七年级数学解析技巧:相交线与平行线中的思想方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思想方法专题:相交线与平行线中的思想方法——明确解题思想,体会便捷渠道

◆类型一方程思想

1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为()

A.180°B.160°C.140°D.120°

第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________.

3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B的度数.

4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.

(1)若∠DBC=30°,求∠A的度数;

(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.

◆类型二分类讨论思想

5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126°

C.18°或126°D.以上都不对

6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线P A、PB.若P A⊥PB,当∠MP A =40°,则∠NPB的度数是________________.

7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其他所有可能符合条件的度数为________________________________________________________________________.

8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系.

◆类型三(转化思想)利用平移进行转化求图形的周长或面积

9.如图,直角三角形ABC的周长为100,在其内部有6个小直角三角形,则6个小直角三角形的周长之和为________.

第9题图

10.(2017·惠山区期中)如图,直径为2cm的圆O1平移3cm到圆O2的位置,则图中阴影部分的面积为________cm2.

第10题图

11.(2017·嘉祥县期末)如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为________.

12.如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,将三角形ABC

沿AB方向向右平移得到三角形DEF.若AE=8cm,DB=2cm.

(1)求三角形ABC向右平移的距离AD的长;

(2)求四边形AEFC的周长.

◆类型四从特殊到一般的思想

13.(2017·蔡甸区月考)如图①,三条直线两两相交,且不共点,则图中同旁内角有________对;如图②,四条直线两两相交,任三条直线不经过同一点,则图中的同旁内角有________对.

14.(2017·楚雄州期末)如图,已知AB∥CD,试解决下列问题:

(1)∠1+∠2=________;

(2)∠1+∠2+∠3=________;

(3)∠1+∠2+∠3+∠4=________;

(4)试探究∠1+∠2+∠3+∠4+…+∠n=____________.

15.(2017·丛台区期末)如图,AB ∥CD ,∠ABE 与∠CDE 两个角的平分线相交于点F .

(1)如图①,若∠E =80°,求∠BFD 的度数;

(2)如图②,∠ABM =13∠ABF ,∠CDM =1

3∠CDF ,写出∠M 与∠E 之间的数量关系,

并证明你的结论;

(3)若∠ABM =1n ∠ABF ,∠CDM =1

n ∠CDF ,设∠E =m °,直接用含有n ,m °的代数式表

示∠M =________.

参考答案与解析

1.B 2.120°

3.解:设∠α=2x °,则∠D =3x °,∠B =4x °.∵FC ∥AB ∥DE ,∴∠2+∠B =180°,∠1+∠D =180°,∴∠2=180°-∠B =180°-4x °,∠1=180°-∠D =180°-3x °.又∵∠1+∠2+∠α=180°,∴(180-3x )+(180-4x )+2x =180,解得x =36,∴∠α=2x °=72°,∠D =3x °=108°,∠B =4x °=144°.

4.解:(1)∵BD 平分∠EBC ,∠DBC =30°,∴∠EBC =2∠DBC =60°.∵BE 平分∠ABC ,∴∠ABC =2∠EBC =120°.∵AD ∥BC ,∴∠A +∠ABC =180°,∴∠A =60°.

(2)存在∠DFB =∠DBF .设∠DBC =x °,则∠EBC =2x °,∠ABC =2∠EBC =4x °.∵7∠DBC -2∠ABF =180°,∴7x °-2∠ABF =180°,∴∠ABF =⎝⎛⎭⎫7

2x -90°,∴∠CBF =∠ABC -∠ABF =⎝⎛⎭⎫12x +90°,∠DBF =∠CBF -∠DBC =⎝⎛⎭⎫90-12x °.∵AD ∥BC ,∴∠DFB +∠CBF =180°,∴∠DFB =⎝

⎛⎭⎫90-1

2x °,∴∠DFB =∠DBF . 5.C 解析:∵∠α与∠β的两边分别平行,∴∠α与∠β相等或互补.设∠α=x °,∵∠α比∠β的3倍少36°,∴若∠α与∠β相等,则x =3x -36,解得x =18.若∠α与∠β互补,则x =3(180-x )-36,解得x =126,∴∠α的度数是18°或126°.故选C.

6.50°或130° 解析:分两种情况:(1)如图①,∵P A ⊥PB ,∠MP A =40°,∴∠NPB =180°-90°-40°=50°;(2)如图②,∵P A ⊥PB ,∠MP A =40°,∴∠MPB =50°,∴∠NPB =180°-50°=130°.综上所述,∠NPB 的度数是50°或130°.

7.45°,60°,105°或135° 解析:分以下四种情况:(1)AC ∥DE ,如图①,此时点B 在AE 上,∴∠BAD =45°;(2)AB ∥DE ,如图②,∴∠EAB =∠E =90°,∴∠BAD =∠BAE +∠EAD =135°;(3)BC ∥AD ,如图③,∴∠BAD =∠B =60°;(4)BC ∥AE ,如图④,∴∠BAE =∠B =60°,∴∠BAD =∠BAE +∠EAD =105°.综上所述,∠BAD 其他所有可能符合条件的度数为45°,60°,105°,135°.

相关文档
最新文档