.IGBT管在逆变器驱动板上的作用
igbt元件的工作原理和应用
IGBT元件的工作原理和应用1. 引言在现代电力电子技术中,IGBT(绝缘栅双极型晶体管)是一种重要的元件,具有高电压、高电流和高开关速度等特点。
本文将介绍IGBT元件的工作原理和应用。
2. IGBT工作原理IGBT是一种由MOSFET(金属-氧化物半导体场效应晶体管)和BJT(双极型晶体管)组成的混合型元件。
其工作原理可以分为以下几个步骤:1.输入信号引发控制端电压:控制端的电压作用下,形成子结和耗尽区的条件。
2.条件形成轉移区:控制端电压作用下,在轉移区域存在大电容,电荷会在下一个周期传播到发射区,IGBT结束通导状态。
3.发射区的导通:一旦适当的控制电流和电压施加后,MOS管中的电子开始导通,激活BJT的发射层。
4.提供辅助电压以维持MOS的导通:一旦电子开始导通,就必须通过辅助电压维持MOS的导通,以防止MOS关闭。
综上所述,IGBT的工作原理是通过不断改变控制端电压,并在MOS和BJT之间建立通路来控制导通和截止。
3. IGBT的应用IGBT作为一种重要的电子元件,广泛应用于各个领域。
以下是几个常见的应用领域:3.1 电力传输和变换IGBT在电力传输和变换领域起着重要作用,主要应用于交流换流器、逆变器和直流调节器等设备中。
IGBT的高电压和高电流承受能力,使其能够在电力系统中进行高效的能量转换和传输。
3.2 光伏发电系统在光伏发电系统中,IGBT用于逆变器中,将光伏电池板产生的直流电转换为交流电,以供电网使用或直接驱动电动设备。
3.3 汽车电子系统IGBT在汽车电子系统中的应用越来越广泛,用于电动车的控制系统、混合动力汽车的驱动系统和燃油喷射系统等。
IGBT的高开关速度和高电压能力使其适用于汽车中的高频电子设备。
3.4 变频空调在变频空调中,IGBT用于控制压缩机的工作,以实现空调系统的制冷和加热功能。
IGBT的高效能转换和低能耗使其成为变频空调系统的关键组成部分。
3.5 高速列车在高速列车领域,IGBT被用作高压变流器,用于控制高速列车的起动、制动和稳定运行。
IGBT的工作原理和工作特性
IGBT的工作康理和工作特ftIGBT的开关作用是通过加正向柵极电压形成沟道,给PNP晶体管提供基极电说,使IGBT导通。
反之,H反向D板电压消除沟道,浹过反肖基根电if, ft IGBT关断。
IGBT的驱动方法和MOSFET基本相同,只需輕制输人极N -沟道MOSFET, 所以貝有高输入皿抗特性。
当M OSFET的沟道形底后,从P+基极注人到N-层的空兀(少子),对N-层进行电导调耳, 城小N —层的电讯,® IGBT在高电压时,也貝有低的通态电压。
IGBT曲工作特性包招静奈和动矗两类:1.静去特性IGBT的静态特牲壬要有伏安特牲、转杨将性棚开关特性。
IGBT的伏安特性是惰以讯源电压Ugs为参变量时,演板电滾与HJI极电压之间的关系曲线。
输出漏机电流比受柵淪电压Ugs的控M, Ugs越髙,Id毬大。
它与GTR的输出特牲相仏也可什为饱和区1、放大区2和击穿特住3部什。
在彼止状态下的IGBT, 正向电压由J2结承担,反向电压由J1结承担。
如果无N+缓冲区,剧正反向讯断电压可以似別同样水平,加人N+媛冲区后,反向关撕电压只能达月几十伏水平,因此眼制了IGBT的某些应用国。
IGBT的转密特性是惰输出漏板电流Id与冊源电压Ugs之间的关系曲线。
它与MOSFET的转粽特性相同,当卅源电压小于开启电压Ugs(th)旳,IGBT处于关断状态。
在IGBT导通后的大册什漏檢电潼田,Id与U°s呈线性关系。
最高柵源电压受最大漏机电渝眼制,其最佳値一般取为15V左右。
IGBT的开关特性是指漏板电流与漏源电压之间的关系。
IGBT处于导通态旳,由于它的PNP晶体管为宽基区晶体管,斯以其B值根低。
尽管等效电路为这M顿给枸,個通过MOSFET的电说成为IGBT总电流的主要部分。
此时,通态电压U ds(on) «J用下式表示:Uds(on) = Uj1 +Udr + ldRoh (2-14)式中Uj1—JI结的正向电压,其值为0.7-IV;Udr一扩展电Pfl Rdr ±的压降;Roh一沟谊电阳。
三电平逆变器IGBT驱动电路电磁兼容研究
三电平逆变器IGBT驱动电路电磁兼容研究0 引言近年来,二极管箝位型三电平逆变器在高压大功率场合的应用得到广泛的研究。
与普通两电平逆变器相比,三电平逆变器改善了输出电压波形,降低了系统的电磁干扰,并且可用耐压较低的器件实现高压输出。
电路拓扑。
三电平逆变器系统结构,主要有不控整流电路、三电平逆变器、滤波器以及驱动电路、采样电路和DSP数字控制电路等。
设计时使用了6个带有两路驱动信号输出的IGBT驱动电路。
从系统结构图可以看到,IGBT的驱动电路连接着数字控制电路与逆变器主功率电路,是逆变器能否正常工作的关键所在。
由于驱动电路靠近IGBT器件,而且其中强电信号与弱电信号共存,可能受到的电磁干扰更为严重,因而IGBT驱动电路的EMC设计也是影响着整个逆变器系统工作性能的关键问题。
本文将分析三电平逆变器系统中会对IGBT驱动电路产生影响的主要干扰源及耦合途径,并重点讨论IGBT驱动电路的EMC设计。
1 干扰源及耦合途径对IGBT驱动电路进行EMC设计,必须首先考虑三电平逆变器整个系统可能存在的干扰源及干扰噪声的耦合途径。
1.1 功率半导体器件的开关噪声由图2所示的逆变器系统结构图可以看到,电网电压经过三相不控整流电路后输入三电平逆变器,经过逆变电路和滤波电路后为负载供电。
不控整流电路中的功率二极管及逆变器电路中器件(IGBT)在开关过程中均存在较高的di/dt,可能通过线路或元器件的寄生电感引起瞬态电磁噪声。
由于器件的功率容量很大,造成的开关噪声是整个系统中最主要的干扰源,对IGBT驱动电路工作的稳定性有着重要影响。
1.1.l 功率二极管的开关噪声功率二极管开通时,电流迅速增加,电压也会出现一个快速的上冲,会导致一个宽带的电磁噪声;二极管在关断时会有一个反向恢复电流脉冲,由于其幅度及di/dt都很大,在电路的寄生电感作用下会产生很高的感应电压,造成较强的瞬态电磁噪声。
由于功率二极管应用在三相不控整流电路中,输入电压较高,开关过程中的电磁噪声对系统其他部分的影响会更为严重。
igbt逆变器工作原理_igbt在逆变器中的作用
igbt逆变器工作原理_igbt在逆变器中的作用IGBT(绝缘栅双极型晶体管),是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
目前国内缺乏高质量IGBT模块,几乎全部靠进口。
绝缘栅双极晶体管(IGBT)是高压开关家族中最为年轻的一位。
由一个15V高阻抗电压源即可便利的控制电流流通器件从而可达到用较低的控制功率来控制高电流。
IGBT的工作原理和作用通俗易懂版:IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT 导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。
IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。
如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。
IGBT的工作原理和作用电路分析版:IGBT的等效电路如图1所示。
由图1可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。
IGBT工作原理
IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor)是一种高压、高功率开关器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理,包括结构、工作模式、特性和应用。
一、结构:IGBT由N沟道MOSFET和双极型晶体管(BJT)的耦合组成。
它的结构类似于MOSFET,但在N沟道MOSFET的基础上添加了PN结,形成了一个PNPN结构。
IGBT的主要部分包括N+型衬底、N-型沟道、P+型基区和N+型漏极。
二、工作模式:1. 关态(Off State):当控制极(Gate)施加负电压时,IGBT处于关态。
此时,PNPN结中的P+型基区被正向偏置,形成一个导通的PN结。
因此,IGBT处于关断状态,没有漏电流流过。
2. 开态(On State):当控制极施加正电压时,IGBT处于开态。
此时,控制极的正电压使得PNPN结中的P+型基区被反向偏置,阻断了PN结的导通。
然而,由于N沟道MOSFET的存在,控制极的正电压会形成一个电场,吸引N-型沟道中的电子,使其形成导电通道。
因此,IGBT处于导通状态,允许电流通过。
三、特性:1. 高压能力:IGBT具有较高的耐压能力,可以承受数百伏特的高电压。
这使得IGBT成为高压应用领域的理想选择,例如电力变换器和电动汽车驱动系统。
2. 高功率密度:IGBT具有较高的功率密度,能够在较小的体积内承受大功率。
这使得IGBT在需要高功率输出的应用中具有优势,例如工业驱动器和太阳能逆变器。
3. 快速开关速度:IGBT具有较快的开关速度,可以实现高频率的开关操作。
这使得IGBT在需要高频率开关的应用中表现出色,例如无线通信和医疗设备。
4. 低导通压降:IGBT的导通压降较低,可以减少功率损耗。
这使得IGBT在低能耗要求的应用中更加高效,例如节能照明和电动车充电器。
四、应用:1. 电力变换器:IGBT广泛应用于电力变换器中,用于将电能从一种形式转换为另一种形式。
IGBT的工作原理和作用以及IGBT管的检测方法
IGBT的工作原理和作用以及IGBT管的检测方法IGBT的工作原理和作用IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT 导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。
IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。
如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。
IGBT的工作原理和作用电路分析IGBT的等效电路如图1所示。
由图1可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。
图1 IGBT的等效电路由此可知,IGBT的安全可靠与否主要由以下因素决定:--IGBT栅极与发射极之间的电压;--IGBT集电极与发射极之间的电压;--流过IGBT集电极-发射极的电流;--IGBT的结温。
如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能。
逆变器IGBT功率模块故障分析与处理措施分析
逆变器IGBT功率模块故障分析与处理措施分析摘要:绝缘栅双极型晶体管功率模块设计,是当前设计逆变器的核心所在,只有充分保障模块运行的可靠性与整体质量,才可以让光伏电站可以稳定安全的运行下去。
在本文的分析中,主要阐述了IGBT的功率模块经常损坏问题,并从运行环境、硬件以及各种影响因素进行分析,为相关领域工作人员提供一定的参考。
关键字:IGBT;光伏电厂;硬件故障引言为了保障IGBT功率模块可以稳定的运行,日常需要工作人员结合实际的故障信息,进行针对性的分析与评估,同时采用准确的处理方式,及时的处理好例如锁定效应、过流运行以及短路超时的常见故障信息,以此全面的推动电力系统的运行稳定性。
1 IGBT功率单元绝缘栅双极型晶体管的设计,采用金氧半场效晶体管进行安装,以及与双极型晶体管进行负荷处理,以此具备着驱动功率小,以及开关速度比较快的特征。
在运行的过程中,也相应的发挥出饱和同时压降低的技术优势。
这样的设备在使用中,需要得到故障的及时处理与把控,以此促进新能源发电厂的稳定运行,带来更多的电力生产效益[1]。
2 IGBT功率模块故障分析2.1 锁定效应IGBT在设计中,由于内部设置了寄生晶体管,以此在规定的漏极电流的范围区间中,正偏电压要避免出现晶体管的导通情况。
在漏极电流的不断增长之后,正偏电压会导致NPN晶体管的开通,以此让NPN与PNP的晶体管始终处于饱满的状态下。
这样的情况,会导致栅极失去了原本的控制状态,并带来一定的IGBT 的锁定的基本效应,后续会引发一定的集电极电流过大,以及带来功耗方面的基本损失[2]。
2.2 长时间过流IGBT的功率模块的长时间运行过程中,经常会受到设备的选型失误问题,或者出现的安全问题的影响。
一旦出现了超出反偏安全工作区域,以及限定当中的电流安全边界的影响。
其次,后续进行针对性的处理中,需要及时的对断器件进行及时的处理,并控制引发功率所带来的一定负面影响。
现阶段进行该项目的处理中,需要结合系统的故障状态,才可以最终判断系统运行效果。
IGBT的主要应用领域_IGBT国内外市场规模
IGBT的主要应用领域_IGBT国内外市场规模IGBT(绝缘栅双极型晶体管),是由BJT(双极结型晶体三极管) 和MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。
简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。
IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。
▲IGBT模块简图IGBT是能源转换与传输的核心器件,是电力电子装置的“CPU”。
采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术。
IGBT是以GTR为主导元件,MOSFET为驱动元件的达林顿结构的复合器件。
其外部有三个电极,分别为G-栅极,C-集电极,E-发射极。
在IGBT使用过程中,可以通过控制其集-射极电压UCE和栅-射极电压UGE的大小,从而实现对IGBT导通/关断/阻断状态的控制。
1)当IGBT栅-射极加上加0或负电压时,MOSFET内沟道消失,IGBT呈关断状态。
2)当集-射极电压UCE<0时,J3的PN结处于反偏,IGBT呈反向阻断状态。
3)当集-射极电压UCE>0时,分两种情况:②若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。
②若栅-射极电压UGE>Uth ,栅极沟道形成,IGBT呈导通状态(正常工作)。
此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降。
应用于风力发电的大功率IGBT驱动保护电路
应用于风力发电的大功率IGBT驱动保护电路随着风力发电技术的不断进步,越来越多的风力发电机被投入使用。
在风力发电中,IGBT(绝缘栅双极晶体管)被广泛应用于风力发电机的变频器中,用于控制电机的电能输出和风力发电的整个过程。
而大功率IGBT驱动保护电路则是保护这些IGBT的关键部分。
一、大功率IGBT驱动保护电路的意义大功率IGBT驱动保护电路是为了保护风力发电机变频器中的IGBT而设计的一种电路。
IGBT作为风力发电机变频器的核心部件,负责将电能转换成机械能,并进行不同频率、不同电压的输出。
在风力发电的过程中,变频器中的IGBT受到的电压和电流都是很大的,同时高频电源的电压也对IGBT产生了很大的压力,如果IGBT的运行不能被有效保护,就有可能会引起其烧毁或损坏,从而对风力发电机的正常运行产生不利影响。
因此,大功率IGBT驱动保护电路是非常必要的。
二、大功率IGBT驱动保护电路的基本原理大功率IGBT驱动保护电路的基本原理是在IGBT的驱动电路中加入过流、过压、过热等保护电路。
在系统的设计中,IGBT的故障通常是由于内部电热、电压电流等因素引起的,因此,大功率IGBT驱动保护电路需要在这些方面进行有效的保护。
(1)过流保护在变频器的运行过程中,IGBT受到电流冲击时,可能会产生较大的能量,引起其过热烧毁,因此,过流保护是很必要的。
对于系统中的IGBT,可以通过电流传感器进行测量,通过对电流大小的测量,在IGBT的驱动电路中加入保护电路,当电流大小超过一定的阀值时,保护电路就会起到保护作用。
(2)过压保护风力发电机的变频器在运行过程中,如果瞬间出现高电压,就很可能会对IGBT造成损伤。
因此,过压保护是非常必要的。
在大功率IGBT驱动保护电路中,可以使用Zener二极管或压敏电阻作为过压保护器件,当电压突然上升时,就会使得这些保护器件在短时间内短路,从而保护IGBT。
(3)过热保护IGBT的运行温度较高,通常需要对其进行过热保护。
特斯拉Model_S驱动系统的结构与工作原理解析(三)
512024/02·汽车维修与保养栏目编辑:高中伟******************图16 特斯拉Model S变频器母排正面结构图18 特斯拉Model S变频器母排背面结构图19 IGBT模块图20 特斯拉Model S变频器的IGBT图17 特斯拉Model S变频器其中一相的IGBT功率驱动板结构文/广东 蔡元兵特斯拉Model S驱动系统的结构(接上期)2.特斯拉Model S变频器母排正面结构母排整体嵌件注塑在金属框架紧固为一个总成,扣合进三相功率总成内,集成度相当高。
母线排每侧输出端都连接了3块小的PCB板,是每相的IGBT功率驱动电路板,每块板完全相同,一共3块。
每块PCB 小板上都有两根黄色的铜排线,是将输入的高压电连接到每相的功率板,也就是每相功率板的直流高压输入侧。
图16所示为特斯拉Model S变频器母排正面结构。
3.特斯拉Model S变频率IGBT功率驱动板特斯拉Model S的IGBT功率驱动板一共有3个,每个铝制功率板上配1个IGBT 功率驱动板。
IGBT功率驱动电路的作用主要是将单片机脉冲输出的功率进行放大,以达到驱动IGBT功率器件的目的。
在保证IGBT器件可靠、稳定、安全工作的前提下,IGBT功率驱动电路起到至关重要的作用。
也就是把控制器输出的电平信号,变换成能够可靠驱动IGBT的信号,中间还会有一些隔离、保护的作用。
图17所示为特斯拉Model S变频器其中一相的IGBT功率驱动板结构。
IGBT对驱动电路的要求如下。
(1)提供适当的正反向电压,使IGBT 能可靠地开通和关断。
当正偏压增大时IGBT通态压降和开通损耗均下降,但若UGE过大,则负载短路时其IC随UGE 增大而增大,对其安全不利,使用中选UGEV=15V为好。
负偏电压可防止由于关断时浪涌电流过大而使IGBT误导通,一般选UGE=-5V为宜。
(2)IGBT的开关时间应综合考虑。
快速开通和关断有利于提高工作频率,减小开关损耗。
IGBT模块是什么?主要应用在那些领域?以及IGBT市场规模和发展方向
IGBT模块是什么?主要应用在那些领域?以及IGBT市场规模和发展方向IGBT(绝缘栅双极型晶体管),是由BJT(双极结型晶体三极管) 和MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。
简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。
IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。
IGBT是能源转换与传输的核心器件,是电力电子装置的“CPU”。
采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术。
IGBT是以GTR为主导元件,MOSFET为驱动元件的达林顿结构的复合器件。
其外部有三个电极,分别为G-栅极,C-集电极,E-发射极。
在IGBT使用过程中,可以通过控制其集-射极电压UCE和栅-射极电压UGE的大小,从而实现对IGBT导通/关断/阻断状态的控制。
1)当IGBT栅-射极加上加0或负电压时,MOSFET内沟道消失,IGBT呈关断状态。
2)当集-射极电压UCE<0时,J3的PN结处于反偏,IGBT呈反向阻断状态。
3)当集-射极电压UCE>0时,分两种情况:②若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。
②若栅-射极电压UGE>Uth ,栅极沟道形成,IGBT呈导通状态(正常工作)。
此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降。
通俗易懂地了解IGBT
通俗易懂地了解IGBT“IGBT是什么?都在哪里有应用?”从功能上来说,IGBT就是一个电路开关,用在电压几十到几百伏量级、电流几十到几百安量级的强电上的。
(相对而言,手机、电脑电路板上跑的电电压低,以传输信号为主,都属于弱电。
)可以认为就是一个晶体管,电压电流超大而已。
家里的电灯开关是用按钮控制的。
IGBT不用机械按钮,它是由计算机控制的。
具体点说,IGBT的简化模型有3个接口,有两个(集电极、发射极)接在强电电路上,还有一个接收控制电信号,叫作门极。
给门极一个高电平信号,开关(集电极与发射极之间)就通了;再给低电平信号,开关就断了。
给门极的信号是数字信号(即只有高和低两种状态),电压很低,属于弱电,只要经过一个比较简单的驱动电路就可以和计算机相连。
实际用的“计算机”通常是叫作DSP的微处理器,擅长处理数字信号,比较小巧。
这种可以用数字信号控制的强电开关还有很多种。
作为其中的一员,IGBT的特点是,在它这个电流电压等级下,它支持的开关速度是最高的,一秒钟可以开关几万次。
GTO以前也用在轨道交通列车上,但是GTO开关速度低,损耗大,现在只有在最大电压电流超过IGBT承受范围才使用;IGCT本质上也是GTO,不过结构做了优化,开关速度和最大电压电流都介于GTO和IGBT之间;大功率mosFET快是快,但不能支持这么大的电压电流,否则会烧掉。
要这么快的开关干什么用?常见的强电只有50Hz的交流电,变压器能变它的电压,但是不能改变它的频率,不能把它变成直流。
而有了IGBT这种开关,就可以设计出一类电路,通过计算机控制IGBT,把电源侧的交流电变成给定电压的直流电,或是把各种电变成所需频率的交流电,给负载使用。
这类电路统称变换器。
把交流电变成直流电的电路叫做整流器;把直流电变成交流电的叫做逆变器;直流变直流的叫开关电源;三相交流变交流的叫矩阵变换器。
怎么实现的?需要讲一下PWM的概念,这里我可能说的不是很清楚。
新能源汽车核心部件--电控IGBT模块入门详解,从小白到精通
根据乘联会数据,2022年6月新能源车国内零售渗透率27.4%,并且2022年6月29日欧盟对外宣布,欧盟27个成员国已经初步达成一致,欧洲将于2035年禁售燃油车。
市场越来越景气,同时国内近期新发布的新能源车型也百花齐放。
不论是普通消费者、新能源汽车产业相关从业者,还是一二级市场投资人,也逐渐深入关注研究新能源车的一些核心部件,尤其是功率器件IGBT模块,今天小编就用问答的形式给大家展开讲讲,希望能够用比较通俗的解释帮助到大家。
电驱系统和IGBT模块的作用要弄明白IGBT模块,就要先了解新能源汽车的电驱系统,先用一句话概括电驱系统如何工作:在驾驶新能源汽车时,电机控制器把动力电池放出的直流电(DC)变为交流电(AC)(这个过程即逆变),让驱动电机工作,电机将电能转换成机械能,再通过传动系统(主要是减速器)让汽车的轮子跑起来。
反过来,把车轮的机械能转换存储到电池的过程就是动能回收。
1、什么是“三电系统”和“电驱系统”?三电系统,即动力电池(简称电池)、驱动电机(简称电机)、电机控制器(简称电控),也被人们成为三大件,加起来约占新能源车总成本的70%以上,是决定整车运动性能核心的组件。
电驱系统,我们一般简单把电机、电控、减速器,合称为电驱系统。
但严格定义上讲,根据进精电动招股说明书,电驱动系统包括三大总成:驱动电机总成(将动力电池的电能转化为旋转的机械能,是输出动力的来源)、控制器总成(基于功率半导体的硬件及软件设计,对驱动电机的工作状态进行实时控制,并持续丰富其他控制功能)、传动总成(通过齿轮组降低输出转速提高输出扭矩,以保证电驱动系统持续运行在高效区间)。
图:电驱系统示意图图片来源:进精电动招股说明书2、什么是“多合一电驱系统”?一开始电机、电控、减速器都是各自独立的零部件,但随着技术的进步,我们把这三个部分集合在一起做成一个部件,就变成了“三合一电驱”。
集成的目的主要是节省空间、降低重量、提升性能、降低成本。
IGBT手册
中国电子技术论坛电子门户应用案例频道大功率IGBT器件应用中常见问题解决方法八十年代问世的绝缘栅双极性晶体管igbt 是一种新型的电力电子器件,它综合了gtr 和mosfet的优点,控制方便、开关速度快、工作频率高、安全工作区大。
随着电压、电流等级的不断提高,igbt 成为了大功率开关电源、变频调速和有源滤波器等装置的理想功率开关器件,在电力电子装置中得到非常广泛的应用。
随着现代电力电子技术的高频大功率化的发展,开关器件在应用中潜在的问题越来越凸出,开关过程引起的电压、电流过冲,影响到了逆变器的工作效率和工作可靠性。
为解决以上问题,过电流保护、散热及减少线路电感等措施被积极采用,缓冲电路和软开关技术也得到了广泛的研究,取得了迅速的进展。
本文就针对这方面进行了综述。
igbt 的应用领域在变频调速器中的应用spwm 变频调速系统的原理框图如图1 所示。
主回路为以igbt 为开关元件的电压源型spwm逆变器的标准拓扑电路,电容由一个整流电路进行充电,控制回路产生的spwm 信号经驱动电路对逆变器的输出波形进行控制;变频器向异步电动机输出相应频率、幅值和相序的三相交流电压,使之按一定的转速和旋转方向运转。
图1 变频调速系统原理框图在开关电源中的应用图 2 为典型的ups 系统框图。
它的基本结构是一套将交流电变为直流电的整流器和充电器以及把直流电再变为交流电的逆变器。
蓄电池在交流电正常供电时贮存能量且维持正常的充电电压,处于“浮充”状态。
一旦供电超出正常的范围或中断时,蓄电池立即对逆变器供电,以保证ups 电源输出交流电压。
图2 ups 系统框图ups 逆变电源中的主要控制对象是逆变器,所使用的控制方法中用得最为广泛的是正弦脉宽调制(spwm)法。
在有源滤波器中的应用图3 有源滤波系统原理图并联型有源滤波系统的原理图如图3 所示。
主电路是以igbt 为开关元件的逆变器,它向系统注入反向的谐波值,理论上可以完全滤除系统中存在的谐波。
IGBT模块的故障与驱动电路(电压)的关系
变频器IGBT逆变模块的故障与驱动电路(电压)的关系关键词:变频器故障驱动电路前言国内厂矿企业对变频器的应用已基本上普及,凡是用到电动机的地方,几乎就会见到变频器的踪影。
变频器是强电与弱电的有机结合;是硬件与软件的有机结合。
它强大的功能、完善的检测和保护电路、控制上的智能化和灵活多变;它的电气元器件的非通用性和特殊要求,使的检修思路和方法也有其独特性。
变频器和PLC等工控设备的应用和普及,对其维修甚至形成了一个专门的行业,成为电气技术的一个分支。
也使得电工的概念发生了深刻变化。
不具备变频器和PLC 的相关应用和维修知识,不能称为好电工。
一· IGBT逆变模块及驱动电路的特性通常认为IGBT器件是电压型控制器件,只需提供一定电平幅度激励电压,而不需要吸取激励电流。
因为IGBT栅—射极间存在一个结电容,在对其进行开通和截止过程,实质上是对IGBT栅—射极间结电容进行充电、放电的过程。
这个充电放电的过程和形成了一定的峰值电流。
另一方面,变频器输出电路中的IGBT工作于数KHz的脉冲之下,其栅偏压也为数KHz的脉冲电压。
电容有通交隔直的特性,相对于数十KHz的脉冲电压,电容的容抗较小,因而形成较大的充放电流。
因此,通过上述分析,可以得出:用在变频器输出电路的IGBT应是电流或功率驱动器件,而不是纯电压控制器件。
驱动电路的输出级,也应是一个功率放大电路。
因为IGBT的驱动是消耗一定功率,要输出一定电流的。
故功率较大的IGBT 模块需由功率放大电路来驱动。
所以说:(1)为了使IGBT迅速开通,而给出正栅偏压的时间很短,就要提供尽可能大的驱动电流(充电电流),保证IGBT快速可靠地开通,导通时要有一定的饱和深度,以减小导通损耗。
但是,并非Uce越高越好,一般选+12~15V。
对于截止的控制也是一样,须驱动电路对栅—射结电容上的电荷进行快速释放。
为了使IGBT 截止可靠,就要提供足够幅度截止负压来满足IGBT 关断的要求,也应对截止状态的IGBT加一反向栅压(一般为-5~-15V),使IGBT在栅极出现开关噪声时仍能可靠截止。
功率模块IGBT、IPM、PIM性能综述说明书
功率模块IGBT、IPM、PIM 的性能及使用时有关问题的综述1 IGBT主要用途IGBT是先进的第三代功率模块,工作频率1-20KHZ,主要应用在变频器的主回路逆变器及一切逆变电路,即DC/AC变换中。
例电动汽车、伺服控制器、UPS、开关电源、斩波电源、无轨电车等。
问世迄今有十年多历史,几乎已替代一切其它功率器件,例SCR、GTO、GTR、MOSFET,双极型达林顿管等,目今功率可高达1MW的低频应用中,单个元件电压可达4.0KV(PT结构)— 6.5KV(NPT结构),电流可达1.5KA,是较为理想的功率模块。
追其原因是第三代IGBT模块,它是电压型控制,输入阻抗大,驱动功率小,控制电路简单,开关损耗小,通断速度快,工作频率高,元件容量大等优点。
实质是个复合功率器件,它集双极型功率晶体管和功率MOSFET的优点于一体化。
又因先进的加工技术使它通态饱和电压低,开关频率高(可达20KHZ),这两点非常显著的特性,最近西门子公司又推出低饱和压降(2.2V)的NPT—IGBT性能更佳,相继东芝、富士、IR、摩托罗拉亦已在开发研制新品种。
IGBT发展趋向是高耐压、大电流、高速度、低压降、高可靠、低成本为目标的,特别是发展高压变频器的应用,简化其主电路,减少使用器件,提高可靠性,降低制造成本,简化调试工作等,都与IGBT有密切的内在联系,所以世界各大器件公司都在奋力研究、开发,予估近2-3年内,会有突破性的进展。
目今已有适用于高压变频器的有电压型HV-IGBT,IGCT,电流型SGCT等。
2 关断浪涌电压在关断瞬时流过IGBT的电流,被切断时而产生的瞬时电压。
它是因带电动机感性负载(L)及电路中漏电感(Lp),其总值L*p = L + Lp则Vp* = Vce + Vp而Vp = L*p di/dt在极端情况下将产生Vp* Vces(额定电压)导致器件的损坏发生,为此要采取尽可能减小电感(L),电路中的漏电感(Lp)—由器件制造结构而定,例合理分布,缩短到线长度,适当加宽减厚等。
逆变器的电路结构及组成说明
逆变器的电路结构及组成说明逆变器主要由半导体功率器件和逆变器驱动、控制电路两大部分组成。
随着微电子技术与电力电子技术的迅速发展,新型大功率半导体开关器件和驱动控制电路的出现促进了逆变器的快速发展和技术完善。
目前的逆变器多数采用功率场效应晶体管(VMOSFET)、绝缘栅极品体管(IGBT)、可关断晶体管(GTO)、MOS控制晶体管(MGT)、MOS控制品闸管(MCT)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)以及智能型功率模块(IPM)等多种先进且易于控制的大功率器件,控制逆变驱动电路也从模拟集成电路发展到单片机控制,甚至采用数字信号处理器(DSP)控制,使逆变器向着高频化、节能化、全控化、集成化和多功能化方向发展。
1.逆变器的电路构成逆变器的基本电路构成如图6-3所示。
由输入电路、输出电路、主逆变开关电路(简称主逆变电路)、控制电路、辅助电路和保护电路等构成。
各电路作用如下所示。
图6-3 逆变器的基本电路构成(1)输入电路。
输入电路的主要作用就是为主逆变电路提供可确保其正常工作的直流工作电压。
(2)主逆变电路。
主逆变电路是逆变电路的核心,它的主要作用是通过半导体开关器件的导通和关断完成逆变的功能。
逆变电路分为隔离式和非隔离式两大类。
(3)输出电路。
输出电路主要是对主逆变电路输出的交流电的波形、频率、电压、电流的幅值相位等进行修正、补偿、调理,使之能满足使用需求。
(4)控制电路。
控制电路主要是为主逆变电路提供一系列的拄制脉冲来控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。
(5)辅助电路。
辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。
辅助电路还包含了多种检测电路。
(6)保护电路。
保护电路主要包括输入过压、欠压保护,输出过压、欠压保护,过载保护,过流和短路保护,过热保护等。
2.逆变器的主要元器件(1)半导体功率开关器件。
主要有可控硅(晶闸管)、大功率晶体管、功率场效应管及功率模块等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IGBT管在逆变器驱动板上的作用
IGBT在逆变器中的基本作用是做为高速无触点电子开关。
利用IGBT的开关原理,利用控制电路给予适当的开通、关断信号,IGBT就能根据你的控制信号将直流电变换成交流电,直流电转换成交流电后电压会降低,例如火车供电系统的600V直流就是将380V交流整流而成,IGBT逆变器驱动板的作用就是将这个过程的再还原。
同时可以通过控制信号的脉宽调节来控制电流的大小,也可以控制交流频率,从而控制电机的转速。
目前大部分逆变器都采用IGBT和IPM作为开关器件,由IGBT基本组合单元与驱动、保护以及报警电路共同构成的智能功率模块(IPM)已成为IGBT智能化的发展方向,将IGBT的驱动电路、保护电路及部分接口电路和功率电路集成于一体的功率器件。
35kW等级的DC600V逆变器一般采用1200V/300A模块,IGBT 和IPM分为单单元和双单元,3只双单元模块可构成i相逆变器主电路,如图2所示。
逆变器中的IGBT管电路图
使用IGBT作开关时.由于主网路的电流突变,加到IGBT集电-发射问容易产生高直流电压和浪涌尖峰电压。
直流过电压的产生是输入交流电或IGBT的前一级输人发生异常所致。
解决方法是在选取IGBT时进行降额设计;也可在检测m过压时分断IGBT的输入,IGBT的安全。
目前,针对浪涌尖峰电压采取的措施有: (1)在工作电流较大时,为减小关断过电压,应尽量使主电路的布线电感降到最小;
(2)设置如图7所示的RCD缓冲电路吸收保护网络,增加的缓冲二极管使缓冲电阻增大,避免导通时IGBT功能受阻的问题。
对于由接触网电压的波动而造成的输出欠压,逆变器可以不停止工作,而是采取降频降压的方式,即当输人电压低于540V时,逆变器按照Y/F=C(常数)的规律降频降压工作。
过流与过载保护
空调客车的IGBT模块逆变器具备承受电动机负载突加与突减的能力:当输出侧和负载发生短路时,逆变器能立即封锁脉冲输出,并停止工作,IGBT产生过电流的原因有晶体管或二极管损坏、控制与驱动电路故障或干扰引起的误动、输出线接错或绝缘损坏等形成短路、逆变桥的桥臂短路等。
IGBT承受过电流的时间仅为几微秒。
通常采取的过流保护措施有软关断和降低栅极电压两种。
软关断抗干扰能力差,一旦检测到过流和短路信号就关断,容易发生误动,往往启动保护电路,器件仍被损坏。
降低栅极电压则是在检测到器件过流信号时,立即将栅极电压降到某一电平,此时器件仍维持导通,使过电流值不能达到最大短路峰值,就可避免IGBT出现锁定损坏。
若延时后故障信号仍然存在,则关断
器件;若故障信号消失,驱动电路可自动恢复正常工作状态.大大增强了抗干扰能力。
当逆变器的输出超过其自身的输出能力,称为过载,逆变器的过载检测靠输出侧的电流传感器或输入侧的直流电流传感器。
一般情况下逆变器的过载保护为反时限特性。
即设定过载电流为额定电流的1.5倍持续1min后保护,而低于1.5倍可延长保护动作时间。
而高于1.5倍时则保护动作的时间小于1min。
过热保护
当逆变器的散热器温度超过允许温度时,散热器的热保护继电器给出信号让逆变器的控制电路自动封锁脉冲,停止工作。
通常流过IGBT的电流较大,开关频率较高,故器件的损耗较大。
若热量不能及时散掉,器件的结温将会超过最大值125℃,IGBT就可能损坏。
散热一般是采用散热器,可进行强迫冷却。
实际应用中,采用普通散热器与强迫冷却相结合的措施。
并在散热器上安装温度开关,可在靠近IGBT处加装一温度继电器,以检测IGBT的工作温度。
同时,控制执行机构在发生异常时切断IGBT的输入,以保护其安全。
IGBT模块开关具有损耗小、模块结构便于组装、开关转换均匀等优点。
已越来越多地应用在铁路客车供电系统中。
在应用IGBT时,应根据实际情况对过流、过压、过热等采取有效保护措施,以保证IGBT安全可靠地运行。