第2章 晶态和非晶态材料的特性
晶态和非晶态的概念
晶态和非晶态的概念晶态和非晶态是固体物质的两种基本状态,它们的区别在于它们的原子或分子排列方式不同。
晶态的物质具有高度有序的排列结构,而非晶态的物质则没有这种高度有序的排列结构,它们的原子或分子是随机排列的。
在实际应用中,晶态和非晶态的物质具有截然不同的性质和应用范围。
晶态的物质结构晶态的物质结构是高度有序的,它们的原子或分子排列方式是非常规则的。
晶体的结构通常由周期性的基本单元组成,这个基本单元被称为晶胞。
晶体的物理性质与晶胞内的原子或分子排列方式、晶胞的大小和形状、以及晶体整体的对称性等因素有关。
晶体的结构可以用X射线衍射等方法来确定。
在X射线衍射中,X射线通过晶体时会发生衍射,衍射的图案可以反映出晶体的结构。
晶体的结构可以用布拉维格子来描述,布拉维格子是一种虚拟的晶胞,它可以用来描述晶体的周期性结构。
晶体的结构可以用空间群来描述,空间群是一个对称性操作的集合,它描述了晶体的对称性。
晶态的物质性质晶态的物质具有一些特殊的物理性质,这些性质与晶体的结构有关。
晶体的结构决定了它们的热力学性质、光学性质、电学性质等。
晶体的结构也决定了它们的机械性质,如硬度、弹性、塑性等。
晶体的结构还决定了它们的化学性质,如反应性、溶解度等。
晶态的物质应用晶态的物质在现代科技中有广泛的应用。
晶体管、LED等电子器件中的半导体材料就是晶态的物质。
晶态的物质还被用于制造光学器件、激光器等。
晶态的物质还被用于制造陶瓷、金属合金等工程材料。
非晶态的物质结构非晶态的物质结构是无序的,它们的原子或分子是随机排列的。
非晶态的物质可以看作是一种无序的、不规则的、没有周期性结构的固体。
非晶态的物质结构通常由玻璃态、胶态、凝胶态等状态组成。
非晶态的物质性质非晶态的物质具有一些独特的物理性质,这些性质与它们的无序结构有关。
非晶态的物质通常没有明显的熔点,而是通过玻璃转变或热分解来失去结构稳定性。
非晶态的物质通常具有较高的硬度和弹性模量,但它们的塑性和延展性较差。
晶态及非晶态材料的热力学性质研究
晶态及非晶态材料的热力学性质研究材料科学是一门研究材料的性质及其应用的学科,其中的热力学性质是不可忽视的重要方面。
在材料界,晶态与非晶态材料的热力学性质也是备受研究的课题。
本文将深入探讨晶态及非晶态材料的热力学性质,分析它们的特点和趋势。
晶态材料的热力学性质晶态材料是指分子内部存在有序排列结构的材料。
晶态材料的热力学性质是指材料在温度、压力和其他条件下对热能转换和物质转移的规律性。
其中最重要的性质是热容量和热传导性。
热容量是指物质在吸收或释放热量时,所需要的热量的大小。
晶态材料的热容量通常是通过恒压比热和恒容比热计算得出的。
恒压比热是在恒压条件下物质吸收或释放热量时,所需要的热量与热漏的温差的比率。
恒容比热则是在恒容条件下计算热容量,它是指在物质的体积不变的情况下,所需吸收或释放热量的大小与温差之比。
晶态材料的热容量通常与其晶体结构、原子间作用力和组成有关。
热传导性是指物质在热传导中所表现出的性质。
晶态材料的热传导性通常是指沿晶体方向传导热量的能力。
热传导性是通过热导率来度量的,它表示单位时间内通过单位面积的热量传导的量。
晶态材料的热导率通常与温度、晶体结构、物质的组成和物质间作用力等因素有关。
非晶态材料的热力学性质非晶态材料是指分子在冷却过程中没有固定有序的排列结构形成的材料。
与晶态材料相比,非晶态材料具有更高的熵和更低的自由能。
因此,非晶态材料的热力学性质也表现出与晶态材料不同的特点。
非晶态材料的热容量通常比晶态材料更高,这是因为非晶态材料的分子间距离更接近,导致分子振动时受到的阻力更大。
同时,非晶态材料的热导率通常比晶态材料低。
这是因为非晶态材料的分子排列没有规律,导致热能传输受到了影响。
此外,非晶态材料的热膨胀系数也一般比晶态材料大。
非晶态材料虽然有着独特的热力学性质,但随着人们对非晶态材料的研究不断深入,许多新的结果也不断涌现。
例如,一项研究表明,随着非晶态材料中晶态区域的增加,其热容量和热导率也会随之增加。
非晶态材料的电子结构与性质
非晶态材料的电子结构与性质非晶态材料是一种特殊的材料,其结构不具有长程有序性,而是呈现无规则的结构排列。
与晶态材料相比,非晶态材料具有许多独特的电子结构和性质。
本文将探讨非晶态材料的电子结构与性质,并介绍其在实际应用中的潜力。
首先,非晶态材料的电子结构与晶态材料有着很大的差异。
晶态材料的原子排列具有周期性,因此其电子能带结构也呈现出禁带和能带分裂等特点。
与之不同,非晶态材料中的原子无规则排列,并且在小尺寸区域内存在着较大的原子间距离变化。
这种无规则性导致了非晶态材料在能带结构上的复杂性和多样性。
其次,非晶态材料的电子结构对其性能具有重要影响。
由于非晶态材料的电子能带结构复杂多样,因此其导电性、光学性质和磁性等特性也相对复杂。
举个例子,非晶态硅在光学方面的性质与晶态硅有着显著差异。
晶态硅是一种典型的半导体材料,其禁带宽度较大,只能吸收较高能量的光线。
而非晶态硅由于其复杂的电子能带结构,能够吸收更宽波长范围的光线,因此在光电转换和太阳能电池等领域有着广泛的应用潜力。
此外,非晶态材料的电子结构也对其力学性能产生了显著影响。
非晶态金属玻璃是一种具有非晶态结构的金属材料。
由于其原子具有无序排列,非晶态金属玻璃具有超高的硬度和强度。
研究发现,非晶态金属玻璃的导电性依赖于电子态密度和电子局域化程度。
这种密切的关联性使得非晶态材料在设计高强度和高导电性的材料时具有潜在优势。
值得一提的是,非晶态材料的电子结构与性质也与制备方法和组成元素有关。
通过不同的制备方法和合金化调控,可以改变非晶态材料的电子能带结构,从而调控其性能。
例如,通过控制金属原子尺寸和含量,可以调节非晶态合金材料的磁性和导电性。
这种灵活性使得非晶态材料在设计可调控性能的材料时具有巨大潜力。
综上所述,非晶态材料的电子结构与性质是传统晶态材料所不具备的独特特点。
其复杂多样的电子能带结构决定了非晶态材料在导电性、光学性质和力学性能等方面的特殊性。
通过调控非晶态材料的电子结构,人们可以设计出具有特殊功能和优异性能的材料,这将为材料科学和工程领域的发展带来巨大的潜力。
[经济学]第二章 晶态和非晶态材料1
碱土金属、铜、银、铊、及稀土元素等可以插入到 WO3结构中,形成MδWO3
2.3 液晶材料
液晶
介于晶体和液体之间的物质状态
晶体
各向异性液体液晶
液体-各向同性
像晶体,具有长程有序,某些性能呈现各向异性 像液体,具有流动性,不能承受应切力
思考
液晶是不是晶体?
液晶与塑晶
物质状态
物质一般存在三态,固态、液态和气态 但有些物质比较复杂,介于固液两者之间
2. 扭曲向列(TN)液晶显示器 用于数字显示及低电路驱动的简单字符——信息容量小
3. 超扭曲向列(STN)液晶显示器 掌上微机——扫描线大,视角较好,对比度好
4. 薄膜晶体管(TFT)液晶显示器 笔记本电脑、投影屏幕——相应时间、对比度、亮度、 可视角度大幅提高好
1995年以前,TFT-LCD仅用于高档摄像机、掌上游戏机等 ,价格昂贵,分辨率仅为320×200 1995年,尺寸达到300mm×400mm,分辨率800×600
有兴趣的同学自学
2.3 非整比化合物晶体
定义
组成中各类原子的相对数目不能用几个小 的整数比表示的化合物
分类
1.某种原子过多或短缺
Zn1+δO—n型半导体:1000K时将ZnO在Zn蒸汽中加热 TiO1+δ—导电氧化物:不同氧蒸气压中加热TiO, TiO0.82-TiO1.18
用途
半导体、颜料、磁性材料、氧化还原催化剂、 蓄电池电极材料等
原因
晶体由晶胞周期排列而成,微观上 性能不均匀,但宏观上不能表现此 不连续性
各向异性
表现
某些性质随观察方向的不同而不同: 如力学性能,光学性能、热传导等 不同方向上,原子的排列、取向各 有不同
第二章晶态与非晶态材料的特性
第二章晶态与非晶态材料的特性引言:材料是构成各种物质的基本组成单位,不同种类的材料在原子结构和物理特性上存在显著的差异。
本章将介绍晶态和非晶态材料的特性,包括结构、力学特性、热学特性、电学特性以及光学特性等方面。
一、晶态材料的特性:1.结构特性:晶态材料具有有序的原子排列,呈现出规则的晶格结构。
晶格结构可以通过X射线衍射和电子衍射等实验方法进行表征,其结果常用晶胞参数和晶面指数表示。
2.力学特性:晶态材料在外力作用下存在明确的弹性行为,其力学性能可以通过弹性模量、屈服强度和断裂韧性等指标来评估。
不同晶向的材料在力学特性上表现出明显的各向异性。
3.热学特性:晶态材料的热导率和热膨胀系数常随着温度的变化而变化。
晶态材料的热导率和热膨胀系数通常沿不同的晶向显示出很大的差异。
4.电学特性:晶态材料具有离散的能带结构,其导电性质主要与能带结构和载流子特性有关。
电学特性可以通过电导率、介电常数和磁导率等参数来表征。
5.光学特性:晶态材料对光的传播和相互作用表现出明显的各向异性。
晶态材料的光学特性主要包括折射率、吸收系数和散射等。
二、非晶态材料的特性:非晶态材料的原子排列呈现出无序的状态,缺乏长程的周期性结构。
由于缺乏晶格结构,非晶态材料具有一些与晶态材料不同的特性。
1.结构特性:非晶态材料的原子排列没有明确的规则,其结构可以通过X射线衍射和中子衍射等方法进行分析。
非晶态材料的结构通常表现为短程有序和中程有序的特点。
2.力学特性:非晶态材料的力学性能表现出明显的非线性行为。
非晶态材料的硬度和断裂韧性较低,但延展性和形变能力较好。
3.热学特性:非晶态材料的热导率通常较低,但热膨胀系数较高。
非晶态材料的热导率和热膨胀系数随温度变化较小。
4.电学特性:非晶态材料通常表现出低电导率和较高的电阻率。
其导电性主要受原子之间的无规则排列和有序排列之间的相互作用影响。
5.光学特性:非晶态材料的光学特性与晶态材料有较大的区别。
chap-2-1
C2v
C2h D2 D2d D2h Cs
C3v
C3h D3 D3d D3h C3i
C4v
C4h D4 D4h I4
C6v
D6 D6h
Th
Oh O
C6h T
四、晶体学点群的子群和母群:
六、晶体学点群和晶体的物理性质: Neumann定理 晶体学点群是它的任意一种物理性质的对称群的子群 即任意一种性质的对称群必须包括该晶体点群的对称性
非纯旋转 非中心对称
纯旋转 非中心对称
三、32点群可分为
旋转群 双面群 反轴群 Cyclic group Dihedral group Spiegelachse
Cn C1 C2 C3 C4 C6 Td
四面体群 Tetrahedral group 八面体群 Octahedral group
Cnv
Cnh Dn Dnd Dnh In Ci
(1) 氧化物“青铜”:MWO3 ;MV2O5 钨青铜和类似体钨青铜, M=碱金属,碱土金属,铜,银,铊,铅,钍,铀, 稀土,氢,铵等
(2) 夹杂化合物: K1.5+MoO3· LiTiS2
2.4 液晶材料 课本77-81页,自学
(2) 层间嵌入某些离子,原子,或分子: LiTiS2 (0<<1)——良好的导电性, 锂电池的电解质 TiS2 层形分子S原子间van de Walls力, Li蒸气或正丁基锂非 极性溶液 《应用化学》2003年第1期 目前商品锂离子电池正极材料LiCoO2,但Co价格昂贵 以层状结构的LiNiO2或尖晶石结构的LiMnO4代替,可以很大 程度的降低成本。但是 充电过程中存在着严重的容量衰减现象 合成条件苛刻,热稳定性差,不安全
同一晶种的晶体相应的晶面交角保持恒等不变
第二章晶态和非晶态结构
¶ þ ¡ ¢ Ó Õ µ ¼ Á ¦
Ó Õ µ ¼ Á ¦ £ º¼ « Ð Ô · Ö × Ó µ Ä Ó À ¾ à Š¼ ¼ « Ó ë Ë ü Ô Ú · Ö × Ó É Ï Ò ý Æ ð µ Ä Ó Õ µ ¼ Å ¼ ¼ « Ö ® ¼ ä µ Ä Ï à » ¥ × ÷Ó Ã Á ¦ ¡ £ Ó Õ µ ¼ Å ¼ ¼ « µ Ä Ï à » ¥ × ÷Ó Ã Ä Ü Î ª £ º 2 11 2 2 2 E0 £ ¨6.3¡ « 20.9 KJ/mol£ © R6 ¡ ª ¡ ª ¼ « » ¯ Â Ê Ó Õ µ ¼ Á ¦ ² » ½ ö ´ æ Ô Ú Ó Ú ¼ « Ð Ô Ó ë · Ç ¼ « Ð Ô · Ö × Ó Ö ® ¼ ä £ ¬Ò ² ´ æ Ô Ú Ó Ú ¼ « Ð Ô Ó ë ¼ « Ð Ô · Ö × Ó Ö ® ¼ ä ¡ £
小分子间相互作用能 < 共价键键能
高分子间相互作用能 》共价键键能
高聚物无气态 物质只有在破坏掉其分子间力时才会变为气态, 高聚物气化所需的能量 》破坏化学键所需的能量
不可能用蒸馏的方法来纯化聚合物
五、分子间作用力的表征
以上各种分子间作用力共同起作用才使相同或不同分子 聚集成聚合物;而聚合物的一些特性,如沸点、熔点、气化 点、熔融热、溶解度、粘度和强度都受到分子间作用力的影 响; 因为分子间作用力与分子量有关,而高分子的分子量一 般都很大,致使分子间的作用力的加和超过化学键的键能, 所以一般聚合物不存在气态。所以我们不能用单一作用能来 表示高分子链间的相互作用能,而用宏观量: 内聚能 内聚能密度
第二章 高分子的凝聚态结构
基本要求
掌握内聚能密度的概念,内聚能密度大小与分 子间作用力之间的关系;结晶度的概念、测定 方法和计算方法;取向和解取向的概念、机理 以及取向对高聚物性能的影响。理解晶体结构 的基本概念,聚合物(聚乙烯、聚丙烯)的晶 体结构,聚合物的结晶形态、晶态高聚物的结 构模型;理解非晶态和液晶态高聚物的结构。 掌握高分子合金相容性、形态和性能之间的关 系。
第二章晶态和非晶态材料的特性
纤维增强复合材料
以晶态或非晶态聚合物为基体,通过添加纤维增强体,可制备出高 性能的纤维增强复合材料,用于航空航天、汽车等领域。
层状复合材料
由不同性质的晶态或非晶态材料交替叠加而成,具有优异的力学性 能和功能特性,可用于制造防护装甲、隔热材料等。
多功能复合材料
通过设计不同组分的晶态和非晶态材料,实现多种功能的集成,如 导电、导热、耐磨等,满足复杂应用场景的需求。
结构材料应用
建筑工程
晶态材料如钢铁、混凝土等广泛应用于桥梁 、大坝、高层建筑等结构工程,提供强度和 稳定性。
航空航天
非晶态合金由于具有优异的力学性能和耐腐蚀性, 在航空航天领域用于制造轻量化、高强度的零部件 。
汽车工业
晶态和非晶态材料在汽车工业中均有应用, 如铝合金车身、非晶态涂层等,以提高汽车 性能和降低能耗。
原子排列无序性
无晶格结点
非晶态材料中原子不是按照固定的晶格 结点排列,而是呈现出连续、无规则的 分布。
VS
密度涨落
由于原子排列的无序性,非晶态材料的密 度会在不同区域出现涨落,即密度不均匀 。
局部有序结构存在
化学短程序
在非晶态材料中,原子之间倾向于形成特定 的化学键合,从而形成化学短程序。
拓扑短程序
面缺陷
面缺陷是指晶体中沿二维方向延伸的缺陷,如晶界、孪晶 界等。面缺陷会影响晶体的力学、电学和热学性能,同时 也会影响晶体的腐蚀和氧化行为。
典型晶态材料举例
金属
金属是典型的晶态材料,如铁、 铜、铝等。金属的晶体结构多为 面心立方或体心立方,具有良好 的导电性、导热性和延展性。
陶瓷
陶瓷材料也是晶态材料的一种, 如氧化铝、氮化硅等。陶瓷的晶 体结构复杂,具有高硬度、高熔 点和良好的化学稳定性等特点。
材料科学中的晶态与非晶态材料性能对比研究
材料科学中的晶态与非晶态材料性能对比研究材料科学是一门研究材料结构、性能和制备方法的学科。
在这个领域中,晶态和非晶态材料是两个常见的材料类型。
晶态材料具有有序的周期性结构,而非晶态材料则没有明显的结晶性质,具有无定形的结构。
这两种材料的性能在一些方面存在巨大的差异,研究其对比可以为材料设计和应用提供有益的指导。
首先,晶态材料在物理性质方面表现出一些独特的特性。
晶体的周期性结构使其具有明确的晶格常数和方向选择性,这导致晶态材料具有较高的硬度和强度。
这种结构还使得晶体在电子行为方面显示出一些特殊性质,例如晶体可以表现出半导体、绝缘体或导体的行为,这对于电子器件的应用非常重要。
此外,晶体的周期性结构还赋予其优良的光学性质,例如单晶材料可以实现光学透明并具有高的光学折射率。
相比之下,非晶态材料的性质更加随机和各向同性。
由于其无定形的结构,非晶态材料通常具有较低的硬度和强度,相对来说较易变形。
然而,这种无定形的结构也带来了一些独特的性能。
非晶态材料往往具有较好的塑性,可以抵抗损伤的传播并具有较好的韧性。
另外,非晶态材料还常常表现出较低的抗腐蚀性和化学稳定性,对某些特殊环境具有较好的耐久性。
此外,非晶态材料在光学和电子行为方面也显示出一些特殊性质,虽然不及晶态材料突出,但在一些特殊应用中仍具有一定优势。
除了物理性质,晶态和非晶态材料在制备和加工方面也存在差异。
晶态材料往往需要经历晶化过程,通过控制温度和冷却速度来形成有序的晶体结构。
而非晶态材料可以直接由熔化态制备,通过快速冷却避免结晶,形成无定形的非晶态。
这种制备方法的差异导致了晶态和非晶态材料在制备成本、工艺复杂度和可扩展性等方面的差异。
非晶态材料的制备相对简单,适用于大规模制备和加工,而晶态材料的制备则需要更多的控制和条件。
在应用方面,晶态和非晶态材料也有各自的优势。
晶态材料常用于环境要求严苛的骨干结构和功能部件,例如航空航天领域的发动机叶片和高速运动部件。
2.2 晶态与非晶态材料
中国安全玻璃认证中心简介
中国安全玻璃认证中心: ※1989年11月就开始开展汽车安全玻璃安全认证工作。 ※ 2002年4月经国家认证认可监督管理委员会授权对汽 车、建筑和机车用安全玻璃实施CCC强制认证。 ※认证中心在汽车安全玻璃方面,拥有国内知名的技术 专家和众多技术人员,熟悉了解产品的生产工艺和检测 技术。 享受政府特贴专家2人、 博士7人、工程硕士33人、 管理学硕士5人、教授级 高工13人、高级工程师 及工程师84人等专业技 术人才,计100余人
水化硅酸钙(70%) 氢氧化钙 (20%) 水化铝酸钙 水化铁酸钙 水化硫铝酸钙
水化程度与水泥石组成
凝结与硬化
凝结: 水泥加水拌和形成具有一定流动 性和可塑性的浆体,经过自身的物理化 学变化逐渐变 稠失去可塑性的过程。 硬化: 失去可塑性的浆体随着时间的增 长产生明显的强度,并逐渐发展成为坚 硬的水泥石的过程。
2.2 晶态与非晶态材料
2.2.1晶态材料和非晶态材料的异同
本质区别: 晶态材料具有长程有序的点阵结构,其 组成原子或基元处于一定格式空间排列 的状态; 非晶态材料则象液体那样,只有在几个 原子间距量级的短程范围内具有原子有 序的状态。(短程有序)
含义
晶体广泛存在,并可以用各种偏离理想 晶体的缺陷使其具有一定的性质,晶体 材料是固体材料的核心。 非晶态材料指非结晶状态的材料,一般 指以非晶态半导体和非晶体金属为主的 普通低分子的非晶态固体材料,广义地, 还包括玻璃、陶瓷以及非晶态聚合物。
晶态和非晶态材料基本特性
(3)自范性
在适当的条件下, 晶体能自发的长出由晶 面、晶棱、晶顶等几何元素围成的凸多面体 外形, 这种性质就称为晶体的自范性. 凸多面 体的晶面数(F)、晶棱数(E)、和顶点数 (V)相互之间的关系符合公式
F+V=E+2 其中,F-晶面,V-顶点,E-晶棱
丹麦化学家斯单诺在玩水晶时,不小心把水晶打烂了, 当他很心痛地弯腰捡起打碎了的水晶时,惊奇地发现, 破碎了的水晶碎片都是一样的,具有固定的角度,这 就是著名的晶面角守恒定理。
晶态和非晶态材料 的基本特性
晶态和非晶态材料的基本特性
(Galena, PbS)
(Quartz, SiO2), 玻璃(glass, SiO2)
第二章 非整比化合物材料与亚稳态材料
主要内容:
2.1 晶体结构和晶体的性质 2.2 非整比化合物材料 2.3 液晶材料 2.4 亚稳态材料 2.5 玻璃和陶瓷
压电效应
当压电材料受到外力作用时,其表面将产生 电荷,将机械能转变成电能。
利用压电材料可以制成力敏元件,用来测量 力和能转变成力的各种物理量
压电性:要求晶体的对称性为: 没有对称中心
热电效应
热电效应,是当受热物体中的电子(空穴),随 着温度梯度由高温区往低温区移动时,所产生 电流或电荷堆积的一种现象。
热电体的主要作用是将热辐射转变为电信号。
生物热电效应
美国旧金山大学的一位科学家在英国《自然》杂志上 报告说,他从鲨鱼鼻子的皮肤小孔里提取了一种与普 通明胶相似的胶体,能把海水温度的变化转换成电信 号,传送给神经细胞,使鲨鱼能够感知0.001摄氏度 的温度变化,从而准确地找到食物—科学家猜测,其 他动物体内也可能存在类似的胶体.这种因温差而产 生电流的性质与半导体材料的热电效应类似
晶态与非晶态材料的结构特征探究
晶态与非晶态材料的结构特征探究材料科学是以材料为研究对象的一门交叉学科,材料的组织结构对材料的性能有着决定性的影响。
在材料科学中,晶态和非晶态材料是两种特别重要的材料类型,其结构特征各不相同,对于来自制备、应用、理论的各个角度的研究都有着非常重要的意义。
本文就将对晶态和非晶态材料的结构特征进行探究和分析,并从中看到材料世界的多样性。
一、晶态材料的结构特征晶态材料的结构是有规律的、有序排列的。
它的结构特征通常被描述为长程有序性,是由于其分子或原子间定向排列形成的可重复的、有序的结构。
晶体之所以拥有这种性质是因为它的原子或分子在形成晶体时按照一定的方式排列,而这种排列方式保证了晶体具有对称性。
1. 晶体的周期性结构晶体是由无限的周期性结构组成的,其基本单位被称为晶胞。
一个晶体中的许多晶胞是由相同的原子或分子构成的,每个晶胞都可以通过平移或旋转作为整体复制出来。
这种高度有序性的周期性结构使得晶体具有非常特殊的物理和化学性质。
2. 晶胞与晶格晶胞是晶体最小的重复单元,它是由一组原子或离子构成的。
晶胞可以用三个晶轴完成描述,晶轴的长度一般是不同的。
晶体的几何形状由晶胞的形状和尺寸决定。
晶胞的外壳由晶格点围成,晶格点是晶胞中最重要的点,一个晶胞中的所有晶格点和其他晶胞中的晶格点有相同的排列方式。
晶格是由所有晶格点构成的。
3. 晶向和晶面当一些球体在无规律的状态下静止时,会形成一个随机堆积状。
相反,晶体内的原子或分子按照特定方式有序分布,存在着排列方向,晶向和晶面对应着这种排列,它们是晶体的必要表征。
晶向是晶胞中一条与晶格点平行的直线,在晶胞中的位置有规律地重复出现。
晶面是晶胞中由多个晶向围成的平面,它也在晶体中有规律地重复出现。
晶向和晶面可以用Laue衍射和X射线衍射进行测定,这些测量技术使得我们能够确定一个晶体的结构。
二、非晶态材料的结构特征非晶态材料也叫做无定形材料,是指在凝固时没有晶体形成的材料,因此,它们的结构通常不具备规律性和周期性。
非晶态材料的物理和化学性质
非晶态材料的物理和化学性质非晶态材料是一类特殊的材料,其结构并不像晶态材料那样有序排列,而是一种无序的、非周期性的结构。
非晶态材料由于其独特的结构和性质,被广泛应用于许多领域,如电子、能源、航空航天和医疗等领域。
本文将从物理和化学两个方面介绍非晶态材料的性质。
物理性质1. 密度非晶态材料与晶态材料相比,其密度较高。
这主要是由于非晶态材料的原子间距较短,相邻原子距离较小导致的。
比如,非晶态金属玻璃(BMG)的密度通常比同种金属的晶态高5%至10%。
2. 基本磁性质非晶态材料的磁性质以及磁学行为的研究是材料物理学领域的研究热点。
非晶态材料中,由于原子之间的无序性,电子的自旋在空间分布上也呈现出无规律性分布,因此对磁性有着显著的影响。
例如,磁记忆合金等材料,使用在高灵敏度磁传感器中,能够反应非常细微的磁场变化。
3. 超导性质非晶态材料中存在一种二维超导现象,即由于层状结构中的原子无序排列,可以造成电子在横向进行导电的过程中,发生了一些特殊的效应。
这种超导性质的出现极大地改变了超导体研究的现状,不仅对物理学领域有很大的作用,还对制造医疗、能源学等领域具有重要的实际应用价值。
4. 弹性性质非晶态材料核心构造过程所产生的氧化、固化以及空气中的各类设计使其微观数量水平的结构和性质变得更为坚韧,耐用,兼具弹性特性。
对一些板和杆类制品而言,这种高弹性性能成为所以具有很强的优势。
化学性质1. 相对于晶体材料,更容易形成玻璃在材料工业生产中,有时需要一定形状和尺寸改变的材料,然而这些晶体材料生产出来之后不容易改变其尺寸或形状,这时就需要非晶态材料。
非晶态材料不像晶体材料那样有序排列,因此在其加热制造过程中,形成一定的好处。
特别是高分子塑料玻璃,尤其适合这种特殊性质,并成为制造玻璃器皿和仪器的首选材料。
2. 优异的表面活性和吸附性能非晶态材料在物理结构上具有许多规则性,其中一个最显着的特征是不对称性因素,例如吸附能和界面能等都常常有小而重要的变化。
第2讲 晶态与非晶态
萤石的八面体解理块
⑵许多晶体,如石英,不能破碎成几何 多面体。 ⑶最小的平行六面体并不是“分子”。
惠更斯:认为晶体中质点的有序排列导 致晶体具有一定的多面体外形。
布拉维(A.Bravais) 推导出32种对称型和14种空间格子,提 出晶体结构的空间格子理论。 劳埃(Max Von Laue),德国科学家。
⑹定熔性 指晶体具有固定熔点的性质。
熔 点 熔 点
t 非晶质体的加热曲线 非晶质体的加热曲线 晶体的加热曲线 晶体的加热曲线
t t
原子堆积与晶体中的缺陷 实际的晶体可以看作一些一定尺寸的硬球的堆积: 尺寸大的原子或离子尽量靠近,为了使自由能最小,它们作最紧 密堆积(ccp或hcp);在形成密堆积时,还有四面体空位和八面体 空位,小尺寸原子或离子就进入这些空位 金属结构大部分由等原子半径的金属元素面心密积或六方密堆积 化合物中通常由离子半径大的离子作密堆积,半径小的离子占空位
传导电子、空穴、极化子、陷阱 杂质、空位、位错
√
晶体的许多性质因缺陷改变,控制缺陷可以控制晶体的性能
点缺陷(零维缺陷):填隙原子、空位、杂质和空位对等
Frenkel
Schottky
纯度:99%, 99.9%, 99.99%, 99.999%, 99.9999% 铁 + 碳 ZnS + 10-4 钢 % (原子)AgCl 45号钢(0.45% C)
NaC1晶体的抗拉强度的异向性 (单位:g/mm2)
⑶均一性 同一晶体任何部位的物理性质和化学组 成均相同。 如何理解晶体异向性和均一性的统一?
⑷对称性 所有的晶体都是对称的。晶体的对称 不但表现在外形上,其内部构造和物 理性质也是对称的。 ⑸稳定性 在相同的热力学条件下,晶体与同种成 分的非晶质体、液体、气体相比,以晶 体最为稳定。
第二章 晶态和非晶态材料的特性
中心对称的点群 (Laue)点群 21个
非中心对称的点群
循环群 双面群
纯旋转操作点群 (11个)
循环群 循环群 双面群 循环群 双面群 循环群 双面群 循环群 双面群 立方群 立方群 立方群
二、晶体的点群和晶体的物理性质
晶体的点群是它的任意一种物理性质对称群 的子群。
一种晶体的任意一种性质的对称群必须包括该 晶体的点群的对称操作。
向列型液晶相
• 液晶分子只有一维有序:分子长轴彼此平行但分子重 心分布无序、不分层,分子可以自由流动,分子在空 间排列成线状,始终平行某一方向
• 向列型液晶流动性最大;对外界电磁、温度、应力变 化都很敏感,(目前显示器中应用最多的液晶材料)
胆甾型液晶相
在属于胆甾型液晶的物 质中,有许多是胆甾醇 的衍生物,因此得名。
2.2.2 Transformation
晶态
非晶态
J
2021年8月8日星期日11时8分22秒
17
晶态与非晶态之间的转变
• 非晶态所属的状态属于热力学亚稳态,所以非 晶态固体总有向晶态转化的趋势,即非晶态固 体在一定温度下会自发地结晶,转化到稳定性 更高的晶体状态。
• 通常呈晶体的物质如果将它从液态快速冷却下 来也可能得到非晶态。
高分子液晶: 高强度纤维,用于防弹衣, 高功能塑料等。
并非所有化合物都有液晶态
现已发现的有液晶特性的物质(主要是一些有机化 合物)有六七千种。
有液晶态的化合物条件:形状呈棒状,长约数
纳米,分子的长度约为宽度的4-8倍,分子量
为200~500 gmol-1的有机化合物才具有液晶态。
热致性液晶
液晶的类型(按成因分) 溶致性液晶
位置有序,方向无序 位置无序,方向有序
第2章-晶态和非晶态材料的特性
但这些配位多面体有不同程度的变形
与多晶相比较,有一定的类似之处:
非晶态材料是由数目很多的,无规则取向的 小集团所组成,小集团内部的原子排列有序
与多晶相比较,也有不同之处:
这些粒子集团的尺度比多晶中的晶体微粒小得多。
2.5.2 玻璃——非晶态材料 玻璃——高温下熔融,冷却过程中黏度逐渐增
大、不析晶、室温下保持熔体结构的非晶固体。
上述现象对不同玻璃,有一定普遍性。 400—600℃为玻璃的Tg、Tf温度。
研究钠硅二元玻璃的X-射线散射强度曲线:
1、未加热
2、618℃保温1小时
3、800℃保温10分钟 (670℃保温20小时)
sin /
27Na2O-73SiO2的x射线散射强度曲线
第一峰:是石英玻璃衍射的主峰与晶体 石英特征峰一致。 第二峰:是Na2O-SiO2玻璃的衍射主峰与 偏硅酸钠晶体的特征峰一致。
10.000 8.000 6.000 4.000 2.000
第一峰: Si-O 间距1.62 A0 面积4.3 第二峰: O-O 间距2.65 A0
第三峰: Si-Si
第四峰: O-O 第五峰: Si-Si
0 1 2 3 4 5 6
3.12 A0 4.15 A0 5.25 A0
在钠硅玻璃中,上述两个峰均同时出现。
SiO2的含量增加,第一峰明显,第二峰 减弱; Na2O含量增加,第二峰强度增加。
钠硅玻璃中同时存在方石英晶子 和偏硅酸钠晶子,而且随成分和制 结 论
备条件而变。提高温度或保温时间
延长衍射主峰清晰,强度增大,说 明晶子长大。但玻璃中方石英晶子 与方石英晶体相比有变形。
2. 非纯旋转群(含第II类操作的点群):21个
(1)中心对称的点群(Laue点群): 11个 可由11个纯旋转的、非中心对称的晶体学点 群在对称轴系的中心点加一对称中心而得。 (2)非中心对称非对映对称型:10个
第二章晶态和非晶态
2021/4/4
20
(1)向列相(型)nematic液晶
分子的重心在空间是随机分布的,但分子的长 轴沿一个方向排列是液晶称为相列型液晶。目前 生产显示品的液晶材料主要是向列型液晶;
(2)近晶相(型)smectic液晶
近晶相液晶分子呈层状排列,具有二维空间规 则性,层内分子长轴大致垂直于层面方向,质心 无序,分子间作用力强于层间作用力。特点是粘 度大,不得于作显示器材料。这种液晶多用于光 记忆材料;
非晶体如玻璃体在从液相冷却时,形成的 固体表面圆滑,没有固定的外形。
2021/4/4
6
4、晶体的熔点
晶体在受到热作用时,温度升高,组成晶体 的点阵上的原子或原子团而因振动加剧,当此振 动的能量(平动和转动)达到晶格能(晶格对原 子的束缚)时,晶体的结构被破坏,晶体开始熔 化。因晶体中各原子所处的环境相同,所以熔化 的温度也相同。所以晶体有一定的熔点,即在一 特定的温度下完全熔化。而非晶体由于各质点的 环境不同,原子或原子团所受的约束力不同。受 约束力小的部分在较低温度下开始熔化,而受约 束力大的部分此时仍不能自由运动,以固体形态 存在。
晶子学说:认为玻璃由无数“晶子”组成,带有点 阵变形的有序排列区域,这些晶子分散在无定形介 质中,晶子区到无定形区无明显界限。
2021/4/4
32
⑵玻璃的特性
①没有固定的熔点:当对玻璃加热时,只有一个 从玻璃态转变至软化的连续变化的温度范围;
②各向同性:由于结构上的特点,玻璃在力学、 光学、热学等中表现各向同性;
但是在非晶态固体中存在着短程有序,即在 每个粒子的近邻的排列有规则性,在这个小范围 内较好地保留了相应的晶态材料中的配位状况。
2021/4/4
27
2-1 第二章 凝聚态-晶态、非晶态
1
• • • • •
2.1晶态聚合物的结构 2.2非晶态聚合物结构 2.3 高分子液晶 2.4 聚合物的取向结构 2.5 多组分聚合物
2
教学内容:聚合物的各种凝聚态结构(晶 态、非晶态、液晶态、取向和织态结构)
教学目的:通过本章的学习全面掌握高分子链之间的 各种排列方式及由此而产生的各种凝聚态结构,弄清 高分子链结构条件和外部条件与凝聚态结构之间的关 系,了解各种凝聚态结构的表征和应用,初步建立凝 聚态结构与性能之间关系。 重点和难点:各种凝聚态结构(晶态、非晶态、液晶 态、取相态、高分子合金的织态)的结构特点、形成 条件和性能差异。
24
空间格子(空间点阵)
• 把组成晶体的质点抽象成为几何点,由这些等同的几 何点的集合所形成的格子,称为空间格子,也称空间 点阵。 • 点阵结构中,每个几何点代表的是具体内容,称为晶 体的结构单元。 • 所以,晶体结构=空间点阵+结构单元
晶体结构与点阵的关系
25
• 直线点阵——分布在同一直线上的点阵
a b c, a b g 90 0
a b c, a g 90 0 , b 90 0
a b c,a b g 90 0
28
晶面和晶面指数
晶格内所有格子点全部集中在相互平行的 等间距的平面群上,这些平面叫做晶面。 晶面与晶面之间的距离叫做晶面间距。
• 具有较大的侧基的高分子,为了减小空间阻碍, 降低位能,则必须采取旁式构象。 例如:全同PP, 聚邻甲基苯乙烯, 聚甲基丙烯酸甲酯PMMA, 聚4-甲基-1-戊烯 , 聚间甲基苯乙烯 等。
39
等规聚丙烯(IPP)
1.PP构象(螺旋构象H31) 2.晶系:单斜、六方、拟六方 3.晶胞俯视图(单斜)
晶态和非晶态材料的特性
按非整比化合物生成的情况,以及在不同方面的 应用可以有以下几种情况:
1. 某种原子过多或短缺
晶体中点缺陷的存在,破坏了点阵结构,使得 缺陷周围的电子能级不同于正常位置原子周围的能级, 因此赋予晶体以特定的光学、电学和磁学性质。
例如(1):ZnS中掺进约10-4%(原子)的AgCl,形成杂质缺陷的 ZnS晶体,在阴极射线激发下,发射波长为450nm的特征荧 光,可作显示器蓝色荧光粉。
首先提出。
玻璃体不会自发的形成多面体外形,当一块玻璃冷 却时,随着温度降低,粘度变大,流动性变小,固 化成表面圆滑的无定形体,与晶体的有棱、有顶角、 有平面的性质完全不同。
4. 晶体的熔点
晶体具有周期性结构,各个部分都按同一方式排列, 当温度升高,热震动加剧,晶体开始熔化时,各部分需要 同样的温度,因而晶体具有一定的熔点。
2.2.1 晶体学点群的分类
晶体学点群可分为两类,即11个纯旋转操作点 群或只含第I类操作的点群以及21个非纯旋转群或 含第II类操作的点群。其中纯旋转点群又可分为循
环群(只具有1个n次轴的点群)、双面群(具有一 个n次轴和n个与之垂直的二次轴的点群)和立方群
(具有一个以上高次轴的点群)。
21个非纯旋转的晶体学点群中包含有11个中心 对称的点群,这11个中心对称点群也可以由11个纯 旋转的、非中心对称的晶体学点群在对称轴系的中心 点加一对称中心而得。表2.2-1列出32个晶体学点群 的分类。在表中,前面两列的点群分别为11个非纯 旋转中心对称的点群和11个纯旋转非对称中心点群。 这11对点群之间只是差一个对称中心,所以阶次也 正 好 是 相 差 一 倍 。 11 个 中 心 对 称 的 点 群 又 称 为 Laue(劳埃)点群。
如:相同的度、化学组成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
材料化学课件
2.2 晶体学点群和晶体的性质
2.2.1 晶体学点群的分类 1. 纯旋转操作点群或第一类操作的点群 (1)具有一个 n 次轴的点群 循环群 具有一个 次轴的点群: C1 C2 D2 C3 D3 C4 D4 C6 D6
以一个群元素自 身重复操作可获 得全部群元素
(2)具有一个 次轴和 个与之垂直的二次轴的点群 双面群 具有一个n次轴和 个与之垂直的二次轴的点群: 具有一个 次轴和n个与之垂直的二次轴的点群
14
材料化学课件
与多晶相比较,有一定的类似之处: 与多晶相比较,有一定的类似之处: 非晶态材料是由数目很多, 非晶态材料是由数目很多, 无规则取向的小集团所组成 小集团内部原子排列有序 与多晶相比较,也有不同之处: 与多晶相比较,也有不同之处: 这些粒子集团的尺度比多晶中的晶体微粒小得多
15
材料化学课件
2.1 晶体特征的结构基础
1
晶体的均匀性 晶体的各向异性
晶体的性质不随观察位置而变异-------------晶体由晶胞并置而成 晶体由晶胞并置而成 晶体的性质不随观察位置而变异
2
某些性质随观察方向不同而不同 例如: 晶体的力学性质, 例如:NaCl晶体的力学性质,拉力 : b+c : a+b+c = 1:2:4;但光学性 晶体的力学性质 拉力c ; 热传导等是各向同性的。 质,热传导等是各向同性的。 方解石的折光率,霞石的热传导等。 方解石的折光率,霞石的热传导等。
9
材料化学课件
2.4.1 液晶和塑晶 物质一般有固、 气三种状态,常见的冰、 物质一般有固、液、气三种状态,常见的冰、水和蒸气就是 的水的三种状态。不过,自然界的物质往往要复杂得多, 的水的三种状态。不过,自然界的物质往往要复杂得多,有时 故态和液态很难区分,存在许多中间状态。晶体和液体之间就 故态和液态很难区分,存在许多中间状态。 存在两种状态:象晶体的液体和象液体的晶体,前者称为液晶 液晶, 存在两种状态:象晶体的液体和象液体的晶体,前者称为液晶, 后者称为塑晶 塑晶。 后者称为塑晶。 2.4.2液晶的特性 液晶的特性 根据织构形态的不同,热致性液晶可分为三种不同相: 根据织构形态的不同,热致性液晶可分为三种不同相: 1、类似细火柴棒状的向列相(Nematic)液晶 、类似细火柴棒状的向列相( ) 2、类似胆固醇状的胆甾醇相(Cholesteric)液晶 、类似胆固醇状的胆甾醇相( ) 3、类似粘土状的近晶相(Smectic)液晶 、类似粘土状的近晶相( )
7
材料化学课件
部分地取代LiCoO2中的 , 中的Co, 以Ni部分地取代 部分地取代 制成非整比化合物晶体 制成非整比化合物晶体LiNixCo1-xO2 非整比化合物晶体 兼备了Co系、Ni系材料的优点 兼备了 系 系材料的优点 Ni(OH)2和NiNO3、CoO 空气气氛条件下800°C恒温8小时 ° 恒温 小时 空气气氛条件下 具有规整的α 具有规整的α-NaFeO2层状结构 制备条件比较温和、材料成本低、 制备条件比较温和、材料成本低、电化学性能优良
材料化学课件
16
(2)特性: 特性: ♣没有固定熔点——从熔融态到固态,连续、可逆的变化过程 没有固定熔点 从熔融态到固态,连续、 从熔融态到固态 不存在晶界和粒界, ♣均匀性——不存在晶界和粒界,质地均匀,可获得平滑表面 均匀性 不存在晶界和粒界 质地均匀, 无内部应力或缺陷时, ♣各向同性——无内部应力或缺陷时,力学、光学、电学和热 各向同性 无内部应力或缺陷时 力学、光学、 学等性质均表现为各向同性 膨胀系数、 ♣性能遵循加和法则——膨胀系数、黏度、电导、折射率等。 性能遵循加和法则 膨胀系数 黏度、电导、折射率等。 可通过调整成分、提纯、掺杂、表面处理、 可通过调整成分、提纯、掺杂、表面处理、微晶化等技术获得具 有不同性能的玻璃:高强度、耐高温、半导体、 有不同性能的玻璃:高强度、耐高温、半导体、激光等 可按制作要求改变形态, ♣无固定形态——可按制作要求改变形态,制成薄膜、纤维、 无固定形态 可按制作要求改变形态 制成薄膜、纤维、 微粒、粉体、块体、空心腔体、 微粒、粉体、块体、空心腔体、多孔体乃至复合材料等
2.5.2 非晶态材料 一般地是指以非晶态半导体和非晶态金属为主的普通低分子 的非晶态材料; 广义地理解,还应包括玻璃 陶瓷, 还应包括玻璃、 的非晶态材料 广义地理解 还应包括玻璃、陶瓷,以及非晶态聚 合物(塑料、橡胶) 合物(塑料、橡胶)等. 1. 玻璃——高温下熔融,冷却过程中粘度逐渐增大、不析晶、 玻璃 高温下熔融,冷却过程中粘度逐渐增大、不析晶、 高温下熔融 室温下保持熔体结构的非晶固体。 室温下保持熔体结构的非晶固体。 (1)结构特点:无长程周期性,像液体一样,因此可以看作 结构特点:无长程周期性,像液体一样, 是过冷液体。 是过冷液体。 无规则网络学说 1932年 1932年Zachariasen 硅氧四面体[ 硅氧四面体[SiO4] 之间共顶角连接 排列无序 晶子学说 玻璃由无数“晶子” 玻璃由无数“晶子”组成 带有点阵变形的有序排列区域 分散在无定形介质中 分散在无定形介质中 无定形 晶子区到无定形区无明显界限 晶子区到无定形区无明显界限 区到无定形
17
材料化学课件
(3)结构与性质的关系: 结构与性质的关系: 透明 水和汽油:分子内原子间σ 水和汽油:分子内原子间σ键液 光线通过不会反射折射 玻璃:Si玻璃:Si-O 介于共价键和离子 键,也需紫外光 易碎 结构内部缺少能发生滑动
体:质地均匀,内部无反射界面,的平面 质地均匀,内部无反射界面, 最大拉伸率仅为0.1% 最大拉伸率仅为0.1% 缺少可变形性 受到冲击或振动超过应变
(3)具有一个以上高次轴的点群 立方群 具有一个以上高次轴的点群: 具有一个以上高次轴的点群
T O
4
材料化学课件
2.2.2、晶体学点群和晶体的物理性质: 、晶体学点群和晶体的物理性质: Neumann定理 定理 晶体学点群是它的任意一种物理性质的对称群的子群 即任意一种性质的对称群必须包括该晶体点群的对称性
8
材料化学课件
(3) 晶体中吸收了某些小原子 LaNi5Hx 晶体中吸收了某些小原子: 2. 三元插入化合物 (1) 氧化物“青铜”:MδWO3 ;MδV2O5 氧化物“青铜” 钨青铜和类似体钨青铜, 碱金属,碱土金属 钨青铜和类似体钨青铜 M=碱金属 碱土金属 铜,银,铊,铅,钍,铀, 碱金属 碱土金属,铜 银 铊 铅 钍 铀 稀土,氢 铵等 稀土 氢,铵等 (2) 夹杂化合物: K1.5+δMoO3·LiδTiS2 夹杂化合物: δ
12
材料化学课件
2. 晶体和非晶体内部组成粒子的排列的明显区别 晶态材料 ——长程有序(长程序) 长程有序(长程序) 长程有序 ——结构的周期性,对称性 结构的周期性, 结构的周期性 ——X射线衍射 射线衍射 非晶态材料 ——无序结构 无序结构 ——短程有序(短程序) 短程有序(短程序) 短程有序
5
材料化学课件
2.3 非整比化合物材料 组成中各类原子的相对数目不能用几个小的整数比表示的化合物 1. 过渡元素二元化合物 (1) 某种原子过多或短缺 Zn1+δO —— n性半导体, 1000K ZnO晶体在 蒸气中加热 性半导体, 晶体在Zn蒸气中加热 性半导体 晶体在 δ 导电性, 在不同氧气分压下加热TiO, TiO0.82 -TiO1.18 TiO1+δ—— 导电性 在不同氧气分压下加热 δ 过渡金属氧化物——混合价态化合物 混合价态化合物 过渡金属氧化物 可以作颜料、磁性材料、氧化还原催化剂、 可以作颜料、磁性材料、氧化还原催化剂、蓄电池的电极材料 年第1期 《应用化学》2003年第 期 应用化学》 年第 染料敏化TiO2 光电极制备方法的改进 染料敏化 掺铁TiO2 纳米微粒的制备及光催化性能 掺铁
表面磨糙或碾成细粉则不再 极限就会破裂 透明
18
材料化学课件
玻璃的重要成分是二氧化硅, 玻璃的重要成分是二氧化硅,加入其它氧化物可以降低 二氧化硅 其熔点。有趣的是, 其熔点。有趣的是,自然界的二氧化硅是以非玻璃质的晶体 状态存在的, 状态存在的,这种天然的二氧化硅晶体在砂石和石英砂中广 泛存在。可是,当以石英砂为重要原料, 泛存在。可是,当以石英砂为重要原料,加热熔化制成的玻 璃从液态冷却时,却会变得越来越粘稠, 璃从液态冷却时,却会变得越来越粘稠,转变为一种软而具 有可塑性的固体,最后变成又硬又脆的非晶体。 有可塑性的固体,最后变成又硬又脆的非晶体。 玻璃的结构中包含许多小的结构单位(如由中心的硅和 玻璃的结构中包含许多小的结构单位( 四角的4个氧通过共价键结合而成的 四面体), ),这些小 四角的4个氧通过共价键结合而成的SiO44-四面体),这些小 结构单位彼此之间可以键合成链状, 结构单位彼此之间可以键合成链状,或由其它金属离子沿顶 角键合,联结成很不规则的三维网络。 角键合,联结成很不规则的三维网络。
11
材料化学课件
2.5玻璃和陶瓷 玻璃和陶瓷 晶体材料是固体材料的核心—— 晶体的广泛存在 并可以用各种 晶体的广泛存在,并可以用各种 晶体材料是固体材料的核心 偏离理想晶体的“缺陷”使其具有一定的性质. 偏离理想晶体的“缺陷”使其具有一定的性质 1.5.1 晶态材料与非晶态材料的异同 1. 晶体和非晶体都具有固体的基本属性 ♣原子处在完全确定的平衡位置附近, 并在围绕此平衡位置振动 原子处在完全确定的平衡位置附近 ♣宏观表现为连续刚体; 不流动并有确定的形状 体积不变动 宏观表现为连续刚体 不流动并有确定的形状; ♣具有弹性硬度,可反抗切应力 具有弹性硬度 可反抗切应力
同一晶种的晶体相应的晶面交角保持恒等不变
2
材料化学课件
4
晶体有明显的熔点
T T
相应原子周围环境相同
t
t
5
晶体的对称性
内部结构
非晶态固体
晶体
理性外形;化学、物理性质……—— 宏观对称性 理性外形;化学、物理性质 —— 微观对称性