高效减水剂的作用及原理

合集下载

减水剂的减水原理

减水剂的减水原理

减水剂的减水原理减水剂是一种能够减少混凝土或砂浆中所需水分含量的化学添加剂。

减水剂的减水原理主要包括分散作用、吸附作用和化学作用等方面。

1.分散作用:减水剂分子中存在有亲水基团和疏水基团,亲水基团与水分子互相吸附形成水合力,从而解离水分子之间的静电吸引力,使水分子得以分散,降低水的表面张力。

这种分散作用导致减水剂能够将水分子分散到砂浆或混凝土中的颗粒间隙中,减少颗粒间的水分聚集。

2.吸附作用:减水剂分子中的疏水基团与砂浆或混凝土的颗粒表面形成物理或化学吸附,形成一层覆盖在颗粒表面的减水剂分子膜。

膜的存在阻碍水分子的吸附到颗粒表面,从而减少了颗粒间的吸附力。

此外,减水剂也能改善颗粒间的沉积状态,使砂浆或混凝土中的颗粒能够更好地分散和均匀分布。

3.化学作用:减水剂中的化学成分能够与混凝土或砂浆中的水化产物发生反应,形成新的化学结合物。

这些新生成物能够延缓水化反应速度,从而延缓水的凝结时间,提高砂浆或混凝土的可延性。

此外,减水剂还能与集料表面形成盐类溶液,并与水化产物发生反应,形成具有较好分散性的胶凝体颗粒,从而改善混凝土或砂浆的流动性和可塑性。

减水剂的减水原理主要是通过分散作用、吸附作用和化学作用来实现的。

减水剂通过分散作用将水分子分散到颗粒间隙中,降低水的表面张力,从而减少颗粒间的水聚集。

减水剂还通过吸附作用,在颗粒表面形成分子膜,抑制水分子的吸附,改善颗粒间的分散状态。

此外,减水剂还通过化学作用与水化产物发生反应,延缓水化反应速度,提高砂浆或混凝土的可延性和流动性。

总之,减水剂的减水原理是通过分散作用、吸附作用和化学作用等多种方式来减少砂浆或混凝土中所需水分含量,使其具有更好的流动性、可塑性和抗渗性。

这不仅可以提高混凝土或砂浆的施工性能,还可以降低水泥用量,减少材料成本,提高工程质量。

因此,在建筑工程中广泛应用减水剂以达到经济、环保和施工效果最佳化的目的。

减水剂作用机理和功能

减水剂作用机理和功能

减水剂作用机理和功能
减水剂是一种常用的混凝土添加剂,它的作用是降低混凝土的水泥用量,从而达到减少混凝土裂缝、提高强度、耐久性和可加工性的效果。

减水剂的作用机理主要包括以下几个方面:
1.分散作用:减水剂能够改变混凝土内水泥颗粒的表面能力,使其互相分散并保持分散状态,从而有效地减少水泥和水的粘合作用,使混凝土易于流动。

2.扩散作用:减水剂能够使水泥颗粒增加表面活性,从而改善混凝土的流动性能,并能够扩大水泥颗粒之间的间隔,使得混凝土的质地更加均匀。

3.减少孔隙率:通过减水剂的作用,混凝土内的孔隙率可以得到有效地控制和减少,从而提高混凝土的密度和耐久性。

4.改善初始阶段强度:减水剂能够加速混凝土内的水泥水化过程,并使水泥颗粒得到更充分的反应,从而改善混凝土的初始阶段强度和稳定性。

总的来说,减水剂的主要功能是提高混凝土的工作性能、调节混凝土的物理和化学性质,并从根本上提高混凝土的质量和使用寿命。

减水剂的作用机理和掺入减水剂的技术经济效果

减水剂的作用机理和掺入减水剂的技术经济效果

减水剂的作用机理和掺入减水剂的技术经济效果
一、减水剂的作用机理
减水剂是一种常用的混凝土添加剂,能够有效降低混凝土的水灰比,改善混凝土的流动性和工作性,从而提高混凝土的强度和耐久性。

减水剂的作用机理主要包括以下几点:
1. 对水泥颗粒的分散作用
减水剂中的表面活性剂能够包裹水泥颗粒,减少颗粒之间的相互作用力,使水泥颗粒更好地分散在混凝土中,提高混凝土的强度和稳定性。

2. 对混凝土流变性能的调节作用
减水剂可以改善混凝土的流变性能,降低混凝土的内摩擦阻力,提高混凝土的流动性和可塑性,有利于混凝土的浇筑和成型。

3. 对水泥水化过程的促进作用
减水剂中的缓凝剂可以延缓水泥水化反应的速度,使混凝土具有更好的流动性和抗渗性,同时可以提高混凝土的初期和终期强度。

二、掺入减水剂的技术经济效果
1. 技术效果
掺入减水剂可以提高混凝土的流动性和工作性,减少混凝土内部的孔隙率,改善混凝土的密实性和外观质量,提高混凝土的抗压强度和抗折强度,延长混凝土的使用寿命。

2. 经济效果
掺入减水剂可以降低水灰比,减少水泥用量,降低混凝土的生产成本,节约材料和能源,提高施工效率,减少工期,降低人工成本和管理成本,提高工程的经济效益,增加企业的竞争力。

综上所述,了解减水剂的作用机理和合理掺入减水剂对混凝土的技术和经济效果具有重要意义,可以为混凝土生产和施工提供技术支持,促进工程的可持续发展和社会经济的繁荣。

混凝土中高效减水剂的作用机理及其应用

混凝土中高效减水剂的作用机理及其应用

混凝土中高效减水剂的作用机理及其应用一、引言混凝土是一种重要的建筑材料,其广泛应用于各种建筑工程中。

混凝土强度对建筑物的结构稳定性和使用寿命有着至关重要的影响。

现在,为了提高混凝土的强度和耐久性,人们引入了高效减水剂。

本文将从以下三个方面详细介绍高效减水剂的作用机理和应用:1. 高效减水剂的定义和分类2. 高效减水剂的作用机理3. 高效减水剂的应用二、高效减水剂的定义和分类高效减水剂是一种化学添加剂,它可以在混凝土中起到减少水泥用量、提高混凝土流动性、改善混凝土加工性能等作用。

通常情况下,高效减水剂可以分为四类:1. 磺酸盐高效减水剂2. 羟基磷酸盐高效减水剂3. 聚羧酸高效减水剂4. 脂肪醇聚氧乙烯醚高效减水剂其中,磺酸盐高效减水剂是应用最广泛的一种,因其性能稳定、使用方便、价格低廉而备受青睐。

本文重点介绍磺酸盐高效减水剂的作用机理和应用。

三、高效减水剂的作用机理高效减水剂的主要作用机理是通过改变混凝土的物理和化学性质来实现减水作用。

具体来说,高效减水剂可以通过以下三种途径来实现减水作用:1. 化学吸附作用高效减水剂中的磺酸盐分子具有亲水性,可以与水泥颗粒表面的游离钙离子和水分子发生化学吸附作用,从而减少水泥颗粒间的摩擦力和黏着力,提高混凝土的流动性,实现减水作用。

2. 物理排斥作用高效减水剂中的磺酸盐分子具有亲水性和疏水性,可以通过物理排斥作用来实现减水作用。

具体来说,高效减水剂中的磺酸盐分子会与水泥颗粒表面的游离钙离子和水分子竞争吸附,从而使水泥颗粒间的距离增大,降低混凝土的粘稠度,提高混凝土的流动性,实现减水作用。

3. 化学反应作用高效减水剂中的磺酸盐分子可以与水泥颗粒表面的游离钙离子和水分子发生化学反应作用,形成水化产物,从而提高混凝土的早期强度和抗裂性能。

四、高效减水剂的应用高效减水剂是一种常用的混凝土添加剂,其应用可以提高混凝土的强度和耐久性,同时也可以降低混凝土的成本。

以下是高效减水剂的应用注意事项:1. 高效减水剂的使用量应根据混凝土材料、工艺和要求进行选择和调整,以达到最佳效果。

简述减水剂的作用机理

简述减水剂的作用机理

简述减水剂的作用机理
减水剂是一种常用于混凝土和水泥制品中的化学添加剂。

其作用机理主要体现在以下几个方面:
1. 分散作用:减水剂能够分散水泥颗粒之间的静电斥力,使其更好地分散在水中。

这样可以降低水泥颗粒的表面能,提高水泥的浸润性,从而促进水泥与其他材料的均匀混合。

2. 减少黏聚力:减水剂通过降低水泥颗粒之间的黏聚力,使混凝土的流动性增加。

这样一来,混凝土的可塑性更好,易于施工,减少振捣力度,提高施工效率。

3. 减少水泥用量:减水剂可以有效降低混凝土中的水胶比,从而减少水泥的用量。

在保持混凝土强度的同时,减水剂能够提高混凝土的工作性能,节约原材料的使用。

4. 控制凝结时间:减水剂能够延迟水泥的凝结时间,使得混凝土能够在较长的时间内保持流动性。

这对于大体积混凝土、远程运输和复杂施工环境非常重要。

5. 提高混凝土强度:减水剂中的化学成分能够与水泥中的胶凝物质发生反应,生成更加致密的水化产物,从而提高混凝土的强度和耐久
性。

总之,减水剂通过改善混凝土的流动性、降低黏聚力、减少水泥用量、控制凝结时间和提高混凝土强度等方面的作用,优化了混凝土的性能,提高了施工效率,并且节约了原材料的使用。

减水剂的作用机理简述

减水剂的作用机理简述

减水剂的作用机理简述
减水剂是混凝土施工中常用的一种添加剂,它能够有效地降低混凝土的水灰比,提高混凝土的流动性和可泵性,从而改善混凝土的性能。

减水剂主要通过以下几种作用机理来实现对混凝土的影响:
1.分散作用:减水剂中的活性成分能够与水泥颗粒表面形成一层电荷
互斥的保护膜,阻止水泥颗粒之间的互相粘连,从而使水泥颗粒保持分散状态。

这样可以有效地降低混凝土的内摩擦力,提高混凝土的流动性。

2.吸附作用:减水剂中的分子在混凝土中可以吸附水泥颗粒表面,改
变水泥颗粒表面能量,并与水泥颗粒形成一种物理或化学结合,从而降低水泥颗粒之间的粘附力,使其易于分散,提高混凝土的流动性。

3.水泥颗粒表面电荷控制作用:减水剂中的活性成分能够改变水泥颗
粒表面的电荷状态,使水泥颗粒表面带有相同的电荷,导致彼此之间发生相互排斥,从而降低水泥颗粒之间的凝聚力,提高混凝土的流动性。

4.流变作用:减水剂通过改变混凝土的内部结构,使混凝土具有更好
的变形性和可变性,从而提高混凝土的流动性和可泵性。

总的来说,减水剂通过改变水泥浆体系的物理和化学性质,增加浆体的流动性
和可变形性,减小混凝土内部摩擦力,改善混凝土的工作性能和耐久性。

在混凝土施工中,正确使用减水剂可以提高施工效率,降低成本,同时确保混凝土施工质量和工程可持续发展。

减水剂作用机理及几种常用减水剂

减水剂作用机理及几种常用减水剂

减水剂的作用机理及几种常见减水剂1、作用机理分散作用水泥加水拌合后由于水泥颗粒分子引力的作用使水泥浆形成絮凝结构,使10%~30%的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。

当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷(通常为负电荷),形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构破坏,释放出被包裹部分水,参与流动从而有效地增加混凝土拌合物的流动性。

润滑作用减水剂中的亲水基极性很强,因此水泥颗粒表面的减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。

空间位阻作用减水剂结构中具有亲水性的聚醚侧链,伸展于水溶液中,从而在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。

当水泥颗粒靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。

接枝共聚支链的缓释作用新型的减水剂如聚羧酸减水剂在制备的过程中,在减水剂的分子上接枝上一些支链,该支链不仅可提供空间位阻效应,而且,在水泥水化的高碱度环境中,该支链还可慢慢被切断,从而释放出具有分散作用的多羧酸,这样就可提高水泥粒子的分散效果,并控制坍落度损失。

2、减水剂的功能使水泥颗粒分散,改善和易性,降低用水量,从而提高水泥基材料的致密性和硬度,增大其流动性。

减水剂的种类有木质素磺酸盐、萘系减水剂、密胺系减水剂、聚羧酸盐减水剂、干酪素减水剂、氨基磺酸盐减水剂、丙烯酸系减水剂等。

3、几种市场上用量较大的减水剂木质素磺酸盐:它属于普通的减水剂,它的原料是木质素,一般从针叶树材中提取,木质素是由对亘香醇、松柏醇、芥子醇这三种木质素单体聚合而成的,用于砂浆中可改进施工性、流动性,提高强度,减水率在5%-10%。

高效减水剂的作用机理ppt课件

高效减水剂的作用机理ppt课件
➢ 碳氢分子链,带有羟基,如:烷烃基、芳香烃基等。
其结构如下图所示:
碳氢链
阴离子基团
木质素磺酸盐的重复结构单元
精品课件
7
2) 减水剂的物理化学特征
可溶于水,能显著降低水的表面张力; 能吸附在固体表面,并在固体表面定向排列,
形成表面吸附分子层,降低水-固界面张力。
精品课件
8
3)高效减水剂的作用机理
其分散减水作用机理以空间位阻斥力为主其次是水化膜润滑作用和静电斥力作用同时还具有一定的引气隔离滚珠效应和降低固液界面能效应15聚羧酸脂系高效减水剂的作用机理空间位阻1633高效减水剂的极性亲水基团定向吸附于水泥颗粒表面又以氢键形式与水分子缔合再加上水分子之间的氢键缔合构成了水泥微粒表面的一层稳定的水膜阻止水泥颗粒间的直接接触增加了水泥颗粒间的滑动能力起到润滑作用从而进一步提高浆体的流动性
精品课件
16
极性微气泡及水膜所起润滑作精品用课示件 意图
17
减水剂的作用过程
当没有减水剂时,水泥加水后,不能获得均匀分散 体系,由于下列原因而产生絮凝结构,使得部分拌 合水包含其中,不能贡献给水泥浆的流动性:
➢ 水具有高表面张力(氢键分子结构)
加减水剂前的
➢ 水泥颗粒边、角和表面正负电荷间的相互吸力絮凝结构

掺量和形态, 如掺量过高会 推迟强度增长 和降低强度。
精品课件
22
7)减水剂使用中的几个注意的问题
减水剂—水泥相容性问题 混凝土拌合物坍落度损失问题
精品课件
23
减水剂—水泥的相容性与坍落度 损失
相容性,过去称“适应性”,是指减水剂与水泥之 间是否有不利于减水剂效率发挥的相互作用。
相容性好表现为减水率大、坍落度损失小,拌合物 和易性良好。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效减水剂的作用及原理
时间:2009-07-20 00:04来源:砼建外加剂网作者:砼建公司点击:151次
高效减水剂是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。

与普通减水剂相比,减水及增强作用都较强。

高效减水剂的作用可以有效地减少了混凝土的的塌落度损失,改善混凝土的工作度,提高流动性,在高性能混凝土中发挥重要的作用,只是至今为止仍旧没有一个完美的理论来解释高效减水剂的作用机理,但有几个理论为大家普遍认同。

1)静电斥力理论
水泥水化后,由于离子间的范德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。

高效减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zel。

a电位)的离子分布,在表面形成
扩散双电层的离子分布,使水泥粒子在静电斥力作用下分散,把水泥水化过程中形成的空间网架结构中的束缚水释放出来,使混凝土流动化。

Zeta电位的绝对值越大,减水效果就越好。

随着水泥的进一步水化,电性被中和,静电斥力随之降低,范德华力的作用变成主导,对于萘系、三聚氰胺系高效减水剂的混凝土,水泥浆又开始凝聚,塌落度经时损失比较大,所以掺入这两类减水剂的混凝土所形成的分散是不稳定的。

而对于氨基磺酸、多羧酸系高效减水剂,由于其与水泥的吸附模型不同,粒子间吸附层的作用力不用于前两类,其发挥分散作用的主导因素不是Zeta电位,而是一种稳定的分散。

2)立体位阻效应
掺有高效减水剂的水泥浆中,高效减水剂的有机分子长链实际上在水泥微粒表面是呈现各种吸附状态的。

不同的吸附态是因为高效减水剂分子链结构的不同所致,它直接影响到掺有该类减水剂混凝土的坍落度的经时变化。

有研究表明萘系和三聚氰胺系减水剂的吸附状态是棒状链,因而是平直的吸附,静电排斥作用较弱。

其结果是Zeta电位降低很快,静电衡容易随着水泥水化进程的发展受到破坏,使范德华引力占主导,坍落度经时变化大。

而氨基磺酸类高效减水剂分子在水泥微粒表面呈环状、引线状和齿轮状吸附,它使水泥颗粒之问的静电斥力呈现立体的交错纵横式,立体的静电斥力的Zeta电位经时变化小,宏观表现为分散性更好,坍落度经时变化小。

而多羧酸系接枝共聚物高效减水剂大分子在水泥颗粒表面的吸附状态多呈齿形。

这种减水剂不但具有对水泥微粒极好的分散性而且能保持坍落度经时变化很小。

原因有三:其一是由于接枝共聚物有大量羧基存在.具有一定的螫合能力,加之链的立体静电斥力构成对粒子问凝聚作用的阻碍;其二是因为在强碱性介质例如水泥浆体中,接枝共聚链逐渐断裂开,释放出羧酸分子,使上述第一个效应不断得以重视;其三是接枝共聚物Zeta电位绝对值比萘系和三聚氰胺系减水剂的低,因此要达到相同的分散状态时,所需要的电荷总量也不如萘系和三聚氰胺系减水剂那样多。

对于有侧链的聚羧酸减水剂和氨基磺酸盐系高效减水剂,通过这种立体排斥力,能保持分散系统的稳定性。

3)润滑作用
高效减水剂的极性亲水基团定向吸附于水泥颗粒表面,多以氢键形式与水分子缔合,再加上水分子之问的氢键缔合,构成了水泥微粒表面的一层稳定的水膜,阻止水泥颗粒问的直接接触,增加了水泥颗粒间的滑动能力,起到润滑作用,从而进一步提高浆体的流动性。

水泥浆巾的微小气泡,同样对减水剂分的定向吸附极性基团所包裹,使气泡与气泡及气泡
与水泥颗粒问也因同电性相斥而类似在水泥微粒间加入许多微珠,亦起到润滑作用,提高流动性。

2 与水泥的适应性问题
按照混凝土外加剂应用技术规范,将经检验符合有关标准的某种外加剂,掺加到按规定可以使用该品种外加剂的水泥所配制的混凝土(或砂浆)中,若能够产生应有的效果,就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂之间存在不适应性。

高效减水剂与水泥产生不适应性的时候,能够直观快速地反应出来,如流动性差、减水率低、拌合物板结发热、塌落度损失过快等。

高效减水剂与水泥的适应性受诸多因素的影响,评价高效减水剂与水泥的适应性是十分复杂的。

1)水泥矿物成分的影响
水泥中C3A的含量越低,减水剂与水泥的适应性较好;当水泥中C3A的含量高时,减水剂的使用效果较差。

各种试验表明,C3A含量高的水泥,将形成大量的钙矾石,须消耗大量的水,使混凝土流动度降低,需增加减水剂的用量。

这是因为减水剂溶解后,优先选择性地吸附在C3A或其初期水化物表面,从而使对其它粒子产生分散作用的有效的减水剂量相应减少。

2)水泥碱性的影响
现代工程普遍采用纯硅或普硅水泥,而这类水泥的碱度是比较高的。

加上砂、石或外掺材料等也都带有一定数量的碱。

碱含量对减水剂与水泥的适应性有很大影响,试验表明,掺量一样的同种减水剂,采用碱含量高的水泥,其水泥净浆的流动性就较差,塑化效果亦差。

3)水泥细度的影响
当水泥细度增加时,水泥比表面积就增大。

因此,就需要有更多的分散剂的分子吸附覆盖在水泥颗粒表面,才能达到预期的使用效果。

水泥颗粒越细,其净浆流动稳定性越差,要有好的流动性,则所需的减水剂就要增多。

4)水泥中石膏的影响
石膏控制硅酸盐水泥的凝结时间与硬化速度,一般会以二水石膏、半水石膏、可溶性或不可溶性硬石膏(无水石膏)等几种形式存在。

由于它们的溶解度和溶解速度是不相同的,在混合物中C3A与SO4-2。

之之间的平衡将直接影响减水剂的使用效果。

以无水石膏作为调凝剂的水泥碰到木钙、糖钙减水剂时,会产生严重的不适应性,不仅得不到预期的效果,而且往往会引起流动损失过快甚至异常凝结。

因此,对于掺有硬石膏的水泥,在使用减水剂时要特别小心。

5)高效减水剂自身特性的影响
高效减水剂的分子结构对其塑化效果有很大的影响,这在前面已经论述过了。

此外,减水剂的掺量、形态等其他因素有影响。

当高效减水剂掺量过高时,其分散作用可能影响到水化产物,阻碍它们之间的粘结,从而推迟强度增长以及降低最终的强度。

三聚氰胺系高效减水剂、氨基磺酸盐系高效减水剂在施工中只有以水剂方式作用才能发挥良好的塑化效果。

相关文档
最新文档