 胶质瘤起源于脑神经胶质细胞,习惯上将 其分为星形细胞瘤、少突神经胶质瘤和室 管膜瘤。
• (一)、星形细胞瘤:是中枢神经最常见 的肿瘤,占胶质瘤 40%。
• 病理:起源于星形神经胶质细胞,分为四 级。
磁共振成像的基本原理
73
1级:纤维性星形细胞瘤及原浆性星形细胞 瘤,为良性。病灶多较表浅,只侵犯 大脑皮层和皮质下脑白质很少累及大 脑深部,通常局限于半球一侧。
磁共振基本原理及读片PPT

组织结构变化
观察组织结构的变化,如 肿瘤的浸润、扩散和转移 等。
血流动力学改变
分析血流动力学参数,如 血流速度、血流量和血管 通透性等,以判断病变的 性质和程度。
功能代谢变化
利用磁共振波谱分析等方 法,检测组织的功能代谢 变化,如能量代谢、氧化 还原状态等。
多模态影像融合分析
融合方法
将磁共振图像与其他影像学检查 (如CT、超声等)进行融合,以
共振信号
共振信号是磁共振成像的基础,当射频脉冲停止后,原子核 会释放出共振信号,通过接收这些信号,可以获得物体的内 部结构信息。
磁共振成像原理
磁共振成像
磁共振成像是一种基于磁共振现象的医学影像技术,通过外加磁场和射频脉冲使 人体内的氢原子核发生能级跃迁,然后接收这些原子核返回的共振信号并重建图 像。
磁共振检查技术
常规磁共振检查
01
02
03
原理
利用强磁场和射频脉冲使 人体组织中的氢原子核发 生共振,通过测量共振信 号来获取图像。
应用
主要用于检测病变、肿瘤 、炎症等。
优势
无电离辐射,对软组织分 辨率高。
功能磁共振成像
原理
利用磁场变化检测血流动力学反 应,反映器官或组织的生理功能
。
应用
主要用于脑功能研究、肿瘤诊断等 。
详细描述
磁共振成像技术能够清晰地显示人体解剖结构,包括脑组织、脊髓、肌肉、骨 骼等,为医生提供丰富的诊断信息。在读片过程中,医生需要熟悉各组织器官 的正常形态和位置,以便准确判断是否存在异常。
病理征象分析
总结词
病理征象是疾病在磁共振图像上的表现,通过分析这些征象可以推断病变的性质和程度 。
详细描述
扩散加权成像(DWI)有助于评估肿 瘤的恶性程度和预后。
磁共振概述 ppt课件

例如: 血氧水平依赖BOLD成像 灌注MR成像 化学位移成像 磁敏感加权成像等
• 7. 无骨性伪影
CT检查,后颅窝存在一 个暗区,称为亨氏暗区
MRI横断面
检查费较昂贵 扫描时间较长 MRI普及率低 对钙化不敏感
MRI 缺点
习题1
• 1,MRI检查属于哪种辐射,对人有伤害吗? 电磁辐射,对人没有明确损害
内耳迷路水成像 等特殊技术
右眼视网膜母细胞瘤
MRI无对比剂动脉血管成像(MRA),显示右侧大脑中动脉狭窄,分支明显较少
心血管系统
MRI可评价心脏大血管解剖学形态, 主动脉瘤,肺动脉栓塞等血管发育异常。 也用于心肌病,先天性心脏病,心血管 肿瘤及心包病变的诊断。
呼吸系统
• 肺为含气器官,缺乏氢质子,肺部检查首 选CT,但是在纵膈病变和肺门淋巴结方面 有较大价值。
TOF是利用液体的流动补偿,依靠流入增强 效应区分静止和流动的质子。
磁共振血管成像(MRA)Willis环的 :旋转从侧位片 (MIP)。 1, 椎动脉. 2, 颈内动脉. 3, 基底动脉。 4, 大脑前动脉. 5, 大脑中动脉.
• 6. MRI具有代谢,功能成像
高场MRI系统中有磁共振功能成像技术 (fMRI,functional magnetic resonance imaging) ,可以对功能性疾病和代谢性疾病 进行诊断。极大地推动了医学、神经生理学和 认知神经科学的迅速发展。
1、静磁场生物效应 1. 温度效应:磁场对人体的温度不产生影响
2. 磁流体力学效应:主要表现为心电图改变和红 细胞 的沉积速度改变并可能感应生物电位。
3. 中枢神经系统效应:磁场有可能干扰突触处 乙酰胆碱和去甲肾上腺素等神经递质的释放,从 而引起神经系统的误传导。
• 7. 无骨性伪影
CT检查,后颅窝存在一 个暗区,称为亨氏暗区
MRI横断面
检查费较昂贵 扫描时间较长 MRI普及率低 对钙化不敏感
MRI 缺点
习题1
• 1,MRI检查属于哪种辐射,对人有伤害吗? 电磁辐射,对人没有明确损害
内耳迷路水成像 等特殊技术
右眼视网膜母细胞瘤
MRI无对比剂动脉血管成像(MRA),显示右侧大脑中动脉狭窄,分支明显较少
心血管系统
MRI可评价心脏大血管解剖学形态, 主动脉瘤,肺动脉栓塞等血管发育异常。 也用于心肌病,先天性心脏病,心血管 肿瘤及心包病变的诊断。
呼吸系统
• 肺为含气器官,缺乏氢质子,肺部检查首 选CT,但是在纵膈病变和肺门淋巴结方面 有较大价值。
TOF是利用液体的流动补偿,依靠流入增强 效应区分静止和流动的质子。
磁共振血管成像(MRA)Willis环的 :旋转从侧位片 (MIP)。 1, 椎动脉. 2, 颈内动脉. 3, 基底动脉。 4, 大脑前动脉. 5, 大脑中动脉.
• 6. MRI具有代谢,功能成像
高场MRI系统中有磁共振功能成像技术 (fMRI,functional magnetic resonance imaging) ,可以对功能性疾病和代谢性疾病 进行诊断。极大地推动了医学、神经生理学和 认知神经科学的迅速发展。
1、静磁场生物效应 1. 温度效应:磁场对人体的温度不产生影响
2. 磁流体力学效应:主要表现为心电图改变和红 细胞 的沉积速度改变并可能感应生物电位。
3. 中枢神经系统效应:磁场有可能干扰突触处 乙酰胆碱和去甲肾上腺素等神经递质的释放,从 而引起神经系统的误传导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当电力恢复后,应立即检 查真空泵运转情况,可以 通过监控查看机架后方真 空泵运转指示灯是否亮起 (蓝光灯)
医科达直线加速器水冷机采用人工补水, 因此停水对加速器没有影响。
三、西门子数字减影机(DTA)
1.设备简介 西门子DTA,是使用新式平板探测技术 悬吊式安装的血管造影系统,是当时最先 进的血管造影机,具备进行图像三维重建 功能。由我院2005年引进,目前主要开展 心脑血管造影,心血管系统和其他外周疾 病的介入治疗。主要由机架、控制系统、 图像后处理系统等配套设施组成。
控制系统和图像后处理系统
DSA机使用内循环水系统降温,人工补 水,停水对设备无影响。主电源柜,采用 380伏三相五线制,此设备无备用电源,一 旦停电,设备将无法正常工作。
谢 谢
医科达直线加速器、西门子 3.0磁共振简介
一、西门子3.0T MRI
1.设备简介 核磁共振是利用强磁场对人体检查部位 进行成像,适用于人体所有器官包括心脏、 脊柱、腹部、头颅。我院2010年引进西门 子3.0T MRI,设备性能及图像清晰度远远 超于其他核磁设备。整个系统由控制台、 机架、检查床、机房设备及水冷系统等组 成。所谓T,指磁场强度,3.0T属于高场强。
水路循环图
二、医科达VMAT直线加速器
1.设备简介 医科达VMAT直线加速器由我院2012年引 进,是目前世界上肿瘤治疗的最先进的设 备之一,具有快速定位、剂量优化、精准 治疗等特点,也是目前我院最昂贵的医疗 设备。由控制系统、机架、水冷系统组成。
操作控制台
水冷机
机房内环境要求温度22摄氏度,相对湿 度60%以下。房内配有空调系统、应随时 保持新风质量,定期保养、除尘,减少因 环境因素造成的设备故障。
2.直加日常注意 突发性/计划性停电 直线加速器配有多个电源柜,以下依次为:
主电源柜
机房电源柜
直加主电源采用380伏三相五线制,配 有双电源。遇停电或电源故障,设备除操 作台有UPS供电外,机架及水冷机均无电。 加速器严格要求在高真空或超高真空内工 作,一旦停电,真空泵将停设备保障部相 关部门(水电组)改由发电机组供电。
遇突发性停电或计划性停电均需第一时 间告知临床科室及后勤设备保障部,启动 备用电源,严格按照停电应急预案进行。
图上依次为主电源箱、水冷机电源、水冷机控制箱
(2)停水 冷头正常工作需要循环水支持,如果停 水而冷头正常工作的话,需要关闭进水总 阀保持水箱水位。如遇水冷机电源出现故 障需打开外循环水路,必要时通知后勤设 备保障部相关科室。
检查室有强磁场,进入该室需取下各种 磁性卡、证件、手机、铁质工具等易被磁 化的物品,避免意外发生。
机房内需保持温度22摄氏度,相对湿度50%以下,应 定期清洗空调过滤网。
2.MRI日常注意 (1)停电 MRI主电源采用三相五线制。如遇停电,设备 配有UPS电源,但仅对操作系统供电,机架、水 冷机、机房配套设备均无电。核磁冷头会停止工 作,冷头主要是对磁体保持一个恒温状态,非常 重要。如果冷头长时间停止工作会导致磁体温度 上升,磁体内液氦挥发,严重时会引起失超,一 旦出现失超现象,设备要整机重新返厂,损失严 重。