最新命题、定理、证明PPT
合集下载
命题、定理、证明-ppt课件
添加“如果”“那么”后,命题的意义不能改变;改写的句子要 完整,语句要通顺,使命题的题设和结论更明朗,易于分辨;改写过 程中,可以适当增加词语,切不可生搬硬套.
知识点3 命题的真假 例3 下列命题是真命题的是( A ) A.同位角相等,两直线平行 B.同角的余角互补 C.方程2x+4=0的解为x=2 D.在同一平面内,过一点有且只有一条直线与已知直线平行
1.下列语句中,是命题的是( A ) A.有公共顶点的两个角是对顶角 B.作∠A的平分线 C.用量角器量角的度数 D.直角都相等吗
2.命题“互为相反数的两个数的和为零”是___真_____命题(填 “真”或“假”),将其改写成“如果……那么……”的形式:如果 ___两__个__数__互__为__相__反__数_______,那么___这__两__个__数__的__和__为__零_____.
课前预习
1.命题的定义:判断一件事情的语句,叫做命题.命题由___题__设___和___结__论___ 两部分组成. 2.命题的真假:如果题设成立,那么结论一定成立,这样的命题叫做____真____命 题;如果题设成立时,不能保证结论一定成立,这样的命题叫做___假_____命题. 3.定理:经过推理证实的___真_____命题叫做定理.定理也可以作为继续推理 的依据. 4.证明:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这 个推理过程叫做证明.
训练 4.判断下列命题是真命题还是假命题.如果是假命题,请举 出一个反例.
(1)对顶角相等; (2)三条直线两两相交,总有三个交点; (3)如果ac=bc,那么a=b. 解:(1)真命题. (2)假命题.反例:三条直线交于一点. (3)假命题.反例:当c=0时,1×0=2×0,但是1≠2.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
知识点3 命题的真假 例3 下列命题是真命题的是( A ) A.同位角相等,两直线平行 B.同角的余角互补 C.方程2x+4=0的解为x=2 D.在同一平面内,过一点有且只有一条直线与已知直线平行
1.下列语句中,是命题的是( A ) A.有公共顶点的两个角是对顶角 B.作∠A的平分线 C.用量角器量角的度数 D.直角都相等吗
2.命题“互为相反数的两个数的和为零”是___真_____命题(填 “真”或“假”),将其改写成“如果……那么……”的形式:如果 ___两__个__数__互__为__相__反__数_______,那么___这__两__个__数__的__和__为__零_____.
课前预习
1.命题的定义:判断一件事情的语句,叫做命题.命题由___题__设___和___结__论___ 两部分组成. 2.命题的真假:如果题设成立,那么结论一定成立,这样的命题叫做____真____命 题;如果题设成立时,不能保证结论一定成立,这样的命题叫做___假_____命题. 3.定理:经过推理证实的___真_____命题叫做定理.定理也可以作为继续推理 的依据. 4.证明:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这 个推理过程叫做证明.
训练 4.判断下列命题是真命题还是假命题.如果是假命题,请举 出一个反例.
(1)对顶角相等; (2)三条直线两两相交,总有三个交点; (3)如果ac=bc,那么a=b. 解:(1)真命题. (2)假命题.反例:三条直线交于一点. (3)假命题.反例:当c=0时,1×0=2×0,但是1≠2.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
《命题、定理、证明》课件(22张ppt)
判断一件事情的语句叫做命题。
注意: 1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
下列语句是命题吗?
①熊猫没有翅膀.
②大象是红色的
③同位角相等.
④连接A、B两点.
⑤你多大了?
句子 ① ② ③ 能判断一件事情. 是命题
句子 ④ ⑤ ⑥ 不能判断一件事情. 不是命题
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
命题的概念
⑥请你吃饭。
问题2 判断下列语句是不是命题? (1)你饭吃了吗?( ) (2)两点之间,线段最短。( ) (3)请画出两条互相平行的直线。 ( ) (4)过直线外一点作已知直线的垂线。 ( ) (5)如果两个角的和是90º,那么这两个角互余。( ) (6)对顶角不相等。( )
(1)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
(2)你能结合图形用几何语言表述命题的题设和结论吗?
命题1 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.
已知:b∥c, a⊥b .
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断? 1、对顶角相等; 2、画一个角等于已知角; 3、两直线平行,同位角相等; 4、a、b两条直线平行吗? 5、温柔的小明; 6、玫瑰花是动物;
否
是
注意: 1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
下列语句是命题吗?
①熊猫没有翅膀.
②大象是红色的
③同位角相等.
④连接A、B两点.
⑤你多大了?
句子 ① ② ③ 能判断一件事情. 是命题
句子 ④ ⑤ ⑥ 不能判断一件事情. 不是命题
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
命题的概念
⑥请你吃饭。
问题2 判断下列语句是不是命题? (1)你饭吃了吗?( ) (2)两点之间,线段最短。( ) (3)请画出两条互相平行的直线。 ( ) (4)过直线外一点作已知直线的垂线。 ( ) (5)如果两个角的和是90º,那么这两个角互余。( ) (6)对顶角不相等。( )
(1)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
(2)你能结合图形用几何语言表述命题的题设和结论吗?
命题1 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.
已知:b∥c, a⊥b .
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断? 1、对顶角相等; 2、画一个角等于已知角; 3、两直线平行,同位角相等; 4、a、b两条直线平行吗? 5、温柔的小明; 6、玫瑰花是动物;
否
是
人教版八年级上册 13.1 命题、定理与证明(共33张PPT)
动手试一试:
证明:直角三角形的两个锐角互余.
已知:如图,在△ABC中,∠C=90°.
求证:∠A+∠B=90°.
A
B
C
证明:∵∠A+∠B+∠C=180°,
又∵∠C=90°,
∴ ∠A+∠B=180°-∠C=90°.
随堂练习
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
(1)条件:如果两个三角形是全等三 角形,结论:那么它们的对应边相等;
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
( 2)条件:如果在同一平面内两条直 线都垂直于同一条直线,结论:那么这两 条直线平行.
练习
指出下列命题中的真命题和假命题:
(1)同位角相等,两直线平行; (2)多边形的内角和等于180°; (3)三角形的外角和等于360°; (4)平行于同一条直线的两条直线相互 平行.
(2)是假命题; (1)(3)(4)是真命题.
练习
把下列定理改成“如果……,那么……” 的形式 ,指出它们的条件和结论,并用演绎 推理证明(1)所示的定理.
CD分别相交于E、F,PQ与 A
E
B
AB、CD分别相交于E、G,
C
∠PEM=27°,∠DGQ=63°.
求证:MN⊥CD.
F GD
Q N
作业
PM
A
E
B
CF
证明: AB//CD( ),
《命题、定理、证明》相交线与平行线精品课件
相交线的性质
相交线两端的点之间的距离叫做相交线的长度。相交线在数轴上的投影叫做相交 线的斜度。
相交线的判定方法
斜度法
通过测量两条直线的斜度是否相等来判断它们是否相交。
端点距离法
通过测量两条直线两端的点之间的距离是否相等来判断它们是否相交。
相交线在生活中的应用
建筑学
在建筑设计中,相交线被用来 确定点、线、面之间的位置关 系,以及建筑物的立体形状和
命题和定理都是数学中重要的 概念,它们之间有着密切的联
系。
许多重要的数学定理是由一系 列相关的命题组成的,这些命 题在证明过程中被逐步验证和
确认。
命题可以作为定理的中间步骤 或组成部分,而定理则是命题
的最终结论或推论。
02
相交线的性质与判定
相交线的定义与性质
相交线的定义
两条直线在同一平面内,如果它们不平行且不重合,那么这两条直线就叫做相交 线。
感谢您的观看
THANKS
增强学习兴趣
命题、定理、证明具有挑 战性和趣味性,可以增强 学生对数学的学习兴趣。
促进创新思维
命题、定理、证明鼓励学 生发挥创新思维,尝试解 决新的问题,推动数学的 发展。
命题、定理、证明在其他学科中的应用
自然科学
在物理学、化学、生物学 等自然科学中,命题、定 理、证明被广泛应用于建 立实验方法和理论框架。
命题、定理、证明在实际问题中的应用案例三
案例名称
设计一个高效、稳定的网络系统
应用定理解决问题
根据证明的定理,构建出符合要求
01
02
已知条件
网络系统的用途、用户数量、数据流 量等。
03
建立命题和定理
根据已知条件,设计出网络系统的架 构,并确定各部分的功能和连接方式 。
相交线两端的点之间的距离叫做相交线的长度。相交线在数轴上的投影叫做相交 线的斜度。
相交线的判定方法
斜度法
通过测量两条直线的斜度是否相等来判断它们是否相交。
端点距离法
通过测量两条直线两端的点之间的距离是否相等来判断它们是否相交。
相交线在生活中的应用
建筑学
在建筑设计中,相交线被用来 确定点、线、面之间的位置关 系,以及建筑物的立体形状和
命题和定理都是数学中重要的 概念,它们之间有着密切的联
系。
许多重要的数学定理是由一系 列相关的命题组成的,这些命 题在证明过程中被逐步验证和
确认。
命题可以作为定理的中间步骤 或组成部分,而定理则是命题
的最终结论或推论。
02
相交线的性质与判定
相交线的定义与性质
相交线的定义
两条直线在同一平面内,如果它们不平行且不重合,那么这两条直线就叫做相交 线。
感谢您的观看
THANKS
增强学习兴趣
命题、定理、证明具有挑 战性和趣味性,可以增强 学生对数学的学习兴趣。
促进创新思维
命题、定理、证明鼓励学 生发挥创新思维,尝试解 决新的问题,推动数学的 发展。
命题、定理、证明在其他学科中的应用
自然科学
在物理学、化学、生物学 等自然科学中,命题、定 理、证明被广泛应用于建 立实验方法和理论框架。
命题、定理、证明在实际问题中的应用案例三
案例名称
设计一个高效、稳定的网络系统
应用定理解决问题
根据证明的定理,构建出符合要求
01
02
已知条件
网络系统的用途、用户数量、数据流 量等。
03
建立命题和定理
根据已知条件,设计出网络系统的架 构,并确定各部分的功能和连接方式 。
人教版小学数学命题、定理、证明-课件
•
ห้องสมุดไป่ตู้
命题、定理、证明
命题的定义:
判断一件事情的句子叫做命题。
命题的构成: 每一个命题都是由题设和结论两部 分组成,即每一个命题都可以写成 “如果…..,那么….”的形式,“如果 后的语句是“题设”,“那么”后的语 是“结论”。
例一:判断下列五个语句中,哪个是命题, 哪个不是命题?并说明理由:
1)对顶角相等吗? 2)作一条线段AB=2cm;
2:判断下列命题的真假。真的用“√”, 假的用“× 表示。
1)互为邻补角的两个角的平分线互相垂直(√ ) 2)一个角的补角大于这个角(× ) 3)相等的两个角是对顶角(× ) 4)两点可以确定一条直线(√ ) 5)若A=B,则2A = 2B(√ ) 6)锐角和钝角互为补角( × )
7)两点之间线段最短( √ ) 8)同角的余角相等(√ )
3)我爱初一(6)班; 4)两条直线平行,同位角相等; 5)相等的两个角,一定是对顶角;
例二:将下列的命题写成“如果…..,那么. ….. ”的形式,并指出题设和结论。
1)等角的补角相等; 2)内错角相等,两直线平行;
3)有理数一定是自然数; 4)两条直线平行,同位角相等; 5)相等的两个角,一定是对顶角;
1:判断下列语句是不是命题?是用“√”, 不是用“× 表示。
1)长度相等的两条线段是相等的线段吗?(×) 2)两条直线相交,有且只有一个交点(√ ) 3)不相等的两个角不是对顶角(√ ) 4)一个平角的度数是180度(√ ) 5)相等的两个角是对顶角(√ ) 6)取线段AB的中点C;(× ) 7)画两条相等的线段( × )
9)同旁内角互补(√ )
•11、教育是一个逐步发现自己无知的过程。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、风声雨声读书声,声声入耳;家事国事天下事,事事关心。2021/10/292021/10/29October 29, 2021 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、生活即教育,社会即学校,教学做合一。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年10月2021/10/292021/10/292021/10/2910/29/2021 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/10/292021/10/29
ห้องสมุดไป่ตู้
命题、定理、证明
命题的定义:
判断一件事情的句子叫做命题。
命题的构成: 每一个命题都是由题设和结论两部 分组成,即每一个命题都可以写成 “如果…..,那么….”的形式,“如果 后的语句是“题设”,“那么”后的语 是“结论”。
例一:判断下列五个语句中,哪个是命题, 哪个不是命题?并说明理由:
1)对顶角相等吗? 2)作一条线段AB=2cm;
2:判断下列命题的真假。真的用“√”, 假的用“× 表示。
1)互为邻补角的两个角的平分线互相垂直(√ ) 2)一个角的补角大于这个角(× ) 3)相等的两个角是对顶角(× ) 4)两点可以确定一条直线(√ ) 5)若A=B,则2A = 2B(√ ) 6)锐角和钝角互为补角( × )
7)两点之间线段最短( √ ) 8)同角的余角相等(√ )
3)我爱初一(6)班; 4)两条直线平行,同位角相等; 5)相等的两个角,一定是对顶角;
例二:将下列的命题写成“如果…..,那么. ….. ”的形式,并指出题设和结论。
1)等角的补角相等; 2)内错角相等,两直线平行;
3)有理数一定是自然数; 4)两条直线平行,同位角相等; 5)相等的两个角,一定是对顶角;
1:判断下列语句是不是命题?是用“√”, 不是用“× 表示。
1)长度相等的两条线段是相等的线段吗?(×) 2)两条直线相交,有且只有一个交点(√ ) 3)不相等的两个角不是对顶角(√ ) 4)一个平角的度数是180度(√ ) 5)相等的两个角是对顶角(√ ) 6)取线段AB的中点C;(× ) 7)画两条相等的线段( × )
9)同旁内角互补(√ )
•11、教育是一个逐步发现自己无知的过程。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、风声雨声读书声,声声入耳;家事国事天下事,事事关心。2021/10/292021/10/29October 29, 2021 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、生活即教育,社会即学校,教学做合一。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年10月2021/10/292021/10/292021/10/2910/29/2021 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/10/292021/10/29
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
练习2 请你说出一个假命题,并举出反例.
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
归纳小结 1.如何判断一个命题的真假? 2.谈谈你对证明的理解。
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
布置作业 教科书 习题5.3 第6、12、13题
《命题、定理、证明》实用课件1
(5)请同学们思考如何利用已经学过的定义定理 来证明这个结论呢?
已知:b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知),
∴∠1=90º (垂直的定义). 又∵ b∥c(已知),
∴∠1=∠2(两直线平行,同位角相等). ∴∠2=∠1=90º(等量代换). ∴ a⊥c(垂直的定义).
《命题、定理、证明》实用课件1
问题3 请同学们判断下列两个命题的真假,并思 考如何判断命题的真假. 命题2 相等的角是对顶角.
(3)我们知道假命题是在条件成立的前提下,结 论不一定成立,你能否利用图形举例说明当两个角 相等时它们不一定是对顶角的关系.
《命题、定理、证明》实用件1
《命题、定理、证明》实用课件1
练习1 填空 已知:如图1,∠1=∠2,∠3=∠4, 求证:EG∥FH. 证明:∵∠1=∠2(已知)
用图形语言来表达吗?
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
命题1 在同一平面内,如果一条直线垂直于两条 平行线中的一条,那么它也垂直于另一条. (3)这个命题的题设和结论分别是什么呢? 题设:在同一平面内,一条直线垂直于两条平行线中 的一条; 结论:这条直线也垂直于两条平行线中的另一条.
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
练习2 请你说出一个假命题,并举出反例.
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
归纳小结 1.如何判断一个命题的真假? 2.谈谈你对证明的理解。
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
布置作业 教科书 习题5.3 第6、12、13题
《命题、定理、证明》实用课件1
(5)请同学们思考如何利用已经学过的定义定理 来证明这个结论呢?
已知:b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知),
∴∠1=90º (垂直的定义). 又∵ b∥c(已知),
∴∠1=∠2(两直线平行,同位角相等). ∴∠2=∠1=90º(等量代换). ∴ a⊥c(垂直的定义).
《命题、定理、证明》实用课件1
问题3 请同学们判断下列两个命题的真假,并思 考如何判断命题的真假. 命题2 相等的角是对顶角.
(3)我们知道假命题是在条件成立的前提下,结 论不一定成立,你能否利用图形举例说明当两个角 相等时它们不一定是对顶角的关系.
《命题、定理、证明》实用件1
《命题、定理、证明》实用课件1
练习1 填空 已知:如图1,∠1=∠2,∠3=∠4, 求证:EG∥FH. 证明:∵∠1=∠2(已知)
用图形语言来表达吗?
《命题、定理、证明》实用课件1
《命题、定理、证明》实用课件1
命题1 在同一平面内,如果一条直线垂直于两条 平行线中的一条,那么它也垂直于另一条. (3)这个命题的题设和结论分别是什么呢? 题设:在同一平面内,一条直线垂直于两条平行线中 的一条; 结论:这条直线也垂直于两条平行线中的另一条.
《命题、定理、证明》实用课件1
命题定理与证明课件
详细描述
在命题的证明练习中,学生需要学习如何根据已知条件 和定义,通过逻辑推理和演绎法,推导出结论。这种练 习有助于学生理解命题证明的基本步骤和技巧,培养他 们的逻辑推理能力。
定理的证明练习
总结词
通过定理的证明练习,学生可以深入理解定理的证明过程,掌握定理的应用方法和技巧。
详细描述
在定理的证明练习中,学生需要学习如何根据定理的证明过程,理解和应用定理。这种练习有助于学生深入理解 定理的本质和应用,提高他们的数学素养和解决问题的能力。
相对论
在相对论中,光速不变原理、质能方程等都是重要的命题 和定理,它们为理解宇宙的基本规律提供了基础。
在计算机科学中的应用
数据结构
在数据结构中,各种排序和查找 算法的效率定理、图的遍历定理 等都是关键的命题和定理,它们 为设计和分析算法提供了依据。
算法分析
在算法分析中,时间复杂度、空 间复杂度等概念都是重要的命题 和定理,它们为评估算法的效率 和可行性提供了标准。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
命题与定理的应用
在数学中的应用
代数
概率统计
命题和定理在代数中有着广泛的应用 ,例如在解决方程、不等式和函数问 题时,需要运用各种基本定理和推论 。
在概率和统计中,命题和定理的应用 也十分重要,例如大数定律、中心极 限定理等,都是解决概率统计问题的 基石。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
命题定理与证明课件
目录
CONTENTS
• 命题与定理的基本概念 • 命题的证明方法 • 定理的证明技巧 • 命题与定理的应用 • 命题与定理的实践练习
人教版七年级下册数学《命题、定理、证明》相交线与平行线PPT教学课件
可以举出如下反例: 如图,OC 是∠AOB 的平分线, ∠1=∠2,但它们不是对顶角.
练习
1. 在下面的括号内,填上推理的根据. 如图,∠A+∠B=180°,求证∠C +∠D =180°. 证明:∵ ∠A+∠B =180°, ∴ AD∥BC(__________________________). ∴ ∠C +∠D =180°(________________________).
复习巩固
3. 如图,平行线 AB,CD 被直线 AE 所截. (1)从 ∠1=110° 可以知道 ∠2 是多少度?为什么? (2)从 ∠1=110° 可以知道 ∠3 是多少度?为什么? (3)从 ∠1=110° 可以知道 ∠4 是多少度?为什么?
复习巩固
4. 如图,a∥b,c,d 是截线,∠1=80°,∠5=70°. ∠2,∠3, ∠4各是多少度?为什么?
综合运用
12. 判断下列命题是真命题还是假命题,如果是假命题,举出一 个反例. (1)两个锐角的和是锐角; (2)邻补角是互补的角; (3)同旁内角互补.
综合运用 13. 完成下面的证明. (1)如图(1),AB∥CD,CB∥DE . 求证∠B+∠D=180°. 证明:∵ AB∥CD . ∴ ∠B=_________(____________________). ∵CB∥DE, ∴∠C+∠D=180°(_____________________). ∴∠B+∠D=180°.
如果两条直线被第三条直线所截,那么同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
如果等式两边都加同一个数,那么结果仍是等式;
(3)互为相反数的两个数相加得0;
如果两个数互为相反数,那么这两个数相加得0;
练习
1. 在下面的括号内,填上推理的根据. 如图,∠A+∠B=180°,求证∠C +∠D =180°. 证明:∵ ∠A+∠B =180°, ∴ AD∥BC(__________________________). ∴ ∠C +∠D =180°(________________________).
复习巩固
3. 如图,平行线 AB,CD 被直线 AE 所截. (1)从 ∠1=110° 可以知道 ∠2 是多少度?为什么? (2)从 ∠1=110° 可以知道 ∠3 是多少度?为什么? (3)从 ∠1=110° 可以知道 ∠4 是多少度?为什么?
复习巩固
4. 如图,a∥b,c,d 是截线,∠1=80°,∠5=70°. ∠2,∠3, ∠4各是多少度?为什么?
综合运用
12. 判断下列命题是真命题还是假命题,如果是假命题,举出一 个反例. (1)两个锐角的和是锐角; (2)邻补角是互补的角; (3)同旁内角互补.
综合运用 13. 完成下面的证明. (1)如图(1),AB∥CD,CB∥DE . 求证∠B+∠D=180°. 证明:∵ AB∥CD . ∴ ∠B=_________(____________________). ∵CB∥DE, ∴∠C+∠D=180°(_____________________). ∴∠B+∠D=180°.
如果两条直线被第三条直线所截,那么同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
如果等式两边都加同一个数,那么结果仍是等式;
(3)互为相反数的两个数相加得0;
如果两个数互为相反数,那么这两个数相加得0;
人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)
归纳总结
判断某一种事情的句子叫做命题,理清命题的 定义必须搞清楚两点: (1)命题必须是一个“完整的句子”; (2)命题必须作出判断,如“两条直线相交交 点唯一吗?”没有对事情作出判断,故不是命题。 定理和公理都是真命题,都可以作为证明其他 命题的依据,不同的是:公理是人们从长期实践 中总结出来的真命题,不用证明也不能证明;定 理是用推理证实为正确的命题。
命题1 在同一平面内,如果一条直线垂直 于两条平行线中的一条,那么它也垂直于 另一条. 已知:如图,b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知) ∴∠1=90º (垂直的定义) 又∵ b∥c(已知) ∴∠1=∠2(两直线平行,同位角相等) ∴∠2=∠1=90º(等量代换) ∴ a⊥c(垂直的定义)
题设是: a=b,b=c
结论是: a=c
③ 同位角相等.
如果两个角是同位角,那么这两个角相等.
条件是:两个角是同位角
结论是:这两个角相等 ④ 同角的补角相等. 如果两个角是同一个角的补角,那么这两个角相 等. 条件是:两个角是同一个角的补角 结论是:这两个角相等
讨论与归纳 思考:请问如何判断①是假命题?如何判断②是
真命题?
① 如果两个角相等,那么它们是对顶角. ② 如果两条平行线被第三条直线所截,那么同旁 内角互补. 注意:要判断一个命题是真命题要经过严格
的推理;是假命题只要举一个反例。
1.下列句子哪些是命题?是命题的,指出是真 命题还是假命题? 是 真命题 (1)兔子有四条腿; 是 假命题 (2)内错角相等; 否 (3)画一条直线; 是 假命题 (4)四边形是正方形; 否 (5)你的作业做完了吗? 是 真命题 (6)同位角相等,两直线平行; 是 真命题 (7)对顶角相等; 是 假命题 (8)垂直于同一直线的两直线平行; 否 (9)过点P画线段MN的垂线;
最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)
(1)同位角相等,两直线平行; 真命题 (2)多边形的内角和等于 180°; 假命题 (3)三角形的外角和等于 360°; 真命题
(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.
(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.
命题定理证明PPT课件
这样的命题叫做真命题. 假命题:如果题设成立时,不能保证结论一定成立,
这样的命题叫做假命题.
如命题:对顶角相等就是一个真命题.
如命题:两条直线被第三条直线所截,同旁内角互补 就是一个假命题.
确定一个命题真假的方法: 利用已有的知识,通过观察、验证、推理、举反 例等方法.
下列句子哪些是命题 是命题的,指出是
1正确的命题称为真命题,错误的命题称为假命题. 2命题的结构:命题由题设和结论两部分构成,常可写成如果…, 那么…的形式.
2、公理:人们长期以来在实践中总结出来的,并作为判断其他 命题真假的根据的命题,叫做公理.
3、定理:经过推理论证为正确的命题叫定理.也可作为继续推 理的依据.
4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推理 的方法证明公理和定理都是真命题;
命题的概念
问题:请同学读出下列语句 1如果两条直线都与第三条直线平行,那么这两
条直线也互相平行; 2两条平行线被第三条直线所截,同旁内角互补; 3对顶角相等; 4等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题proposition.
1. 判断下列语句是不是命题
1两点之间,线段最短;
∠AEF=∠1 对顶角相等; ∴∠AEF=∠2 等量代换. ∴AB∥CD 同位角相等,两直线平行. ∴∠BEF=∠CFE 两直线平行,内错角相等. ∵∠3=∠4已知; ∴∠BEF-∠4=∠CFE-∠3. 即∠GEF=∠HFE 等式性质. ∴EG∥FH 内错角相等,两直线平行 .
课堂小结
1、命题:判断一件事情的语句叫命题.
如果两个角是同旁内角,那么这两个角互补;
2. 指出下列各命题的题设和结论,并改 写成如果……那么……的形式.
这样的命题叫做假命题.
如命题:对顶角相等就是一个真命题.
如命题:两条直线被第三条直线所截,同旁内角互补 就是一个假命题.
确定一个命题真假的方法: 利用已有的知识,通过观察、验证、推理、举反 例等方法.
下列句子哪些是命题 是命题的,指出是
1正确的命题称为真命题,错误的命题称为假命题. 2命题的结构:命题由题设和结论两部分构成,常可写成如果…, 那么…的形式.
2、公理:人们长期以来在实践中总结出来的,并作为判断其他 命题真假的根据的命题,叫做公理.
3、定理:经过推理论证为正确的命题叫定理.也可作为继续推 理的依据.
4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推理 的方法证明公理和定理都是真命题;
命题的概念
问题:请同学读出下列语句 1如果两条直线都与第三条直线平行,那么这两
条直线也互相平行; 2两条平行线被第三条直线所截,同旁内角互补; 3对顶角相等; 4等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题proposition.
1. 判断下列语句是不是命题
1两点之间,线段最短;
∠AEF=∠1 对顶角相等; ∴∠AEF=∠2 等量代换. ∴AB∥CD 同位角相等,两直线平行. ∴∠BEF=∠CFE 两直线平行,内错角相等. ∵∠3=∠4已知; ∴∠BEF-∠4=∠CFE-∠3. 即∠GEF=∠HFE 等式性质. ∴EG∥FH 内错角相等,两直线平行 .
课堂小结
1、命题:判断一件事情的语句叫命题.
如果两个角是同旁内角,那么这两个角互补;
2. 指出下列各命题的题设和结论,并改 写成如果……那么……的形式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题设:两个角相等;
结论:这两个角互为对顶角.
问题3 请同学们判断下列两个命题的真假,并思 考如何判断命题的真假.
命题2 相等的角是对顶角.
(3)我们知道假命题是在条件成立的前提下,结 论不一定成立,你能否利用图形举例说明当两个角 相等时它们不一定是对顶角的关系.
练习1 填空 已知:如图1,∠1=∠2,∠3=∠4, 求证:EG∥FH. 证明:∵∠1=∠2(已知)
问题2 判断下列语句是不是命题?
√ (1)两点之间,线段最短;( )
(2)请画出两条互相平行的直线; ( ) (3)过直线外一点作已知直线的垂线; ( )
√ (4)如果两个角的和是90º,那么这两个角互余.( )
问题4 请同学们观察一组命题,并思考命题是由 几部分组成的? (1)如果两条直线都与第三条直线平行,
问题5 下列语句是命题吗?如果是,请将它们改 写成“如果……,那么……”的形式. (1)两条直线被第三条直线所截,同旁内角互补;
如果两条直线被第三条直线所截,那么同旁内角互补; (2)等式两边都加同一个数,结果仍是等式;
如果等式两边都加同一个数,那么结果仍是等式; (3)互为相反数的两个数相加得0;
(1)命题1是真命题还是假命题?
(2)你能将命题1所叙述的内容 用图形语言来表达吗?
命题1 在同一平面内,如果一条直线垂直于两条 平行线中的一条,那么它也垂直于另一条. (3)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
∠AEF=∠1 ( 对顶角相等 ); ∴∠AEF=∠2 ( 等量代换 ). ∴AB∥CD (同位角相等,两直线平行). ∴∠BEF=∠CFE ( 两直线平行,内错角相等). ∵∠3=∠4(已知); ∴∠BEF-∠4=∠CFE-∠3. 即∠GEF=∠HFE ( 等式性质 ). ∴EG∥FH ( 内错角相等,两直线平行 ).
命题1 在同一平面内,如果一条直线垂直于两 条平行线中的一条,那么它也垂直于另一条.
(4)你能结合图形用几何语言表述命题的题设和 结论吗?
已知:b∥c, a⊥b . 求证:a⊥c.
(5)请同学们思考如何利用已经学过的定义定理 来证明这个结论呢?
已知:b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知),
定理
问题1中的(1)(4)(5)它们的正确性是经过推 理证实的,这样得到的真命题叫做定理(theorem).
定理也可以作为继续推理的依据.
问题2 你能写出几个学过的定理吗?
问题3 请同学们判断下列两个命题的真假,并思考 如何判断命题的真假.
命题1: 在同一平面内,如果一条直线垂直于两条平 行线中的一条,那么它也垂直于另一条.
(4)同旁内角互补;
√ (5)对顶角相等.
命题的真假
真命题:如果题设成立,那么结论一定成立, 这样的命题叫做真命题.
假命题:如果题设成立时,不能保证结论一定成立, 这样的命题叫做假命题.
问题1 请同学们判断下列命题哪些是真命题?哪些 是假命题?
(1)内错角相等,两直线平行; (2)如果两个角互补,那么它们是邻补角; (3)如果 a b ,那么a=b; (4)经过直线外一点有且只有一条直线与这条直线 平行; (5)两点确定一条直线.
∴∠1=90º(垂直的定义). 又∵ b∥c(已知),
∴∠1=∠2(两直线平行,同位角相等).
∴∠2=∠1=90º(等量代换). ∴ a⊥c的真假,并思 考如何判断命题的真假.
命题2 相等的角是对顶角. (1)判断这个命题的真假. (2)这个命题题设和结论分别是什么?
那么这两条直线也互相平行;
(2)两条平行线被第三条直线所截, 同旁内角互补;
(3)如果两个角的和是90º, 那么这两个角互余;
(4)等式两边都加同一个数, 结果仍是等式.
(5)两点之间,线段最短.
命题的结构
命题由题设和结论两部分组成. 题设是已知事项,结论是由已知事项推出的事项. 许多数学命题常可以写成“如果……,那么……” 的形式.“如果”后面连接的部分是题设,“那么” 后面连接的部分就是结论.
命题、定理、证明PPT
命题的概念
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两
条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
如果两个数互为相反数,那么这两个数相加得0; (4)同旁内角互补;
如果两个角是同旁内角,那么这两个角互补; (5)对顶角相等.
如果两个角互为对顶角,那么这两个角相等.
问题7 问题5中哪些命题是正确的,哪些命题是 错误的?
(1)两条直线被第三条直线所截,同旁内角互补;
√ (2)等式两边都加同一个数,结果仍是等式; √ (3)互为相反数的两个数相加得0;
结论:这两个角互为对顶角.
问题3 请同学们判断下列两个命题的真假,并思 考如何判断命题的真假.
命题2 相等的角是对顶角.
(3)我们知道假命题是在条件成立的前提下,结 论不一定成立,你能否利用图形举例说明当两个角 相等时它们不一定是对顶角的关系.
练习1 填空 已知:如图1,∠1=∠2,∠3=∠4, 求证:EG∥FH. 证明:∵∠1=∠2(已知)
问题2 判断下列语句是不是命题?
√ (1)两点之间,线段最短;( )
(2)请画出两条互相平行的直线; ( ) (3)过直线外一点作已知直线的垂线; ( )
√ (4)如果两个角的和是90º,那么这两个角互余.( )
问题4 请同学们观察一组命题,并思考命题是由 几部分组成的? (1)如果两条直线都与第三条直线平行,
问题5 下列语句是命题吗?如果是,请将它们改 写成“如果……,那么……”的形式. (1)两条直线被第三条直线所截,同旁内角互补;
如果两条直线被第三条直线所截,那么同旁内角互补; (2)等式两边都加同一个数,结果仍是等式;
如果等式两边都加同一个数,那么结果仍是等式; (3)互为相反数的两个数相加得0;
(1)命题1是真命题还是假命题?
(2)你能将命题1所叙述的内容 用图形语言来表达吗?
命题1 在同一平面内,如果一条直线垂直于两条 平行线中的一条,那么它也垂直于另一条. (3)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
∠AEF=∠1 ( 对顶角相等 ); ∴∠AEF=∠2 ( 等量代换 ). ∴AB∥CD (同位角相等,两直线平行). ∴∠BEF=∠CFE ( 两直线平行,内错角相等). ∵∠3=∠4(已知); ∴∠BEF-∠4=∠CFE-∠3. 即∠GEF=∠HFE ( 等式性质 ). ∴EG∥FH ( 内错角相等,两直线平行 ).
命题1 在同一平面内,如果一条直线垂直于两 条平行线中的一条,那么它也垂直于另一条.
(4)你能结合图形用几何语言表述命题的题设和 结论吗?
已知:b∥c, a⊥b . 求证:a⊥c.
(5)请同学们思考如何利用已经学过的定义定理 来证明这个结论呢?
已知:b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知),
定理
问题1中的(1)(4)(5)它们的正确性是经过推 理证实的,这样得到的真命题叫做定理(theorem).
定理也可以作为继续推理的依据.
问题2 你能写出几个学过的定理吗?
问题3 请同学们判断下列两个命题的真假,并思考 如何判断命题的真假.
命题1: 在同一平面内,如果一条直线垂直于两条平 行线中的一条,那么它也垂直于另一条.
(4)同旁内角互补;
√ (5)对顶角相等.
命题的真假
真命题:如果题设成立,那么结论一定成立, 这样的命题叫做真命题.
假命题:如果题设成立时,不能保证结论一定成立, 这样的命题叫做假命题.
问题1 请同学们判断下列命题哪些是真命题?哪些 是假命题?
(1)内错角相等,两直线平行; (2)如果两个角互补,那么它们是邻补角; (3)如果 a b ,那么a=b; (4)经过直线外一点有且只有一条直线与这条直线 平行; (5)两点确定一条直线.
∴∠1=90º(垂直的定义). 又∵ b∥c(已知),
∴∠1=∠2(两直线平行,同位角相等).
∴∠2=∠1=90º(等量代换). ∴ a⊥c的真假,并思 考如何判断命题的真假.
命题2 相等的角是对顶角. (1)判断这个命题的真假. (2)这个命题题设和结论分别是什么?
那么这两条直线也互相平行;
(2)两条平行线被第三条直线所截, 同旁内角互补;
(3)如果两个角的和是90º, 那么这两个角互余;
(4)等式两边都加同一个数, 结果仍是等式.
(5)两点之间,线段最短.
命题的结构
命题由题设和结论两部分组成. 题设是已知事项,结论是由已知事项推出的事项. 许多数学命题常可以写成“如果……,那么……” 的形式.“如果”后面连接的部分是题设,“那么” 后面连接的部分就是结论.
命题、定理、证明PPT
命题的概念
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两
条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
如果两个数互为相反数,那么这两个数相加得0; (4)同旁内角互补;
如果两个角是同旁内角,那么这两个角互补; (5)对顶角相等.
如果两个角互为对顶角,那么这两个角相等.
问题7 问题5中哪些命题是正确的,哪些命题是 错误的?
(1)两条直线被第三条直线所截,同旁内角互补;
√ (2)等式两边都加同一个数,结果仍是等式; √ (3)互为相反数的两个数相加得0;